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Abstract. A “new” criterion for set existence is presented, namely,
that a set {x | φ} should exist if the multigraph whose nodes are
variables in φ and whose edges are occurrences of atomic formulas
in φ is acyclic. Formulas with acyclic graphs are stratified in the
sense of New Foundations, so consistency of the set theory with
weak extensionality and acyclic comprehension follows from the
consistency of Jensen’s system NFU . It is much less obvious, but
turns out to be the case, that this theory is equivalent to NFU : it
appears at first blush that it ought to be weaker. This paper ver-
ifies that acyclic comprehension and stratified comprehension are
equivalent, by verifying that each axiom in a finite axiomatization
of stratified comprehension follows from acyclic comprehension.
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The first author, who is a neurologist with an amateur interest in
mathematical logic, proposed the criterion of acyclic comprehension
for existence of sets (originally under another name) as an approach to
the historical paradoxes of set theory, and communicated this to the
second author. The second author noted that stratified comprehension
implies acyclic comprehension, so the scheme of acyclic comprehension
is certainly consistent relative to quite weak accepted theories (as the
scheme of stratified comprehension is a subtheory of NFU , which was
shown to be consistent by R. B. Jensen in [6]). The second author also
conjectured that the scheme was very weak (meaning not equivalent
to full stratified comprehension). The first author realized that one
could attack this problem by attempting to prove all propositions in a
finite axiomatization of stratified comprehension (that stratified com-
prehension is finitely axiomatizable was originally shown in [4], though
the axiomatization given there is very unpleasant to work with). Un-
daunted by the skepticism of the second author, he proceeded to prove
that each of the axioms of the finite axiomatization used in the second
author’s [5] (adapted to the Wiener ordered pair of [9]) follows from
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acyclic comprehension: a precis of his proof can be seen at [1]. That is
not the proof given here: here we have given a proof based on the Ku-
ratowski pair, though it is actually designed to be as much as possible
independent of the implementation of the ordered pair. The third au-
thor noticed the importance of certain logical considerations having to
do with the effect of definitional expansion on acyclicity, which enabled
us to prove a more comprehensive result.

The finite axiomatization used here is nowhere fully verified in the
literature, as it is the adaptation to the Kuratowski pair of a finite
axiomatization fully verified for the Quine pair in [5], and the change
of pair involves some technical work. We include the verification of this
finite axiomatization by demonstrating that each of Hailperin’s axioms
in [4] follow from these axioms.

Definition: Let φ be a formula in the language of set theory
(first-order logic with equality and membership as primitive
relations). Let u and v be variables appearing in φ (free or
bound). We say that a finite sequence {si}1≤i≤n of variables is
a path from u to v in φ iff s1 = u, sn = v, and there is an aux-
iliary sequence {fi}1≤i<n of atomic subformulas of φ such that
for each appropriate index i the atomic subformula fi contains
exactly the variables si and si+1, and for each appropriate index
i, fi and fi+1 are distinct formulas. The parameter n is called
the length of the path.

We say that the formula φ is acyclic iff it satisfies the follow-
ing conditions:
(1) There is no more than one path from u to v in φ for any

variables u and v (including the case where u and v are
the same variable, where of course there is a trivial path
of length 1: e.g., the formula x ∈ x is not acyclic because
there is a path of length 2 from x to x in this formula in
addition to the trivial path from x to x of length 1).

(2) For any variable x occurring in φ, either all occurrences of
x are free in φ or all occurrences of x are bound by the
same occurrence of a quantifier.

(3) No atomic formula occurs more than once in φ.1

Note: The third author pointed out that one does not want iden-
tifications between paths to depend on spurious typographical

1This condition would be a consequence of the first condition if paths were defined
in terms of occurrences of atomic formulas instead of atomic formulas, but an
occurrence of a formula is a more logically complicated object than a formula, so
we separated this condition out.
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identifications between variables which are bound in different
contexts (or one free and one bound): the second condition did
not occur in the original definition.

Definition: Let φ be a formula in the language of set theory with
the property that for each variable x, either all occurrences of
x are free or all occurrences of x are bound by the same occur-
rence of a quantifier. We define an undirected multigraph Gφ

as follows: the vertices of this graph are the variables (free or
bound) in φ and an edge between variables u and v is an occur-
rence in φ of an atomic formula such that the set of variables
appearing in the atomic formula is {u, v}.

Observation: A formula φ with the property stated under the
previous heading is acyclic iff Gφ is acyclic in the usual sense.

Notation for the Underlying Digraphs: Since the formulas we
shall be using are long enough to be difficult to digest, we shall
include some pictures of the underlying acyclic digraphs to help
the reader see the basic structure of the formulas we employ.
Pairs of variables in the same atomic formula will be linked by
an arrow, such as x y� � if the atomic formula was x ∈ y,

or x y if it was x = y. Thus, for example, the under-

lying (cyclic) digraph of the formula expressing extensionality,
∀x.∀y.(∀z.z ∈ x↔ z ∈ y)→ x = y is

x

O/

y

/�

z .

It is important to note that while each variable can appear
only once as a vertex in the digraph for a formula, it is permis-
sible for constants to appear more than once, for reasons that
will be explained.

Subtleties: The definition given above is sensitive to fine details
of the way propositional connectives are handled. Here we offi-
cially take the view that the primitive propositional connectives
are negation and disjunction. 2 We can use conjunction p ∧ q
(defined as ¬(¬p∨¬q) and implication p→ q (defined as ¬p∨q)

2We note that it is possible to reduce the primitives to the Sheffer stroke, but
strictures about copying formulas make this complicated. Define a proposition t as
(∀x.(∃y.x = y)) with the additional remark that in all occurrences of t, we rename
the bound variables to be different on definitional expansion. Then we can define
¬p as p|t and p ∨ q as (¬p)|(¬q).
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freely, as definitional expansion of these notions does not copy
formulas. We must avoid using the biconditional.

Copying of atomic formulas in the expansion of a definition
obviously breaks acyclicity. Copying of quantified formulas
may break acyclicity in the strict form in which it is defined
here, even if we use renaming of bound variables to avoid lit-
eral copying of atomic formulas. A formula which occurred in
an earlier form of the construction of the converse of a rela-
tion was (∀z.z ∈2 x ↔ z ∈2 y), where u ∈2 v is defined as
(∃w.u ∈ w ∧ w ∈ v). (∀z.z ∈2 x ↔ z ∈2 y) is equivalent to
(∀z.(∃w.z ∈ w ∧ w ∈ x) ↔ (∃w′.z ∈ w′ ∧ w′ ∈ y)). This in
turn expands to (∀z.((∃w.z ∈ w ∧w ∈ x)→ (∃w′.z ∈ w′ ∧w′ ∈
y))∧ ((∃w′′.z ∈ w′′ ∧w′′ ∈ y)→ (∃w′′′.z ∈ w′′′ ∧w′′′ ∈ x))), and
this is not acyclic.3

The underlying digraph is

x _?

O/

w

O/

w′

/�

y� �

/�

w′′′ _? z w′′� � .

We require that bound variables be diversified as far as possible
in acyclic formulas before considering paths, and copying of a
quantified formula in which there is a path between free vari-
ables with a bound variable on it will cause a failure of acyclicity
as here.

However, it is possible to copy a formula freely without im-
pairing acyclicity if it does not contain two distinct free vari-
ables connected by a path, by renaming all bound variables in
the formula.

Predicates may be introduced by definition (as with ∈2 above)
and used in acyclic formulas if the defining formula of a defined
predicate is acyclic, occurrence of variables together in a su-
perficially atomic formula involving a defined predicate is taken
to link them for purposes of acylicity in the same way they
would be linked by occurrence together in an atomic formula,
and superficially atomic formulas involving defined predicates
with more than one argument will not appear more than once

3The use of the biconditional as a primitive was considered by the first author,
and the second author considered abandoning restrictions on copying atomic for-
mulas altogether, but the third author convinced us with examples of this sort that
extreme care in copying formulas was appropriate in any case, and with some work
we were able to complete the proof using the most stringent conditions.
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(just as an atomic formula cannot). These conditions ensure
that definitional expansion of apparently acyclic formulas will
in fact produce acyclic formulas when all defined notions are
eliminated.

Axiom Scheme of Acyclic Comprehension: For each formula
φ such that φ is acyclic and A does not appear free in φ,
(∃A.(∀x.x ∈ A↔ φ)) is an axiom.

Observation: If φ is a formula which is not acyclic, but the for-
mula φx obtained by making each free occurrence in φ of a vari-
able other than x a distinct variable is acyclic, then (∃A.(∀x.x ∈
A ↔ φx)) is an instance of acyclic comprehension from which
(∃A.(∀x.x ∈ A ↔ φ)) follows (since variables free in an in-
stance of comprehension are implicitly universally quantified).
This observation allows us to ignore identifications between oc-
currences of constants in judging whether a formula can be used
to define a set, because we can generalize a definition containing
a constant by replacing each occurrence of the constant with a
different parameter.

Observation: The following axiom is almost always assumed in
set theory, as it seems to be part of the underlying concept of
what a set is. We add it as an assumption, as it makes the
proof more convenient. It is known that stratified comprehen-
sion alone interprets stratified comprehension plus weak exten-
sionality, a result of Marcel Crabbé in [2], and we will indicate
briefly at the end of the paper how Crabbé’s argument can be
adapted to acyclic comprehension.

Axiom of Weak Extensionality: (∀xyz.z ∈ x ∧ (∀w.w ∈ x ↔
w ∈ y) → x = y): nonempty sets with the same elements are
equal.

Definition: Acyclic comprehension implies the existence of a set
with no elements, as (∀y.¬x = y) is an acyclic formula which
cannot be true of any x. We select one memberless set and let ∅
represent the selected memberless set (we may suppose that ∅ is
a new primitive constant with an additional axiom (∀x.x 6∈ ∅),
though this is not strictly necessary). We then define {x | φ}
as the A which witnesses (∃A.(∀x.x ∈ A↔ φ)), if this formula
is an instance of acyclic comprehension, and which is equal to
∅ if it has no elements. This is uniquely determined by weak
extensionality and the choice of ∅.

Observation: It is interesting to note that equality can appar-
ently be defined acyclically in terms of membership thus: x = y
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is equivalent to (∀z.x ∈ z → y ∈ z). We do not advocate use of
this definition.

Observation: Another way to see that certain constants cause
no failures of acyclicity if repeated in a formula (namely, ones
definable as {x | φ} for an acyclic formula φ with no free vari-
ables other than x) is to note that y = {x | φ(x)} can be
expressed acyclically as (∀z.z ∈ y → φ(z)) ∧ (∀w.φ(w) → w ∈
y) ∧ ((∀z.¬(φ(z))) → y = ∅): this can be converted by renam-
ing of bound variables to an acyclic formula as long as there are
no free variables in φ(x) other than x itself. Then any formula
ψ({x | φ(x)}) can be converted to the form (∃y.ψ(y) ∧ y =
{x | φ(x)}) (where y is new in the context), which can be made
acyclic by renaming bound variables if necessary, if ψ(y) and
φ(x) are acyclic. Multiple occurrences of the same set abstract
can be handled independently with no overlap in variables used.

Definition: A formula φ in the language of set theory is said to be
stratified iff there is a function σ from variables to integers such
that for each atomic subformula x = y of φ we have σ(x) = σ(y)
and for each atomic subformula x ∈ y of φ we have σ(x) + 1 =
σ(y).

Observation: Any acyclic formula is stratified. For we can choose
any variable x in an acyclic formula φ and assign it the value 0
under the stratification σ to be constructed. This will enable us
to determine the value of σ at each variable y for which there
is a path from x to y: acyclicity ensures that no attempts at
multiple assignments of values will be made. If any variables
have not been assigned values under σ, choose one, set the value
of σ at that variable to 0, determine values of σ at all variables
connected to it by paths, and repeat as necessary.

Axiom Scheme of Stratified Comprehension: For any strat-
ified formula φ in which A is not free, (∃A.(∀x.x ∈ A ↔ φ)) is
an axiom.

Observations: If we assume weak extensionality as well, we can
define
{x | φ} for each stratified formula φ as above, and if φx (defined
as above) is stratified, we can show the existence of {x | φx}
and deduce the existence of {x | φ} as a special case (i.e., we do
not need to worry about relative types assigned to parameters
in {x | φ}).

Main Claim: The main result of this paper, with whose proof we
are occupied from this point on, is that acyclic comprehension
and stratified comprehension are equivalent in the presence of
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weak extensionality. We will indicate briefly after the proof
of the main claim how the assumption of weak extensionality
could be dispensed with.

Finite Axiomatization of Stratified Comprehension: We present
a finite list of instances of stratified comprehension which is
equivalent to the full scheme. An indication of the proof is
found in the second author’s [5] (this is the version modified for
use of the Kuratowski ordered pair). The theorem that strati-
fied comprehension is finitely axiomatizable is due to Hailperin
in [4]; details of the implementation (which is due to the sec-
ond author) are inspired by the reduction of first-order logic to
relation algebra in [8]. A complete verification that the axioms
of Hailperin follow from the axioms given here is found below.

We state the finite axiomatization briefly: complete formal
detail of the axioms can be extracted from the verification that
they hold in the proof of the main claim. We take weak exten-
sionality as an axiom. We assert the existence of the univer-
sal set, which we call V , of a complement of each set (only V
could have more than one: we specify one complement ∅ of V
to serve in the definition of set abstracts), and of the boolean
union of any pair of sets: sets make up a Boolean algebra. For
any set A we assert the existence of the union

⋃
A. We as-

sert the existence of singletons {a}: from the axioms given so
far we can deduce the existence of Kuratowski ordered pairs
(a, b) = {{a}, {a, b}} for any objects a, b.

We assert the existence of cartesian products. Note that for
any set R we can define the relation part of R as R ∩ (V × V ).
We assert the existence of the converse of any relation (that
is, of the relation part of any set), the relative product of any
two relations, the domain of any relation (and so the range
since we also have converses of relations), and for any relation
R we assert the existence of its singleton image Rι defined as
{({x}, {y}) | (x, y) ∈ R}.

We assert the existence of the equality relation, which we
denote [=], the projection relations, which take the forms

π1 = {((x, y), (x, x)) | x, y ∈ V } = {((x, y), {{x}}) | x, y ∈ V }

and

π2 = {((x, y), (y, y)) | x, y ∈ V } = {((x, y), {{y}}) | x, y ∈ V }
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[these forms are dictated by stratification considerations: the
Kuratowski pair is two types higher than its projections], and
the inclusion relation [⊆].4

Proof of the Main Claim: What remains is to show that each
of the axioms in the finite axiomatization given is a consequence
of acyclic comprehension. We do this with further strictures
having to do with making our development as far as possible
independent of the choice of implementation of the ordered pair.

universal set: V = {x | (∃y.x = y)} exists by acyclic compre-
hension and is the universal set.

complement: {x | ¬x ∈ a} exists by acyclic comprehension and
is the complement of a. We write this ac.

boolean union: {x | x ∈ a∨x ∈ b} exists by acyclic comprehen-
sion and is a ∪ b. a ∩ b can then be constructed as (ac ∪ bc)c.

set union: {x | (∃y.x ∈ y ∧ y ∈ a)} exists by acyclic comprehen-
sion and is

⋃
a.

singletons: {x | x = a} exists by acyclic comprehension and is
{a}.

numeral sets: We define 1 as

{y|(∃x.x ∈ y) ∧ (∃x′.(∀z.z ∈ y → z = x′))}
and note that this exists by acyclic comprehension. We define
2∗ as

{z | (∃x.x ∈ z) ∧ (∃x′y′.(∀u.u ∈ z → u = x′ ∨ u = y′))}.
The underlying digraphs of these formulae are

y _?

?�

x z _?

?�

x

z x′ and x′ u y′ .

1 is the set of singletons (the Frege numeral 1) and 2∗ is the
set of all unordered pairs (including the singletons, so it is not
quite the Frege numeral 2).

It is useful to note that the existence of 1 follows from our
finite axiomatization: 1 = dom((V × V )ι).

iterated membership: Define x ∈1 y as x ∈ y. Define x ∈k+1 y
as (∃z.x ∈ z ∧ z ∈k y).

4We define [⊆] here as simply {(x, y) | (∀z.z ∈ x → z ∈ y)}, whereas in [5]
the urelements are excluded from the domain and range of [⊆]: to see that this
is harmless it is sufficient to note that we can define the class of urelements as
U = (dom([⊆]c))c − {∅}, and then the restricted subset relation is realized as [⊆
] ∩ (U c × U c).
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formulas to define projections and pairs: We first discuss the
pair in the abstract. We suppose that we have acyclic formu-
las First(x, p) and Proj(x, p). The intention is that the first
formula captures the notion “p is a pair and x is the first pro-
jection of the pair p”, and the second captures the notion “p is
a pair and x is one of the projections of the pair p”.

The conditions which must be satisfied for this to be a pair
implementation are

(∀zp.(First(z, p)→ Proj(z, p)) ∧ (Proj(z, p)→ (∃x.First(x, p))))

(the first projection is a projection and anything which has a
projection (i.e., is a pair) has a first projection),

(∀xy.(∃p.First(x, p) ∧ (∀z.Proj(z, p)↔ z = x ∨ z = y)))

(for any x and y there is an object whose first projection is x
and which has x, y as its projections).

(∀p.(∀xy.First(x, p) ∧ First(y, p)→ x = y) :

first projections are uniquely determined.

(∀p.(∃xy.(∀z.Proj(z, p)→ z = x ∨ z = y))) :

a pair has no more than two projections. This is enough for the
second projection to be uniquely determined (and of course the
same as the first if the pair has just one projection).



10 AL-JOHAR, HOLMES, AND BOWLER

(∀pq.(∃x.First(x, p)∧First(x, q))∧(∀y.Proj(y, p)↔ Proj(y, q))→
p = q)

Objects with the same first projection and the same projec-
tions are equal, i.e., pairs are unique (it should be noted that
this condition is not required for any of our constructions of
sets of pairs). It follows from these conditions that for any x, y
there is a unique object p such that First(x, p) and for each
z, Proj(z, p) iff z = x or z = y: we call this object (x, y). It
should be clear that though this interface for the pair construc-
tion is unusual it does capture precisely the standard notion of
ordered pair.

We can define the notion Pair(p) (p is an abstract pair) as
(∃z.Proj(z, p)). In our pictorial notation for digraphs, we will
use p F // x and p P // x to denote the underlying digraphs

of First(x, p) and Proj(x, p) respectively.
diagonal: We can define the equality relation [=] (the diagonal

set) as

{p | Pair(p) ∧ (∃x.(∀z.Proj(z, p)→ x = z))}.

This set exists by acyclic comprehension.
abstract definition of the second projection of a pair: We

define Second(y, p) as
(∃P.Proj(p, P )∧

(∀z.Proj(z, P )→ Proj(y, z))
∧(∃q.q ∈ [=] ∧ Proj(q, P ))
∧¬(∃x.(∀u.Proj(u, P )→ First(x, u))))

This formula asserts of p and y that there is a pair P such
that P has p as one of its projections and y as a projection of
each of the projections of P (so y is one of the projections of
p), and P has a projection in [=] (which must be (y, y)) and
the two projections of P do not have the same first projection
(so the other projection of P must be of the form (z, y) with
z 6= y): now we see that y is the second projection of both of
the projections of P and so of p, so this formula implies that
y is the second projection of p. If y is the second projection
of p (and x is the first) then any P = ((z, y), (y, y)), where
z = x ↔ x 6= y, will witness the truth of this formula, so the
formula says precisely that y is the second projection of p.
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Note that the formula is acyclic. The underlying digraph is

[=]

?�

P

P
~~

P
��

P
��

P // p

q z

P
��

u

F
��

y x .

We will use p S // y to denote the underlying digraph of

Second(y, p).
Observation: An implementation of the ordered pair in terms of

the first and second projection operators would be greatly to
be preferred, but this is not possible. Consider, for example,
the ordered pair (x, y)′ = (x, {y}), where (−,−) is the usual
Kuratowski pair. There are stratified (indeed acyclic) formulas
defining first and second for this pair, so if there were an
acyclic definition of Proj in terms of First and Second then
there would be a stratified definition of proj for the pair (−,−)′

and so the diagonal {(x, {x})|x ∈ V }, which is the graph of the
function x 7→ {x}, would be definable as a set in NFU , which
is well-known to be impossible.

implementation of the Kuratowski pair: Suppose that p is
the Kuratowski pair {{x}, {x, y}}. Note that a set is a Kura-
towski pair iff it is an unordered pair, it has a singleton as an
element, all of its elements are unordered pairs, and there is
an object which belongs to each of its elements. So we define
pair(p) as
p ∈ 2∗ ∧ (∃q.q ∈ p ∧ q ∈ 1)
∧(∀q′.q′ ∈ p→ q′ ∈ 2∗) ∧ (∃u.(∀q′′.q′′ ∈ p→ u ∈ q′′)).

Note that this is acyclic. The underlying digraph is

1

?�

2∗

?�

2∗

?�

q p� � _?

?�

q′

q′′ _? u .

Note further that if p = {{x}, {x, y}}, then the first projec-
tion x of p is the unique object which belongs to all elements of
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p. We define first(x, p) as

pair(p) ∧ (∀q.q ∈ p→ x ∈ q).

Note that this is acyclic.
Note further that the projections of a pair p = {{x}, {x, y}}

are exactly the elements of the elements of p so we can define
proj(z, p) as

pair(p) ∧ z ∈2 p.
It should be clear that this is an implementation of the or-

dered pair in the terms given above, and that it is essentially the
familiar implementation of the ordered pair due to Kuratowski.

an aside: implementation of the Wiener pair: The ordered
pair (x, y) was defined by Wiener in [9] as {{{x}, ∅}, {{y}}}:
this is the oldest set-theoretic definition of the ordered pair.

A set p is a Wiener pair iff it is an unordered pair, it con-
tains a double singleton, and it contains an unordered pair of a
singleton and the empty set. pair(p) would then be defined as
p ∈ 2∗ ∧ (∃q.q ∈ p ∧ q ∈ 2∗ ∧ ∅ ∈ q ∧ (∃r.r ∈ q ∧ r ∈ 1))∧

(∃s.s ∈ p ∧ s ∈ 1 ∧ (∃t.t ∈ s ∧ t ∈ 1)).
The (acyclic) underlying digraph is

2∗

?�

1

N.

p

?� O/

2∗

?�

1

O/

s

?�

q

?�
O/

1

?�

t ∅ r .

first(x, p) would be definable as

pair(p) ∧ (∃q.∅ ∈ q ∧ q ∈ p ∧ x ∈2 q).

proj(z, p) would be definable as

pair(p) ∧ z ∈3 p.

This completes our interface for the Wiener pair, but it is fur-
ther worth noting that second(y, p) would admit the very sim-
ple definition

pair(p) ∧ (∃q.q ∈ 1 ∧ q ∈ p ∧ y ∈2 q) :
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the Wiener pair is friendlier to an acyclic treatment if one is
willing to use implementation dependent features of the pair.
We have a “native” definition of the second projection for the
Kuratowski pair, which we have omitted for reasons of space:
it is not much if any simpler than the abstract definition of the
second projection.

Note that the verification of the adequacy of our finite axiom-
atization below depends on the pair being the usual Kuratowski
pair, but all other results are indifferent to the choice of pair.

domains: {x | (∃p.p ∈ a ∧ First(x, p))} exists by acyclic com-
prehension and is the domain of (the relation part of) a.

cartesian product: a×b can be constructed as {p | (∃x.First(x, p)∧
x ∈ a) ∧ (∃y.Second(y, p) ∧ y ∈ b)}. The underlying digraph is

a

?�

p

F
��

S
��

b

?�

x y .

projections: {((x, y), (x, x)) | x ∈ V ∧ y ∈ V }, the first projec-
tion map π1, is constructed as

{p | p ∈ (V × V )× [=] ∧ (∃z.(∀w.Proj(w, p)→ First(z, w)))}.
Notice that if the pair is taken to be the Kuratowski pair,

π1 = {((x, y), {{x}}) | x ∈ V ∧ y ∈ V }.
{((x, y), (y, y)) | x ∈ V ∧ y ∈ V }, the second projection map

π2, is constructed as

{p | p ∈ (V × V )× [=] ∧ (∃z.(∀w.Proj(w, p)→ Second(z, w)))}.
Notice that if the pair is taken to be the Kuratowski pair,

π2 = {((x, y), {{y}}) | x ∈ V ∧ y ∈ V }.
a convenient abbreviation: We define FProj(x, p, F ) as

(∃qr.Pair(q) ∧ First(p, q) ∧ Second(r, q) ∧ Proj(x, r) ∧ q ∈ F ) :

the point is that FProj(x, p, π1) is equivalent to First(x, p) and
FProj(y, p, π2) is equivalent to Second(y, p). Pictorially, we’ll
represent FProj(x, p, F ) by p F // x .

converses: Let R be a set (usually a set relation, that is a set of
ordered pairs). We can construct

R−1 = {(y, x) | (x, y) ∈ R}
as
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{p | (∃q.q ∈ R ∧ (∀F.F = π1 ∨ F = π2 →
(∃G.(F = π1 → G = π2) ∧ (F = π2 → G = π1)
∧(∃x.FProj(x, q, F ) ∧ FProj(x, p,G)))))}.

The underlying (acyclic) digraph is

π1

F //

π1 π1

Gooq x p

π2 π2 π2 .

R−1 is the converse of the relation part of R.
abstract image-of-a-relation construction: We show that for

any relation R and acyclic formula Rel(a, b) we can construct

RRel = {(u, v) | (∃xy.(x, y) ∈ R ∧ Rel(x, u) ∧ Rel(y, v))}.
This can be constructed as
{p | (∃q.q ∈ R ∧ (∀F.F = π1 ∨ F = π2 →

(∃G.(F = π1 → G = π1) ∧ (F = π2 → G = π2)
∧(∃uv.FProj(u, q, F ) ∧ FProj(v, p,G) ∧ Rel(u, v)))))}.

If we denote Rel(u, v) by u R v , the underlying (acyclic)
digraph is

π1

F //

π1 π1

Gooq u R v p

π2 π2 π2 .

singleton image (of a relation): We define

Rι = {({x}, {y}) | (x, y) ∈ R}.
This can be constructed as RRel1 where Rel1(a, b) is taken to

be

b ∈ 1 ∧ a ∈ b
(that is, b = {a}).

relative products: We define a helper set

D = {((x, z), (y, z)) | x, y, z ∈ V } :

this can be constructed using the abstract image-of-a-relation
construction as [=]Rel2 , where Rel2(a, b) is defined as Second(a, b).



ACYCLIC COMPREHENSION 15

ThenR|S is constructed as (D∩(R×S−1))Rel3 , where Rel3(p, x)
is defined as First(x, p).

inclusion: Construct the set K of all pairs ((x, y), ({a}, {a}))
such that a ∈ x as

{p | p ∈ (V×V )×([=]∩(1×1))∧(∃a.(∀qr.Proj(q, p)∧First(r, q)→ a ∈ r))}
and the set L of all pairs ((x, y), ({a}, {a})) such that a ∈ y as

{p | p ∈ (V×V )×([=]∩(1×1))∧(∃a.(∀qr.Proj(q, p)∧Second(r, q)→ a ∈ r))}
The existence of the sets K and L follows from acyclic com-

prehension.
Then [⊆] = (dom(K ∩ Lc))c ∩ (V × V ).

Verification of our Finite Axiomatization: We show that each
of the axioms in Hailperin’s original finite axiomatization fol-
lows from ours and so from acyclic comprehension.

(P1): (∀uv.(∃β.(∀x.(x ∈ β ↔ x ∈ u|x ∈ v)))): this asserts
the existence of {x | x ∈ u|x ∈ v}, where | is the Sheffer
stroke, that is (u ∩ v)c.

(P2): (∀α.(∃β.(∀xy.(({x}, {y}) ∈ β ↔ (x, y) ∈ α)))): this
asserts the existence of singleton images of relations, pro-
vided by our axiomatization.

(P3): (∀α.(∃β.(∀xyz.(x, y, z) ∈ β ↔ (x, y) ∈ α))), where

(x, y, z) is defined as ({{x}}, (y, z)). Define αι
2

as (αι)ι.

For each choice of α, the corresponding β is αι
2|(π1|π−11 ).

(P4): (∀α.(∃β.(∀xyz.(x, z, y) ∈ β ↔ (x, y) ∈ α))), where
(x, y, z) is defined as ({{x}}, (y, z)). For each choice of α,

the corresponding β is αι
2 |(π2|π−12 ).

(P5): (∀α.(∃β.(∀xy.(y, x) ∈ β ↔ x ∈ α))). For each α, the
corresponding β is V × α.

(P6): (∀α.(∃β.(∀x.x ∈ β ↔ (∀u.(u, {x}) ∈ α)))). The β
corresponding to a given α is

⋃
((rng(αc))c ∩ 1).

(P7): (∀α.(∃β.(∀xy.(y, x) ∈ β ↔ (x, y) ∈ α))). This axiom
asserts the existence of converses of relations, which is also
provided directly by our axioms.

(P8): (∃β.(∀x.x ∈ β ↔ (∃y.x = {y}))). This asserts the
existence of 1: we remind the reader that 1 = dom((V ×
V )ι).

(P9): (∃β.(∀xy.({x}, y) ∈ β ↔ x ∈ y)). A set witnessing
this axiom under our axiomatization is [⊆] ∩ (1× V ).

Conclusion: The proof of the Main Claim is now complete.
On the Dispensability of Weak Extensionality: Marcel Crabbé

showed in [2] that the theory SF whose only axiom scheme
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is stratified comprehension interprets NFU , that is, stratified
comprehension plus weak extensionality. We give an indication
of his approach and how it can be adapted to acyclic com-
prehension. We obtain a model of NFU from a model of SF
as follows: the domains of the two models are the same; the
equality relation of the model of NFU is the coextensionality
relation of SF [we define x =NFU y as (∀z.z ∈ x ↔ z ∈ y)]; the
membership relation of the model of NFU as the membership
relation of SF with its range restricted to those sets which are
unions of equivalence classes under coextensionality [x ∈NFU y
is defined as x ∈ y ∧ (∀zw.z =NFU w → (z ∈ y ↔ w ∈ y))].
For details of the proof that this works, see his paper; it is not
difficult. What we need to adapt the same result to acyclic
comprehension is a verification that the existence of the inter-
preted equality and membership relations follows from acyclic
comprehension: the proof will then go the same way as in [2].
Note that the definition of inclusion in the proof of the Main
Claim is readily modified to give the definition of the converse
of inclusion, and the intersection of an inclusion relation and
a converse inclusion relation will be a coextensionality relation
(“a” rather than “the” because no extensionality is assumed). It
must be observed that neither singletons nor Kuratowski pairs
are uniquely determined objects in the absence of weak exten-
sionality, but nonetheless the definition of inclusion relations,
and so of coextensionality relations, works correctly (in fact,
none of the constructions of sets of pairs given in the proof of the
Main Claim depends on pairs being unique). Write “x is coex-
tensional with y” as x ∼ y: this is equivalent to the acyclic for-
mula (∃p.First(x, p)∧Second(y, p)∧p ∈ Coext), where Coext is
a fixed set implementing the coextensionality relation. We can
also construct a set relation Inorout implementing the union of
inclusion and the disjointness relation on sets (the latter being
defined by the formula Pair(p) ∧ ¬(∃x.(∀y.Proj(y, p) → x ∈
y))): we write this relation x ? y, defined by the acyclic formula
(∃p.First(x, p) ∧ Second(y, p) ∧ p ∈ Inorout). We can then
show that there is a set Σ of all y which are unions of equivalence
classes under coextensionality, namely {y | (∀z.(∃u.(∀w.w ∈
z → w ∼ u))→ z ? y)} : we can then define the membership re-
lation x ∈∗ y of the interpretation as x ∈ y∧y ∈ Σ. The outline
of the rest of the proof is that it is obvious that the interpreted
equality and membership relations satisfy weak extensionality;
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that they satisfy comprehension follows from the fact that re-
placing equality and membership with the interpreted equal-
ity and membership in an acyclic formula still gives an acyclic
formula, and that replacing an object with something coexten-
sional with it in atomic formulas of the interpreted language
does not affect truth values, so the same holds for any substi-
tution of coextensional objects in formulas of the interpreted
language, so sets witnessing instances of acyclic comprehension
expressible in the interpreted language respect coextensionality,
which is what is needed for acyclic comprehension to hold in the
interpretation.

Final Observation: The criterion for comprehension presented
here is no less a “syntactical trick” than the original stratifica-
tion criterion of New Foundations (the original system of Quine
in [7]) or NFU , but it is an interestingly different trick, and
might possibly find some formal application. A specific sug-
gestion is that acyclic comprehension might have interesting
properties from the standpoint of proof theory. We spell out
issues related to weak extensionality because in the context of
stratified set theory Marcel Crabbé has proved cut elimination
for SF ([3]) but no one has proved cut elimination for NFU .
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[2] Crabbé, Marcel, “On NFU”. Notre Dame Journal of Formal Logic 33 (1992),
pp 112-119.
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