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AC Fails in the Natural Analogues of V and L That Model
the Stratified Fragment of ZF

Thomas Forster

ABSTRACT!

If G is a group of permutations of V,, it has countably many different actions on V, since
for each n < w it can move x by permuting the elements of |J" z of finite rank and fixing
the rest. A set that is fixed by everything in G under the nth action of G is said to be
n-symmetric; if it is n-symmetric for all sufficiently large n it is just plain symmetric.
The class of hereditarily symmetric sets is a model for the stratified axioms of ZF but
contains no wellordering of V,,! The other structure is a stratified analogue of L, but the
construction is extremely fragile.

I am indebted to Randall Holmes, Adrian Mathias and Philip Welch for helpful dis-

cussions.
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This paper is a report on work-in-progress. I am very grateful to Ali Enayat
for inviting me to present it at the Baltimore Joint Meeting, and to The American
University for financial support associated with that presentation. I am grateful to
Ali Enayat also (and to the American Mathematical Society) for the opportunity to
present this snapshot to the public in their volume of proceedings of that meeting.

There are two well-known ways of using permutations of the carrier set of a
model of set theory to produce new models of set theory, namely the Fraenkel-
Mostowski and the Rieger-Bernays constructions. This is a third method which
has affinities with both but should not be confused with either.
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2 THOMAS FORSTER

1. Definitions

(z,y) is the transposition swapping x and y; (z,y) is the ordered pair of z and
y. Lower case Greek letters will be used to range over permutations.

(Readers familiar with the basics of the literature on NF can skip the rest of
this section.)

A formula of set theory is stratified iff by assigning type subscripts to its
variables we can turn it into a well-formed formula of simple type theory. That is
to say, a wif ¢ is stratified iff we can find a stratification for it, namely a map f
from its variables (after relettering where appropriate) to IN such that if the atomic
wif ‘z = g’ occurs in ¢ then f(‘z’) = f(‘y’), and if ‘x € y’ occurs in ¢ then f(‘y’)
= f(‘z’) + 1. Variables receiving the same integer in a stratification are said to
be of the same type. If n successive naturals are used, the formula is said to be
n-stratified. A stratified formula with a free variable is said to be an n-formula
iff there is a stratification giving that variable the label ‘n’, and gives at least one
variable the label ‘0’ and no variable a negative label. A function is said to be
stratified iff it is represented by a stratified expression ¢ such that Vz; ... x,3lye.
This idea is less natural than one might think, for the class of stratified functions is
not closed under composition: singleton and binary union are both stratified, but
their composition,  — x U {z}, is not. The largest class of stratified functions of
unbounded arity closed under composition is the class of homogeneous functions,
and the smallest class of functions closed under composition and containing all
stratified functions is the class of weakly stratified functions. It is simple to
check that a function is homogeneous iff there is a stratified expression ¢ such that
Vzp ...x,3ly¢ wherein all the ¥ and y have the same type, and equally simple
to check that a function is weakly stratified iff there is an expression ¢ such that
Vz; ...x,3lyp wherein such failures of stratification as there may be involve the &
only. Thus we can apply the adjectives ‘homogeneous’ and ‘weakly stratified’ to
formulee as well as to functions. The height of a word W will be the number of
types needed to stratify it.

2. HS: the hereditarily symmetric sets

The key lemma in understanding weakly stratified descriptions is Coret’s lemma.

A permutation ¢ can act on a set x in countably many (natural, set-theoretic)
ways. It can send z to o(z), or to o“z, which is {o(y) : y € z} (this, too, is
sometimes written ‘c(z)’!) and furthermore, for any n, it can act on |J" z. Clearly
x € y iff o(z) € o(y) where the action on z is at top level and the action on y is
one level down.

It is customary in most areas of mathematics to use the same notation for both
these first two actions, and it’s usually easy to disambiguate the notation. In set
theory, where it isn’t, we would often write o “y for the action of o at the lower of
these two levels. However, for the programme of this paper an ad hoc pragmatic
strategy for distinguishing between merely two of these actions is not going to be
enough: we need a consistent uniform notation that covers those countably many
actions. This is because the same biconditional (namely z € y iff o(x) € o(y))
holds if the action on y is n + 1 levels down and the action on z is n levels down.
So let j™(o) be that permutation which sends z to the result of moving members
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of J" x according to o. This immediately gives us that, for each n,

(2.1) (Vay)(z € y +— (j"0)(2) € (7" o) (y))-

Now let’s take a formula in the language of set theory and manipulate it by replacing
some of its atomic subformula by substitutivity of the biconditional using equation
2.1. Notice that if all occurrences of a variable have the same prefix, and that
variable is bound, we can delete the prefix (since it’s a permutation). When can
we do this? Precisely when there is no conflicting information about which level a
variable lives at; and when is that? When the formula is stratified!

This proves

LEMMA 2.1. Coret’s lemma (Coret [1], [2]) If ® is weakly stratified then
&(z1,...,71) ¢ (1™ 0)(21), ..., (1" 0) (),

for any permutation o, where ny, is the integer assigned to the variable ‘xy’ in some
fixed stratification.

On the face of it this proof should work for stratified formulae only, not for all
weakly stratified formulae as well. However multiple occurrences of a single free
variable in a formula at different types can be given different prefixes. ]

In particular Coret’s lemma, gives us the following useful corollary:

COROLLARY 2.2. If W is a weakly stratified function and n is bigger than the
height of W then
(o)W (z1...2k) = W(y1---y),
where the terms y; are the corresponding variables z; with prefixes derived from
o. Occurrences of an x variable at different types are treated as different variables
and receive different prefixes.

Exploiting the notation ‘[x/y]W’ for the result of substituting the variable ‘z’
for ‘y’ in the word W (and ‘[z /y; 2’ /y']W’ for the result of substituting the variables
‘2’ for ‘y’ and ‘z”” for ‘y"’ in the word W) we could also write this as

(]na)W = [0'1 (SEl)/IL'l; 0'2(.732)/1172; .. ]W,
where the & are the free variables of W. o; is of course j™ (o) where n; is the type
of ; in W.
That is to say, when n > height(W) we can import the permutation. For
example (j27)P(z) = P((jn)z).
Another corollary of Coret’s lemma, is

(Vo) (Vz)(p(z) «— &((1"0)(x)),
as long as n >height(¢). z and (j"¢)(z) resemble each other for “the top n levels” so
this is telling us that stratified formulae “look only finitely levels down” and express
properties that are in some obscure set-theoretic sense Iocal. Obscure this sense
may be, but it is an important intuition to develop in connection with stratified
formulee.

We can see further that (ignoring parameters for the moment) by Coret’s lemma
any set that has a unique stratified description must be fixed by j"(¢) for all
permutations ¢ where n > height of the formula uniquely describing it. We will
say—for the moment—that a set is n-symmetric iff it is fixed by every permutation
that is j™ of something, and symmetric if it is n-symmetric for some n. I say
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“for the moment” because this definition will have to be torn up and the word
“symmetric” recycled.

Let’s have a brief reality check. Any permutation that is j of anything will fix
the empty set, and any permutation that is j2 of anything will fix the empty set and
its singleton, and any permutation that is j” of anything will fix everything of rank
< m. So every hereditarily finite set (of rank n) is (n-)symmetric, and everything
in V,, is symmetric. Of course one cannot infer that a set is symmetric if all its
members are symmetric, though it will of course be n + 1-symmetric as long as all
its members are n-symmetric.

Clearly Coret’s lemma will tell us that the class of symmetric sets is closed
under all weakly stratified functions. This fact does not rely at all on the collection
of permutations over which we quantify in the definition of ‘symmetric’ being the
class of all permutations. We will exploit this insensitivity enthusiastically, as the
idea of a symmetric set is attractive and fruitful and we do not wish to be hampered
by the fact that—as we are about to find out—in ZF there are hardly any symmetric
sets to speak of.

It is easy to see that if x is n-symmetric, then Jz is n — 1-symmetric, and
so on, so that U"71 z is 1-symmetric. But if y is 1-symmetric, 7“y = y for all
permutations w. Thus y must be V or §). This is turn tells us that if z is n-
symmetric either Un_1 x is P—in which case z is in V,,, or Un_1 z = V—in which
case x is a proper class.

How did this disaster unfold? The point is that, if x is n-symmetric and 7
is any permutation whatever, then (j”7)(z) must be z. Now j™(w) acts on z by
moving stuff in-and-out of & n levels down according to 7. Since 7 can be any old
permutation of V', it can swap any old rubbish into z, and if z is fixed by such
actions it must consist, n levels down for some n, all that any-old-rubbish. Either
that or be empty.

This result—that if  is symmetric either z is hereditarily finite or TC(z) = V—
is known from work on NF (it was first remarked on by Boffa). Although it is not
a disaster for NF studies? it certainly does mean that the idea of symmetric sets
cannot be straightforwardly applied in the study of ZF, since ZF proves the existence
of sets of infinite rank whose transitive closure is not the universe. Indeed, unwary
readers may well be spooked by this into concluding that the idea of n-symmetry
cannot be usefully applied to ZF at all: I certainly was, for years. They would
be wrong. What this result is telling us is instead that our notion of symmetric is
defective, and the defect is that it involves quantification over all permutations. If
we restrict our permutations somehow then there are corresponding limits on the
amount of rubbish that can be swapped in and out of sets that are n-symmetric
under the new dispensation. So our new definition is: a set is symmetric if, for
sufficiently large n, it is fixed by j"(o) for all permutations ¢ of something or
other. But what is this something-or-other to be? It will have to be a proper
initial segment of the universe, lest n-symmetry of x permit us to swap unbounded
rubbish into z as before. So let us rewrite our notion of n-symmetry to read “z is

%In a sense, the whole concept of “disaster for NF studies” is on hold until the question of
the consistency of NF is cleared up. However, it would be very odd if NF were consistent but
nevertheless proved the existence of a nonsymmetric set. After all—other than extensionality—
every axiom of NF is an assertion that the universe is closed under an operation that takes
symmetric sets to symmetric stes. This makes it natural to expect that if NF has models at all
then it should have models in which every set is symmetric.
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n-symmetric iff x = (j"7)(z) for all m € ¥(V,,)”. (£(V},) is the full symmetric group
on V.) Just as, under the old dispensation, " (z) = V or 0 if x is n-symmetric,
we now find that |J" z D V,, or J" = = 0 if = is n-symmetric in the new sense. This
would have the effect that no set of rank between w and k could be symmetric.
And this in turn would scupper any chances of a nontrivial theory of hereditarily
symmetric sets. Clearly x will have to be w, so we use X(V,,) rather than (V). In
fact for technical reasons which will become clearer later (lemma 2.7 and theorem
3.1) it is necessary to restrict still further to a group of permutations of finite
support. It doesn’t matter a great deal at this stage which group of permutations
of finite support but readers who do not like loose ends may wish to have in mind
the alternating group Alt(V,,) of those permutations that are the product of an
even number of transpositions. It has the advantage of simplicity.
So we rewrite our notion of symmetric to

DEFINITION 2.3. .
(1) z is n-symmetric if o(z) = z for all z in j”“G where G is a group of
permutations of V,, of finite support, unspecified for the moment;
(2) z is symmetric if it is n-symmetric for all sufficiently large n;
(3) HS is the class of hereditarily symmetric sets.

We will want to ensure that any set that is n-symmetric is also m-symmetric
for all m > n. In the (original) NF context one defined a set to be n-symmetric.
iff it was fixed by everything in j7“(X(V)). It so happens that j7t14(Z(V)) C
J"“(2(V)), so in the Old Dispensation it happened automatically that every n-
symmetric sets was m-symmetric for m > n. Here we have write it in explicitly:
were we to take for G a group that is not closed under j then we would have to
redefine n-symmetric to be m-symmetric (in the old sense) for all m > n. This is
another desideratum for G to be borne in mind!

Notice that although we call these sets symmetric, they differ from the symmet-
ric sets in Frankel-Mostowski models in that they are wellfounded and extensional:
HS is a substructure of the cumulative hierarchy.

REMARK 2.4. Suppose (z)¢(z,3) where the § are all symmetric and ¢ is
weakly stratified. Then the unique witness is also symmetric.

Proof: By Coret’s lemma V | ¢((5™7)(x),... (j™7)(s;)...) for any =, with n and
the n; depending only on ¢. But since the witness is unique, all these (j"7)z are
identical and the witness must be n-symmetric. [ ]

COROLLARY 2.5. The class of symmetric sets is closed under application of
stratified functions.

One might have expected to be able to prove a completeness-like result to the
effect that a set can be n-symmetric iff it is uniquely described by an n-formula.
But any hope of that was lost when we loosened the definition of n-symmetric by
trimming the bundle of permutations by which a set would have to be fixed. It is
this loosening that makes the following two lemmas possible.

LEMMA 2.6. For all ordinals o, Vy is symmetric.

Proof: In fact V, is n-symmetric for all n > 1. If o is a permutation that moves
hereditarily finite sets only, and z is a set of infinite rank, what can ¢ move = to
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by acting on |J" z? Tt clearly cannot move x to anything of different rank. That is
to say, it fixes V,, setwise, as desired. [ |

LEMMA 2.7. For all ordinals o, HSNV, € HS.

Proof: This is the first place where we (appear to) need the fact that our group is
a group of permutations of finite support. That fact is enough to ensure that all
the permutations in it are—considered as their graphs—symmetric.

The key fact is that, for each n, there is a stratified binary operation (“n-
application”) that takes a permutation ¢ and a set  and returns the result of o
acting on |J" z. In our notation this is (j"0)(z)). So if z is symmetric, and o is
symmetric then (j"c)(z) is symmetric too. This will show that if  is hereditarily
symmetric then so is (j"0)(z). But everything inside TC((j"0)(z)) is either (i)
the same as something inside T'C(z) (if it was more than n levels down) or (ii) is
obtained from a symmetric object at most n levels down inside 2 by k-application for
some k < n. All such objects in T'C(z) are symmetric (z is hereditarily symmetric)
and are moved to objects inside (j™0)(z) by this stratified operation which, as we
have seen, preserves symmetry. Everything in TC((j™0)(x)) is obtained by one of
these two processes, both of which preserve symmetry, so (j7¢)(z) is hereditarily
symmetrical as desired.

This means that V,NH S is hereditarily symmetric, since all that the nth action
of any o can do is permute members of V,, N HS. ]

For this proof of lemma 2.7 to work we need the permutations to be symmetric,
and one way of ensuring this is to take them to be of finite support. For all I know
there may be a (presumably entirely different) proof that doesn’t assume that the
permutations are symmetric.

We proved above that V,, is symmetric, in fact that it is 1-symmetric. Under
the old dispensation the only 1-symmetric set was the empty set (and possibly the
universe, if it is a set). The familiar connections between logic and algebra would
lead us to expect that a set should be n-symmetric if and only if it has a unique
description by an n-formula. (I'll leave out the small print, because in this case
it doesn’t work anyway). This expectation is not met, because the condition on
n-symmetry has been weakened. This wrinkle (things lacking stratified descriptions
nevertheless turning out to be symmetric because we have cut down the family of
permutations that we require them to be fixed by) to a certain extent counteracts
another wrinkle, which arises when we procede (as we do next) to consider which
axioms hold in HS. In the standard cases where we are trying to prove that
H, |= replacement the task is made easy by the fact that the ¢ in question is
preserved under surjection. (Hereditarily finite sets, hereditarily countable sets,
sets hereditarily of size less than 3, all routinely used in proofs of independence
of the axioms, all have this feature.) However the surjective image of a symmetric
set need not be symmetric, and this blocks the usual proof that the hereditarily-
something structure is a model of replacement. We need something extra, and
that indispensible something extra is lemma 2.7. The two wrinkles annihilate one
another in a flash of illumination!

THEOREM 2.8. HS is a model of the axioms of extensionality, pairing, power
set, sum set, infinity, and the stratified instances of replacement and separation.
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Proof: HS satisfies extensionality because it is transitive. It satisfies pairing and
sumset because (by corollary 2.5) it is closed under the stratified operations cor-
responding to those axioms. (The power set operation is not Ay so we cannot
despatch the axiom of power set in this way: we will deal with it later!)

It satisfies infinity because V,, is hereditarily symmetric. There are complica-
tions about verifying the axiom of infinity in this context because in the absence
of unstratified separation various Z F-equivalent versions of the axiom cease to be
equivalent. We will verify two versions. (i) There is a version that says that there
is a nonempty set closed under Az.xz U {z}. This is clearly satisified. However the
relevance of this version to the development of arithmetic is tied to the availability
of the Von Neumann implementation of ordinals, and we are clearly not going to
be using that here. (There are immense difficulties in the way of manipulating
Von Neumann ordinals if one has only stratified replacment not full replacement).
So we need version (ii), that says there is a set with a wellordering with no last
element and no limit point. It is not clear that HS thinks that V,, has a countably
infinite subset, but it does at least know that V,, is not inductively finite. And,
given an infinite (hereditarily symmetric) dedekind-finite set X we can construct a
genuinely countable set by a standard method that uses only stratified machinery:
the set of equivalence classes under equipollence of X’s inductively finite subsets is
a (hereditarily symmetric) subset of P?(X) with a natural wellordering to length w
and this set will give rise to an implementation of arithmetic to accommodate the
most exacting tastes.

It is slightly trickier to verify power set than it was to verify sumset and pairing.
If x € HS then the collection of HS subsets of z is a subset of H.S but is it sym-
metric? The collection of symmetric subsets of z is the intersection of P(z) (which
is symmetric since it is obtained from a symmetric set by a stratified operation)
and V,, N HS which is hereditarily symmetric by lemma 2.7, and the intersection
of two symmetric sets is symmetric.

We now verify stratified replacement: The image of a hereditarily symmetric
set in a stratified function with hereditarily symmetric parameters must be sym-
metric, and, since all its members are hereditarily symmetric, it will be too, so that
should be the end of the matter, but we have to be careful. Even if the function
is apparently defined by a stratified formula, it won’t be stratified once we have
restricted all the bound variables to HS, because the definition of HS is not strat-
ified! However, we can use reflection to cut down all quantifiers to suitable initial
segments of V', and we can then exploit the fact (lemma 2.7) that for any ordinal «,
H SNV, is hereditarily symmetric, so the formula defining the function is equivalent
to a stratified formula where all parameters are terms denoting members of HS. &

So what is HS a model of? The stratified fragment of ZF', as promised in the
title? Here we have to be very careful about what we mean by the phrase: “the
stratified fragment of ZF”. Do we mean the theory axiomatised by the stratified
axioms of ZF'? If so, then yes, for that is what we have just shown. If we mean the
theory axiomatised by the stratified theorems of ZF' then the answer might be ‘no’,
since these theories are not the same. As Mathias ([5], the beginning of section 9,
on page 217.) has noted, the assertion “there is an infinite set of infinite sets all of
different sizes” is a stratified theorem of ZF but doesn’t follow from the stratified
axioms of ZF, since, by Coret [1], all those axioms are theorems of Zermelo set
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theory,? whereas the Mathias assertion is not. It seems fairly clear that the Mathias
formula is satisfied in HS but there may be stratified theorems of ZF that aren’t.

Because G contains transpositions moving finite ordinals to things that are not
finite ordinals, no infinite ordinal can be symmetric, so HS contains no infinite Von
Neumann ordinals. Readers should not infer from this that AC fails, for the lack
of infinite Von Neumann ordinals might be attributable to nothing more than the
failure of Mostowski collapse for functions defined by unstratified formulae. Indeed,
as Serge Grigorieff pointed out to me—and as we shall explore later in more detail—
if we take G to be a group of finite permutations of V,, \ w (the von Neumann w)
this difficulty goes away: the absence of infinite von Neumann ordinals is a red
herring. Nevertheless choice does fail, and it fails badly.

THEOREM 2.9. HS does not contain any total order of V.

Proof: Let X CV, x V, be n-symmetric, and suppose it were the graph of a total
order of V,,, Since X embodies a total order, it must contain either the ordered
pair (t"(0),:"1(@)) or the ordered pair (:"**(0),.”(0)) but not both. (:"(z) is
the n-times singleton of x). Now let o be the transposition (§,{0}). Then, by
n-symmetry of X, (j70)(X) = X so if X contains one of these ordered pairs, it
must contain the other, contradicting antisymmetry of X. ]

This proof goes back to an observation of André Pétry from many years ago:
[6]). (We should flag here the warning that this proof of theorem 2.9 works only
for versions of ‘symmetric’ that use groups that contain all single transpositions
of elements of V,,. If we take G to be, say, Alt(V,,) we have to complicate the
argument by considering 3—cycles instead of transpositions.)

This does not mean that HS does not contain wellordered infinite sets: it cer-
tainly contains the set of equivalence classes of finite subsets of V,, under equipol-
lence, and this is assuredly a set of size Ny as we have seen, and for the usual
reasons. However it does not contain any bijection between this set and V,,.

Finally we can note that theorem 2.9 records not only a failure of choice but
of course also a failure of unstratified separation or comprehension, since there is a
known wellordering of V,, definable by an unstratified formula. Probably no reader
had doubted that HS falsified some instances of unstratified comprehension, but it
is as well to have a proof.

3. V = S: an axiom for stratified constructibility

In [4] I exhibited a finite set of stratified rudimentary functions with the feature
that any set closed under them and under power set is closed under stratified Ag-
separation. They are:

{{z},{y}) : (=, v) € R}; o\ y; {z,y};

{Hy}:y € z};
Usz;
dom(x);

{<$7yaz) : <:L',y> € Al Nz € A2}7
{{u},v) su€v €z}
{uey:xz€eul;

{(2,9,2) : (z,2) € AL Ny € Az}

3At lweast if we axiomatise ZF with replacement rather than collection: thanks to Mathias
for this subtle but potentially important qualification.
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{(y,2) : (2, ) € A}.

I will spare readers the proof, since nothing in what follows will depend on the
set, of operations being this particular set rather than any other. The analogy with
the J hierarchy that constructs L invites us to define a stratified analogue of L
which I shall call Sr. These are the stratrud functions, and stratrudclos(z) is of
course the closure of z under them.

Sro =: 0; Srat1 =: stratrudclos(SroU{STa}); Sra =: U
for A limit. S =: U,con STa-

The critical difference between Sr and L is that although Sr has a canonical
wellorder for the same reason that L has, there is no reason to expect that Sr
should contain initial segments of the graph of this wellorder: the definition of
this wellorder is unstratified, and Sr guarantees sethood only to graphs of strati-
fied functions. We must brace ourselves for the possible discovery that—in Philip
Welch’s words—“Sr does not construct itself”. We will see that this is indeed the
case: not only does St fail to construct itself, it has no global wellordering and does
not wellorder—in fact does not even totally order—V,,. This will follow from the
fact that S C HS, which we will now prove.

a<A STO‘

THEOREM 3.1. For all ordinals a everything in St is symmetric and St itself
is n-symmetric for all n > 1.

Proof: We prove this by induction on the ordinals. We need two facts and one
trick. Fact (i) arises from a helpful analogy with L: L is the rud-closure of the
class of all the J,, so everything in L is denoted by a word in the rud functions
with arguments among the J,. Analogously everything in Sr is denoted by a word
in the stratrud functions with arguments among the Sr,. Fact (ii) is remark 2.4,
which tells us that anything defined by a weakly stratified word over symmetric
arguments will be symmetric itself. This tells us that if Srg is symmetric for all
B < «a then everything in Sr, is symmetric. However that fact isn’t on its own
enough to ensure that Sr, itself is symmetric. For this we need to be sure that if
x € Sr, then for all n and all permutations ¢ € G then (j"0)z € Sr, too. We
know that for each z, x = (j"0)z for sufficiently large n, but we need to deal with
the case of small n too. This is where we need a trick. What we wish is that any
rud-closed class should be fixed by j"o for any permutation ¢ € G and all n. But
every permutation in G is a product of finitely many transpositions and for any
transposition (z,y) and any concrete n, and any w € Sr,, (j™(z,y))w is a word in
the stratrud functions over arguments z, y, w, and so is in Sr.

|

In fact for (j"o)w to be in Sr, whenever w is it will suffice for o to be in Srg
for some small 3, for example Sri. However for the moment we are playing safe
and taking G to be Alt(V,). There are other candidates like Symm(V,,) N L or
Symm(V,,)NSr. The reason for preferring the alternating group is that it is simple,
and this will ensure that every member of a finite symmetric set is symmetric. This
in turn ensures that Sr and HS are more nicely embedded in V' than they would
be otherwise, and makes it much easier to prove preservation theorems.

4. Further developments

There are numerous questions to ask about this area, some of the more pressing
being:
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(1) How sensitive is the development of HS to the choice of the group G of
permutations of V,,?

(2) L has two equivalent presentations, both going back to Gédel: can Sr be
developed in both these ways?

(3) For what classes of formula are the inclusion embeddings Sr — HS — V
elementary?

(4) Does H S satisfy all the stratified theorems of ZF as well as all the strat-
ified axioms? Specifically does HS satisfy the Mathias formula?

(5) Is there an initial segment of HS that satisfies “There is a set X such that
every wellordering is isomorphic to a member of X”?

But these are topics for a later paper: this short note is intended merely to
start the ball rolling.
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