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Change Notes:
8/18/2015: imported the revision of the “relevant FM interpretation” found

in the latest series, which actually describes what happens in every clan in the
main construction without oversimplification.

6/24/2015: 3 am debugging wording in various places.
6/23/2015:
7:46 am MST some typos corrected
external permutations seem to be needed to handle the elementarity argu-

ment. I have talked through this with Nathan’s group and I believe I know what
is needed.

corrected action of an injection of P (∅) into P (A), requring the range to be
included in clan(P (A1)) and noting the reason.

Installed definition of external permutations and proofs of their properties,
and corrected the elementarity proof.

6/22/2015: 3:30 pm there is an omission of important detail in the discussion
of elementarity, which I have partly made good here.

2:30 pm Some detailed edits and corrections as I read through this. I have not
examined this version so carefully in a long time. It does hold up on examination,
but there are minor slips here and there, and there are places where clarification
of structure is needed.

9 am Corrected one place where the definition of B << A is misstated: in
all occurrences, it is supposed to include 0 ∈ B (though this may be misguided
or unnecessary as discussion below points out).

Corrected the definition of formal element by adding a star (under set codes).
Nathan Bowler’s reading group felt that images of argument lists under

allowable permutations were not necessarily argument lists because of an issue
with representatives. On discussion with Nathan, I think the text as it stands
is correct. Some additional exposition of the confusing point might be wanted.

adding language about a point noticed by Nathan and his group:
In this note I use the abbreviation clan[A] for clan(P (A)) which is used in

a later version.
Nathan points out that we can prove in fact that P2(clan[A]) = τ(A) for

any clan index A.
The equation to be shown is (if B << A = Bn) |P |B|−|A|+2(clan[B])| =

|P2(clan[A])|.
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The lemma he proposes for this use is |Pi+1(clan[A])| ≥ |P(clan[Ai])|.
|P2(clan[A])| ≥ |P(P (A))| ≥ |P(clan(A1))| gives the basis.
If |Pi+1(clan[A])| ≥ |P(clan[Ai])| then |Pi+2(clan[A])| ≥ |P2(clan[Ai])| ≥

|P(P (Ai))| ≥ |P(clan(Ai+1)|. This is a minor tweak on my proof of |Pi+2(clan[A])| ≥
|P(P (Ai)|

Now |P |B|−|A|+2(clan[B])| = |P(P |B|−|A|+1(clan[B]))| ≥ |P(P(clan[B|B|−|A|]))| =
|P2(clan[A])|.

On the other hand |P2(clan(A))| ≥ |P(P (A))| ≥ P(P |B|−|A|+1(clan[B])| =
|P |B|−|A|+2(clan(B))

This suggested that the conditions on parent sets should be stated in a way
independent of which clans are base clans: define P (A) as including clan(A1)
and as including P2(clan(B)) for each B such that B1 = A. Still loopy but
simpler.

5/23/2015 fixed an ugly typo in the proof re tangled webs.
3/31/2015 changed the name of the ambiguity property of tangled webs

to elementarity, to avoid confusion with the type shifting ambiguity property
proper to NF. Please note that though this is no longer the main document
(that is ftsversion.pdf) I have been editing this one because someone was
reading it and had useful comments.

3/28/2015 Making some changes to section 5 in response to remarks from
a reader. I need to make the same changes to the nearly identical section in
the current official document. Further changes to the same section for the same
reason 8:20 PM.

11/3/2014 explicitly added notion of input fine type of a parent or set coder
to make phrasing of parts of the main recursive definition clearer.

10/17/2014 minor edit to definition of fine type of an argument list motivated
by David’s question.

10/16/2014 corrected a minor typo pointed out by David.
9/20/2014 6:47 pm More editing. No conceptual changes; corrected some

slips. I am inclined once again to turn to other things and give people a chance
to read the text as it stands.

9/19/2014 5:45 pm Further edits. The maps σ are of course not small,
since P (∅) is of size κ. I think that the situation is once again approaching an
equilibrium where I can declare an editing moratorium.

9/19/2014 I believe it is the partial maps induced by small injective maps
from coded parent sets P (∅) to P (A) which are crucial for elementarity (and for
the computation of equivalence on set codes), so I am providing a full account
of these in place of the account of actions of permutations on P (A)’s (but I
have presented them as maps from P (∅) to P (A) rather than the reverse). I
eliminated the account of the action of permutations of coded parent sets, not
because it is incorrect but because it no longer appears to be used. And of
course these maps will be quite familiar to readers of nfdoc; they are the same
substitutions defined there, and they seem to unavoidably play some of the same
roles. In particular, the substitutions have not been completely evicted from
the main recursive construction because, as before, they are needed to support
computation of equivalence of set codes in a well-founded manner.
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I am closer to being able to stop editing for a bit.
9/18/2014 4:21 PM Rewrote the description of the actions of permutations

of coded parent sets or the partial actions of small injections from one coded
parent set to another. The descriptions are denser, and rely on details of parent
coding, so I swapped locations of the parent code section and this one so that
parent codes come first. The technical effects of this change on the elementary
embedding section are installed (they are actually good; things work better
with the new treatment of embeddings). The additional restriction on argument
lists of set coders turns out not to be needed (which is fortunate because it is
incompatible with the more ramified argument list rules we now have). The
gap I reported on 9/17 definitely seems to have been fixed, but the recursive
construction is now a bit more baroque and requires checking over.

early: fixed the fine typing so that coders are still generally applicable to
lists of coarse type ∅ as before, with type information about items of index ∅
being ignored. There are definitely going to be a lot of fine points to fix with
the more detailed typing now provided.

9/17/2014 10:36 pm repaired discussion of action of permutations on coded
parent sets, which has to be changed due to the finer type information supplied
about argument codes with index equal to the coarse type. The discussion
needs to be improved; this version is just a sketch. Injections from any coded
parent set to P (∅) still work to create elementary embeddings, as required for
the definition of equivalence of set codes. In general, there will be quite a lot of
tidying to do after today’s revision to bring things back into consistency. The
description of elementary embeddings in the elementarity section needs to be
changed to be in line with the new treatment of embeddings.

7:24 just a remark added here. Typing of set coders needs to be added at
the same place where typing of parent coders is telegraphed in advance. The
finer analysis required by the fix to the latest problem may make my restriction
to types in argument lists of set coders impossible, so require a more careful
argument for elementarity considerations. None of this seems insuperable, just
potentially annoying.

6:38 pm I am working on fixing the problem with the proof that all sets
in the FM interpretation which should be codable are codable. The approach
I am taking requires me to record dependencies of argument list items of the
coarse type on one another where these exist (using set coders, of necessity)
which complicates the recursive construction. The gap appears to be repaired,
at the cost of more recursion in the construction. I cannot promise an editing
moratorium, as the precise material just introduced is of a very finicky nature
and may need debugging, but I may return to this desirable state soon.

I believe that this is fixed, but I also think that extremely paranoid type
checking of the master recursive definition is in order at this point.

9/17/2014 The error in my revision of the old section 12 led me to discover
a gap in the argument I gave originally in the old section 12. I do not think it
is an unrepairable gap, but for the moment it is a gap; the proof that relevant
iterated power sets in the FM interpretation are inhabited only by codable sets is
incomplete, because I overlooked an important special situation. I am working
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on it, but for the moment the proof is not complete. The proof in nfdoc is
subtler, and may serve to solve the problem, but I am not going to claim this
until I have verified it; some work is required to translate it.

9/16/2014 2:28 pm My intention at this point is to STOP EDITING,
except in response to comments, for at least a couple of weeks. This doesn’t
mean I won’t correct typos, and I will certainly address material errors if I notice
them. But I am going to let YOU look for them. I believe that the paper is
now much closer to a production version (which does not mean it is perfect!)

6:12 PM: a caveat. Today’s revision of the former chapter 12 was over-
ambitious; it did introduce a mistake which I have to fix. The key word is
“introduce”; it wasn’t there before and can be corrected.

1:45 pm This version may look different but is not as different as one might
think. Mostly I have moved text around. The former sections 9.10,12 are now
one section (section 9), with some changes to the old section 12 material. The
new sections 9,10 (formerly 9-12) have headings inserted.

9/16/2014 10:31 am Completely rewrote discussion of transformations of
argument lists at the end of section 8.

9/15/2014 Brought the FM example more into line with the approach taken
in the main proof.

6:35 pm introduced more structured formatting in section 8.
9/12/3014 Changed title to the obvious brief statement. Removed change

notes earlier than the major fix to coded parent sets. I have done extensive edit-
ing throughout the document today. Notably, I completed the list of references.

At the end of section 7 there is a proof to be added (in no way needed for
the final result, but helpful for the exposition).

In section 5, I am planning to change the definitions and proofs to more
closely parallel what happens in the main construction. The permutations used
ought to be all the allowable ones, and near-litters should be used in the argu-
ments. done, 9/15.

Universal directive to highlight definitions and lemmas/theorems.
The discussion of the effects of padding argument lists with a desired initial

segment on set coders needs to be more explicitly computational.
section 12 needs polish. I have a feeling that it might be reasonable to

compact sections 9, 10, 12 into one. These have become very brief because the
current format makes certain things which once had quite long proofs rather
easier to show.

9/11/2014 another pass checking for type errors caused by the change from
equivalence classes of parent codes to representatives of equivalence classes
(found a few, but the paper is getting to be structured well enough that it
was not too laborious). Reintroduced δ1 as the decoding map on all parent
codes, and δ is then its restriction to representative parent codes.

9/10/2014: Significant change: elements of sets P (A) are now representative
elements of equivalence classes included the set of parent codes of index A, which
is now denoted P+(A) rather than

⋃
P (A); a parent code (and so a parent of an

atom) is now a code representing its equivalence class rather than itself being
an equivalence class of codes. I had to do this because I had not noticed that
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the last change in the nature of argument lists made the equivalence class def-
inition violate well-foundedness. The use of representative elements instead of
equivalence classes is a manageable change, and in fact the modification of the
text is not that profound (the abstract data type of codes is getting better de-
fended from tweaks in the implementation). There is no change whatever in the
structure of the models of type theory being described; this is all bookkeeping.

If any reader identifies type errors in the text caused by overlooking needed
corrections due to this modification, I will be grateful. I am sure that some will
linger for quite a while!

I discovered this problem in the course of writing a more explicit description
of the action on codes and code components with indices extending A of a
permutation of P (A) at the end of section 8.4, which is now written.
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1 The Starting Point

The beginning of our story is at a point which might be regarded as the end of
the story of the Principia Mathematica of Russell and Whitehead (PM, [18]).
This is the system called TST by Thomas Forster (for example, in [2], the
best current monograph on the subject of NF), the simple typed theory of sets.
This is a first-order theory with sorts indexed by the natural numbers 0,1,2. . .
[and no, this does not imply prior understanding of the natural numbers] and
equality and membership as primitive relations. The sorts are traditionally
called “types”. Atomic identity sentences x = y are well-formed iff x and y are
variables of the same type; atomic membership sentences x ∈ y are well-formed
iff the index of the type of y is the successor of the index of the type of x. The
axioms are extensionality (objects of each positive type are equal iff they have
the same elements) and comprehension (for any formula φ(x), there is an A such
that x ∈ A ↔ φ(x), where A, obviously one type higher than x and unique by
extensionality, can be denoted by {x : φ(x)}.

We regard this as the end of the story of PM (not necessarily an uncontro-
versial view) because this is a simple and natural system realizing the aims of
PM. The type system of PM is considerably more complicated than that of TST
for two reasons: the first reason is that Russell and Whitehead did not know
how to implement ordered pairs as sets (Norbert Wiener gave the first imple-
mentation in [19], 1914), so PM contains types of n-ary relations for every n
with arbitrarily complex heterogeneous input types; the second reason was that
Russell and Whitehead restricted themselves initially to predicative comprehen-
sion, then made their system impredicative by adding an axiom of reducibility;
TST follows Ramsey ([10]) in using fully impredicative comprehension and no
axiom of reducibility. We do know that Russell tried to abandon reducibility
in the second edition of PM, but we also know that much of the mathematics
in PM does not survive this. TST and the system of PM with reducibility are
mutually interpretable.

It is usual to add axioms of Infinity and Choice to TST, but we do not re-
gard these as part of the basic definition. TST + Infinity (+ Choice) has the
same mathematical strength as Zermelo set theory with separation restricted
to bounded formulas (a system sometimes called Mac Lane set theory). This is
weaker than Zermelo set theory, but easily strong enough for almost all math-
ematics outside of set theory. TST without Infinity is weaker than arithmetic,
but this is no part of our story.

There is a very natural interpretation of TST in terms of the familiar set
theory ZFC: let X0 be any set and define Xi+1 as the power set of Xi for each i.
Interpret type i variables as ranging over Xi. Interpret equality and membership
relations between each appropriate pair of types as suitable restrictions of the
usual equality and membership relations. Notice that there is no requirement
here that the sets interpreting the types be disjoint: we in fact cannot even ask
the question in the language of TST as to whether objects of distinct types are
equal.
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2 The Hall of Mirrors: the formulation of New
Foundations

The next chapter in the story is an observation made by Russell about PM
(under the heading of “systematic ambiguity”) and made in a much sharper
form by Quine about TST. The system is extremely symmetric, in the sense
that there is nothing in the system to distinguish the sorts from one another
(to be exact, there is nothing to distinguish the type of individuals, which has
no given structure, from any other type). In TST, this can be stated in a very
elegant way. For any sentence φ, let φ+ be a sentence obtained by raising the
type of each variable in φ by one (without creating any identifications between
variables). Since all variables in φ are bound, the exact way that the new
variables are chosen does not matter. We observe then that if φ is provable,
so is φ+, and if we define a mathematical construction using a set abstract
{x : φ} and our scheme of variable type raising sends x to y, {y : φ+} will be
a precisely analogous mathematical construction one type higher. This is the
“hall of mirrors” aspect of TST: for example, it is natural in TST to define the
number three as in effect the set of all sets with three elements, following Frege
and also PM, but we then get a new version of the number three in each type
i+ 2.

Quine made the stronger suggestion that we should simply identify all the
types. This gives the theory which is generally called New Foundations (NF)
after the title of the paper [9], 1937, where he made the suggestion. NF is the
first order single-sorted theory with equality and membership whose axioms are
obtained from those of TST by dropping all distinctions of sort between the
variables (without introducing any identifications between variables). That is,
the axioms are extensionality (objects with the same elements are the same) and
stratified comprehension ({x : φ(x)} exists for φ a stratified formula), where
we say that φ is stratified iff there is a function σ from variables to natural
numbers with the property that for each atomic subformula x = y of φ we have
σ(x) = σ(y) and for each atomic subformula x ∈ y of φ we have σ(x)+1 = σ(y).
Notice that the function σ (called a stratification of φ) is acting on x and y as
bits of text, not on their values, so we should perhaps put the variables in quotes
(but do not here do this).

It is a persistent criticism of NF that it is a syntactical trick. Of course, as
phrased here, it does look that way. It is possible to give a finite axiomatization
of NF, which eliminates the notion of stratification from the explicit definition
of the theory (though the very first thing one would do with such a formulation
of the theory would be to prove stratified comprehension as a meta-theorem).
The standard reference is Hailperin, ([1]).

In terms of the interpretation of TST suggested above, this is a very strange
proposal. If type i + 1 is represented by exactly the same set as type i, it is
certainly not represented by the power set of the set representing type i, which
is a larger set by Cantor’s theorem.
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3 Good News and Bad News: well-known re-
sults about New Foundations

Specker showed in [15], 1962, that NF is equiconsistent with TST + the Ambi-
guity Scheme which asserts φ↔ φ+ for each sentence φ, which is not surprising
given the motivation of the theory.

Specker also showed, much more surprisingly, in [14], 1953, that Choice is
inconsistent with NF, which implies that Infinity is a consequence of NF (as if
the universe were finite, every partition, being finite, would have a choice set).
[Quine’s argument for Infinity in the original NF paper is fallacious]. This shows
that NF is stronger than expected, but it also shows that it is very strange, and
caused considerable doubt about this theory.

On the good news side of things, Jensen showed in [8], 1969, that NFU
(New Foundations with urelements) is consistent. We outline his approach.
The idea is to replace TST with TSTU, in which the axiom of extensionality
is weakened to apply only to objects with elements, so that each positive type
contains at most one element with each nonempty extension, but may contain
many elements with empty extension (urelements or atoms). Note that the
individuals of type 0 are not atoms, or at least are not considered as atoms: we
simply do not ask the question as to what elements they have.

The results of Specker can be extended to show that NFU (New Foundations
with the weaker form of extensionality and full stratified comprehension) is
equiconsistent with TSTU + Ambiguity.

We now argue, following Jensen, for the consistency of TSTU + Ambiguity.
We work in some familiar set theory (we use nothing like the full power of ZFC,
but we may suppose that to be our working theory). Let X0 be a set and define
Xi+1 as the power set of Xi for each i. Let each type i variable in the language
of TSTU be interpreted as ranging over elements of Xi; interpret equality and
membership in TSTU as equality and membership suitably restricted. Thus far
we have actually interpreted TST. Now we throw in a refinement. Let s be a
strictly increasing sequence of natural numbers. An alternative interpretation
takes variables of type i as ranging over elements of Xsi , takes equality between
type i objects as equality suitably restricted, and interprets membership of type
i objects in type i + 1 objects as holding where the type i + 1 object is an
element of Xsi+1 which has the type i object as an element; note that this
interpretation treats all elements of Xsi+1

\ Xsi+1 as urelements (it should be
noted that the relation interpreting membership of type i objects in type i+ 1
objects will not necessarily agree with the relations interpreting membership
between other successive types). It is straightforward to establish that this
gives an interpretation of TSTU for each increasing sequence s. Now choose a
finite set Σ of formulas of the language of TSTU mentioning no types with index
higher than n− 1. Define a partition of the n element subsets A of the natural
numbers determined by the truth values of the sentences in Σ in interpretations
of TSTU determined by maps s which have A as an initial segment of their
range (the truth value of sentences in Σ is entirely determined by the first n
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elements of the range of the function s used). This is a partition of the n element
subsets of N into finitely many parts (no more than 2|Σ|) and so has an infinite
homogeneous set H which is the range of a strictly increasing map h. In the
interpretation of TSTU determined by the map h, we have ambiguity for all
formulas in Σ. This implies by compactness that full Ambiguity is consistent
with TSTU, and by the results of Specker that NFU is consistent.

It is useful to note one could use instead of the sets Xi, sets Xα indexed
by elements of any limit ordinal (taking unions at limit indices), whereupon
the sequences s would be sequences of ordinals below the limit (still indexed
by natural numbers); for example, the stages of the cumulative hierarchy up to
any limit level could be used. This is relevant to establishing the consistency of
strong extensions of NFU.

It is clear that if Choice holds in our working set theory, Choice will hold
in all the approximations to NFU obtained by the method above, and so is
consistent with NFU, and that if all Xi’s are finite, the approximations of NFU
obtained by the method above will not satisfy Infinity, and so NFU does not
prove Infinity. If X0 is infinite, Infinity will hold, of course. NFU by itself is
weaker than Peano arithmetic, as it happens. We will not consider theories
weaker than NFU + Infinity, which is a quite competent mathematical theory
equivalent in strength to TST + Infinity or to Mac Lane set theory.

Other fragments of NF have been shown to be consistent, but the strategy
we will follow to show the consistency of full NF follows in its broadest outlines
the strategy of Jensen for NFU (though this turns out to be quite hard to do).
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4 Tangled Webs of Cardinals

We articulate a hypothesis about cardinals in ZFA (ZFC sans choice and with
extensionality weakened to allow atoms) whose consistency with ZFA implies the
consistency of NF. Note that we can use Scott’s trick ([12]) to define cardinals in
this theory; the usual definition using initial ordinals will not work when choice
is not assumed. The treatment here is derived from our [4], but the notation is
greatly improved.

Let λ be an infinite limit ordinal (it could be taken to be ω for the purposes
of merely proving Con(NF) but we aim for more generality).

We define TSTn as the theory obtained by restricting the language of TST
to mention only types with index less than n and having as its axioms exactly
the axioms of TST which can be expressed in the restricted language. A natural
model of TSTn is one in which type i is represented by a set Xi, with Xi+1 being
the power set of Xi for each appropriate i, and the equality and membership
relations of the natural model on each suitable pair of types being the obvious
restrictions of the usual equality and membership relations. It is a crucially
important observation that the first order theory of a natural model of TSTn is
completely determined by the cardinality of the set X0 representing type 0 in
the model (it is straightforward to construct an isomorphism between natural
models with base sets representing type 0 of the same size).

We define a tangled web of order λ as a function τ sending nonempty finite
subsets of λ to cardinals with two properties:

naturality: If A has at least two elements, 2τ(A) = τ(A \ {min(A)})

elementarity: For each n, if A has at least n elements, the first-order theory of
a natural model of TSTn with type 0 having cardinality τ(A) is completely
determined by the smallest n elements of A.

It may not be immediately evident, but the definition of a tangled web of
cardinals is precisely motivated by the desire to replicate the consistency proof
of Jensen for NF.

We argue that the existence of a tangled web of cardinals implies the consis-
tency of NF. Let Σ be a finite set of sentences of the language of TST mentioning
no variable of type ≥ n. Partition the finite subsets A of λ by considering the
truth values of the sentences in Σ in natural models of TST with base type of
cardinality τ(B) where B has at least n elements and the smallest n elements
of B are exactly the elements of A. By Ramsey’s theorem there is an infinite
homogeneous subset H of λ for this partition. Note that for any subset B of H
with at least n elements, the theory of a model of TSTn with base set repre-
senting type 0 of cardinality τ(B) will assign the same truth values to sentences
in Σ. It follows that for any finite subset B of H with more than n elements,
we find that ambiguity holds for all sentences in Σ in a model with base set
representing type 0 of size τ(B): notice that the power set of this set will be of
size τ(B \ {min(B)}), and the argument of this expression is also a subset of H
with at least n elements. Thus the theory of the natural model of TSTn with
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base type T of size τ(B) agrees with the model of TSTn with base type P(T )
about the truth value of each sentence in Σ, from which it follows that φ↔ φ+

holds in the model of TSTn+1 with base type T for each φ in Σ. Thus we find
that ambiguity for Σ is consistent with TSTm for all m > n, so with TST. Thus
full Ambiguity is consistent with TST by compactness, and NF is consistent by
the results of Specker.

Our program is thus to construct a model of ZFA with a tangled web of
cardinals in it. We do this using the FM technique of constructing models of
ZFA with a high degree of symmetry (in particular, generally not satisfying
Choice).
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5 A relevant FM construction

The phenomena illustrated in this section happen in each “clan” in the con-
struction which follows.

We review the requirements for the Frankel-Mostowski construction (refer
to [7]). Any permutation π of the atoms in ZFA can be extended to a class per-
mutation of the universe by the convention π(A) = π“A. A Frankel-Mostowski
interpretation is determined by a group G of permutations of the atoms (always
considered to be extended to the universe as indicated) and a collection F of
subgroups of G (a “normal filter”) satisfying the following conditions:

1. G ∈ F ,

2. H ∈ F ∧H ⊆ K → K ∈ F ,

3. H ∈ F ∧K ∈ F → H ∩K ∈ F ,

4. π ∈ G ∧H ∈ F → πHπ−1 ∈ F (normality condition).

5. Further, the group of permutations in G such that π(a) = a should belong
to F for each atom a.

We then say that a set A is F -symmetric iff the group of permutations in G
which fix A belongs to F . The objects in the domain of the FM interpretation
are the atoms and the sets which are hereditarily F -symmetric. The membership
relation of the FM interpretation is the restriction of the membership relation
of our ambient ZFA to this domain. The grand theorem which we are using but
not proving asserts that this class structure satisfies ZFA as well (but generally
not choice).

We fix a regular uncountable cardinal κ. We will refer to sets of cardinality
less than κ as “small” and all other sets as “large”. We suppose that P is a large
set (that is, |P | ≥ κ) and there is a collection of atoms A equinumerous with
P × κ (which are not necessarily all of the atoms present): let f be a bijection
from P × κ onto A and denote f(p, α) as pα.

We refer to the set {pα : α < κ} as litter(p) and refer to such sets as
litters. A near-litter is defined as a subset of A with small symmetric difference
from a litter. p is called the “parent” of litter(p), and of any near-litter with
small symmetric difference from litter(p), and of any atom pα.

We let G be the group of permutations π of the atoms (which may include
atoms not in A) which have the property that π(litter(p))∆litter(π(p)) is
small for each p ∈ P , and which further have the property that the action of
G on P is restricted to an unspecified G0. Another way of putting this is that
a permutation is in G iff it moves only a small number of elements of A in
each litter in a way which is not expected from the action of the permutation
on P (and actions on P may be further restricted in unspecified ways). The
identity is clearly such a permutation, and inverses of such permutations and
compositions of such permutations are clearly such permutations. It is worth
noting that near-litters are mapped to near-litters, and only a small number of
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elements of any near-litter are moved in a way not deducible from the way their
parent is moved.

Let S be a small set of atoms in A and near-litters, such that the intersections
of distinct near-litter elements of S are large. Let GS be the collection of
permutations in G which fix each element of S (where we apply the rule π(A) =
π“A in the case of the set elements of S). The filter F consists of all subgroups
of G which include a GS as a subgroup.

The only condition on F which requires much effort is the normality con-
dition, and it does not really require much. Suppose that H is an element of
F , and so includes some GS . We claim that πHπ−1 includes Gπ(S). Certainly
πHπ−1 includes πGSπ

−1. We claim that πGSπ
−1 includes Gπ(S). Suppose that

σ ∈ Gπ(S): we would like to show that π−1σπ ∈ GS : but this is immediate. For
x ∈ S (whether atom or near-litter), π(x) ∈ π(S) is fixed by σ, so π−1σπ(x) = x
as required.

It is worth noting that we could have required that our supports consist
just of atoms and litters, but the use of near-litters simplifies the proof of the
normality condition. From a given support, we obtain a support consisting
entirely of atoms and litters by replacing each near-litter element N with the
litter L with small symmetric difference from N and in addition the atoms in
L∆N (which are called the anomalous elements for N).

We assume additional conditions on the action of permutations in G:

Existence of a special relation on A: There is a strictly well-founded tran-
sitive relation ≤ on P ∪A such that the preimage under ≤ of each element
pα of A is {p} and for each p ∈ P , the collection of atoms ≤ p and litters
litter(q) with q ≤ p is a support for p, which we will call its strong sup-
port. A strong support of a general object is obtained by taking a support
of the object made up of atoms and litters and adding the strong support
of each parent of an atom or litter in the original support.

A condition on free action of permutations in G: For any small collec-
tion Σ1 of atoms in A and litters and small collection Σ2 of elements
of A such that each element of Σ1 has strong support not meeting Σ2,
any permutation of Σ2 can be extended to a permutation in G fixing each
element of Σ1.

observation that these conditions are trivially realizable: Notice that these
conditions can be made to hold by making all elements of P pure sets or
at any rate requiring that no element of P has an element of A in its
transitive closure: in this case every element of P has empty support and
the permutations in G can be taken to be those which move each litter to
a near-litter with the same parent, which clearly has the second property.

We demonstrate some properties of the resulting FM interpretation.
All small subsets of the domain of the FM interpretation are sets of the

FM interpretation, which support equal to the union of the supports of their
elements.
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Any subcollection of the domain of the FM interpretation with small sym-
metric difference from a set of the FM interpretation will be a set of the FM
interpretation, with support equal to the union of the supports of the elements
of the small symmetric difference and the support of the set from which the
difference is taken.

We say that a set C is κ-amorphous iff for any B ⊆ C, either B or C \B is
small. We say that the cardinal of a κ-amorphous set is a κ-amorphous cardinal.

Every litter litter(p) is a set of the FM interpretation with support its own
singleton. Further, every litter is a κ-amorphous set in the FM interpretation.
Let C be a subset of litter(p) with strong support S, such that neither C nor
litter(p) \ C is small. We can then choose two atoms pα, pβ from the litter,
one in C and one not in C, neither belonging to the strong support S. There
will be a permutation in G exchanging pα and pβ and fixing all elements of S.
This permutation moves C without moving any element of its support S, which
is a contradiction.

Not only is every subset of a litter either small or co-small, but every subset
of the collection A of atoms of interest has small symmetric difference from
either a small or a co-small union of litters. We prove this in stages.

Suppose that a subset C of A cuts a large number of litters (that is, there
is a large collection of litters L such that L∩C and L \C are both nonempty).
Suppose further that C has strong support S. Any litter cut by C is cut into
a small part and a large part. We can choose a litter cut by C which is not
in S and no element of the small part of which belongs to S (because we are
only ruling out a small collection of litters); we can then choose from this litter
an element of C which is not in S and a non-element of C which is not in S.
A permutation in G exchanging these two atoms and fixing all elements of S
will exist and will move C but not any element of S, which is a contradiction.
This shows that any subset of A in the FM interpretation has small symmetric
difference from a union of litters which is a set.

Suppose that a union of litters C is a set of the FM interpretation including
a large collection of litters and excluding a large collection of litters, with a
strong support S. We can then choose two litters, one included in C and one
not included in C, neither of which is in S, and choose an element from each
litter which does not belong to S. A permutation in G which interchanges these
two atoms and which fixes each element of S will exist and will move C to a
non-union of litters (so certainly move it) and will not move any element of S.
This is a contradiction.

If B ⊆ A is a set of the FM interpretation, we give a precise description of
the union of a large collection of litters with small symmetric difference from B.
We know that for all but a small collection of litters L, either L is included in B
or L is disjoint from B. We also know that for each litter L, exactly one of the
sets L\B and L∩B is large. The union of litters C that we specify is the union
of all litters L such that L∩B is large. The symmetric difference of L and B is
the union of the small collection of nonempty L∩B’s for litters L not included
as subsets in C and the small collection of nonempty L \B’s for L included as
a subset in C. This is a small union of small sets, and so is small. Moreover, C
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is a set in the FM interpretation, as either the collection of litters included in
C or its complement is a small set of litters which can serve as support for C.

We have completed the description of the subsets of A in the FM interpre-
tation, being exactly those sets with small symmetric difference from the union
of a small or co-small collection of litters.

We add a remark which is useful below. Note that a large collection of atoms
which is a set of the FM interpretation must have large intersection with some
litter. Otherwise, it would have to have small intersection with each of a large
collection of litters, and we have seen above that a set of the FM interpretation
cannot cut each of a large collection of litters.

We argue that if B and C are subsets of A which are of the same cardinality
in the FM interpretation, B∆C is small. We also observe that if B and C are
large sets of the FM interpretation with small symmetric difference, it is evident
that they are of the same cardinality in the FM interpretation. Suppose that B
and C are of the same cardinality in the FM interpretation and B∆C is large:
this is to be witnessed by a bijection f with strong support S. We may suppose
without loss of generality that C \ B is large (the case where B \ C is large
is handled symmetrically). The preimage of C \ B is large, and so has large
intersection with some litter. The image of the intersection of the preimage of
C \B and this litter is large, and so has large intersection with some litter. So
we have a large subset of a litter in the preimage of C \ B mapped to a large
subset of a litter. Choose two elements of the large subset in the preimage, not
belonging to S and not mapped to elements of S. A permutation interchanging
their images and fixing all elements of S will exist and will move f but not move
any element of S, which is a contradiction.

It follows that it is reasonable to define |litter(p)| for any p ∈ P as the
collection of subsets of A with small symmetric difference from litter(p), as
this is precisely the collection of subsets of A with the same cardinality as the
litter (in the internal sense of the FM interpretation).

We have shown that the power set of A in the FM interpretation is extremely
impoverished. In particular, it certainly conveys no set theoretical information
about the structure of P in the ground interpretation. We show that P2(A),
on the other hand, contains a subset the same size as P(P ) in the sense of
the FM interpretation (under the further assumption that P remains a set in
the FM interpretation, which is again clearly true if P is a pure set and may
be true under other conditions). This is unsurprising if we consider the size
of this set in the ambient ZFA, but one must note that neither A nor P(A)
should be expected to contain a set the same size as P in the sense of the FM
interpretation.

The crucial result is that the map (p ∈ P 7→ |litter(p)|) is a set of the
FM interpretation. To see this, observe that any pair (p, |litter(p)|) in this
set is actually fixed by any π ∈ G, since elements of P are fixed, and sets with
small symmetric difference from elements of litter(p) are mapped exactly to
sets with small symmetric difference from litter(p). This implies further that
the map (B ⊆ P 7→

⋃
{|litter(p)| : p ∈ B}) is a set: to see that the correct

invariance holds, it is useful to recall that the cardinalities of litters are pairwise
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disjoint sets. The map (B ⊆ P 7→
⋃
{|litter(p)| : p ∈ B}) is the promised

injection from P(P ) into P2(A). It is a set in the FM interpretatiion because
it is invariant under all permutations in G.

The reason that this construction is interesting is that it shows how to allow
structure not visible to the FM interpretation but concealed in type 0 of a model
of TST (visible to the ground interpretation) to unfold not in type 1 (completely
nondescript here) but in type 2. This technique can be used to cause unexpected
structure to unfold at any desired type level in a model of TST, as the reader
may discern in the construction that follows.
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6 The motivation of the main construction

The properties of the FM construction of the previous section motivate our main
construction. The idea is to iterate this FM construction, creating many sets of
atoms of this peculiar structure.

In this section we will give an advance description of features of the structure
we will build; experience suggests that it is very hard to understand the moti-
vation for the actual construction that follows without detailed understanding
of what the target is intended to be like.

We will specify a limit ordinal λ and a regular uncountable cardinal κ. As
above, we will refer to sets smaller than κ as small and all other sets as large.

We will construct “coded parent sets” P (A), which are pure sets, for each
finite subset A of λ. Details of these sets are given in the main construction.
These sets are pairwise disjoint.

We will provide a set of atoms the same size as κ ∪
⋃
A∈P<ω(λ)(P (A) ×

κ). Where atom is a fixed bijection from this set to the atoms, we will write
an element of atom“κ in the form atom(α), and write an atom(p, α) using the
notation pα, for p ∈ P (A) and α < κ.

Letters A,B will generally represent finite subsets of λ. A1 denotes A \
{min(A)}; A0 denotes A and Ai+1 denotes (Ai)1. Obviously Ai is only defined
if |A| ≤ i.

The set {pα : p ∈ P (A) ∧ α < κ} will be denoted by clan(P (A)), and such
sets will be called clans. The notation clan(A), which I am bound to write by
mistake now and then, means the same thing.

The set {pα : α < κ} will be denoted by litter(p), and such sets will be
called litters. A subset of a clan with small symmetric difference from a litter
will be called a near-litter.

There will be a map δ, which we will call the decoding map, whose restriction
to each P (A) is an injection, with the property that δ“P (∅) = atom“κ, while
for nonempty A,

δ“P (A) = clan(P (A1)) ∪
⋃

B<<A

P |B|−|A|+1
symm (clan(P (B)),

where B << A means that B contains 0 and is a proper downward extension
of A. Psymm denotes the power set in the FM interpretation to be described.

Notice that for any nonempty A which has a proper downward extension B
containing 0, P (B) will be at least as large as P (A) in the sense of the ground
interpretation, because it contains a copy of clan(P (B1)), which is at least as
large as P (B1), which in turn contains a copy of clan(P (B2)), and so on: A
is equal to some Bi. On the other hand, P (A) is at least as large as P (B) in
the sense of the ground interpretation, because it contains a set the same size

as P |B|−|A|+1
symm (clan(P (B)). This implies that these iterated power sets of the

FM interpretation must be very impoverished, missing many sets of the ground
interpretation.

We refer to p as the (coded) parent of pα, litter(p) or any near-litter with
small symmetric difference from litter(p) and δ(p) as the concrete parent of
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each of these things. P (A) is the (coded) parent set of clan(P (A)), and δ“P (A)
is its concrete parent set. A is the index of clan(P (A)).

A permutation π of the atoms is extended to sets by the usual rule π(C) =
π“C.

A permutation is said to be allowable iff it fixes each clan, fixes each set
δ“P (A), and maps each litter litter(p) to a near-litter with small symmetric
difference from litter(π∗(p)), where π∗(p) is the element of P (A) mapped by
δ to π(δ(p)) (and so maps near-litters to near-litters as well). An atom pα
such that π(pα) 6∈ litter(π∗(p)) is called an exception of π. An allowable
permutation has only a small collection of exceptions in each litter.

A support set is a small set of atoms and near-litters. A set C has support
S iff every allowable permutation which fixes each element of S also fixes C. A
set is said to be symmetric iff it has a support. The FM interpretation in which
we are interested will consist of the atoms and the hereditarily symmetric sets.

We will show in the main development that the clans have the property
exhibited in the previous example (the double power set lemma), that in the
FM interpretation, P2(clan(P (A)), the double power set of a clan, contains a
set the same size as P(δ“P (A)), the power set of the concrete parent set of the
clan.

This is enough to establish that we can coherently define τ in such a way
that τ(Bi) = |Pi+2(clan(P (B))| for each B containing 0 and Bi nonempty,
which will enforce the first property of a tangled web (that exp(τ(A)) = τ(A1)).

We verify this. What requires verification is that if B << A = Bi and
C << A = Cj , |Pi+2(clan(P (B))| = |Pj+2(clan(P (C))|.

We prove that Pi+2(clan(B)) contains a set the size of P(δ“P (Bi)). That
this is true in the case i = 0 is an assumption we have made already. Suppose
that Pk+2(clan(B)) contains a set the size of P(δ“P (Bk)) and that Bk+1 exists.
δ“P (Bk) contains clan(Bk+1), so Pk+3(clan(B)) contains a set the size of
P2(δ“P (Bk)) which contains a set of size P2(clan(P (Bk+1)) which includes a
set the size of P(δ“P (Bk+1), completing the proof by induction of the claim.

It follows that if B << A = Bi and C << A = Cj , Pi+2(clan(P (B))
contains a set the size of P(δ“P (Bi)) = P(δ“P (A)). Now δ“P (A) includes
P |C|−|A|+1(clan(P (C)) = Pj+1(clan(P (C)), so P(δ“P (A)) and so
Pi+2(clan(P (B)) include a set the size of Pj+2(clan(P (C)), and because the
situation is symmetrical, Pj+2(clan(P (C)) contains a set the same size as
Pi+2(clan(P (B)), so these sets are the same size.

Of course we have as yet established nothing, as we need to show subse-
quently that we can actually construct a system in which the assumptions we
have made in this development are true.

Motivating the elementarity condition for a tangled web: In addi-
tion, we want the first order theory of the model of TSTn with base type of size
τ(Bi) = |P2+i(clan(P (B)))| to depend only on the first n elements of Bi, for
any zero-minimal B. The top type of this model is Pn+i+1(clan(P (B))).

Our method of achieving this is to arrange for every element of the model
of TSTn+2 with base type clan(B) and top type Pn+1(clan(P (B))) to be
represented by applying one of a suite of constructions f determined entirely
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by B \ Bn to a small amount of data L depending on a small list of elements
of P (Bn), in such a way that two such constructions f [L] and f ′[L′] will have
relations of identity or membership between their referents unperturbed by any
bijective replacement of the small list of elements of P (Bn) in use in L and L′

with different elements of P (Bn) or with elements of a parent set with another
index set which would make sense in the context, so the elements of P (Bn) are
treated as indiscernibles. This is actually done by making the sets represented
highly symmetrical. This has the effect of making the first order theory of the
model of TSTn+2 with base type clan(B) depend only on the first n elements
of B (the set B \ Bn which determines the set of basic constructions). This is
sufficient to show the desired result for a model with base type any τ(A) (not just
a zero-minimal one). Let A be zero-minimal and consider the model of TSTn
with base type of size τ(Ai). The top type of this model is Pn+i+1(clan(P (A))).
We arrange as above for this to depend only on the first n + i elements of A.
But we can argue that it actually depends only on the first n elements of Ai,
because we can use the results above to replace the first i elements of A with any
desired finite collection of small enough ordinals, obtaining a B with Bj = Ai,
without affecting the theory of the types with sizes at or above τ(Ai) = τ(Bj),
because the cardinalities of these types will not be changed, and as noted above
the theory of a natural model of TSTn depends only on n and the cardinality
of its base type.
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7 Motivation of the coding: an analysis of part
of the usual simple model of ZFA without
choice

We work in ZFA with a set of atoms A of unspecified size.
We indicate a representation of sets in the power sets Pn(A).
The representations will be codes (f, L) which we will write f [L], where L

will be an injection from a natural number to A (viewed as an argument list)
and f will code an operation on the argument list.

The coders of rank 0 will be of the form (n,m), where n < m are natural
numbers and (n,m)[L] is a code iff the length of L is m.

The coders of rank i + 1 will be of the form (E,m), where E is a set of
coders of rank i where for each e ∈ E, π2(e) ≥ m. (E,m)[L] will be a code iff
the length of L is m.

We now define the denotation function δ.
δ((n,m)[L]) = L(n).
δ((E,m)[L]) = {δ(e[M ]) : e ∈ E ∧ L ⊆M}.
The sets δ(f [L]) in any Pn(A) are exactly the sets which are hereditarily of

finite support with respect to permutations of the atoms.
To see this, first prove by an easy induction that if π is a permutation of the

atoms, π(δ(f [L])) = f [π ◦ L]. We leave this to the reader.
Then we prove the main result by induction. There is nothing to prove for

the base case of the atoms.
Suppose that all elements of Pn(A) are in the range of δ. Let D be a subset

of Pn(A) with support S. Let L be an argument list with range S. Now define
E as the set of all coders g such that there is an argument list M extending L
such that δ(g[M ]) ∈ D. We claim that δ((E,m)[L]) = D, where m is the length
of L.

This is straightforward. Every element of D is of the form δ(g[M ]) by con-
struction (any codable object has a code with L as an initial segment, as ar-
gument lists are easily padded and reordered; all elements of D are codable
by inductive hypothesis). Now the only question is whether all elements of
δ((E,m)[L]) belong to D. Such an element is of the form δ(g[M ]), M extending
L, where there is a g[M ′] with M ′ also extending L such that δ(g[M ]) ∈ D. But
then we can construct a permutation of the atoms extending the map sending
each M ′(n) to M(n), and the action of this permutation will send δ(g[M ′)) ∈ D
to δ(g[M ]), and will fix all elements of the range of L by construction, so it fixes
D, so δ(g[M ]) ∈ D.

Further, this can be used to give a proof that the first order theory of the
power sets here coded is independent of the cardinality of the set of atoms.
Notice that the truth value of a sentence δ(f [L]) ∈ δ(g[M ]) or δ(f [L]) = δ(g[M ])
depends only on the identities of f and g and the set {(i, j) : L(i) = M(j)}.
This is clear from invariance under permutations.

We make the stronger claim that any such sentence depends only on the
structure of the system of codes, not on the size of the set of atoms. Notice that
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the codes are pure sets and do not depend on any knowledge of the atoms at
all. This is clear at type 0 (equality of referents of codes f [L] and g[M ] where
f and g are projection operators is clearly dependent on the identities of f and
g and the set {(i, j) : L(i) = M(j)} in a way that is entirely independent of
the size of the set of atoms). Further it is clear that if equality of referents of
type i codes f [L] and g[M ] is computable only from the identities of f and g
and the set {(i, j) : L(i) = M(j)} in a way that is entirely independent of the
size of the set of atoms, it follows that membership of type i codes in type i+ 1
codes is similarly computable: let the type i code be c and the type i+ 1 code
be (E,m)[L]: we need only determine whether there is a type i code g[M ] with
M extending L and g ∈ E which has the same referent as c. Similarly then we
can show that equality of two type i+ 1 codes depends only on the structure of
the system of codes and not on the size of the set of atoms: that (E,m)[L] and
(E′,m′)[L′] have the same reference reduces to showing that for each g[M ] with
g ∈ E and M extending L there is a g′[M ′] which must have the same referent
as g[M ], with g′ ∈ E′ and M ′ extending L′, and vice versa.

Thus the truth value of any sentence just involving constants is only depen-
dent on the system of codes and not the size of the set of atoms. Now we argue
that if the truth value of φ(c) for each code c can be computed independently
of the size of the set of atoms, so can that of (∃x.φ(x)). If (∃x.φ(x)) is true,
then there is a witness, which has a code c, so φ(c) witnessed its truth already
independently of the size of the set of atoms. If (∃x.φ(x)) is false, then (every
object being codable) the fact that each φ(c) is false witnesses the situation and
is entirely determined without reference to the size of the set of atoms.

Compare the coding here with the (much more complicated) set coders in the
main construction and view the proof of elementary equivalence of models with
sets of atoms of different sizes here as a baby example toward understanding the
reasons why the main construction satisfies the elementarity property of tangled
webs.

Further expanding on this, we give a similar coding for our first FM example,
which shares more features with the set coding in the main construction.

A code will be of the form f [L] where f is a coder and L is an argument
list, an injective function from a small ordinal to atoms and near-litters (sets of
atoms with small symmetric difference from litters), with distinct near-litters in
its range disjoint, and with the further property that if L(α) is an atom, there
is an L(β) which is a near-litter containing L(α) with β < α. The type of an
argument list L will be a list τ of the same length with τ(α) = 0 if L(α) is a
litter and τ(α) = (1, β) if L(β) is a near-litter containing L(α).

A type 0 code will be of the form (α, τ), where τ(α) is of the form (1, β),
and (α, τ)[L] is well-formed just in case L is of type τ , and δ((α, τ)[L]) = L(α)

A type i+ 1 code will be of the form (E, τ), where E is a set of type i codes
each of which has second component extending τ (not necessarily properly).
(E, τ)[L] is a code just in case L is of type τ , and δ((E, τ)[L]) = {δ(g[M ]) : g ∈
E ∧ L ⊆M}.

The proof that the type i codes represent exactly the sets in the ith iterated
power set of the set of atoms which have small support in atoms and near-litters
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under permutations moving only a small number of atoms goes similarly to the
proof above, though it has details which are more complex. (NOTE: to be
supplied)
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8 The main construction

We now commence the main construction.

Parameters of the construction: We will specify a limit ordinal λ and a
regular uncountable cardinal κ.

Definition (small and large sets): As above, we will call sets smaller than
κ small sets, and all other sets we will call large sets. Simply for proving
Con(NF) it is sufficient for λ to be ω and κ to be ω1, but more general
results can be shown if we give the argument with more generality.

We will begin by defining sets P (A) for each finite subset A of the limit
ordinal λ, which will eventually be seen to be parent sets of clans, but we do not
introduce any considerations about atoms until the definition of the parent sets
is complete (any statements about atoms or sets of atoms are purely to indicate
motivation). All elements of the sets P (A) are pure sets. The definition of the
sets P (A) is by a complex recursion with other sets.

Convention: Letters A,B will generally represent finite subsets of λ. These
will now and then be referred to as clan indices.

Definition (operations on clan indices): A1 denotes
A\{min(A)}; A0 denotes A and Ai+1 denotes (Ai)1. Obviously Ai is only
defined if |A| ≤ i.
We say that B extends A downward when A,B are clan indices and each
element of B \ A is less than each element of A. We say that B strictly
extends A downward iff B extends A downward and B 6= A.

We write B << A when B strictly extends A downward and 0 ∈ B.

8.1 General considerations

There are three different sorts of codes, parent codes (elements of sets P+(A);
the notation is simply intended to suggest that P+(A) is a larger set than P (A)),
argument codes [which are intended to represent atoms and near-litters in the
supports of coded objects], and set codes.

Elements of any P (A) are representatives of equivalence classes in P+(A)
under a global equivalence relation ∼ on parent codes (we will see that the
P+(A)’s are disjoint, so we do not need to index this relation; there will also be
natural equivalence relations on the other classes of codes, which we will always
be able to identify from context, so we will use ∼ symbolically and “equivalent”
verbally for all of these relations).

P (∅) = P+(∅) is the set of small ordinals, and equivalence in this case is
equality.

Our parent and set codes (except for the parent codes of empty index) are
of the form (f, L), which we write f [L] to suggest representation of function
application, where f is a coder appropriate to the kind of code (and the index)
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and L is an argument list, which is an injective function from a small ordinal to
argument codes satisfying additional conditions.

8.2 Parent and set coders (typing information only)

Each parent or set coder has an input fine type as a component. Fine types will
be explained below.

A notation f [L] is a parent code in P+(A) if and only if L is an argument
list of coarse type A1, f is a parent coder belonging to Π(min(A)) (this set is
defined below) and L has as a fine type the input fine type of f . Coarse and fine
types of argument lists will be explained below. Further details will be given
after argument lists are explained. Notice that to any argument list L of a given
coarse type A we can apply any parent coder in a set Π(α) where α is less than
all elements of A and where L has the input fine type of the coder, obtaining a
code in P+(A ∪ {α}).

A notation f [L] is a set code iff L is an argument list of coarse type A and
has as a fine type the input fine type of f and f is a set coder belonging to Σ(B),
where B is a clan index such that all elements of A are greater than all elements
of B and A∪B is zero-minimal (note that B will either be zero-minimal or else
empty in case A is zero-minimal). [f [L] is intended in this case to denote an
element of P |B|+1(clan(P (A ∪B))) – motivational, no part of the definitions].

8.3 Argument codes and argument lists

Argument codes, argument lists, and the types of argument lists are developed
in a series of definitions.

Definition (argument codes): Argument codes are of two sorts, codes for
atoms and codes for near-litters.

An argument code for an atom of index A is an element of P (A)× κ [the
intention, which is no part of the definition, is that (p, α) for p ∈ P (A)
will denote the atom pα].

An argument code for a near-litter with index A is a triple (C,D, {1})
where C ∈ P (A) and D is a small subset of P (A)×κ. The function of the
final label {1} is to prevent any argument code for a near-litter from being
an argument code for an atom (if we just used (C,D), an argument code
for a litter with second component empty would also be an argument code
for an atom with ordinal index zero, which would cause endless pointless
technical annoyances).

Definition (extension of an argument code): The extension of an argu-
ment code for a near-litter (C,D, {1}) is defined as the symmetric differ-
ence of C × κ and D [The intention, which is no part of the definition,
is that the denotation of a near-litter code will be the same as the set of
denotations of the elements of its extension].
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Definition (P ∗(A)): The set of argument codes for near-litters with index A
is denoted by P ∗(A).

Definition (argument list, coarse type of an argument list): An argument
list is an injective function L from a nonzero small ordinal to argument
codes with certain properties.

1. For any argument list, L(0) belongs to some P ∗(A), where we call A
the coarse type of the argument list.

2. Every element of the range of L has index which extends A downward
(not necessarily properly).

3. Any two distinct elements of the range of L which belong to the same
P ∗(B) have disjoint extensions.

4. For any α and B such that L(α) ∈ P (B) × κ, there is β < α such
that L(β) ∈ P ∗(B) and L(α) belongs to the extension of L(β).

5. For any α and B strictly downward extending A such that L(α) ∈
P ∗(B), there is a parent coder g ∈ Π(min(B)) and a strictly in-
creasing function M from a small ordinal to α such that g[(γ 7→
L(M(γ)))] ∼ π1(L(α)).

6. For any α such that L(α) ∈ P ∗(A), either π1(L(α)) is a parent code
for an atom (or a small ordinal) or π1(L(α)) is a parent code for a
set of the form (f,G, τ, min(A))[N ] where there is a set coder g and
strictly increasing function M from a small ordinal to α such that
the set code g[(γ 7→ L(M(γ)))] is equivalent to the set code f [(γ 7→
N(G(γ)))]. (To understand details of this clause, look forward to the
definition of parent coders for sets).

Definition (fine type of an argument list) : A fine type τ of an argument
list L of coarse type A is a function with the same domain as L, which
satisfies the following conditions.

1. If τ(α) = 0, L(α) ∈ P ∗(A) and π1(L(α)) is a parent code for an atom
(or a small ordinal if A = ∅).

2. If τ(α) = (1, β), then for some B, L(α) ∈ P (B)× κ , β < α, L(β) ∈
P ∗(B), and L(α) belongs to the extension of L(β).

3. If τ(α) = (2, g,M) then M is a strictly increasing function from a
small ordinal to α and either

(a) for some B strictly downward extending A, L(α) ∈ P ∗(B), g ∈
Π(min(B)), and g[(γ 7→ L(M(γ)))] is equivalent to π1(L(α)),

(b) or g is a set coder, L(α) ∈ P ∗(A) and π1(L(α)) is a small ordi-
nal (in the case A = ∅) or a parent code for a set of the form
(f,G, τ, min(A))[N ] where g[(γ 7→ L(M(γ)))] is equivalent to
f [(γ 7→ N(G(γ)))] (notice that f and g are set coders in this
second case; notice that if A = ∅ type information about near
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litter codes of index ∅ is ignored). (To understand details of the
second case, look forward to the definition of parent coders for
sets).

4. Each τ(α) is of one of these forms.

The definition reveals that every argument list has a fine type. Fine types are
not unique. Note that the fine type does not reveal the coarse type. However,
it is possible to compute the set P (B)×κ or P ∗(B) to which each L(α) belongs
using just the coarse type A for L and a fine type τ for L. This is evident where
τ(α) = 0 or τ(α) = (1, γ) (assuming that we have been able to determine the
set to which each L(β) for β < α belongs); if τ(α) = (2, g,M) note that we can
determine the set P+(B ∪ {β}) to which g[(γ 7→ L(M(γ)))] belongs from the
Π(β) to which g belongs and the coarse type B of (γ 7→ L(M(γ))), which we
have already computed by inductive hypothesis (or if g is a set coder we know
that an L(α) should be in P ∗(A)).

[The motivation of the definition of argument list and argument list type
(which is no part of this definition) is that an argument list is to have a type
which dictates which positions are occupied by atoms and which by near-litters,
and in particular (type 0) which are occupied by near-litters of the coarse type.
Each atom in the list must be preceded by a near-litter which contains it, and
the type of the list includes the information as to which position the parent
of each atom is found in (types (1, β)). Each near-litter in the list must be
preceded by arguments for a parent code for its concrete parent, and the type
includes the parent coder to be used to encode the parent of the near-litter at
each position and the positions earlier in the list from which the arguments are
to be taken (types (2, g,M)).]

Note that extending an argument list cannot change its coarse type.

8.4 Inductive assumptions and recursive constructions re
argument lists

Definition: We define the delta function on argument lists at a pair of argu-
ment lists L,M by

∆(L,M) = ((α, β) 7→ (|L◦(α)\M◦(β)|, |L◦(α)∩M◦(β)|, |M◦(β)\L◦(α)|)),

where L◦,M◦ are constructed by replacing each argument code for a near-
litter code in the range of each list with its extension and each argument
code for an atom in the range of each list with its singleton.

Lemma (to be shown by induction on the construction): All the equiv-
alence relations on codes of the form f [L] (either parent codes or set
codes) satisfy the indiscernibility condition that the truth of an equiva-
lence f [L] ∼ g[M ] is completely determined, as long as the prerequisite
condition is met that the coarse types of L and M are the same, by f , g,
and ∆(L,M). This condition will be verified by induction in the course of



Version of 8/18/2015 3 amMST (elementarity proof corrected as in presentation to Nathan’s group)28

the construction. [Notice that this gives enough information to determine
whether an coded atom belongs to a coded near litter and whether two
coded near-litters have the same parent.]

Action of an injection P (∅) into a coded parent set: Let σ0 be an injec-
tion from P (∅) into P (A).

Define an action (called σ) sending code components of any index B all
of whose elements are less than all elements of A to code components of
index A ∪B.

It is worth noting that if σ is initially taken to be partial, we can define a
partial action in the same way.

On P (∅) σ of course agrees with σ0. On any P (B)×κ, σ(p, α) = (σ(p), α).
On any P ∗(B), σ(C,D, {1}) = (σ(C), σ“D, {1}). Any set code f [L] of
appropriate index is sent to f [σ ◦ L]. Any parent code f [L] for which the
coarse type of L properly extends A downward is sent to the representative
code equivalent to f [σ ◦ L].

Notice that if σ is known to be injective on the ranges of L and M ,
then f [L] ∼ g[M ] ↔ f [σ ◦ L] ∼ g[σ ◦M ]: this is the induction step of
the argument that σ is injective on argument codes and set codes and
maps equivalent parent codes to equal representative parent codes, and is
injective on representative parent codes.

The map σ preserves fine type of an argument list of coarse type ∅, except
for possible difficulties with the images in P ∗(A) of arguments from P ∗(∅)
[which can be avoided if one restricts the range of σ0 to codes representing
atoms].

Notice that if we select two argument lists of coarse type L and M and
choose σ so that all elements of the ranges of both lists are in its range,
we will have ∆(L,M) = ∆(σ−1(L), σ−1(M)), where the latter argument
lists are of coarse type ∅.

8.5 Parent codes

We now give the full definition of parent coders and parent codes.
We repeat basic typing information. An f [L] will belong to P+(A) iff f is a

parent coder from the set Π(min(A)) to be defined and L is an argument list of
coarse type A1 and has as a fine type the input fine type of the coder f .

Definition (parent coders and codes, equivalence of parent codes): We
describe the set Π(β), where β is an ordinal or takes the special value −1.
Elements of Π(β) are of two kinds, parent coders for atoms and parent
coders for sets.

1. A parent coder for an atom in Π(β) is of the form (α, τ, β), where τ
is a fine type (the input fine type of the coder), α is in the domain
of τ , and τ(α) is some (1, γ) such that τ(γ) = 0.
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A parent code (α, τ, β)[L] is well-formed iff τ is a fine type of L and
the coarse type A of L has all elements greater than β: it will belong
to P+(A ∪ {β}). Equivalence (α, τ, β)[L] ∼ (α′, τ ′, β)[L′] is defined
as holding iff L(α) = L′(α′). Note that the indiscernibility condition
obviously holds in this case.

[The intent here, which is no part of this definition, is that (α, τ, β)[L]
denote the atom represented by the argument code L(α) in the obvi-
ous way, and that this atom belong to clan(A) if the list is of coarse
type A. The code also indicates which parent set it is to be placed
in].

2. A parent coder for a set in Π(β) is of the form (f,G, τ, β), where
β > 0 (there are no parent coders for sets in Π(0) or Π(−1)). The
component τ is a fine type (the input fine type of the coder). The
component G is a strictly increasing function from a small ordinal to
the domain of τ . f is a set coder in a Σ(B) where all elements of B
are less than β. The argument list (γ 7→ L(G(γ))) must have coarse
type obtained from the coarse type of L by adding the single element
β, for any list L of fine type τ (this is a feature of τ not depending
on choice of L).

A parent code (f,G, τ, β)[L] is well-formed iff L is of fine type τ and
the coarse type A of L has all elements greater than β: it will belong
to P+(A ∪ {β}). Equivalence (f,G, τ, β)[L] ∼ (f ′, G′, τ ′, β)[L′] is
defined as holding iff

f [α 7→ L(G(α))] ∼ f ′[α 7→ L′(G′(α))]

holds. The indiscernibility property holds here if it holds for the set
coders involved, which are simpler in a suitable sense.

Parent codes for atoms (parent codes where the coder is a parent coder for
an atom) are not equivalent to parent codes for sets (parent codes where
the coder is a parent coder for a set).

Observation (nonempty argument lists and disjointness of P+(A)’s):
We require that argument lists be nonempty for a technical reason. We
can determine the minimal element of the index A such that a code f [L]
belongs to P+(A) from the last component of its coder. We can deter-
mine the next largest element of the index, and inductively determine all
elements of the index, if there is required to be an argument in the range
of L. This ensures that the P+(A)’s are disjoint.

Construction (coded parent sets): For each clan index A, the set P (A)
contains exactly one element of each equivalence class under ∼ of ele-
ments of P+(A), chosen to be of minimal set theoretical rank (and that
the sets P (A) are disjoint follows from the disjointness of the larger sets
P+(A)). Notice that representatives can be chosen as soon as equivalence
classes are inhabited, as we can compute equivalence between given codes
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without requiring information about codes not yet constructed: this is one
of the functions of the indiscernibility property.

8.6 Set codes

Definition (set codes and coders): We now define set coders and codes.

Definition (set code): A set code is a pair of the form f [L] where the
coarse type of L is A, f , a set coder, belongs to a set Σ(B) with all
elements of B less than all elements of A, and L has as a fine type
the input fine type of the coder f . The sets Σ(B) are defined below:
B will be zero-minimal or empty.

Definition, set coder, non-basis case: An element f of Σ(B), B zero-
minimal, is a pair of a subset F of
Σ(B \ max(B)) and a fine argument list type τ (the input fine type
of the coder) such that each element of F has input fine type ex-
tending the type τ∗ described in the next paragraph (not necessarily
properly).

If one takes any argument list L of fine type τ and coarse type A with
all elements of A greater than all elements of B, drops all elements of
the range except those of index equal to A ∪ {max(B)} or extending
A ∪ {max(B)} downward, and reindexes, one obtains L∗ of type τ∗;
this does not depend on the choice of L but is best described this
way. We do require for well-formedness that τ∗ be nonempty. If B
is empty, L∗ = L.

Definition, set coder, basis case: An element f of Σ(∅) is a pair of a
subset F of the set Π(−1) and a fine type τ (the input fine type of
the coder) such that each element of F has input fine type extending
τ . An element of Π(−1) takes the form (α, τ,−1) and satisfies the
same formal rules for well-formedness and equivalence as any parent
code for atoms.

Definition (well-typedness of set codes): We have (F, τ)[L] well-defined
iff L has fine type τ .

Definition (equivalence of set codes): We define (F, τ)[L] ∼ (F ′, τ ′)[L′]
deviously. This is of course false if the coarse types of L and L′ are
different. Assuming that these types are the same, choose lists L0 and
L′0 such that ∆(L0, L

′
0) = ∆(L,L′), while the coarse types of L0 and

L′0 are both ∅ (this uses the delta function on argument lists defined
above; the procedure for constructing L0 and L′0 is also described
above, at the end of section 8.4). We define (F, τ)[L] ∼ (F ′, τ ′)[L′]
iff each code g[M ] with g ∈ F and M extending L∗0 is equivalent to
some g′[M ′] with g′ ∈ F ′ and M ′ extending (L′0)∗, and vice versa.
For the base case, remove the stars.

Definition (formal element): A code g[M ] is a formal element of a
code (F, τ)[L] iff g ∈ F ∧ L∗ ⊆ M . It is worth noting that set
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codes are equivalent iff they have the same formal elements up to
equivalence; whether f [L] is a formal element of g[M ] is determined,
after obvious requirements re coarse type, by f , g, and ∆(L,M).
This is shown as a side effect of the indiscernibility property.

Verification of indiscernibility: The equivalence of a g[M ] to some
g′[M ′] is determined (on the assumption that indiscernibility applies)
by g, g′ and the set of possible values of ∆(M,M ′) for well-typed ar-
gument lists M,M ′ extending L∗0, (L

′
0)∗, which can be seen to depend

on nothing other than g, g′ and ∆(L0, L
′
0). It follows that the indis-

cernibility property will hold for (F, τ)[L] if it holds for all codes with
coders belonging to F . At the basis, it holds for coders in Π(−1).

The reason for the elaboration is that we need the items in argument lists in
the codes g[M ] and g′[M ′] to be simpler in a suitable sense than the terms
(F, τ)[L], (F ′, τ ′)[L′] for which equivalence is being computed, which we cannot
be sure of if we do not make the change of coarse type. We thus bound the
maximum ordinal which can appear in clan indices involved in M ; this bound
will not drop if the coarse type of L and L′ was already ∅, but it will drop when
this computation is repeated for g[M ]’s themselves (of course if the g[M ]’s are
codes for atoms their equivalence is computable).

The indiscernibility property holds for all codes by a structural induction.
That it holds for parent codes for atoms is obvious and serves as the base case;
that it holds for parent codes for sets follows from it holding for set codes; that
it holds for set codes with argument lists with coarse type nonempty follows
from it holding for set codes with argument lists with coarse type ∅ by the way
the computation is defined; that it holds for set codes f [L] with coarse type
empty for sets in a power set with a given index follows from it holding for set
codes with in an iterated power set of a clan with index one less (and with clan
indices involved bounded by the maximum of the index of f). When the index
of iterated power sets becomes zero, we are back in the realm of codes for atoms
where we are secure.

8.7 The construction of atoms: clans and litters. The
denotations of codes and their types

Atoms postulated: We assume the existence of exactly as many atoms as
elements of κ ∪ ((

⋃
A∈P<ω(λ) P (A)) × κ), with a bijection atom from this

set to the atoms.

Definition (notation for atoms): An atom atom(α) for α a small ordinal
will just be written so. The other atoms atom(p, α) will be written pα.

Definition (clans): The collection atom“(P (A)×κ) will be denoted by clan(P (A))
or even clan(A). Such sets will be called clans.

Definition (litters, near-litters): The collection {pα : α < κ} will be termed
litter(p). Such sets are called litters. A subset of a clan with small
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symmetric difference from a litter will be called a near-litter.

Definition (notions of parenthood): The parent of an atom pα is p. The
parent of a litter litter(p) is p. The parent of a near-litter is the parent
of the litter from which it has small symmetric difference. Parents are
representatives of equivalence classes of codes under a relation which turns
out to be that of having the same referent: we refer to this referent as a
concrete parent, as opposed to the parent proper which we might call by
contrast the coded parent.

Definition (anomalous elements for a near-litter): The elements of the
symmetric difference of a near-litter and the litter with the same parent
are called anomalous elements for the near-litter (they are not necessarily
elements of the near-litter).

Definition (denotation functions): Each parent code or set code has a de-
notation which belongs to a clan or to an iterated power set of a clan. The
function δ1 returns the denotation of a parent code and the function δ2
returns the denotation of a set code.

1. δ1(α) = atom(α). The concrete parents of elements of clan(P (∅))
are elements of atom“κ.

2. δ1((α, τ, γ)[L]) = pβ , where (p, β) = L(α). Note that equivalence of
parent codes for atoms clearly corresponds to equality of the coded
atoms. This will give an atom in clan(P (A1)) understood as the
concrete parent of an atom of clan(P (A)), where A1 is the coarse
type of L and γ is the smallest element of A, or an atom in clan(A)
belonging to a base type, where A is the coarse type of L and zero-
minimal, and γ is −1.

3. δ1((f,G, τ, γ)[L]) = δ2(f [α 7→ L(G(α))]). Equivalence of parent
codes for sets will correspond to equality of sets if set codes have
the corresponding property. This will give a set understood as the
concrete parent of an atom in clan(P (A)), where A1 is the coarse
input type of L and γ is the minimum element of A, belonging to
P |B|+1(clan(P (A ∪B))), where f belongs to Σ(B).

4. δ2((F, τ)[L]) = {δ2(g[M ]) : g ∈ F ∧ L∗ ⊆ M}, where L∗ is defined
as above, or δ2((F, τ)[L]) = {δ1(g[M ]) : g ∈ F ∧ L ⊆ M} in the
special case of subsets of base clans. That equivalence of set codes
corresponds to equality of sets denoted is evident by induction on
membership (and the facts about parent codes of atoms at the base).
Where (F, τ) belongs to Σ(B) and A is the coarse type of L, the
denotation will belong to P |B|+1(clan(P (A ∪B))).

Observation, symmetry of codable sets: Note that the sets in the range
of δ2 are highly symmetrical.
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Observation and Definition (decoding map): It is straightforward to show
by induction that equivalent parent codes are mapped to the same value
by δ1. The restriction of δ1 to the elements of the sets P (A) (which we
call just δ) is referred to as the decoding map.

Observation re actions on coded parent sets: It is straightforward to ver-
ify that the action on referents of codes induced by the action on codes
of an injective map from a P (∅) to a P (A), as described above, sends
elements of sets to elements of their images under the action (but not all
elements of a set which is an image under the action are themselves im-
ages under the action) and acts on the parents of atoms leaving the index
unaffected.

Definition (notions of parenthood, coded and concrete): For any atom
pα, we refer to p as the coded parent of the atom and δ(p) as the concrete
parent of the atom. Similarly, δ1“P+(A) = δ“P (A) may be termed the
concrete parent set of clan(P (A)), and P (A) itself referred to as the coded
parent set of the clan (and A as the index of the clan).

Observation: Note that we obtain the relation

δ“P (A) ⊆ clan(P (A1)) ∪
⋃

B<<A

P |B|−|A|+1(clan(P (B)))

as our motivation would suggest we want (B << A meaning that B is a
proper downward extension of A which is zero-minimal). The inclusion is
proper: only sets in the range of δ2 are included. We hope to find that
the codable sets include all sets in these iterated power sets in the sense
of a suitable FM interpretation.

Definition: We now define denotations for argument codes.

1. An argument code for a near-litter (C,D, {1}) has referent δ3(C,D, {1}) =
litter(C)∆{pα : (p, α) ∈ D}.

2. An argument code for an atom (p, β) denotes δ3(p, β) = pβ .

8.8 Allowable Permutations and Symmetry: the Target
Model

Definition (map on codes induced by a permutation): If π is a permu-
tation of atoms, extended to sets by the usual rule π(D) = π“D, fixing
all clans and fixing all concrete parent sets δ“P (A), we define π∗(x), for
x ∈ P (A), as the unique element of P (A) which is mapped by δ to π(δ(x)).

Definition (allowable permutation): A permutation of atoms is allowable
iff it fixes each clan and each concrete parent set δ“P (A) and sends each
litter litter(p) to a near-litter with parent π∗(p) (remember that a parent
of a litter is a code). Another way of putting this is that atoms in any
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given clan are mapped to atoms in the same clan, and further that for
each p, the collection of atoms pα such that π(pα) is not in litter(π∗(p))
(called the set of exceptions of π with parent p) is small. The action of an
allowable permutation is extended from atoms to sets by the usual rule
π(D) = π“D.

Definition (external permutation): An external permutation relative to a
parent set P (A) is a map acting on objects with codes with index down-
ward extending A which fixes each relevant clan and concrete parent set
and maps each litter litter(p) to a near-litter with parent π∗(p). An
external permutation π extends to sets with codes of the relevant index
(elements of P |B|+1(clan(P (A ∪ B)) where B << A) by the usual rule
π(D) = π“D.

Definition (support sets, support, symmetry): A support set is a small
set of atoms and near-litters. A set D has support S iff S is a support
set and any allowable permutation fixing each element of S also fixes D.
A set with a support is said to be symmetric. The objects of the FM
interpretation are the atoms and the hereditarily symmetric sets. That
the allowable permutations satisfy the normality condition needed for the
FM condition is straightfoward to establish (see note below on this).

Construction (the FM interpretation specified): The model of ZFA with
a tangled web of cardinals is the FM model consisting of the hereditarily
symmetric sets with respect to allowable permutations and supports as
described.

The system of allowable permutations clearly satisfies the requirements for
an FM interpretation other than the normality condition. That πGSπ

−1

includes Gπ(S) is readily shown (just as above in the initial FM example),
completing the verification that we get an FM model. The use of near-
litters rather than litters greatly simplifies these normality proofs.

Observation re values of allowable permutations at support elements:
It is useful to note that if two allowable permutations give the same val-
ues at all support elements of an object, they have the same value at that
object. Consider the effect of applying one of the permutations, then the
inverse of the other: this cannot move the object because it moves none of
the support elements. Further, note that knowing the value of a permuta-
tion at a litter amounts to knowing its value at the parent and its value at
each exception or image of an exception which lies in the litter (revealing
what is mapped into or out of the litter). This indicates that to know the
value of a permutation at an object with a given support, one needs to
know no more than a small number of exceptions of the permutation.

Construction (argument list giving a certain support): For any support
S, there is an argument list L such that the appropriate action of any al-
lowable permutation fixing all elements of S fixes any δi(f [L]). Modify
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the collection S to an S∗ containing only litters proper and satisfying cer-
tain closure conditions: S∗ will contain each atom in S, each anomalous
element for a near-litter in S, and each litter with the same parent as a
near-litter in S; choose a coarse type A such that every index of a clan
which contains or includes an element of S is a downward extension of A;
S∗ will contain a litter containing each atom in S∗, and will contain each
atom, anomalous element of a litter, or litter with the same parent as an
object denoted by an argument code in the argument list of the parent of a
litter in S∗, excluding atoms in clan(P (A1)). The collection of argument
codes denoting the elements of S∗ has the right closure properties to be
the range of an argument list L, and clearly any allowable permutation
whose action fixes all of the elements of S∗ fixes any set with support S.

Construction (equivalent code with a given initial segment of its list):
For any fixed argument list L and code f [M ], we can construct an equiva-
lent code f [M ′] such that L ⊆M ′. We first indicate how to construct the
list M ′: simply appending M to L may create some conflicts which need
to be repaired. Any atom code in M which appears in L can simply be
deleted from M as the occurrence in L will meet all requirements. A near-
litter code in M whose extension meets the extension of a near-litter code
in L should be deleted if it has the same first component as the near-litter
code in L and otherwise should be modified so that the elements of the
extension shared with the argument code in L are removed. A problem
remains if elements of the extension of a deleted near litter code in M
are present later in M and do not belong to the extension of any near
litter code in L. In this case add a suitable near-litter code (one with the
parent taken from these codes for anomalous atoms and with extension
modified if necessary to avoid the extension of argument codes in L), and
add additional items as necessary to close up the range suitably (as in the
previous paragraph, but instead of using codes for litters, use codes for
litters modified when necessary to either have disjoint or coincident exten-
sion with elements of the range of L). Items prerequisite for new elements
of M ′ which are not found in L are to be added after all elements of L
and before old elements of M .

Now observe that for any parent code for an atom, we can construct an
equivalent code with the new argument list by changing an index, as all
atoms present in M are present in M ′. That we can construct a parent
code f ′[M ′] for sets equivalent to an f [M ] follows from the same claim for
a set code. Suppose f [M ] is a set code, with f = (F, τ). We may suppose
that we can find a g′[N ′] with N ′ extending (M ′)∗ equivalent to each g[N ]
with N extending M∗, g ∈ F , by induction on the index of the iterated
power sets to which coded sets belong; at the basis we are dealing with
parent codes for atoms again (we are again constructing a code equivalent
to a given code with a desired initial segment to its argument list). The
set of coders g′ gives the first component of the needed set coder.
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9 Coded sets are symmetric; action of permuta-
tions on codes; concrete parent sets are unions
of clans and iterated power sets of clans in the
FM interpretation

Compute allowable (or external) permutations on coded objects argumentwise
:
Computation of the image of δ1(f [L]) or δ2(f [L]) under π is very sim-
ple: replace each argument code L(α) with an argument code denoting
π(δ3(L(α))), then apply the appropriate decoding function. A straightfor-
ward induction establishes that a list is sent to a well-formed list with the
same type by this operation, and that the result of evaluating the trans-
formed code is π(δi(f [L])) (for i = 1, 2). This is extremely direct: verify
that each of the typing conditions continues to hold, using induction on
complexity to verify the requirement that argument codes for near-litters
involve suitable parent codes in their first components.

The induced calculations on argument codes are simple. The action on
an argument code for an atom is simply obvious: decode the atom, apply
the permutation, and encode. For an argument code for a near-litter, it is
hardly more difficult: compute the extension, decode it elementwise, apply
the permutation elementwise, then note that when encoded elementwise
this will be the extension of a uniquely determined argument code for a
near-litter, which is what you return. Notice that the only information
one actually needs is the action on P ∗(A) where A is the coarse type of
the list, the action on atoms for which codes appear in the list, and the
small collection of cases where the permutation maps atoms into or out of
near-litters coded in the list.

Calculations of values of external permutations at codes f [L] with coarse
type downward extending A go in the same way, with the special proviso
for action of the external permutation on a near-litter with parent in P (A)
(or atom with parent in P (A)).

Coded sets are symmetric: Further, we see that a coded set δ2(f [L]) is in
all cases symmetric, because it has as its support the image under δ3 of
the range of L: an allowable permutation fixing all elements of this image
clearly fixes the denotation of f [L].

Further, note that the range of an argument list considered as a support
has strong closure conditions.

Observation and Definition: If L is of coarse type A, the image under
δ3 of its range includes near-litters containing each atom it contains
and supports of parents of all near-litters it contains other than par-
ents of near-litters coded in P ∗(A). We call a support satisfying these
conditions a strong support (of index A).
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Definition (small permutation of atoms which respects clans): An in-
jective map from atoms to atoms with domain and range the same small
set, which sends an atom in any given clan which is in its domain to an
atom in the same clan, is a small permutation of atoms which respects
clans.

Lemma (Substitution Property, definition of substitution extension):
For any small permutation π0 of atoms which respects clans and permuta-
tion χ of P (∅), it is possible to find an allowable permutation π extending
π0 (called a substitution extension of π0 [and χ]) such that all exceptions
of π are elements of the field of π0 and χ coincides with the action of π∗

on P (∅).
We indicate how to compute the value of the substitution extension at
an atom pα. If the atom is in the range of π0 we apply π0. Otherwise
(assuming that we already know how to compute π∗(p)) we choose any
bijection from the elements of litter(p) which are not in the field of π0 to
the elements of litter(π∗(p)) which are not in the field of π0 and apply
this map (fixing it for all future application to atoms in those near litters).

Computation of the value of π∗ at any code p for a parent only requires
calculations for elements of the argument list of the code p, some of which
are atoms (apply the indicated procedures) and some of which are simpler
codes for which we can assume the calculations already completed. What
is actually done is to determine the action induced by the permutation on
the argument list, then choose the representative of the equivalence class
under ∼ containing the resulting code. The action on elements P (∅) is
determined by χ.

Extend the resulting map on atoms to sets. It will have only the intended
exceptions.

Lemma (Substitution Property, for external permutations): For any small
permutation π0 of atoms which respects clans and acts only on clans with
index downward extending A, and arbitrary permutation χ of P (A), it is
possible to find an external permutation π extending π0 (called a substi-
tution extension of π0 [and χ]) such that all exceptions of π are elements
of the field of π0 and the action of π∗ on P (A) coincides with the action
of χ.

Proof: The proof goes exactly as above, except that consideration of P (A)
replaces consideration of P (∅). It should be noted that application of an
external permutation to a code f [L] with argument list of coarse type
A may corrupt the fine type of arguments from P ∗(A), but the value of
the resulting code can still be computed with the same coder f , because
elements depend only on application of coders in the set component of f
to L∗, whose fine type is not changed (and of course there is no difficulty
if the coarse type of A is a base type and f is a projection operator).
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All h.s. sets in appropriate iterated power sets of clans are codable:
We say a set or atom is codable iff it is in the range of δ1 or δ2.

In this section we show that the intersection of δ“P (A) and P |B|−|A|+1(clan(B)),
for B << A, is exactly the set P |B|−|A|+1(clan(B)) of the FM interpre-
tation.

Note that P0(clan(B)) has all elements codable, since they are atoms.

Note that a symmetric subset of P0(clan(B)) has small symmetric dif-
ference from a small or co-small union of litters, and such sets are clearly
codable.

Now suppose that all elements of Pm(clan(B)) in the FM interpretation
are codable for m less than or equal to a fixed positive n (0 < n ≤ |B|). Let
C be a symmetric (and so hereditarily symmetric) subset of Pn(clan(B)).
We need to show that C is codable. Let S be a strong support of C (the
range of an argument list L; any support can be extended to the range of an
argument list). Build codes for each element of C using extensions of the
argument list L∗ obtained by restricting L suitably (to items with index
extending Bn−1 downward, not necessarily properly; one should note that
L itself may not have been restricted sufficiently to be an argument list for
a code for C; it might contain items not downward extending an element
of Bn; further note that we are using the fact that we can construct a
code for a given codable object extending any argument list meeting the
index restrictions). We claim that the set F of all the coders used in
these codes, paired with the fine type τ of L, applied to L, gives a code
(F, τ)[L] for C. That δ2(F, τ)[L] contains all elements of C is evident from
the construction. The question is whether it contains anything else. A
general element of δ2(F, τ)[L] is of the form δ2(g[M ]) where M extends
L∗ , where there is an element δ2(g[M ′]) ∈ C where M ′ also extends L∗.

It would be sufficient to show that there is an allowable permutation fixing
all elements of S which sends g[M ′] to g[M ].

The basic idea is to construct the allowable permutation by matching the
lists M ′ and M (combining this with matching L to L and fixing other
elements of the original support which are excluded from the argument
list by coarse type consideratiions) and generating a small injective map
from which to define a substitution extension. Certainly wherever atom
codes are in matching positions in M ′ and M we expect to map the atom
coded at a given position in M ′ to the atom coded at the same position
in M . Where near-litter codes appear in corresponding positions, we rely
on matching their argument lists to get correspondences of atoms. Where
near-litter codes appear which do not depend on preceding lists of argu-
ments, their parents are atoms and we can suitably extend the injection
on which we will base the substitution extension.

The permutation constructed in this way sends g[M ′] to g[M ] and fixes
all elements of S, so it also fixes C, so g[M ] is in C.
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10 Verification of combinatorial properties of clans
stated in the example and motivational sec-
tions

We verify combinatorial properties of litters and clans analogous to those seen
in the initial example of an FM construction. In the headings, “local set”
abbreviates “set of the FM interpretation”, and “locally” abbreviates “in the
FM interpretation”.

Litters are local sets: Clearly litters are sets of the FM interpretation with
support the same as that of their parents (the support of an atom being
its own singleton).

Small sets of local sets are local sets: All small sets of symmetric sets are
symmetric sets with support the union of the supports of their elements.

Definition (nearness to a support): We say that a litter is near a support
set S if it either has small symmetric difference from a near-litter in S or
contains an anomalous element for a near-litter in S. A litter which is not
near S cannot contain an element of S.

Litters are locally κ-amorphous: We verify that litters are κ-amorphous in
the FM interpretation. Suppose that litter(p) has large disjoint subsets
D and E. Choose pα in D and pβ in E neither of which are in either of the
respective strong supports S, T of D,E (understood as decoded ranges of
argument lists). Construct an allowable permutation which permutes pα
and pβ , fixes all atoms belonging to S or T and all anomalous elements
for near-litters appearing in S or T , and has no other exceptions. If this
map moved any element of S or T , the element moved would be a near-
litter, and we can choose the one for which a code appears earliest in
the relevant argument list, which could only be moved if it contains an
exception or image of an exception of the permutation (since codes for
elements of a support of its parent appear earlier in the list and so are
fixed, and anomalous elements for the near-litter are also fixed), which is
impossible: the only candidate exceptions are elements of the supports,
which are not moved and so cannot be mapped into or out of a litter, and
pα and pβ : if they are non-anomalous elements of the relevant litter in the
support, that element is litter(p) and is thus fixed by the permutation,
and pα and pβ are not exceptions at all.

All the proofs of the combinatorial properties are like this one in following
the proofs in the example FM construction above closely, but with help
from the substitution property and the properties of strong supports.

Local sets cannot cut a large collection of litters: We verify that a sub-
set D of a clan cannot cut a large collection of litters (E is cut by D iff
E ∪D and E \D are both nonempty). Suppose that there is such a set D
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with strong support S. Choose a litter included in the clan which is not
near S and which is cut by D. Choose an atom from this litter which is in
D and an atom from this litter which is not in D. A substitution exten-
sion of the map transposing the two atoms and fixing every atom in S and
anomalous element for a near-litter of S moves the set D but fixes every
element of its support which is impossible. We verify the claim that any
element of the support is fixed. Suppose otherwise: then there would be a
first element of the support which was not fixed (in an argument list with
range S), which has to be a near-litter, and whose concrete parent has to
be fixed (since its support elements all appear earlier and so are fixed), so
some atom must be mapped either into the associated litter from another
litter or out of the associated litter from within it. But the only possible
exceptions of this map are either themselves support elements fixed by the
map or are mapped to another atom in the same litter.

From this it follows that every symmetric subset of a clan has small sym-
metric difference from a union of litters which is a symmetric set.

A large union of litters which is a local set is co-small: We verify that
a union of a large collection of litters in a clan whose complement relative
to the clan is also a large union of litters cannot be symmetric. Suppose
otherwise. Then there is such a set D with strong support S. Choose
a litter from the clan which is included in D and one which is excluded
from D, such that neither of them is near S. The substitution extension
of a map transposing two atoms, one chosen from each of these litters,
and fixing all atoms in S and anomalous elements for near-litters in S
will move D but not move any element of the support of D, for the usual
reasons: consider the first element of an argument list with range D which
is moved: it must be a near-litter and must contain an exception or the
image of an exception; but all exceptions of the map which are moved by
the map are chosen so as not to lie in or map into any litter in the support.
This is impossible.

Complete description of local subsets of a clan: It follows that every sub-
set of a clan has small symmetric difference from a small or cosmall union
of litters. Moreover, all such sets are actually symmetric.

Description of subsets of clans locally equinumerous to litters: We prove
that a subset of a clan the same size as a litter in a clan has small sym-
metric difference from the litter. Suppose otherwise: let C be a subset
of a clan and litter(p) be a litter in the same clan and suppose that
they are the same size, witnessed by a bijection f with strong support
S. Suppose first that the symmetric difference of the two sets is large. If
litter(p) \ C is large, then C ∩ litter(p) is small by amorphousness of
litters, so C \ litter(p) is large and in bijection with a large subset of
litter(p), and this is the only case we need to consider. We can choose
two elements of the large subset of litter(p) neither of which are in S,
and whose images under the bijection are neither in S nor belong to litters
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near S (or which are neither one of them in S and belong to the same near-
litter, if the large image set happens to be covered by a small collection
of near-litters) and then transpose the two elements of litter(p) while
fixing the two elements of C and all atomic elements of S. We cannot have
moved any element of S, for the same sorts of reasons indicated above,
but we have clearly moved f ; this is absurd. Since the two sets must have
small symmetric difference, there is a symmetric bijection between them
with small symmetric difference from the identity (this is where we use
the fact that κ is uncountable). It is then easy to see that π(litter(p))
is litter(π∗(p)) for any allowable π.

Proof of the double power set lemma: We define |litter(p)| as the col-
lection of subsets of the clan which includes litter(p) with small sym-
metric difference from litter(p). We observe that it is then quite clear for
the same reasons given above that the map taking each δ(p) to |litter(p)|
is symmetric, and so is the map taking an arbitrary subset D of δ“(P (A))
to the union of all cardinals |litter(p)| such that δ(p) ∈ D. This map is
a bijection because the cardinals are disjoint sets. So we are able to es-
tablish that P2(clan(P (A))) contains a set the same size as P(δ“P (A)):
that is, we have proved the double power set lemma.

Lemma (double power set lemma): For any clan indexA, P2(clan(P (A)))
contains a set the same size as P(δ“P (A)) (in the FM interpretation).

The argument for the first property of tangled webs is complete: Once
this is verified, the argument in the motivational section for coherence of
the equation τ(Ai) = P2+i(clan(A)) for every zero-minimal A is sup-
ported. We repeat the relevant text from the motivational section.

This is enough to establish that we can coherently define τ in such a
way that τ(Bi) = |Pi+2(clan(P (B))| for each B containing 0 and Bi
nonempty, which will enforce the first property of a tangled web (that
exp(τ(A)) = τ(A1)).

We verify this. What requires verification is that if B << A = Bi and
C << A = Cj , |Pi+2(clan(P (B))| = |Pj+2(clan(P (C))|.
We prove that Pi+2(clan(B)) contains a set the size of P(δ“P (Bi)). That
this is true in the case i = 0 is an assumption we have made already. Sup-
pose that Pk+2(clan(B)) contains a set the size of P(δ“P (Bk)) and that
Bk+1 exists. δ“P (Bk) contains clan(Bk+1), so Pk+3(clan(B)) contains a
set the size of P2(δ“P (Bk)) which contains a set of size P2(clan(P (Bk+1))
which includes a set the size of P(δ“P (Bk+1), completing the proof by in-
duction of the claim.

It follows that if B << A = Bi and C << A = Cj , Pi+2(clan(P (B))
contains a set the size of P(δ“P (Bi)) = P(δ“P (A)). Now δ“P (A) includes
P |C|−|A|+1(clan(P (C)) = Pj+1(clan(P (C)), so P(δ“P (A)) and so
Pi+2(clan(P (B)) include a set the size of Pj+2(clan(P (C)), and because
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the situation is symmetrical, Pj+2(clan(P (C)) contains a set the same
size as Pi+2(clan(P (B)), so these sets are the same size.

Definition (the claimed tangled web): We define τ(Bi) = |Pi+2(clan(P (B))|
for each B containing 0 and Bi nonempty. The argument just above shows
that this does not depend on the choice of B.
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11 Verification of elementarity properties stated
in the motivational section

The model of TSTn with base type τ(A) needs to be shown to have first-order
theory depending only on A \ An, the collection of the first n elements of A
(where A has at least n elements, of course). It is sufficient to show this for all
B zero-minimal which extend A downward: if this is assumed already shown,
we will know that the first order theory of the mode of TSTn+|B|−|A| with base
type τ(B) is determined by B \ Bn+|B|−|A|, and we can determine from the
results above that in fact it is completely determined by the elements of A\An,
because B can be replaced with any other zero-minimal downward extension of
A (say C) without any effect on the theory of the part of this model with base
type of size τ(A), as the results above show that the cardinality of the relevant
type is not changed by changing B out for C.

Now we assume that B is zero-minimal and our aim is to show that the first
order theory of the model of TSTn with base type of size τ(B) = |P2(clan(B))|
(so we can simply take the base type to be P2(clan(B))) is determined by
B\Bn. The top type of this model is Pn+1(clan(B)). We note that all elements
of Pn+1(clan(B)) in the FM model are of the form δ2(f [L]) for f an element
of Σ(B \Bn) and L an argument list of coarse type Bn.

We consider the case where Bn = ∅. Obviously if this case works, so do all
others. Choose C such that C \ Cn = B \ Bn = B. Choose an injection σ0

from P (Bn) = P (∅) into clan(Cn+1) ⊆ P (Cn). This induces a transformation
of code components of index D dominated by Cn to code components of index
Cn ∪D (which we will call σ); we claim that this action induces an elementary
embedding (which we will also call σ) from the model of TSTn+2 with base type
clan(B) to the model of TSTn+2 with base type clan(C).

The fact that this map is an elementary embedding follows from the fact
that every object in both natural models of type theory is codable and the in-
discernibility property. Each element of any type in the model indexed by B
has a representation via the coding which can be converted to the representa-
tion of an object in the model indexed by C simply by replacing all elements of
P (Bn) = P (∅) injectively with elements of clan(Cn+1) using the master injec-
tion which defines the embedding (the restriction of range elements in P (Cn)
to atoms avoids incurring complex fine type obligations).

Equality and membership statements between objects represented by set
codes in the two models (with suitable parent codes standing in for base type
atoms) are completely determined by the coders in the two codes and the delta
function applied to the arguments; this follows from the indiscernibility property
of codes and the way set codes are defined: so the truth values of quantifier-free
sentences in the language of set theory about objects in the model indexed by
B and corresponding objects in the model indexed by C will be the same.

Suppose that φ(x, y) satisfies φ(x, y)↔ φ(σ(x), σ(y)). We want to show that
this holds for (∃x.φ(x, y)).

If (∃x.φ(x, y)) is true, then φ(u, y) is true, so φ(σ(u), σ(y)) is true, so (∃x.φ(x, σ(y))
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is true.
Now suppose that (∃x.φ(x, φ(y)) holds. Choose a witness u. There is no

reason to believe that u is an image under σ. Let u be the referent of a code
f [L]. Apply an external permutation ρ with no exceptions to u, fixing all
elements of the range of σ0 on which σ(y) depends, sending every parent in
P (Cn) involved in the structure of L to an element of the range of σ0. ρ∗ ◦L will
be an argument list, but not necessarily with the same fine type, as complex fine
type information about elements of P ∗(Cn) appearing as arguments in L may
be suppressed. Let τ∗ be the fine type of ρ∗◦L. If f = (K, τ), then f∗ = (K, τ∗)
will provide us with a coder such that f∗[ρ∗ ◦L] is well-formed and denotes ρ(x)
(this works because all elements of K are applied as coders to elements of L∗

not L, and (ρ◦L)∗ has the same fine type as L∗; what happens in the case where
element of A are atom coders is simple). Now w coded by f∗[ρ∗ ◦L] is an image
σ(v) by construction. We have φ(x, σ(y)) iff φ(ρ(x), ρ(σ(y))) iff φ(w, σ(y)) iff
φ(σ(v), σ(y) iff φ(v, y), whence we have (∃x.φ(x, y)).

This is sufficient to see that σ is an elementary embedding as required (no es-
sential complexity is added by handling more arguments, and logical connectives
present no difficulties).

At this point, everything asserted in the motivational sections has actually
been proved, and the consistency of NF has been proved.
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12 Conclusions to be drawn about NF

The conclusions to be drawn about NF are rather unexciting ones.
By choosing the parameter λ to be larger (and so to have stronger partition

properties) one can show the consistency of a hierarchy of extensions of NF
similar to extensions of NFU known to be consistent: one can replicate Jensen’s
construction of ω- and α-models of NFU to get ω- and α-models of NF (e.g., see
how we proved the existence of α-models for the mildly impredicative fragment
NFI of NF in [4]). One can show the consistency of NF + Rosser’s Axiom of
Counting (see [11]), Henson’s Axiom of Cantorian Sets (see [3]), or the author’s
axioms of Small and Large Ordinals (see [5], [6], [13]) in basically the same way
as in NFU.

It seems clear that this argument, suitably refined, shows that the consis-
tency strength of NF is exactly the minimum possible on previous information,
that of TST + Infinity, or Mac Lane set theory (Zermelo set theory with compre-
hension restricted to bounded formulas). Actually showing that the consistency
strength is the very lowest possible might be technically tricky, of course. I have
not been concerned to do this here. It is clear from what is done here that NF
is much weaker than ZFC.

By choosing the parameter κ to be large enough, one can get local versions of
Choice for sets as large as desired. The minimum value ω1 for κ already enforces
Denumerable Choice (Rosser’s assumption in his book) or Dependent Choices.
It is unclear whether one can get a linear order on the universe or the Prime
Ideal Theorem: that would require major changes in this construction. But
certainly the question of whether NF has interesting consequences for familiar
mathematical structures such as the continuum is answered in the negative:
set κ large enough and what our model of NF will say about such a structure
will be entirely in accordance with what our original model of ZFC said. It
is worth noting that the models of NF that we obtain are not κ-complete in
the sense of containing every subset of their domains of size κ; it is well-known
that a model of NF cannot contain all countable subsets of its domain. But
the models of TST from which its theory is constructed will be κ-complete,
so combinatorial consequences of κ-completeness will hold in the model of NF
(which could further be made a κ-model by making λ large enough).

The consistency of NF with the existence of a linear order on the universe or
the Prime Ideal theorem is not established: questions about many weak versions
of Choice remain.

The question of Maurice Boffa as to whether there is an ω-model of TNT
(the theory of negative types, that is TST with all integers as types, proposed
by Hao Wang ([16])) is settled: an ω-model of NF yields an ω-model of TNT
instantly. This work does not answer the question, very interesting to the au-
thor, of whether there is a model of TNT in which every set is symmetric under
permutations of some lower type.

The question of the possibility of cardinals of infinite Specker rank in ZF is
answered, and we see that the existence of such cardinals doesn’t require much
consistency strength. For those not familiar with this question, the Specker tree
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of a cardinal is the tree with that cardinal at the top and the children of each
node (a cardinal) being its preimages under α 7→ 2α. It is a theorem of Forster
(a corollary of a well known theorem of Sierpinski) that the Specker tree of a
cardinal is well-founded (see [2], p. 48), so has an ordinal rank, which we call
the Specker rank of the cardinal. NF + Rosser’s axiom of counting proves that
the Specker rank of the cardinality of the universe is infinite; it was unknown
until this point whether the existence of a cardinal of infinite Specker rank was
consistent with ZF.

This work does not answer the question as to whether NF proves the exis-
tence of infinitely many infinite cardinals (discussed in [2], p. 52). A model with
only finitely many infinite cardinals would have to be constructed in a totally
different way.

A natural general question which arises is, to what extent are all models
of NF like the ones indirectly shown to exist here? Do any of the features of
this construction reflect facts about the universe of NF which we have not yet
proved as theorems, or are there quite different models of NF as well?
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