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1 Introduction

This paper continues a recent paper of the author in which a theory of sets
and classes was defined with a criterion for sethood of classes which caused the
universe of sets to satisfy Quine’s New Foundations. In this paper, we describe
a similar theory of sets and classes with a stronger (more restrictive) criterion
based on symmetry determining sethood of classes, under which the universe of
sets satisfies a fragment of NF which we describe, and which has a model which
we describe.

2 The theory of sets and classes

The predicative theory of sets and classes is a first-order theory with equality
and membership as primitive predicates.

We state axioms and basic definitions.

definition of class: All objects of the theory are called classes.

axiom of extensionality: We assert (∀xy.x = y ↔ (∀z : z ∈ x ↔ z ∈ y)) as
an axiom. Classes with the same elements are equal.

definition of set: We define set(x), read “x is a set” as (∃y : x ∈ y): elements
are sets.

axiom scheme of class comprehension: For each formula φ in whichA does
not appear, we provide the universal closure of (∃A : (∀x : set(x)→ (x ∈
A↔ φ))) as an axiom.

definition of set builder notation: We define {x ∈ V : φ} as the unique A
such that (∀x : set(x) → (x ∈ A ↔ φ)). There is at least one such
A by comprehension and at most one by extensionality. We define V as
{x ∈ V : x = x} (the class of all sets).
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definitions of pairs: For sets a, b we define {a, b} as {x ∈ V : x = a ∨ x = b}.
We define {a} as {a, a}. We define (a, b) as {{a}, {a, b}} as usual. The
standard theorem (a, b) = (c, d)→ a = c ∧ b = d has its usual proof.

axiom of elementary sets: The empty set ∅ = {x ∈ V : x 6= x} is a set. For
each set a, {a} is a set. For any sets a, b, a ∪ b = {x ∈ V : x ∈ a ∨ x ∈ b}
is a set.

definition of union of a class:
⋃
C is defined as {x ∈ V : (∃y : x ∈ y ∧ y ∈

V )}.

This completes the formulation of the elementary theory of sets and classes.
It should be noted that in the previous paper we had to restrict the scheme of
comprehension to formulas in which every quantifier was bounded in V . This
restriction is not needed (or wanted) in the weaker theory presented here. The
stronger theory had just the axiom of pairing to support relations and functions,
whereas in this theory we need to ability to construct finite sets of all sizes.

3 Relations, functions, and symmetry

We present a series of definitions which should seem familiar.

definition of finiteness: A class C is said to be finite-inductive iff ∅ ∈ C and
(∀xy : x ∈ C → x ∪ {y} ∈ C). A set x is said to be finite iff it belongs to
every finite-inductive class. The axiom of elementary sets tells us that V
is a finite-inductive class.

definition of relation: A relation is a set of ordered pairs. We write xR y for
(x, y) ∈ R. We define dom[R] as {x ∈ V : (∃y : xR y)}. We write R−1 for
{(x, y) ∈ V : y Rx}. We write rng[R] for dom(R−1). For any relation R
and set A, we define R“A as {y : (∃x ∈ A : xR y)}.

definition of function: A relation f is a function iff (∀xyz : x f y ∧ x f z →
y = z). We define f(x) as

⋃
f“{x}. We say that f is a permutation iff f

is a function, f−1 is a function, and dom[f ] = rng[f ] = V .

definition of j operation: For any permutation f , we define j[f ] as {(x, y) :
y = f“x}. j[f ] is necessarily a function. It might fail to be a function
of universal domain. If it is a function of universal domain, it is also a
permutation. We define j0[f ] as f in all cases and jn+1[f ] as j[jn[f ]], if
this is a permutation, for each natural number n (of the metatheory: we
do not have natural numbers in our theory so far).

axiom of symmetric set comprehension: We assert as an axiom that a
class C is a set iff there is a finite set S (called a support for C) such
that for any permutation f such that j[f ] is a permutation and (∀s ∈ S :
j[f ](s) = s) we have j[f ]“(C) = C.

2



This completes the formulation of the theory of symmetric sets and classes
which is the subject of this paper. We have two further aims in the paper:
we will define a fragment of Quine’s set theory New Foundations and show
that it is satisfied by the sets of any model of this theory, and then exhibit
a model of this theory constructed in the usual set theory ZFC (we do
not need very much ZFC to construct this model: the theory itself is no
stronger than third order arithmetic).

4 The theory NFSI2

The theory NFSI2 is a first order theory with equality and membership as
primitive notions. General objects of the theory are called sets.

axiom of extensionality: The first axiom is (∀xy.x = y ↔ (∀z : z ∈
x↔ z ∈ y)). Sets with the same elements are equal.

Before stating the second axiom (scheme), we extend our language by
adorning some variables with subscripts: for each natural number i we
provide a countable supply of variables with subscript i, and further we
have a countable supply of variables with no subscript.

definition of well-typed formula: A well-typed atomic formula is a
formula which either contains an unsubscripted variable or is of one
of the forms xi = yi or xi ∈ yi+1. A well-typed formula is one in
which all bound variables are subscripted and all atomic formulas are
well-typed.

axiom scheme of stratified comprehension The axiom scheme of strat-
ified comprehension provides that for each well-typed formula φ in
which A does not occur, the universal closure of (∃A : (∀xi : xi ∈
A ↔ φ) is an axiom. As stated so far, we have presented the full
theory NF. The restriction which gives NFSI2 is that the subscript
i will be 0 or 1: in fact, we can require that i = 1: uniformly rais-
ing all subscripts when i = 0 obtains an equivalent instance of the
comprehension axiom with i = 1.

It is important to notice that the subscripts on variables have no effect on
their range of variation or their logic: the only effect is on the shape of
comprehension axioms. Moreover, subscripts can be eliminated from these
axioms by renaming bound variables in the usual way to obtain theorems
not using subscripted variables.

Theorem 1: The universe of sets of a model of our theory of symmetric
sets and classes satisfies the axioms of NFSI2.
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Proof of Theorem 1: That the universe of sets satisfies extensionality
is obvious by the extensionality axiom for classes.

Let {x1 : φ} be a set abstract in the language of NFSI2 with φ well-
typed (in fact, we want all variables in φ subscripted). We convert
it to a set abstract of the theory of sets and classes by bounding xi
and each variable bound by a quantifier in V : these variables are
intended to range only over sets. We argue that if any parameters
in {x1 : φ} are sets and so have supports, we can compute a support
for {x1 : φ}, establishing that it is a set.

We want to argue for each permutation f that if j[f ] is a permutation,
that j2[f ] is also a permutation. What needs to be shown is that for
any set a, j[f ]“a is a set (and so can be read j2[f ](a)). Let f be a
permutation with j[f ] a permutation. Let a be a set with support S.
Our aim is to show that j[f ]“a is a set by showing that it has support
j[f ]“S. Suppose that g is a permutation, j[g] is a permutation, and
j[g] fixes each element of j[f ]“S, that is, j[g ◦f ](s) = j[f ](s) for each
s ∈ S. Thus j[f−1◦g◦f ](s) = s for each s ∈ S, so j[f−1◦g◦f ]“a = a,
whence j[g]“(j[f ]“a) = j[f ]“a which is what was to be shown.

This means that in fact if j[f ] is a permutation, so is jn[f ] for every
concrete n. This is a very useful result: one thing to note is that
we don’t even really have a way to say this in our set theoretical
language (but we do not need to).

Now observe that x = y ↔ ji[f ](x) = ji[f ](y) and x ∈ y ↔ ji[f ](x) ∈
ji+1[f ](y) allow us to assert that each well-typed formula in which
all variables are subscripted is unaffected in truth value if each zi
appearing in it is replaced with ji[f ](zi). We can further again replace
each ji[f ](zi) with zi if zi is bounded by a quantifier, because ji[f ] is a
permutation of the universe of sets. If φ(x1, a

1
τ1 , . . . , a

n
τn) is a formula

with x1 and the aiτi ’s as its only free variables, then it has the same
truth value as φ(ji[f ](x1), jτ1 [f ](a1τ1), . . . , jτn [f ](anτn)), so j[f ]“({x1 :
φ(xi, a

1
τ1 , . . . , a

n
τn)}) = {xi : φ(xi, j

τ1 [f ](a1τ1), . . . , jτn [f ](anτn))}, so if
we can enforce the conditions jτi [f ](aiτi) = aτi for each i we can
enforce j[f ]“({x1 : φ(xi, a

1
τ1 , . . . , a

n
τn)}) = {x1 : φ(xi, a

1
τ1 , . . . , a

n
τn)}.

At this point we need a Lemma.

Lemma: For any finite set A, there is a support S which is a support
for each element of A.

Proof: This is proved by induction on finite sets. Consider the class
of sets for which this assertion is true. Clearly ∅ belongs to this
class. If x belongs to this class, then there is a support S1 which
is a support of each element of S, and a support S2 which is a
support of y: it is then clear that S1 ∪ S2 is a support of each
element of x∪{y}. It then follows that every finite set belongs to
this class by the definition of the class of finite sets. Note that it
is crucially important here that our class comprehension axiom is
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impredicative, as the definition of support involves quantification
over permutations which are not expected to be sets.

The conditions jτi [f ](aτi) = aτi will be enforced by considering the
supports of the aiτi ’s, and they do not have quite the right form, but a
little tweaking does it. We need to convert the condtions jτi [f ](aτi) =
aτi into a finite set of conditions with all the exponents equal to 1,
then collect the arguments of the new conditions to form the desired
support. A condition with τi = 1 requires no action. A condition
j0[f ](ai0) = ai0 is equivalent to j1(f)({ai0}) = {ai0}, so replace such
an item with its singleton. Now consider a condition jk[f ](aik) where
k > 1. Suppose aik has support Si. By the definition of support,
if jk−1[f ] fixes each element s of Si then jk[f ] will fix aik. Now we
apply the Lemma. Let S2

i be a common support for all elements
of Si. It then follows that if jk−2[f ] fixes each element of S2

i , each
condition jk−1[f ](s) = s holds for s ∈ Si, and so jk[f ] will fix aik.
Applying the Lemma repeatedly will give Sn+1

i a common support
for all elements of Sni and if jk−n[f ] fixes each element of Sni , then
the original condition holds: this need only be iterated until k−n = 2
(a concrete finite number of times taken from the formula).

A support for {x1 : φ(xi, a
1
τ1 , . . . , a

n
τn)} is obtained as the union of

a concrete finite collection of supports, one for each of the original
conditions (individual ones of which obtained using the Lemma need
not be concrete finite) which will be a finite set.

This completes the proof that the sets of our theory of sets and classes
satisfy NFSI2.

The theory NFSI2 is an extension of two weak fragments of NF already
studied: these are NF3 studied by Grishin and NFSI studied by Tupailo.

5 AModel of Our Theory of Sets and Classes
(and so of NFSI2)

In this section, our metatheory is ZFC. We do not use very much of it.
The theory of symmetric sets and classes is in fact mutually interpretable
with third order arithmetic.

We build a structure M containing codes for sets of the model, arbitary
subsets of which implement classes of the model.

We define a number of notions by simultaneous recursion.

splitting function code: A splitting function code is a function f whose
domain is a set of set codes with the property that f(s) = (κ, λ) where
κ, λ are elements of N ∪ {c} and κ + λ is the formal cardinality of
the set code s. The domain of a splitting function code must either
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be {V } or a finite partition of the set of all splitting function codes
with a certain fixed domain T .

set code: A set code is either a special code V for the universe or a set
of splitting function codes all with the same domain S, where S is
called the support of the set code.

combinatorial coefficent: The combinatorial coefficient of a pair (κ, λ)
is the minimum of c and the number of subsets B of a set A of size
κ+ λ which have B of size κ and A \B of size λ.

formal cardinal: The formal cardinal of V is c. The formal cardinal of a
splitting function code is the product of the combinatorial coefficients
of its range elements. The formal cardinal of a set code other than
V is the sum of the formal cardinals of its elements.

extending the support of a code: To extend a code X with support
S with another support T is to construct a code U consisting of
all nonempty intersections of elements of S with elements of T and
collect all splitting function codes f with domain U which have the
property that there is a splitting functon code g in X such that the
projectionwise sum of the values of f on subsets of any s ∈ S is g(s)
to make a set code Y with domain U equivalent to X. To extend V
to support S is to collect all splitting function codes with domain S.

equivalence of codes: Two codes are equivalent iff extending each of
them with the support of the other gives the same code. That equiv-
alence of codes is an equivalence relation should be evident from
simple infinite combinatorics.

formal intersections of codes: The formal intersection of two set codes
is obtained by extending each of them with the support of the other
and taking the intersection of the resulting set codes. The formal
complement of a code x is the set of all splitting code functions with
the same domain as the elements of x which do not belong to x.

formal membership of a code x in a code y: A code x is formally a
member of y iff there is a splitting function code f belonging to y
such that for each s in the domain of f , f(s) has first projection the
formal cardinality of the formal intersection of x and s and second
projection the formal cardinality of the formal intersection of s and
the formal complement of x.

The structure M can be supposed to be constructed in ω stages, at stage
0 having just V and at stage n+ 1 adding codes with each suitable finite
domain taken from the codes constructed at previous stages.

The cardinality of stage 0 is 1. The cardinality of stage 1 is c: there are ω
splitting function codes with domain {V }, and c possible subsets of these.

If the cardinality of the set of codes of rank ≤ n is c, then there are no
more than c suitable sets S to serve as supports, for each set S no more
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than ω possible splitting function codes, and thus for each of no more than
c supports, no more than c sets of splitting functions codes with domain
that support, so no more than c objects of rank ≤ n + 1. The size of M
is c.

Let ∼ denote the relationship of equivalence. The structure M/ ∼ is our
actual model.

Proving things directly about this model is tricky. We present a concrete
structure which will help us with this process.

For any set X with a finite partition S where all elements of S are either
singleton sets or of cardinality c we define a splitting function as a function
f from S to (N∪ {c})2 such that for any s ∈ S, π1(f(s)) + π2(f(s)) = |s|.
An S-cardinal over X is determined by a splitting function f : an element
Y of P2(X) is an S-cardinal over X iff there is a splitting function f such
that Y = {Z : Z ⊆ X ∧ (∀s ∈ S : f(s) = (|s ∩ Z|, |s \ Z|))}.
We define a sequence of sets Xi with a not entirely misleading resemblance
to the sequence of types in a typed theory of sets. We choose X0 to be
a set of cardinality c which does not meet any Pn(X0) for n a positive
natural number. We define X1 as a subset of P(X0) which is constructed
by partitioning X0 into two sets of cardinality c and defining X1 as the
collection of all sets with finite symmetric difference from one of the two
sets of the partition, or from ∅, or from X0.

We then define Xi+2 for each i as the collection of all intersections with
Xi−1 with arbitrary unions of S-cardinals over Xi, for all finite partitions
S of Xi into singletons of elements of Xi (if i ≥ 2) and sets of cardinality
1 or c belonging to Xi+1 (proper subsets of Xi+1 allowed only if i+1 ≥ 2);
we further require that any element of a partition which is infinite is either
an S-cardinal or an infinite union of S-cardinals all of which are infinite
sets. Notice that a more general finite partition can be refined to one
which meets the additional conditions on S-cardinals.

We allow ourselves after this point to refer to intersections with Xi+1 of
S-cardinals over Xi simply as S-cardinals over Xi.

Notice that this means that all elements of X2 are unions of {X1}-cardinals
and the supports of elements of X3 do not include singletons of elements
of X1. All information about specific objects in X0 or X1 disappears from
view. It should be clear that each {X1}-cardinal other than the trivial
{X1} and {∅} is of size c.

An element x of any Xi+2 is naturally associated with set codes: for any S
such that x is a union of S-cardinals, we assume by inductive hypothesis
that we have coded all elements of S with codes with common domain
and that we have provided a map χ sending each of these codes to the
element of S that it codes. The code for x will be the set of all maps f ◦χ
where f is a splitting function associated with an S-cardinal included in
x. If we have a finite collection {x1, . . . , xn} of elements of Xi+2, with

7



each xi a union of Si-cardinals, we can construct a T such that each
xi is a union of T cardinals: T is the set of nonempty intersections of
collections of sets containing one element of each Si. This justifies the use
of codes with common domains above. Of course this must bottom out
at some point with domains {X1}. Note that we do not consider codes
which have supports violating our technical restrictions: it is easy to see
that every code not meeting the technical restrictions is equivalent to one
which does, by refinement of supports, as long as elements of X0 and X1

are not involved.

We define an equivalence relations ≈ on
⋃
i≥2Xi. x ≈ y holds iff x and y

are associated with a common set code. It should be clear that if x and y
belong to the same Xi+2 and are associated with equivalent codes in the
sense defined above then they are in fact equal: the concrete interpretation
of the codes which we are given here assures us that x and y are assigned
exactly the same elements.

We argue that the cardinality of each Xi is c, and each Xi has elements
which are either finite or of cardinality c. The number of elements of an S-
cardinal in Xi+2 will be the product of the sizes of sets [s]f(s)∩Xi+1, where
we define [X(κ,λ) as the set of all subsets Y ⊆ X such that |X ∩ Y | = κ
and |X \ Y | = λ. This is immediately evident once we observe that finite
unions of elements of Xi+2 are elements of Xi+2 (for which the result
above that elements of a finite subset of Xi+2 can be taken to be unions
of S-cardinals for the same S intersected with Xi+1 is relevant).

The issue then is counting ways to split sets of size c (since ways to split
sets of size 1 present no difficulties). Note that for each i ≥ 3, singletons
of elements of Xi−1 appear as elements of Xi using the splitting function
sending {x} to (1, 0) and Xi−2 \ {x} to (0, c). This means that when we
count splits of sets of size c belonging to Xi for i ≥ 4, we can find c splits
of the forms (n, c) and (c, n) for positive n by refining the support of the
original set with the set of size c in its support S to include n singleton
subsets of that set and using these to define the split sets – and these sets
of n singletons can be chosen in c different ways, so c different splits are
possible. In the (c, c) case, if there is any split, there are c distinct splits
which can be achieved by moving a single element from one side of the
split to the other, and there are c elements which can be moved.

This means that the number of elements of any S-cardinal intersected
with an Xi+1 is either 0 (in case there is a split of an infinite set which
cannot be realized), 1, or c, and the case of c only occurs if an infinite
element of S is nontrivially split. The numbers of sets which are unions of
S-cardinals intersected with Xi+2 is either finite or c, because the number
of S-cardinals which are finite sets is finite, and the total number of S-
cardinals is no more than countably infinite (no more than countably many
possible splits of finitely many sets). So there are no more than c unions
of S-cardinals; a union of finitely many S-cardinals which are finite sets is

8



of finite size; any union above a certain finite size includes an S-cardinal
with c elements and so has c elements.

Bad splitting cases do occur. Infinite S-cardinals in X2 cannot be split into
disjoint sets belonging to X2. This is basically the only bad case, though
effects of it cascade through the entire hierarchy, in a sense. We analyze
the problem of splitting an infinite element of Xi+2 into two infinite sets.
If it is a union of infinitely many S-cardinals, then we can split it into two
unions of infinitely many S-cardinals. If it is the union of finitely many S-
cardinals at least two of which are infinite sets, there is again no problem.
We consider the problem of splitting a single S-cardinal which is an infinite
set. Its support S must include a nontrivially split infinite element. If the
split is not (1, c) or (c, 1), and the set being split has singleton subsets,
then we can choose a singleton set from one side or the other of the split,
and refine the S cardinal to the collection of elements of that S-cardinal
which include that singleton as a subset and those which do not, two
infinite sets. If the split is (1, c) or (c, 1) and the set in S being split itself
admits an infinite split, then we can split the S cardinal to those elements
in which the single element distinguished by the (1, c) or (c, 1) cut is on
one side or the other of the split of the support element into two infinite
sets. We further observe that every infinite set in X3 permits an infinite
split, because each such set has a support which must have an element
which is an infinite union of {X1}-cardinals in X2 which are infinite sets.
The only possible splits of this domain element are (c, c) splits into two
sets with finite symmetric difference from such infinite unions (there are
a lot of them). Choose one such split of the support element and use it
to refine the support of the element of X3. We can choose one {X1}-
cardinal and partition the original S-cardinal into elements including that
{X1}-cardinal as a subset and elements which do not.

We have thus shown that every set in Xi with i ≥ 4 has actual cardinality
exactly equal to the formal cardinality of any code associated with it,
because all of its support elements can be split as many ways as we expect.

This further means that every code has a representative in an Xi for large
enough i. We show this by taking the index representative of V to be X3.
When we have constructed index representatives for all elements of the
domain of a code in some Xi, we can construct the index representative
for the entire code in Xi+1. A code is represented at every level above the
level of its index representative, because we can start by representing V
using any X3+k.

For every X2+k, the code for the set of k-fold singletons of elements of the
Frege cardinal 2 is an example of a set code not represented in X2+k. So
we do not ever have all codes at once.

What does happen in this structure is that we can compute formal mem-
bership between any two codes: x ∈new y can be defined as holding if
there are x′, y′ such that x ≈ x′ ∈ y′ ≈ y. The formal cardinal of a code
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is the cardinality in the usual sense of every representative of that code
(this needs to be checked in some weird low indexed cases: the reason
that it works is that our restrictions on supports ensure that if there are
any splits of a support element of a particular flavor there are exactly the
expected number of splits). The computation of the formal cardinal of
a set is exactly realized in every implementation in high enough levels.
If two codes are equivalent, representatives of those codes at levels high
enough to contain representatives of both (an important qualification) are
equal. The relation ≈ is an equivalence relation, because if x ≈ y and
y ≈ z are witnessed by different codes and y is at the lowest indexed Xi

of the three, we can use a code based on the common refinement of the
two supports of y to witness x ≈ z, whereas if x or z is the lowest indexed
of the three (wlog x ∈ Xi) we know that y has a support made up of sets
coded analogously to sets from Xi−1, and we can argue that z has such
a support as well. It might be necessary to move x, y, z up the same suf-
ficient number of levels to ensure that all elements of the supports under
consideration have index representatives: then a desired support of the
translated version of z can be constructed directly.

Elements which have exactly the same formal elements also have exactly
the same actual elements and so are equal if they are at the same level:
they will be equivalent to the same code in some sufficiently high level.
Codes represented by the same object are also clearly equivalent.

We have at this point checked the details required to see that M/ ∼ is the
same up to isomorphism as (

⋃
i≥2Xi)/ ≈.

An element of the model which is a union of S-cardinals is clearly sym-
metric with support S in the desired sense. We do need to establish (the
hardest part of the proof) that every subset of the model which is sym-
metric in the correct sense is actually a set of the model.

What we need more work to show is the converse: that any set with
support S which is invariant in the suitable sense is actually of this kind.
What is needed to show this is that any infinite split of an element of S can
be mapped to any other split of an element of S by a setlike permutation.
To show this, it is enough to show that V can be mapped to any set by a
setlike map.

Note first that every set X that we have constructed so far is n-symmetric,
in the sense that there is an n such that for any permutation f such that
jn[f ] is a permutation, jn[f ] fixes X. For V and ∅, n is 1. For any set
with support S, if each element of S is n-symmetric, the set with support
S is (n+ 1)-symmetric.

We fix an infinite set A. We first describe a setlike injection into A. A will
have support S. Because A is infinite, there is a splitting function coded
by an element of A which nontrivially splits an infinite element s ∈ S.
By inductive hypothesis there is an injection g from V into s. Choose a
single element A of X which splits elements of S as described by f , with
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the property that either s ∩ A or s \ A is a set B of images under g of
non-singletons. The injection h from V into S which we define is executed
by mapping x ∈ V to the result of transposing g(ιk(x)) for a suitable fixed
k with a fixed element b of B. k should be chosen large enough that A is
something like k-symmetric: the only effect of jk+1(xy) on h(x) will be to
move it to h(y). This holds partly because g, by an inductive hypothesis,
has the same characteristic.

For any set C, h“C is a set: its elements have full intersection with A\{b}
or A∪{b} (as appropriate) and contain or fail to contain (as appropriate) a
single element of g“ιk“{V }. For any set C, h−1(C) is a set: take the union
of the set, remove all elements of A\{b} or A∪{b} as appropriate, possibly
take the complement elementwise, apply the inverse of g elementwise, then
take unions repeatedly. So h is setlike.

In order to verify that the conditions described above make sense, we need
to verify that a transposition (xy) is a setlike permutation in the sense
local to M, and that in fact jn[(xy)] is a permutation for each x, y, n. It’s
easy to see that j[(xy)] is a permutation: extend the support of a set to
include {x} and {y} and then replace each splitting function describing
an element appropriately so thst it includes x if it formerly included y,
and so forth. We give a general argument for any permutation f that if f
and j[f ] are permutations, so is j2[f ]: to apply j2[f ] to a set, one needs to
apply j[f ] to each element of the support, which is possible by hypothesis,
producing a code for j2[f ]. One can then iterate this to show that jn[f ]
is a permutation for each n.

Now we define the desired setlike bijection h∗ from V to A by applying h
to all elements of V \A and to each hn“(V \A), and applying the identity
A \ h“(V \ A) and each hn“(A \ h“(V \ A)). This is a bijection from V
exactly onto A, but it is not clear that it is a setlike map, because we
cannot rely on countable union of setlike maps being a setlike map. Let
Y be any subset of A. For large enough n, the sets Y ∩ hn“(V \ A) and
Y ∩ hn“(A \ h“(V \ A)) are not moved by elementwise application of h
and so are not moved by elementwise applications of h∗, by symmetry. Y
itself is symmetric to some fixed degree so is fixed by some j[m](h). The
action of h on the other factors in this intersections is the same as the
action of jn+1(h). So if n is taken large enough the application of h or
the identity to such a compartment can make no difference to whether a
value is moved by h∗ into or out of Y . Thus the computation of h∗“Y
requires the computation of images under h or h−1 on finitely many sets
(the compartments where elements might be mapped in or out of Y by
h∗), and since h and the identity are both setlike, h∗ is setlike, so there is
a setlike bijection from V onto A.

So we have proved

Theorem 2: The theory of sets and classes described above is consistent.
Moreover, it has a model in which all sets are either finite or of
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cardinality c from the standpoint of the metatheory.

6 Conclusions and Further Observation

This result is not progress toward a model of NF. This theory uses im-
predicative class comprehension, which is inconsistent with the symmetric
theory of the previous paper which yields NF.

The theory NFSI2 and the symmetric theory of classes presented here are
not mathematically entirely trivial. Either theory can define Frege natural
numbers and can define real numbers as arbitrary unions of Frege natural
numbers. There is very likely a converse result: we think that with care
the theory can be interpreted in second order arithmetic. To be exact, we
think that it is reasonably clear that elements of the model we describe
can be coded by real numbers and the equality and membership relations
of the model are expressible in terms of second order arithmetic, so that
second order arithmetic admits an interpretation of NFSI2 + Infinity, but
the details would be complicated.

The theory NFSI2 extends Grishin’s theory NF3 (New Foundations with
stratified set definitions using only three types) and Tupailo’s odd theory
NFSI (stratified set definitions {x : φ} in which x is of lowest type).
Tupailo’s theory is very weak, but it is not a fragment of NF3. The
symmetric set theory proves infinity; it is not clear to us whether NFSI2
proves Infinity.

It is an interesting incidental remark that NF3 has an internal theory
of cardinality and a partial theory of functions, but the models of NF3

generated by the symmetric theory of sets and classes have very defective
internal notions of cardinality and function. Since there are no countable
sets in these models, all orbits in any functions we manage to represent
must be finite. Our suspicion is that there are lots of incomparable infinite
cardinals in the models in the internal sense: relative to setlike maps
all infinite sets are the same size, and we can see externally that this
is the cardinality of the continuum, but setlike maps do not have to be
representable functions in any internal sense. Further remark: this has
to be true. If a bijection between A and A ∪ {x} could be represented,
with x 6∈ a, we could define a countable set (the orbit of x under the
bijection). We have Infinity in the symmetric model but we cannot have
a Dedekind-infinite set.

Just for fun, we outline the development of mathematics up to the level
of calculus in NFSI2.

0 can be defined as {∅}. σ(x2) can be defined as {y1∪{z0} : y1 ∈ x2∧z0 6∈
y1}. So each natural number can be defined, and the predicate “is a
natural number” is definable, but its extension is not granted as a set.
The predicate “belongs to some natural number” (is finite) is definable:
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Fin = {x1 : (∀I2 : ∅ ∈ I2 ∧ (∀y1 ∈ I2 : (∀z0 6∈ y1 : y1 ∪ {z0} ∈ I2)) →
x1 ∈ I2)}. For any set X, we can define X∗ as the set of all x such that
for some y, y ∈ X and there is a natural number to which x and y both
belong. X∗ = {x1 : (∃y1 : (∃z2 : (∀I3 : 0 ∈ I ∧ (∀n2 ∈ I3 : σ(n2) ∈ I3) →
z2 ∈ I3)∧ y1 ∈ X ∧ y1 ∈ z2 ∧x1 ∈ z2))}. This is interesting as an example
of a native definition in NFSI2 which does not work in NF3. This gives us
an implementation of sets of natural numbers.

We can naturally represent a tuple of natural numbers (x1, . . . , xn) as the
set which contains all xi element subsets of the Frege natural number i for
each i ≤ n. Of course, this is done concretely for each n. We can define
sets of n-tuples of natural numbers using a closure operation basically as
above.

We can then present mathematical objects representing any desired func-
tions and relations on the natural numbers. Rational numbers can be
represented as pairs of natural numbers, real numbers can be presented
as Dedekind cuts or Cauchy sequences, and (for example) a continuous
function f from the reals to the reals can be coded as the set of pairs
of rationals (r, s) (coded as quadruples of natural numbers) such that
r < f(s). We are ready for calculus!

The representations of things for elementary analysis are thus seen not
to be notably cumbersome. There is a philosophical outlook coded into
NFSI2 or our theory of sets and classes: sets are formed by abstraction
from properties of sets looking to the level of elements, but not elements
of elements, with finitely many given sets in hand. The theory of sets and
classes is stricter in saying that this is the only way sets are formed. This is
an outlook which avoids paradox and supports quite a lot of mathematics
quite directly. We certainly do not advocate such a view, but its formal
possibility is interesting.

Here is an incidental puzzle: in the model, we can define the set of
complements of elements of a set A. Is this actually definable in the
symmetric theory of sets and classes or in NFSI2? Let A be a set.
{b1 : (∃a1 ∈ A : (∀x0 : x ∈ b1 ↔ x0 6∈ a1))} is provided as a set by
NFSI2 comprehension (in fact by NF3 comprehension): puzzle solved.
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