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Abstract. Watson is a general purpose system for formal reasoning. It is an interac-
tive equational higher-order theorem prover. The higher-order logic supported by the
prover is distinctive in being type-free (it is a safe variant of Quine’s NF ). Watson
allows the development of automated proof strategies which are represented and
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of the prover and the way these are presented to a user are discussed. The paper
also contains discussions of experiences with the prover and relations of the prover
to other systems.
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1. Introduction

Watson is a general-purpose system for formal reasoning. It has been
developed with applications to software development or verification
in mind, but we have also considered applications in education or in
pure mathematics. Earlier incarnations of the prover have been called
EFTTP (which was a very different system) and Mark2 (which was sim-
ilar though not identical to Watson; there are occasional references in
the paper to differences between Mark2 and Watson: the best reference
for Mark2 is the final report (??) of Holmes’s first ARO grant).

Watson is a system for computer-supported reasoning by human
beings rather than for automatic proof of theorems, though it does
support the development of automated proof strategies.

Its logic is equational and rewriting plays a considerable role in the
prover, though it is not a typical rewriting system. The properties of
expressions defined by cases play an important role in its logic.

Watson supports a higher-order logic, which is distinctive in be-
ing type-free: it is a λ-calculus equivalent to a variant of Quine’s set
theory “New Foundations”. References for the theoretical aspects of
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2 Holmes and Alves-Foss

the higher-order logic include Quine’s (??) and Jensen’s (??) for the
original systems of set theory and Holmes’s (??), (??) and (??) for the
development of the λ-calculus version.

This paper contains an overview of the mathematical foundations
of Watson, followed by a discussion of the way these foundations are
implemented in the prover, from the standpoint of a user. These two
sections take up most of the paper. Two short sections, one on experi-
ences with the prover and one on the relationships of the prover with
other systems, complete the paper.

We are grateful for the support of the Army Research Office through
three separate grants. We wish to thank the following students for
their hours of work and dedication to this project: at the University
of Idaho we thank Sol Espinosa, Fongshing Lam, Aaron Schneider,
Kundala Shankar, and Minglong Wu; and at Boise State University we
thank Michael Parvin for his excellent help.

Source code and documentation for the Watson system are available
at http://math.boisestate.edu/∼holmes/proverpage.html.

2. The Logic of Watson

The logic of Watson is dominated by three themes. It is algebraic
(equational). An important role is played by definition by cases. Its
higher-order logic uses stratified abstraction. In this section, we will
use notation closer to conventional mathematical notation than to Wat-
son’s internal language, which will be introduced in the next section.

2.1. Algebraic logic

There is little that is surprising to be said about the algebraic aspect
of Watson. All theorems in a Watson theory are equations, implicitly
universally quantified over their free variables.

We exhibit a set of formal axioms for equational logic which are
supported by Watson:

reflexivity: A = A is an axiom for any term A.

symmetry: if A = B is a theorem, then B = A is a theorem.

transitivity: if A = B is a theorem and B = C is a theorem, then
A = C is a theorem.

We introduce notation A[T/x] for the result of substituting the term
T for the free variable x in the term A. A formal analysis of substitution
will be needed later when abstraction is considered.
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substitution: if A = B is a theorem, then C[A/x] = C[B/x] is a
theorem.

generality: if A = B is a theorem, then A[C/x] = B[C/x] is a
theorem.

This logic of equations is familiar to all of us from high school
algebra, though its formal study is not entirely trivial.

The path not taken here leads to the more usual approach to logic
in which propositions rather than terms are taken as basic and propo-
sitional connectives and quantifiers are logical primitives. In Watson,
the propositional connectives and quantifiers are not logical primitives:
they can be defined in terms of the logical primitives of Watson (defini-
tion by cases and abstraction) or they can be introduced as user-defined
primitives in a Watson theory.

2.2. Definition by cases

An expression defined by cases is of the form if P then T elseU ,
which takes the value T if the proposition P is true and the value U
if the proposition P is false. This is the notation we will use in this
section: the Watson notation is
P || T , U.

Any term may appear in the role of P ; we adopt Frege’s convention
that any object not equal to the truth value true is understood to play
the role of the truth value false where a proposition is expected. We
refer to P as the hypothesis of the expression, and to T and U as its
branches (positive and negative, respectively).

We present the axioms of definition by cases supported by Watson.
Notice that equality appears as a term-forming operation as well as in
the role of a predicate here; it should be clear what is meant by each
instance of the symbol once this is understood.

hypotheses are propositions: (if P then T else U) = (if P = true
then T else U)

equations are propositions: (A = B) = if A = B then true else
false

truth value roles: T = if true then T else U ;

U = if false then T else U .

special equations: (A = A) = true;

(true = false) = false.
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case distribution: A[(if P then T else U)/x] = (if P then A[T/x]
else A[U/x]).

application of hypothesis: (if A = B then C[A/x] else U) = (if
A = B then C[B/x] else U)

These axioms, together with the axioms of equational reasoning
above, are sufficient to interpret the logic of propositional connectives
and identity. This has been demonstrated using the prover; it is also
explained in an unpublished paper (??) of Holmes available on the Web.

This logic of case expressions will probably not be familiar to the
reader, but it should at least be clear that the axioms are true. To see
that they are sufficient to support propositional logic and the logic of
identity requires a little work.

2.3. Stratified abstraction

The components of the logic of Watson given so far support the logic
of propositional connectives and equality, in conventional terms.

The new component of the logic introduced here is a restricted form
of λ-abstraction, the introduction of functions by abstraction. The new
component is adequate to support the logic of quantification, and also
a powerful higher-order logic.

The particular higher-order logic used will be unfamiliar to most
readers, though (we hope) not difficult to explain. It is a variation on
the nonstandard set theory “New Foundations” (NF ) introduced by
W. V. O. Quine in (??) (1937), as revised by R. B. Jensen in (??)
(1969). Set theories like NF avoid paradox by allowing the scheme of
set comprehension to be applied only to “stratified” predicates. We will
not discuss the set theories here, but will describe the analogous system
of λ-calculus with “stratified” λ-abstraction, which is the higher-order
logic of Watson (references for this system are (??) (based on Holmes’s
Ph.D. thesis), which describes a system of synthetic combinatory logic
rather than a λ-calculus, (??), which describes the λ-calculus, and
chapter 23 of Holmes’s book (??), which introduces further material
about the representation of data types, discussed below).

The notation we will use in this subsection for λ-abstraction is dif-
ferent from the notation used by Watson. Watson uses a scheme of
name-free variable binding due to de Bruijn (see (??); not de Bruijn
indices, but a related scheme which we have seen called “de Bruijn
levels”); this will be explained below. In this subsection, the usual λ-
notation will be used. The usual notation f(x) for function application
will be used instead of the notation (fx) more usual in λ-calculus.
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We introduce the term constructions of a stratified λ-calculus. These
are defined by mutual recursion with a notion of “relative type”. We
begin with the description of the type constructions and follow it with
a description of the notion of “relative type”.

variables: We have a countably infinite supply of variables.

primitive constants: true and false are primitive constants, as are
the projection functions π1 and π2. There is a temptation to iden-
tify the projection operators with the truth values which we will
resist here.

equations: If T and U are terms, T = U is a term.

pairs: If T and U are terms, (T,U) is a term.

case expressions: If P , T , and U are terms, if P then T else U is a
term.

function application: If T and U are terms, T (U) is a term.

λ-term: If T is a term in which the variable x appears free with no type
relative to T other than 0 (it need not appear at all) then (λx.T )
is a term, in which the variable x is called the binding variable.

As usual, an occurrence of a variable x in a term T is termed bound
if it appears as part of some occurrence of a subterm (λx.U) of T
with the same binding variable; occurrences of variables which are
not bound are said to be free.

We now define the notion of relative type. Each occurrence of a
subterm of a term T has a type relative to T , which is an integer.

the whole term: The type of the term T relative to itself is 0.

equations: If the type of an occurrence of A = B relative to T is n,
the types relative to T of the obvious occurrences of A and B are
also n.

pairs: If the type of an occurrence of (A,B) relative to T is n, the
types relative to T of the obvious occurrences of A and B are also
n.

case expressions: If the type of an occurrence of if P then Q else R
relative to T is n, the types relative to T of the obvious occurrences
of P , Q, and R are also n.
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function application: If the type of an occurrence of A(B) relative
to T is n, the types relative to T of the obvious occurrences of A
and B are n+ 1 and n, respectively.

λ-terms: If the type of an occurrence of (λx.U) relative to T is n, the
type relative to T of the obvious occurrence of U is n− 1 (by the
condition on well-formedness of λ-terms, this will be the same as
the type of the free occurrences of the variable x in U).

A well-formed λ-term is said to be stratified , for reasons which will
be explained in the next subsection.

The axioms of this theory are the axioms of algebraic and case
expression logic from above, plus the following axioms for the new
notions of pair, application and λ-abstraction:

projection functions: π1(x, y) = x; π2(x, y) = y.

β-reduction: (λx.T )(A) = T [A/x]

Unfortunately, things are not as simple as the brief paragraph before
the new axioms tries to make them appear. Algebraic logic is extended
to allow substitution of equals for equals inside λ-terms, without regard
to the fact that the terms for which substitutions are made may fail to
have reference outside the λ-terms, because of the presence of bound
variables. This extension of the notion of substitution is equivalent to a
weak form of extensionality for functions. Notice that we do not adopt
the full axiom of extensionality, which we exhibit:

extensionality axiom not adopted: (λx.f(x)) = f

If we were to adopt this assumption we would have a system equiv-
alent to Quine’s “New Foundations”, which is not known to be con-
sistent. As it is we have a system equivalent to an extension of the
modification NFU + Infinity of NF due to Jensen in (??), which is
known to be equivalent to Russell’s theory of types (with infinity),
which is generally believed to be consistent.

Further, the notion of substitution which appears both here and in
the earlier axioms is considerably complicated by the need to avoid
collisions of bound variables. We will not give a formal account of sub-
stitution here, but we will give a formal description below of the notion
of substitution for Watson’s own notation (using de Bruijn levels).

We briefly indicate how quantification is supported. We can define
the universal quantifier thus:

definition of ∀: (∀x.T ) = ((λx.T ) = (λx.true))
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The notation of Watson does not permit the introduction of new
binders: the actual notation is more like ∀(λx.T ). The existential quan-
tifier ∃ may be defined using deMorgan’s laws as usual. Reasoning
with the existential quantifier may be facilitated by introducing a new
primitive function choose and the dreaded

axiom of choice: (∃x.T ) = T [choose(λx.T )/x]

The HOL system uses this as the definition of the existential quan-
tifier (and defines the universal quantifier in terms of the existential
quantifier); this axiom can be used to facilitate existential reasoning in
Watson, though the built-in logic without choice also supports adequate
existential reasoning. It is interesting to note that the logic of Watson
with full extensionality is inconsistent with the axiom of choice (because
NF is inconsistent with choice).

2.4. The relationship between stratified λ-calculus and
usual type theories

In the previous section, we introduced the term constructions and ax-
ioms of a stratified λ-calculus without motivation in terms of more
familiar mathematical approaches. In this section, we will describe
a motivation for this system and indicate its relationship with more
familiar type systems.

Stratified λ-calculus is not a type system at all in the usual sense.
Terms in stratified λ-calculus do not have types. The scheme of relative
types serves only to restrict what λ-terms (functions) can be defined.
For example, the term x(x), which would not make sense in a typed
system, is meaningful in stratified λ-calculus, but the term (λx.x(x))
is not.

Although stratified λ-calculus is an untyped system itself, it has a
close relationship with a typed system, consideration of which can help
us to see what is going on. We briefly introduce a quite conventional
typed λ-calculus, then indicate how it can be restricted to get a system
related to our stratified λ-calculus.

We restrict ourselves to pairing, function application and abstraction
as term constructions for the sake of simplification. We assume a base
type ι of individuals. If α and β are types, α× β and α→ β are types,
called product types and arrow types respectively. The inhabitants of
α×β are to be understood to be pairs with first projection of type α and
second projection of type β. The inhabitants of α→ β are understood
to be functions from type α to type β. The types are exactly those
which can be constructed from ι using the given type constructors.
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This motivates the following restrictions on our term constructions:
variables require type labels (we still have a countable supply of each
type); the projection functions π1 and π2 are replaced by infinitely
many different versions with type superscripts of the forms (α×β)→ α
and (α × β) → β, respectively; any pair term is still well-formed, but
requires the appropriate product type superscript; a function applica-
tion term T (U) is only well-formed if T has an arrow type α→ β and
U has type α (the application term is then of type β); a λ-term (λx.T )
is always well-formed if T is well-formed, and has type α → β, where
α is the type of x and β is the type of T .

In this system, a term like x(x) cannot be well-formed because no
type superscript appropriate to x can be constructed. A hint of the
advantage which we see in the stratified λ-calculus can be seen in the
proliferation of projection functions in different types. Similarly, there
is a different identity function (λxα.xα) on each type α (inhabiting
α→ α); this is a general phenomenon.

The restricted version of this type scheme which is related to strat-
ified λ-calculus is obtained as follows. Its types are labelled by natural
numbers. Type 0 is to be identified with ι. Type n+1 is to be identified
with n→ n (where n stands for the type already labelled by n). Further,
we identify type n with the product type n × n (this assumption is
harmless if types are understood to have infinitely many inhabitants).

The inhabitants of type 0 are individuals, and enjoy a surjective
pairing function under which each individual is identified with some
pair of individuals. The inhabitants of type n + 1 are the functions
from type n to type n, for each n; it is easy to define the surjective pair
on type n+ 1 in a uniform manner in terms of the pair on type n.

There is a great deal of polymorphism in this restricted type system.
In fact, every theorem which can be proved about types 0,1,2. . . has
a precise analogue with each type label raised by one which can be
proved about types 1,2,3. . ., and each definable object in the system
using types 0,1,2. . . has an analogue defined in the same way using
types 1,2,3. . .. This polymorphism motivates the idea of collapsing
the type structure entirely: suppose that all the types are in fact the
same domain, but keep the restrictions on the formation of abstractions
inherited from the typed system, and we obtain a stratified λ-calculus.

The practical application of this to working with Watson is to keep
in mind the relationship between relative types of objects in the def-
inition of a function in stratified λ-calculus and the concrete types of
individuals, functions from individuals to individuals (type 1), functions
from type 1 functions to type 1 functions (type 2), etc., in this typed
calculus.
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It might seem we lose expressive power through not allowing types
such as (ι → ι) → ι or ι → (ι → ι) (functions from type 1 to type
0 and vice versa), but these types are both readily coded into type
2. A function from type 1 to type 0 is represented by a function of
type 2 taking a type 1 function to the (type 1) constant function of
the type 0 value of the coded function. A function from type 0 to type
1 is coded by a function of type 2: values at constant functions of its
intended type 0 arguments of the coded function are the intended type
1 values, while values at nonconstant functions are ignored (they may
be taken to be a default value). A combination of these devices and
similar considerations about product types allows the coding of any
type in the simple type theory of Church. Experience suggests to us
that there is not any serious loss of mathematical fluency.

The use of the term “stratified” for well-formed λ terms can be
motivated by considering the fact that we have to organize the functions
and arguments appearing in the specification of a new function by a λ
term into “strata” corresponding to the integer types of our restricted
type system. When considering a complex term, it can be helpful to
draw a diagram with horizontal levels into which each object appearing
in the λ-term is placed, and make sure that functions on one level are
applied only to arguments on the next level down.

A final comment: the common practice of “currying” (replacing a
function of type (α × β) → γ whose typical value might be written
f(x, y) with the related function of type α → (β → γ) whose typical
(iterated) value might be written f(x)(y)) used in conventional systems
of typed and untyped λ-calculus is not used in stratified λ-calculus
because it is not sound in terms of relative type: in f(x, y) the relative
types of x and y are the same, while they are different in f(x)(y).
This is the reason why we have used the conventional notation f(x)
for function application rather than the notation fx more usual in
combinatory logic and λ-calculus (the latter notation lends itself better
to currying).

2.5. Strongly cantorian domains

The equations (P = true) = (if P then π1 else π2)(true,false) and
(P = true) = ((λx.P ) = (λx.true) (where P is a variable and so in
particular does not contain a free occurrence of x) are readily proven
true in our system of stratified λ-calculus. The intriguing feature of
these equations is that the relative type of P on the two sides of each
equation is different; in fact, any expression whose value is a truth-value
can have its type freely raised or lowered by any amount by applica-
tion of these equations, which suggests that a more liberal criterion of
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stratification is possible where certain subterms are known to represent
truth values.

The fact about the set of truth values indicated in the paragraph
above is stated in the terminology of NF and related set theories as “the
set of truth values is strongly Cantorian”. Formally speaking, the defin-
ing characteristic of a strongly Cantorian set A is that the restriction of
the constant function constructor to the set A is realized by a function.
We say “realized by a function” because all functions in our logic have
universal domain and may be applied to objects other than elements
of the set A. We can sharpen this by using retractions (functions τ
such that τ(τ(x)) = τ(x) for all x) with range A to represent sets
A. We then can define a (nonempty) strongly Cantorian domain as
the range of a retraction τ such that there is a function κ such that
κ(τ(x)) = (λy.τ(x)) for all x.

The importance of strongly Cantorian sets in set theories like NF ,
and of strongly Cantorian domains in stratified λ-calculus, is that com-
prehension or abstraction over these sets is less affected by stratification
restrictions. Moreover, they are closed under operations precisely anal-
ogous to the type constructors under which we would want data types
to be closed in computer science: the realm of strongly Cantorian sets
is closed under cartesian product, power set, and the set theoretical
analogue of the arrow type constructor. It contains all concrete finite
sets. The assertion that the set of natural numbers is strongly Cantorian
is consistent with our stratified λ-calculus (though it strengthens it
somewhat) and implies further that any set we are likely to want to use
as a data type in computer science (or, indeed, in most of mathematics
outside of technical set theory) is strongly Cantorian. This assertion
completes the underlying logic of Watson.

Just as in the case of the truth values above, any term whose value
is guaranteed to belong to a fixed strongly Cantorian set may have
its relative type freely raised or lowered in determining stratification
of a λ-term. It turns out to be a practical necessity for the handling
of quantification that the stratification-checking features of Watson
be able to recognize at least the type of truth-values as a strongly
Cantorian domain, and we went ahead and incorporated a feature of
the prover supporting the recognition of general strongly Cantorian do-
mains, which will be discussed further below. As hinted in the preceding
paragraph, computer science data types are expected to be represented
in theories developed under Watson as strongly Cantorian domains;
retractions with strongly Cantorian range are used as type labels.

There is a discussion of the theory behind the representation of data
types using strong Cantorian domains in chapter 23 of our book (??).
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3. The implementation of the logic in Watson

In this section, we discuss the ways in which the logical features de-
scribed from a mathematical standpoint in the previous section are
implemented in Watson.

3.1. The syntax of the term language of Watson

Watson is primarily concerned with the manipulation of terms (as
opposed to, say, propositions). This subsection describes the syntax
of the term language.

3.1.1. Atomic terms
Atomic terms of the language of Watson are of four kinds. All atomic
terms are represented by strings of nonzero length of alphanumeric
characters (Watson is case-sensitive) plus the special characters ? and
.

numerals: A string consisting entirely of digits is a numeral.

bound variables: A string consisting of a single ? followed by a string
of digits of nonzero length is a bound variable.

free variables: A string beginning with ? which is not a bound vari-
able is a free variable (? by itself is a free variable).

constants: A string beginning with a character other than ? and
containing at least one non-digit is a constant.

3.1.2. Operators
An operator is represented by a string of special characters other than
?, , braces, brackets, parentheses or quotes, possibly followed by a
suffix consisting of the back-quote ‘ followed by a string eligible to be
an atomic term. It is permissible for an operator to have no suffix; a
suffix by itself is also a permissible operator; the empty string is not
an operator.

An operator beginning with a caret ∧ , other than the one-character
operator ∧ itself, is an operator variable. The syntactical privileges of
operator variables are the same as those of other operators.
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3.1.3. Compound Terms
Compound terms are of four kinds, syntactically. The deep structure
of certain terms is not the same as the surface syntax. The description
given here is appropriate to the default syntax of Watson; we will
indicate below how this is modified by user-defined precedence and
grouping, which is available as an option in Watson, though it has not
been used so far in any extensive theory development.

prefix terms: An operator followed by a term is a term. As will be
described below, some surface prefix terms are actually infix terms
in disguise.

parenthesized terms: A term enclosed in parentheses ( ) is a term.
Of course, a parenthesized term does not differ in any way in its
internal representation from the same term without parentheses.

abstraction terms: A term enclosed in brackets [ ] is a term.

infix terms: An atomic, parenthesized or function term followed by
an operator followed by a term is a term.

case expression restriction: The only terms of the form term1 ||

term2 permitted are of the form term1 || term2 , term3. The
apparent subterm term2 , term3 of such a term does not corre-
spond to anything in the internal representation of such a term
(i.e., || , is a 3-place mixfix operator).

3.1.4. Aside on Precedence and Grouping
The default precedence and grouping convention of Watson, reflected
in the previous subsection, is that of the old computer language APL:
all operators have the same precedence, and all group to the right. This
convention is at odds with standard mathematical usage, but not at all
hard to learn.

Watson supports user-defined precedence and grouping: precedences
are natural numbers, with all operators assigned even precedence group-
ing to the right and all operators assigned odd precedence grouping to
the left. The default precedence of operators not assigned a specific
precedence also may be reset from 0 to any desired value (this may
also affect the default grouping, of course).

Historically, we do not believe that any user other than the designer
has actually made use of the user-defined precedence features of Mark2
or Watson in extended work. Users seem to adapt well to the default
“APL” conventions. We believe that user-defined precedence is likely to
be important in any future educational applications of Watson, where
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familiarity of notation will be at a premium; there also might be ap-
plication areas where modifications in precedence will prove to be of
practical importance.

3.2. Implementing algebraic logic in Watson

In this subsection, we discuss the way in which the principles of alge-
braic logic described above are implemented by Watson. The syntax of
actual commands is introduced only in the examples.

3.2.1. A brief introduction to declarations
Constant atomic terms and non-variable operators must be declared
before being used in a theory. We will see below that it is permitted
and sometimes important to declare variable operators. It is neither
necessary nor possible to declare free or bound variables.

Equational axioms can be introduced by a simple command exhib-
ited below in the first example. There are more complex commands
discussed below for introducing constants and operators by definition.

3.2.2. The basic session model of Watson
A typical Watson session begins with a user entering a term. The user
then manipulates the term by applying theorems to subterms of this
term as rewrite rules (all Watson theorems are equations), and closes
by proving a theorem to the effect that the term originally entered is
equal to the term finally arrived at.

There are two moves available to the user which qualify this picture:
he may interchange the term originally entered and the term most
recently arrived at, or he may carry out a global substitution of some
term for a free variable, which will affect the term originally entered as
well as the term most recently arrived at.

Though it appears to the user that he is “editing” a term, what
he is actually editing is an equation. Internally, the prover stores two
terms, the left side and right side of the equation being edited. What
the user views is the right side of the equation (there is also a command
available to view the left side). There is a command which interchanges
the left and right sides of the equation, and there is a global assignment
command which replaces a free variable by the same term everywhere
in the equation; all other commands manipulate the right side only. At
the end of the session, the user proves the current equation: he assigns
a name to it and it is stored as a new rewrite rule available for the
proof of further theorems.

We reproduce the rules of equational reasoning from above and point
out how they are implemented in the basic session model:
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reflexivity: A = A is an axiom for any term A.

Each such axiom is implemented by simply entering the term A
(which has the effect of making the current equation A = A).

symmetry: if A = B is a theorem, then B = A is a theorem.

If A = B has been proved, the user can swap the left and right
hand sides of the theorem to prove B = A.

transitivity: if A = B is a theorem and B = C is a theorem, then
A = C is a theorem.

A sequence of rewrites which prove A = B, followed by a sequence
of rewrites which prove B = C, give a proof of A = C.

We recall the notation A[T/x] for the result of substituting the term
T for the free variable x in the term A. If T is a term containing bound
variables (or “embedded local hypotheses”, a topic to be discussed
below), there are some technicalities to be considered below in how
the substitution is effected.

substitution: if A = B is a theorem, then C[A/x] = C[B/x] is a
theorem.

This is implemented by the ability to apply the theorem A = B as
as a rewrite rule, possibly repeatedly (how this is done is described
in more detail in the next subsection).

generality: if A = B is a theorem, then A[C/x] = B[C/x] is a
theorem.

This is implemented by the global assignment command.

3.2.3. Navigation within terms
As we noted above, we have not described in detail how applications
of theorems as rewrite rules are carried out. Recall that all theorems
proved by Watson are equations (implicitly universally quantified over
their free variables) and so are suitable for use as rewrite rules.

As we stated above, the user views the right side of the equational
theorem under construction. In fact, the user views not only the right
side, but also a selected subterm of the right side. When the user applies
a theorem as a rewrite rule, it is to this selected subterm that he applies
it. The user does not rewrite proper subterms of the selected subterm
to which the rewrite rule is applicable (as he would in most rewriting
systems); the appropriate side of the rewrite rule is matched only to
the selected subterm itself (and applied if applicable).
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The user has further commands at his disposal which control which
subterm of the right side of the equation is selected to view. These are
referred to collectively as “term navigation commands”. These include
commands to move to the right or left subterm of the current selected
subterm, to the parent subterm of the current selected subterm, or to
the top term (the entire right side of the equation). There are some
more sophisticated navigation commands as well.

Certain terms present technical challenges under this picture. An
abstraction term has only one immediate subterm: moving to the left
or to the right takes one to that same subterm. A case expression ?p

|| ?x, ?y doesn’t really have an immediate right subterm; the prover
allows one to move to this virtual subterm on the way to modifying
its real left and right subterms, but it does not allow the application
of rewrite rules to the virtual subterm. Moving to the left in a prefix
term will reveal the hidden left subterm if there is one and produce a
subterm error otherwise.

The selected subterm is enclosed in braces { } in the display of the
entire right subterm, unless it happens to be the virtual subterm of a
case expression.

3.2.4. An example
We give an example of a simple Watson proof to flesh out the abstract
discussion above. Watson is implemented in SML, and its commands
are ML function evaluations. Commands end with semicolons; more
than one command may be put on a line. A command with no ap-
parent arguments needs the null argument () of ML. Most parameters
passed to commands are strings, and so are enclosed in double quotes
". Comments may be enclosed in decorated parentheses (* *) (in what
follows we take the liberty of commenting not only code but also the
term displays, in a way which would not happen in real Watson output).
The prover normally displays additional prompts, which are suppressed
here for compactness of presentation. The prompt at which an ML
command to the prover is entered is -.

(* some declarations needed for setup *)

- declareinfix "+";

- axiom "COMM" "?x+?y" "?y+?x";

- axiom "ASSOC" "(?x+?y)+?z" "?x+?y+?z";
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(* We begin the proof of a simple theorem. "s" is an

abbreviation for "start", the full name of the command

which starts a proof. *)

- s "?x+?y+?z";

{?x + ?y + ?z} (* the resulting display *)

?x + ?y + ?z

(* We demonstrate navigation commands. *)

- left();

{?x} + ?y + ?z (* the resulting display *)

?x

- up(); (* returns to previous

position; display omitted *)

(* We start the proof. *)

- ri "COMM"; ex(); (* introduce a rewrite rule

(ri abbreviates ruleintro);

invoke tactic interpreter *)

{COMM => ?x + ?y + ?z} (* display after ri *)

COMM => ?x + ?y + ?z

{(?y + ?z) + ?x} (* display after execution *)

(?y + ?z) + ?x

- left(); ri "COMM"; ex(); (* move to left subterm,

introduce rewrite rule,

invoke tactic interpreter *)

{?y + ?z} + ?x (* display after left *)

?y + ?z

{COMM => ?y + ?z} + ?x (* display after

COMM => ?y + ?z introducing rewrite *)

{?z + ?y} + ?x (* display after executing

?z + ?y tactic interpreter *)

- up(); ri "ASSOC"; ex(); (* move up, introduce rewrite

(associativity)

then use tactic interpreter *)
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{(?z + ?y) + ?x} (* display after moving up *)

(?z + ?y) + ?x

{ASSOC => (?z + ?y) + ?x} (* display after

ASSOC => (?z + ?y) + ?x introducing rewrite rule *)

{?z + ?y + ?x} (* display after executing

?z + ?y + ?x tactic interpreter *)

- p "REVERSE"; (* prove new theorem REVERSE *)

REVERSE: (* resulting theorem display *)

?x + ?y + ?z =

?z + ?y + ?x

ASSOC , COMM , 0 (* dependencies on axioms;

0 is a list terminator *)

- s "?a+?b+?c+?d"; (* test new theorem *)

{?a + ?b + ?c + ?d} (* display *)

?a + ?b + ?c + ?d

- ri "REVERSE"; ex(); (* introduce rewrite rule

and use tactic interpreter *)

{REVERSE => ?a + ?b + ?c + ?d}

REVERSE => ?a + ?b + ?c + ?d

{(?c + ?d) + ?b + ?a} (* display of final result *)

(?c + ?d) + ?b + ?a

A particular feature to which we wish to call the attention of the
reader is the two-step handling of rewrite rules (introduction of a ref-
erence to the rewrite rule to be applied into the term, followed by
invocation of the “tactic interpreter” execute (abbreviated ex)), which
might seem odd. The reason for this should become evident in the next
subsection.

3.2.5. The tactic language introduced
The model of proof introduced in this subsection and exemplified in
the previous subsection is effective in principle but tedious in practice.
Watson provides a technique for executing many proof steps automat-
ically, which may properly be discussed at this point. A program for
executing proof steps automatically is called a “tactic” by a perhaps
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18 Holmes and Alves-Foss

false analogy with usage in HOL and other provers of the LCF family. In
those systems, a tactic is an ML program, an object of quite a different
sort than a theorem. In Watson, a tactic is represented by the prover to
itself as an equational theorem, but nonetheless may exhibit complex
execution behavior. We describe here the way in which this effect is
achieved.

The key feature of the language of Watson which makes the tactic
language possible is the ability to represent the intention to apply a
rewrite rule inside a term. This is done using the special infixes => and
<=.

A term like (COMM => ?x + ?y) + ?z has precisely the same math-
ematical referent as the term (?x + ?y) + ?z. The presence of the
embedded theorem COMM (a commutativity axiom) indicates the inten-
tion of applying the theorem COMM as a rewrite rule to the indicated
subterm; running the tactic interpreter execute will cause the term to
be converted to the form (?y + ?x) + ?z (which of course still has the
same referent). The effect of the other special infix <= is to signal the
intention of rewriting with the “converse” of the given theorem: if ASSOC
is the theorem ((?x+?y)+?z)=?x+?y+?z1, the effect of executing the
tactic interpreter on ASSOC <= ?a+?b+?c will be to convert the term
to the form (?a+?b)+?c.

When there are several embedded theorems present, the tactic inter-
preter applies all of them, following a depth-first strategy (this needs to
be qualified where expressions defined by cases are involved; see below).
This applies as well to any embedded theorems which are introduced by
rewriting with other theorems: it is possible to prove theorems which
contain embedded theorems (though only on the right side). When an
embedded theorem cannot be used to rewrite the subterm to which it
is attached, it is simply dropped.

Further, it is possible to prove theorems which invoke recursive calls
to themselves. It is necessary to use a special declaration command
to do this, as we will see in the example below (since theorem names
can be embedded in terms, they are required to be declared; the prove

command normally serves to declare a theorem name, but this will
not work when recursive dependencies are present; this is analogous
to the treatment of forward declarations and function prototypes in
programming languages).

1 Recall that the default precedence of Watson is to the right, so the right side
of this equation is equivalent to ?x + (?y + ?z).
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3.2.6. An simple example of tactic development
- axiom "ZERO" "0+?x" "?x"; (* declarations made above

still in force *)

(* 0 is a numeral, so

predeclared *)

- declarepretheorem "ZEROES"; (* declare intention

of proving a theorem

ZEROES *)

- s "0+?x"; (* display omitted *)

- ri "ZERO"; ex();

{?x} (* the expected display *)

?x

- ri "ZEROES";

{ZEROES => ?x} (* we leave the intention

hanging; after all,

ZEROES => ?x what does ZEROES do? *)

- prove "ZEROES";

ZEROES: (* the ‘‘theorem’’ *)

0 + ?x =

ZEROES => ?x (* note presence of

recursion *)

ZERO , 0 (* axioms used *)

(* now we test it *)

- s "0+0+0+?x"; (* display omitted *)

- ri "ZEROES"; ex();

{?x} (* the final display *)

?x
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(* demonstration of trace feature *)

- startover(); (* this command resets

both sides of the equation

to the left side *)

{0 + 0 + 0 + ?x}

0 + 0 + 0 + ?x

- ri "ZEROES"; steps(); (* the steps command

traces tactic execution *)

ZEROES => 0 + 0 + 0 + ?x (* display traced steps *)

ZEROES => 0 + 0 + ?x

ZEROES => 0 + ?x

ZEROES => ?x

?x (* note that the embedded

theorem is simply dropped

when it does not apply;

this makes termination

possible *)

This extremely simple example gives the basic idea of Watson’s
tactic language; ZEROES as an equational theorem is certainly true (this
follows from the axiom ZERO and the fact that embedded theorems have
no effect on term reference); as seen here, this “equational theorem”
has execution behavior more general than can be achieved with any
single application of a rewrite rule.

3.2.7. More sophisticated tactics
In this subsection and the following example, we discuss operations on
tactics and tactics with parameters.

introduction of new variables: When a rewrite introduces new free
variables, they are automatically supplied with a numerical sub-
script as “new” variables. Something more complex may happen
if the new variable is introduced inside an abstraction (bracketed)
term; see below. The introduction of new variables can always be
avoided by the use of parameterized versions of theorems which
supply values to the new variables; see examples below.
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(* example of introduction of new variables *)

- declareunary "-"; (* declare - as a

prefix operator *)

- axiom "INV" "?x + -?x" "0";

- s "0";

- rri "INV"; (* rri = revruleintro

applies converse of

theorem *)

{INV <= 0} (* display *)

INV <= 0

- ex();

{?x_82 + - ?x_82} (* note appearance

?x_82 + - ?x_82 of new variables *)

control structures: The special infix operators =>>, <<=, *> and <*

allow one to apply a rewrite rule (or its converse) depending on
whether the application of a preceding rewrite rule succeeded or
failed.

The complex rewrite rules thm1 =>> thm2 and thm1 <<= ?thm2

have the effect of applying thm1 then applying thm2 (resp. its con-
verse) only if the application of thm1 fails. (the handling of these
infixes by Watson is quite different from their former handling
by Mark2: a chain of alternatives applied to a term which Wat-
son represents as (thm1 =>> thm2 =>> ... =>> thmn) => term

was represented by Mark2 as thmn =>> ... thm2 =>> thm1 =>

term). The commands altruleintro (ari) and altrevruleintro

(arri) introduce these “alternative rule infixes” (their use is il-
lustrated in the examples below).

The complex rewrite rules thm1 *> thm2 and thm1 <* thm2 have
the effect of first applying thm1, then applying thm2 only if the
application of thm1 succeeded.

For either of the above kinds of operator, if the theorem thm1 hap-
pens to be a built-in operator (e.g., the abstraction and reduction
tactics BIND and EVAL introduced below), thm1 is said to “succeed”
if it makes a change in the target term, and “fail” otherwise. For
theorems of the usual kind, success or failure depends on whether
the appropriate side of the theorem matches the target term.
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In the following example, we illustrate the application of =>> to
fine-tune the behavior of a tactic. We prove a theorem which
applies the identity of addition on either side.

(* a preliminary result *)

- s "?x+0"; (* displays suppressed *)

- ri "COMM"; ri "ZERO";

- prove "COMMZERO";

COMMZERO:

?x + 0 =

ZERO => COMM => ?x + 0

0 (* no axiom was used

in proving this,

though some

were mentioned *)

(* the tactic to apply identity on either side --

naive version *)

- s "?x+?y";

- ri "ZERO"; ri "COMMZERO";

- p "EITHERZERO";

EITHERZERO:

?x + ?y =

COMMZERO => ZERO => ?x + ?y

0

(* the problem with this *)

- s "0+?x+0";

- ri "EITHERZERO"; ex();

{?x} (* the final display *)

?x

(* the difficulty is that successive applications

of theorems cannot be relied upon to serve as

alternatives; one may apply and then another after

it in the list *)
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(* we modify the tactic *)

- s "?x+?y";

- ri "ZERO"; ari "COMMZERO"; (* ari =

altrevruleintro

introduces an

alternative

theorem to be

applied if COMM fails *)

- reprove "EITHERZERO";

EITHERZERO:

?x + ?y =

(ZERO =>> COMMZERO) => ?x + ?y (* note the

syntactical

0 effect of ari *)

(* we repeat the test above *)

- s "0+?x+0";

- ri "EITHERZERO"; ex();

{?x + 0} (* the final display:

?x + 0 only one application

of identity is made *)

tactics with parameters; operators as tactics Watson allows the
user to develop tactics with parameters, which may be used to
pass terms or other theorems or tactics as data to a tactic. The
prove command will take parameter lists built with the prede-
clared function application infix “@” and pairing infix “,”; it will
match the parameter list against actual embedded occurrences of
the theorem, which needs to have parameters matching the orig-
inal parameter list in order to be used successfully for rewriting.
Watson also allows operators (prefix or infix) to be “proved” as
(necessarily parameterized) tactics.

(* an example of parameterized and operator theorems:

simple structural tactics *)

- declareopaque "^+"; (* variable operator

declaration will be

explained below *)
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- s "?x^+?y";

- right(); ri "?thm";

- p "RIGHT@?thm";

RIGHT @ ?thm:

?x ^+ ?y =

?x ^+ ?thm => ?y

0

(* a test *)

- s "?x+?y+?z";

- ri "RIGHT@COMM"; steps();

(RIGHT @ COMM) => ?x + ?y + ?z (* display of

?x + COMM => ?y + ?z rewriting steps *)

?x + ?z + ?y

(* operators as theorems *)

- s "?x";

- ri "?thm1";

- ri "?thm2";

- p "?thm1**?thm2";

?thm1 ** ?thm2:

?x =

?thm2 => ?thm1 => ?x

0

(* a test *)

- s "?x+?y+?z";

- ri "COMM**ASSOC"; ex();

{?y + ?z + ?x} (* final display *)

?y + ?z + ?x

The prefix operator !@ can be applied to a theorem whose applica-
tion introduces new variables to produce a parameterized theorem
to which values of these new variables can be supplied; the operator
!$ applied to a theorem whose converse introduces new variables

submitwatson.tex; 9/06/2020; 12:06; p.24



The Watson Theorem Prover 25

produces a parameterized theorem with the same effect as the
converse of the original theorem.

In the following example, we develop a tactic converse of a theorem
which eliminates variables using parameters and using the built-in
operator !$.

(* parameterized converse theorem *)

- s "0";

- initializecounter(); (* initializes suffixes

of new variables *)

- rri "INV"; ex();

{?x_1 + - ?x_1} (* display *)

?x_1 + - ?x_1

- assign "?x_1" "?x"; (* rename new variable

using global assignment *)

- prove "INV_INVERSE@?x";

INV_INVERSE @ ?x:

0 =

?x + - ?x

INV , 0

- s "0";

- ri "INV_INVERSE@3"; ex();

{3 + - 3} (* final display *)

3 + - 3

(* the same effect using a built in operator *)

- s "0";

- ri "(!$ INV)@3"; ex();

{3 + - 3} (* final display *)

3 + - 3

We close the section with a not altogether trivial example.

- declarepretheorem "ASSOCS";
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- s "(?x+?y)+?z";

- ri "ASSOC"; ex();

- ri "ASSOCS";

- p "ASSOCS";

(* ASSOCS applies associativity

as many times as possible at the top *)

ASSOCS:

(?x + ?y) + ?z =

ASSOCS => ?x + ?y + ?z

ASSOC , 0

(* a test *)

- s "((?x+?y)+?z)+(?u+?v)+?w";

- ri "ASSOCS"; ex();

{?x + ?y + ?z + (?u + ?v) + ?w} (* the final display *)

?x + ?y + ?z + (?u + ?v) + ?w

(* the full tactic *)

- declarepretheorem "ALLASSOCS";

- s "?x+?y";

- ri "ASSOCS"; ri "RIGHT@ALLASSOCS";

- p "ALLASSOCS";

ALLASSOCS:

?x + ?y =

(RIGHT @ ALLASSOCS) => ASSOCS => ?x + ?y

0 (* no axiom dependencies

because no axiom was

actually used to rewrite *)
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(* test *)

s "(((?x+(?y+?z)+?w)+(?u+?v)+?w)+

((?u+?v)+?w)+?e)+(?u+?v)+?e+?f";

{(((?x + (?y + ?z) + ?w) + (?u + ?v) + ?w) + ((?u

+ ?v) + ?w) + ?e) + (?u + ?v) + ?e + ?f}

(* duplication of displays suppressed *)

- ri "ALLASSOCS"; ex();

(* the final display -- intermediate and duplicate

displays suppressed *)

{?x + ?y + ?z + ?w + ?u + ?v + ?w + ?u + ?v + ?w + ?e

+ ?u + ?v + ?e + ?f}

3.3. Implementing case expression logic in Watson

Case expression logic is implemented in Watson by the addition of
special features to the tactic interpreter.

The execution order of the tactic interpreter is normally depth-first;
however, when called on a case expression P || T , U, the hypothesis P
is rewritten first. If P rewrites to the form true = X, it is automatically
further rewritten to X; if the final form of the hypothesis is true or
false, the whole expression is rewritten to T or U respectively, and the
dropped alternative is never rewritten at all (this is the one case in
which the tactic interpreter is non-strict in its “order of evaluation”).

The tactic interpreter recognizes certain built-in tactics built with
numerals and the special operator |-|. These enable rewriting with the
hypotheses of case expressions in appropriate contexts. In a tactic m

|-| n, the numeral m will be 0, 1, or 2, indicating the type of rewriting
being done, and the numeral n will indicate which hypothesis is being
used. The hypothesis of the largest case expression which contains the
subterm being rewritten as a subterm (not necessarily proper) of one
of its branches is numbered 1; the hypothesis of the second largest such
case expression is numbered 2, and so forth.

The special tactic 0 |-| n does rewriting in the positive branch of
the case expression whose hypothesis is numbered n. If the hypothesis
is of the form A = B, the tactic 0 |-| n will rewrite A to B; if it is
introduced in the converse sense it rewrites B to A. The target of this
rewrite needs to be identical to the appropriate side of the equation used
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to rewrite, not just a match as in the case of rewriting with theorems.
If the hypothesis X is not an equation, it is treated just as if it were the
equation true = X.

The special tactic 1|-|n rewrites case expressions P || T , U, in
the case where the hypothesis P is the same as the hypothesis numbered
n, to T or U depending on whether the subterm being rewritten is in
the positive or negative branch of the case expression with the nth
hypothesis. The converse of this rewrite rule rewrites the subterm to a
new case expression with the nth hypothesis, with the original form of
the subterm as one branch and a new variable as the other branch. The
special tactic 2 |-| n, which is only used in the converse sense, rewrites
the subterm in the same way as the converse of 1 |-| n, except that
it takes a parameter which is used in place of the new variable as the
new branch. Note that the new branch introduced by these converse
rewrite rules will have contradictory local hypotheses applicable to it.

The special axioms

CASEINTRO: ?x = ?p || ?x , ?x

EQUATION: (?a = ?b) = (?a = ?b) || true , false

which are provided in the logical preamble supplied by Watson to every
theory, are used to introduce new case expressions.

It should be noted here that the fact that the meaning of built-in
tactics referring to hypotheses of case expressions is context depen-
dent necessitates a complication of the definition of substitution: when
an expression containing such tactics is substituted into a context, it
may be necessary for some of these tactics to be renumbered. The full
definition of substitution will be given below.

3.3.1. Examples of reasoning about case expressions
- s "(?a=?b)||((?c=?b)||(?a+?b),?x),?y";

- right();left();right();left();left(); (* navigate

to term ?a *)

(?a = ?b) || ((?c = ?b) || ({?a} + ?b) , ?x) , ?y

?a (* the display *)

- lookhyps(); (* view locally relevant hypotheses *)
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(* hypotheses displayed *)

1 (positive):

?a =

?b

2 (positive):

?c =

?b

(* end of hypothesis display *)

- ri "0|-|1"; ex();

(?a = ?b) || ((?c = ?b) || ({?b} + ?b) , ?x) , ?y

?b (* the display *)

- rri "0|-|2"; ex(); (* apply second hypothesis

in converse sense *)

(?a = ?b) || ((?c = ?b) || ({?c} + ?b) , ?x) , ?y

?c (* the display *)

- rri "1|-|1"; ex(); (* introduce new case expression

with first hypothesis *)

(?a = ?b) || ((?c = ?b) || ({(?a = ?b) || ?c , ?x_3}

+ ?b) , ?x) , ?y (* the display *)

(?a = ?b) || ?c , ?x_3

- ri "1|-|1"; ex();

(?a = ?b) || ((?c = ?b) || ({?c} + ?b) , ?x) , ?y

?c (* the display *)

- up(); up(); right();

(?a = ?b) || ((?c = ?b) || (?c + ?b) , {?x}) , ?y

?x (* the display *)

- lookhyps();

(* hypotheses displayed *)
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1 (positive): (* note change of sense of

second hypothesis *)

?a =

?b

2 (negative):

?c =

?b

(* end of hypothesis display *)

- rri "(2|-|2)@0"; ex(); (* introduce new case

expression stipulating the value

to go in the new branch *)

(?a = ?b) || ((?c = ?b) || (?c + ?b) , {(?c = ?b)

|| 0 , ?x}) , ?y

(?c = ?b) || 0 , ?x

(* sample definitions of propositional connectives *)

- defineinfix "NOT" "~?x" "?x||false,true";

NOT:

~ ?x =

?x || false , true

NOT , 0

- defineinfix "AND" "?x&?y"

"?x||(?y||true,false),false";

AND:

?x & ?y =

?x || (?y || true , false) , false

AND , 0

3.4. Implementing stratified abstraction in Watson

The most complex built-in functions of Watson are those which support
stratified abstraction.
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3.4.1. The handling of variable binding: de Bruijn levels and the
formal definition of substitution

As we noted above, the term construction using brackets represents λ-
abstraction. There is nothing in Watson’s notation corresponding to the
λx component of the notation (λx.T ); the variable bound in a bracket is
determined by the syntax of its context using a scheme due to deBruijn
(but differing from the most familiar name-free binding scheme due to
deBruijn).

The variable bound in an outermost set of brackets is always ?1; the
variable bound in a set of brackets which is in the scope of one set of
brackets is ?2; in general, the variable bound in a set of brackets which
is enclosed in n-1 further brackets is ?n. For example, the constant
function (λx.x) is written [?1], but its constant function (λy.(λx.x))
is written [[?2]] (because the bound variable in this term is bound
by the inner of the two sets of brackets).

This scheme (which we have seen referred to as “de Bruijn levels”)
has two advantages. The first advantage is that it is not necessary to
manage binding with arbitrary variables, which leads to a complex
implementation and a very complex definition of substitution. The
advantage that this scheme has over the more popular of de Bruijn’s
schemes (de Bruijn indices) is that the variable bound in a given bracket
is represented in the same way wherever it appears. The disadvantage of
de Bruijn levels (which de Bruijn indices do not have) is that the bound
variables in a term may need to be renumbered when it is substituted
into a different term. So far, users of Watson (and Mark2) have found
the de Bruijn level scheme to be usable in practice; what pressure the
designer has felt from users to convert to the usual variable-binding
scheme has been relieved by the availability of a tactic provided in the
libraries which readily converts bracket terms to a form more like the
usual form when nesting of brackets is sufficient to cause confusion.

The use of de Bruijn levels creates a complication of the definition
of substitution in a much more pervasive way than the similar problem
that arises with the numbering of hypothesis tactics. On the other hand,
the complication is simpler than the one that would be occasioned by
use of the usual variable binding schemes. For users the system adopted
is certainly better than de Bruijn indices, but admittedly less readable
than the usual schemes of variable binding when there is enough nest-
ing of abstraction terms (but, as noted above, there is a tactic which
converts such terms to a more readable form).

When we consider an occurrence of a subterm in a larger term,
we define its level as the number of bracket terms of which it is a
proper subterm, and its hlevel (for “hypothesis level”) as the number
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of branches of case expressions of which it is a (not necessarily proper)
subterm.

The semantics of bound variables requires that each bound variable
?n appear only in contexts contained in at least n bracket terms (the
“bound variable” ?0 can appear in any context; it is used for special
purposes by internal functions of the prover not discussed in this paper).
This is enforced by the declaration checking functions of the prover.
An analogous requirement could be imposed on hypothesis tactics, but
is not in practice: no harm can be done by meaningless hypothesis
tactics, and we are interested in allowing natural numbers to be passed
as parameters to the |-| operator in tactics, which would be forbidden
if declaration checking of hypothesis tactics were to be enforced.

We define what it means (and under what circumstances it is pos-
sible) to substitute a term T found at level l1 and hlevel h1 (in some
larger term) into a context found at level l2 and hlevel h2 in a term
U. One circumstance under which such a substitution is impossible is
that in which a variable free in the term T becomes bound in its new
context when T is substituted into U. A bound variable ?n is free in T

iff n ≤ l1; it becomes bound (or meaningless) in its new context in U if
n > l2; thus, substitution is impossible if any bound variable ?n appears
in T with l2 < n ≤ l1. A similar restriction is imposed on indices of
hypothesis tactics in relation to hlevel. Each variable bound in T (i.e.,
?n with n > l1) is enclosed by n brackets in the term of which T is a
subterm, while it is enclosed in n− l1 + l2 brackets in the term U; thus
its index must be changed from n to n − l1 + l2 (while the indices of
locally free bound variables remain the same). Precisely analogously,
hypothesis tactic indices > h1 are translated by h2 − h1.

The definition of substitution used by Watson is somewhat further
complicated by the issue of “higher-order matching” discussed below.

3.4.2. Abstraction and reduction by built-in tactics
The semantic interpretation of bracket terms as functions is enforced
by the three built-in tactics BIND, EVAL and UNEVAL.

BIND takes a parameter: when BIND @ T is applied to a term U at
level l, the effect is to translate U to level l+ 1, replace all occurrences
of the result of translating T to level l + 1 in the translation of U

by occurrences of ?[l+1] (we hope that this is a pardonable abuse
of notation), enclose the result in brackets and apply it (using @ to
represent function application) to T; this process only succeeds if the
bracket term obtained is stratified (otherwise U is unchanged). In terms
of λ-notation, the result can be described as (λx.U [x/T ])(T ).

EVAL takes no parameter; when EVAL is applied to a term of the
form [T] @ U at level l, the effect is to translate U to level l + 1,
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replace ?[l+1] with the translated form of U in T, and translate this
modified form of T from level ?[l+1] to level l; this modified form of T
is the result. Mathematically, this is simply β-reduction, and it always
succeeds.

UNEVAL is a little more esoteric, and it took some experience to realize
that it was needed. When UNEVAL @ [T] is applied to U, the result is a
term of the form [T] @ X precisely if there is such a term which would
reduce to U on application of EVAL. The effect of UNEVAL is to rewrite
an expression as a value of the function given as its parameter if this
is possible.

The project of providing built-in support to synthetic abstraction
and reduction algorithms found in the original prover EFTTP (as dis-
cussed in our reference (??)) and still supported by little-used features
of Mark2 has been abandoned. Synthetic abstraction and reduction
algorithms are straightforward to implement in the tactic language of
Mark2 or Watson. We are still carrying out investigations in this area
using the Watson tactic language as a tool. But we no longer see it as
reasonable to support this in the prover’s built-in logic.

3.4.3. Examples of the implementation of abstraction in Watson
- s "?x";

{?x}

?x

- ri "BIND@?x"; ex();

{[?1] @ ?x} (* [?1] is the identity function *)

[?1] @ ?x

- ri "EVAL"; ex(); (* evaluate the function *)

{?x}

?x

- s "[?1]";

{[?1]}

[?1]
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- ri "BIND@?y"; ex();

{[[?2]] @ ?y} (* [[?2]] is the constant function

[[?2]] @ ?y whose value is [?1];

this is an example of

relabelling of bound variables *)

- ri "EVAL"; ex();

{[?1]}

[?1]

(* abstraction does not need to be

with respect to atomic terms *)

- s "(?x+?y)=?x+?y";

{(?x + ?y) = ?x + ?y}

(?x + ?y) = ?x + ?y

- ri "BIND@?x+?y"; ex();

{[?1 = ?1] @ ?x + ?y}

[?1 = ?1] @ ?x + ?y

s "3+3";

{3 + 3}

3 + 3

- ri "UNEVAL@[?1+?1]"; ex();

{[?1 + ?1] @ 3}

[?1 + ?1] @ 3

(* definition of the universal quantifier *)

(* a full account of definition commands is given

in a later section *)
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- defineconstant "forall@?x" "?x=[true]";

forall:

forall @ ?x =

?x = [true]

forall , 0

(* definition of the existential quantifier *)

- defineconstant "forsome@?x" "~forall@[~?x@?1]";

forsome:

forsome @ ?x =

~ forall @ [~ ?x @ ?1]

forsome , 0

3.4.4. The implementation of stratification in Watson: relative type
and opacity

In this subsection, we discuss the implementation of the notion of strat-
ification under Watson. Each operator in Watson must be declared with
a “left type” and a “right type” which determine the displacement of
the relative types of the left and right subterms of a term built with
that operator from the relative type of the term. A strict prefix operator
only needs a right type.

An alternative is to declare an operator as “opaque”: abstraction
into a term built with an opaque operator is not permitted, so such
a term may not contain any variable bound in an abstraction term
which includes it. In other words, opaque operators may be used in
the definitions of functions only to construct constants. Variable oper-
ators may be declared opaque if it is desired (as in structural tactics
such as RIGHT above) that the variable operator match operators with
arbitrary relative types. Variable operators can also be declared with
specific relative types. Undeclared variable operators are treated as
opaque. This is the main application of opaque operators in existing
theories, though there are sensible applications of “constant” opaque
operators in mathematics, and it turns out that defined operators used
as type constructors (for types represented as retractions onto strongly
Cantorian domains) need to be opaque.

The assignment of relative types to occurrences of subterms of a
term then proceeds as follows: the relative types of the left and right
subterms of a term built with an infix operator are obtained by adding
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the left and right types (respectively) to the type of the whole subterm;
the right subterm of a term built with a strict prefix operator is handled
in the same way. The immediate proper subterm of an abstraction
term has relative type one lower than the abstraction term, and the
immediate subterm must have the same relative type as all occurrences
in the abstraction term of the bound variable bound in the abstraction
term (this is the condition of stratification)2.

3.4.5. Examples of the implementation of stratification

- s "?x@?x";

{?x @ ?x}

?x @ ?x

- ri "BIND@?x"; ex();

{?x @ ?x} (* the function [?1@?1]

?x @ ?x violates stratification

restrictions *)

- s "[?1@?1]";

Watson: Term is not stratified

- s "[[?1]]"; (* this is the ‘‘function’’

which sends objects to their

constant functions

(the K combinator); it cannot

be typed in this theory *)

Watson: Term is not stratified

- s "(?f@?x)+?g@?x";

{(?f @ ?x) + ?g @ ?x}

(?f @ ?x) + ?g @ ?x

2 The latest versions of Watson allow the formation of unstratified abstraction
terms for special purposes: in these versions, the entry of an unstratified abstraction
term will not cause a declaration error, but the examples in the next subsection
should otherwise run similarly
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- ri "BIND@?x"; ex();

{[(?f @ ?1) + ?g @ ?1] @ ?x}

[(?f @ ?1) + ?g @ ?1] @ ?x

- left();ri "BIND@?g";ex();

{[[(?f @ ?2) + ?1 @ ?2]] @ ?g} @ ?x

[[(?f @ ?2) + ?1 @ ?2]] @ ?g

- left(); ri "BIND@?f"; ex();

(* stratification restrictions prevent this

from working; the problem is that ?f and ?g

are at the same relative type *)

({[[(?f @ ?2) + ?1 @ ?2]]} @ ?g) @ ?x

[[(?f @ ?2) + ?1 @ ?2]]

(* we show how to achieve a function with ?f and ?g

as parameters *)

- startover();

{(?f @ ?x) + ?g @ ?x}

(?f @ ?x) + ?g @ ?x

- assign "?f,?g" "(P1@?F),P2@?F";

(* the assign command will carry out

assignments based on matches of complex terms *)

(* P1 and P2 are projection operators for the pair

represented by the comma operator; their defining

axioms are predeclared *)

{((P1 @ ?F) @ ?x) + (P2 @ ?F) @ ?x}

((P1 @ ?F) @ ?x) + (P2 @ ?F) @ ?x

- ri "BIND@?x"; ex();

{[((P1 @ ?F) @ ?1) + (P2 @ ?F) @ ?1] @ ?x}

[((P1 @ ?F) @ ?1) + (P2 @ ?F) @ ?1] @ ?x
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- left(); ri "BIND@?F"; ex();

(* the abstract on the left is a pure abstract

which handles addition of functions *)

{[[((P1 @ ?1) @ ?2) + (P2 @ ?1) @ ?2]] @ ?F} @ ?x

[[((P1 @ ?1) @ ?2) + (P2 @ ?1) @ ?2]] @ ?F

(* we demonstrate application

and evaluation of this abstract *)

- assign "?F" "?f,?g";

{[[((P1 @ ?1) @ ?2) + (P2 @ ?1) @ ?2]] @ ?f , ?g}

@ ?x

[[((P1 @ ?1) @ ?2) + (P2 @ ?1) @ ?2]] @ ?f , ?g

- ri "EVAL"; ex();

{EVAL => [[((P1 @ ?1) @ ?2) + (P2 @ ?1) @ ?2]] @ ?f

, ?g} @ ?x

EVAL => [[((P1 @ ?1) @ ?2) + (P2 @ ?1) @ ?2]] @ ?f

, ?g

- left();left();left();

[({P1 @ ?f , ?g} @ ?1) + (P2 @ ?f , ?g) @ ?1] @ ?x

P1 @ ?f , ?g

- ri "P1"; ex();

[({?f} @ ?1) + (P2 @ ?f , ?g) @ ?1] @ ?x

?f

- up();up();right();left();

[(?f @ ?1) + {P2 @ ?f , ?g} @ ?1] @ ?x

P2 @ ?f , ?g

- ri "P2"; ex();
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[(?f @ ?1) + {?g} @ ?1] @ ?x

?g

- top(); ri "EVAL"; ex();

{(?f @ ?x) + ?g @ ?x}

(?f @ ?x) + ?g @ ?x

(* Here’s something which ought to be allowed -- we’ll

show how to fix this in the next section *)

- s "forall@[forsome@[?1=?2]]";

Watson: Term is not stratified

(* the term above represents the sentence ‘‘for all x,

for some y, x = y’’, which certainly ought to be

meaningful (and, as we will see below, Watson will

treat this as stratified, given further information) *)

3.4.6. Support for strongly cantorian domains
Strongly cantorian domains are supported in two ways by Watson.

The explicit support for strongly Cantorian domains is bound up
with the properties of the built-in operator :, which signals the ap-
plication of a retraction with strongly Cantorian range. A predeclared
axiom TYPES: (?t:?t:?x) = ?t:?x ensures that type labels have the
effect of retractions. The stratification facility will raise and lower the
relative type of the right subterm of a term of the form ?t:?x as needed
to stratify the context. It is not the case that all relative type infor-
mation from such a subterm is suppressed: the difference between the
relative types of two bound variables may be determined by information
internal to such a term, and will cause a stratification error if it conflicts
with other information derived in attempting to stratify the term.

Implicit support for strongly Cantorian domains is provided by the
“scin/scout” features of the prover. An operator may be declared “scout”
(for “strongly Cantorian output”) if a theorem has been proved to the
effect that the output of the operator will belong to a fixed strongly
Cantorian domain. Similarly, an operator may be declared “scin” (for
“strongly Cantorian input”) if a theorem has been proved to the effect
that all of its (one or two) inputs will belong to fixed strongly Cantorian
domains. A term which is scout will have its type raised or lowered if
necessary for purposes of stratification; a term which is scin will have
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the type(s) of its immediate subterms raised or lowered (independently
of one another if there are two of them) if necessary for purposes of
stratification. Functions may also be declared scin or scout.

These two features together greatly reduce the rigidity of the strati-
fication criterion of Watson; in particular, the declaration of the propo-
sitional connectives and quantifiers as scin or scout as appropriate
enables the fluent handling of first-order logic (avoiding stratification
difficulties illustrated in an example above).

3.4.7. Examples of the implementation of strongly cantorian domains
- declareconstant "bool";

(* attaching a type label to the inner quantified

statement in the term with nested quantifiers that

caused problems above causes the prover to be able

to stratify it *)

- s "forall@[bool:forsome@[?1=?2]]";

(* the bool type label can be defined in such a way

as to make the following "axioms" easily proved

theorems *)

- axiom "FORALLBOOL" "forall@?x" "bool:forall@?x";

- axiom "FORSOMEBOOL" "forsome@?x" "bool:forsome@?x";

(* the theorems FORALLBOOL, FORSOMEBOOL witness the

fact that the functions forall, forsome have output

of boolean type, thus are "scout" *)

- makescout "forall" "FORALLBOOL";

- makescout "forsome" "FORSOMEBOOL";

- s "forall@[forsome@[?1=?2]]";

(* the information that forall and forsome are scout

is enough to allow this term to be stratified; it

removes any problem of stratification due to nested

quantifiers *)

{forall @ [forsome @ [?1 = ?2]]} (* no error message! *)

forall @ [forsome @ [?1 = ?2]]
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3.4.8. Definitions in Watson
Constants, operators and “type labels” (retractions with strongly can-
torian range) can be defined in Watson. Examples of the definition
commands have appeared in example sections above, where this seemed
appropriate.

The definition of an atomic constant as a complex term is straight-
forward:

- defineconstant "four" "2+2";

four:

four =

2 + 2

four , 0

The prover checks for defects such as circularity in the proposed
definition and, if no error is found, proves a new theorem embodying
the definition. When a constant is defined, the name of the new theorem
is the same as the name of the defined constant (which cannot have
been declared previously).

The issue of stratification arises in the definitions of functions and
operations.

- defineconstant "Double@?x" "?x+?x";

Double:

Double @ ?x =

?x + ?x

Double , 0

- defineconstant "(Comp@?f,?g)@?x" "?f@?g@?x";

Comp:

(Comp @ ?f , ?g) @ ?x =

?f @ ?g @ ?x

Comp , 0

- defineconstant "Comp2@?f,?g,?x" "?f@?g@?x";

Watson: Format, declaration or stratification failure of

proposed definition of Comp2@?f,?g,?x

While reading the two definitions of composition of functions, recall
that all operations have the same precedence and group to the right.
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In the first definition of composition of functions, note that defined
functions can have lists of arguments and can be “curried” if the types
of their arguments warrant this. In the second definition of composition,
we see a failure of stratification.

Operators can be defined similarly.

(* defining operators with ‘‘flat’’ type *)

- defineinfix "OR" "?x|?y" "~(~?x)& ~?y";

OR:

?x | ?y =

~ (~ ?x) & ~ ?y

OR , 0

(* defining typed operators *)

- showdec "@"; (* show the declaration of

the function application

operator *)

Watson: Reserved operator @ left type: 1 right type: 0

- definetypedinfix "CONV_APP" 0 1 "?x <@ ?y" "?y @ ?x";

(* the integer parameters are the left and right types

of the defined operator <@ (the converse of application,

which has left type 1 and right type 0, must have

left type 0 and right type 1) *)

CONV_APP:

?x <@ ?y =

?y @ ?x

CONV_APP , 0

(* definition of opaque operators *)

- defineopaque "WEIRD" "?x +‘? ?y" "(?x@?x)+?y@?y";

WEIRD:

?x +‘? ?y =

(?x @ ?x) + ?y @ ?y

WEIRD , 0
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The name of the theorem defining an operator must be supplied as a
parameter to the defineinfix or definetypedinfix commands, as we
see in the examples. The defineinfix command is used to define “flat”
infixes (those with left and right type of 0); the definetypedinfix

command is used to define infixes with nontrivial left and right type,
and takes the types of its arguments as parameters. Completely unstrat-
ified operations such as +‘? in the example above can also be defined
as “opaque” operators; the use of opaque operators in definitions and
in contexts with bound variables is extremely restricted, but they do
have some applications.

The most complex form of definition in Watson is the facility of
defining “type labels” (retractions onto strongly cantorian ranges).
The usual restrictions of non-circularity and stratification in defini-
tions of functions and operators are first modified (the stratification
requirements are sharper) then extended with the requirement that
the operation being defined be shown to be a retraction. We illus-
trate the definition of a type by defining the type of booleans (using a
new identifier Bool to avoid conflict with the type label bool declared
above).

- start "?x||true,false";

- assign "?x" "?x||true,false"; (* sets up theorem

that this operation is a

retraction *)

- ri "(!@CASEINTRO)@?x"; ex();

- top(); downtoleft "?x||?y,?z"; ri "1|-|1"; ex();

- top(); downtoright "?x||?y,?z"; ri "1|-|1"; ex();

- top(); ex();

- p "BOOLRETRACT";

BOOLRETRACT:

(?x || true , false) || true , false =

?x || true , false

CASEINTRO , 0

- defineconstanttype "BOOLRETRACT"

"Bool:?x" "?x||true,false";

Bool:

Bool : ?x =

?x || true , false

Bool , CASEINTRO , 0
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The thing to notice is that the defineconstanttype command takes as
an additional parameter a theorem witnessing the fact that the opera-
tion being defined is a retraction. The reason that Watson can tell that
this retraction has strongly cantorian domain has to do with technical
aspects of the way Watson determines whether case expressions are
stratified (it implicitly views the hypothesis of a case expression as
being restricted to a strongly cantorian domain).

It is possible to define functions and operations which generate
type labels (type constructors). There are subtleties with the use of
type constructors which make it necessary to declare constructors as
“opaque” operators.

3.4.9. Fine points of matching: limited higher-order matching and
commutative matching

This section is devoted to two refinements of matching, one integral to
Watson and the other optional.

A theorem in the current Watson library is the unsurprising

FORALLDIST:

forall @ [(?P @ ?1) & ?Q @ ?1] =

(forall @ [?P @ ?1]) & forall @ [?Q @ ?1]

A term to which this theorem ought to apply is
forall@[(?1=?1)&?1=?1]; application of the theorem should yield
(forall@[?1=?1])&forall@[?1=?1]. And indeed it does:

- s "forall@[(?1=?1)&?1=?1]";

{forall @ [(?1 = ?1) & ?1 = ?1]}

forall @ [(?1 = ?1) & ?1 = ?1]

- ri "FORALLDIST"; ex();

{(forall @ [?1 = ?1]) & forall @ [?1 = ?1]}

(forall @ [?1 = ?1]) & forall @ [?1 = ?1]

However, this would not have worked in early versions of Mark2 (the
precursor of the present Watson prover), where this proof would have
taken the following form:
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- s "forall@[(?1=?1)&?1=?1]";

{forall @ [(?1 = ?1) & ?1 = ?1]}

forall @ [(?1 = ?1) & ?1 = ?1]

- right();right();

forall @ [{(?1 = ?1) & ?1 = ?1}]

(?1 = ?1) & ?1 = ?1

- right(); ri "BIND@?1"; up(); left(); ri "BIND@?1"; ex();

forall @ [{([?2 = ?2] @ ?1) & [?2 = ?2] @ ?1}]

([?2 = ?2] @ ?1) & [?2 = ?2] @ ?1

- top(); ri "FORALLDIST"; ex();

{(forall @ [[?2 = ?2] @ ?1]) & forall @ [[?2 = ?2]

@ ?1]}

(forall @ [[?2 = ?2] @ ?1]) & forall @ [[?2 = ?2]

@ ?1]

- left();right();right();ri "EVAL";

top();right();right();right();ri "EVAL"; top(); ex();

{(forall @ [?1 = ?1]) & forall @ [?1 = ?1]}

(forall @ [?1 = ?1]) & forall @ [?1 = ?1]

The difficulty with the old version of the prover (and with the in-
tuition that leads one to believe that the application shown is a direct
application of the theorem) is that ?P@?1 and ?Q@?1 are each expected
to match ?1=?1, which they do not in any obvious syntactical sense.
This was a serious problem for fluent reasoning with quantifiers (and
also caused unnecessary work in other applications of functions). (It
is also important to note that forall@[?P&?Q] is not a candidate to
match forall@[(?1=?1)&?1=?1] at all, because [?P&?Q] is a constant
function; the variables ?P and ?Q can only match terms not depending
on ?1 at all).

The solution was to adopt a limited form of higher-order matching:
in the context where ?n is the highest-numbered bound variable, the
expression ?P@?n, where ?P is a free variable, will match any expres-
sion in ?n which can be expressed as a function of ?n (stratification
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restrictions are at work here): the free variable ?P will be matched to a
suitable abstraction term. A modification of substitution which causes
reductions to occur in terms of the form ?P@?n when an abstract is
substituted for ?P is also needed. With these modifications of matching
and substitution, we get the natural behaviour illustrated in the first
example above.

Recently, we have implemented further refinements of higher-order
matching and correlated improvements in substitution, which allow
natural treatments of situations involving multiple bound variables as
arguments, both when the arguments are curried and when they occur
in tuples.

A further point is that new variables introduced by the application
of theorems or tactics inside bracket terms may have an unexpected
form: under certain conditions, a “new variable” introduced at level
n will take the form ?x 1 @ ?n rather than the form ?x 1 which one
expects. It is better to avoid the use of theorems which introduce new
variables in such contexts (in fact, it is always better to avoid the
introduction of new variables except in interactive “scratch work”); it
is possible that a stratification error will result from such a theorem
application (the type checking done uses an imperfect heuristic to guess
whether the new variable has correct relative type); such errors are
caught by the prover and cause the theorem application to fail, and
can always be avoided by avoiding the introduction of new variables
(by using parameterized versions of theorems and their converses, either
user developed or constructed using the !@ and !$ built-in operators).
It would be possible to redesign Watson to avoid stratification errors
of this kind, but it would involve a considerable elaboration of the data
structures representing context information in the prover for a very
limited benefit.

An optional refinement of matching which is available is commu-
tative matching, which can be turned on (or off) with the cmatch

command. With commutative matching on, the prover will in effect
attempt to apply commutative laws wherever possible in the attempt
to apply a theorem. A simple example:

- s "?x+?y+?z";

{?x + ?y + ?z}

?x + ?y + ?z
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- ri "ASSOC"; ex(); (* ASSOC does not apply *)

{?x + ?y + ?z}

?x + ?y + ?z

cmatch(); (* this turns on commutative matching *)

- ri "ASSOC"; ex(); (* an application of COMM

gives a term to

which ASSOC can be applied *)

{?y + ?z + ?x}

?y + ?z + ?x

An important fact about commutative matching is that it is not
applied in certain contexts even when it is turned on: for example,
the alternative and on-success rule infixes use strict matching to de-
termine whether a theorem succeeds or fails. The additional freedom
of commutative matching would disrupt the control structures of the
internal programming language too much (for example, the generalized
associativity tactic given above would fail, because it depends on ASSOC

to fail on sums whose left term is not a sum).
We are not convinced that commutative matching is a useful refine-

ment of the prover (largely because of its conflicts with the needs of
the tactic language), but we continue to experiment with it.

3.4.10. Special effects
We discuss some miscellaneous built-in tactics.

INPUT and OUTPUT allow interaction between a tactic and the user.
The INPUT command displays the local hypotheses and the selected
subterm; the prover then waits for the user to enter a theorem or tactic,
which will then be applied. If the user hits return, the prover will simply
continue. The OUTPUT command simply displays its term parameter.
The INPUT command has been used in the development of a goal-driven
natural deduction prover as a family of Watson tactics.

The FLIP command takes a parameter, intended to be the name of
a theorem (in fact, intended to be a “commutative law”, though the
prover does not enforce this). If FLIP @ ?thm is applied to an infix term
the displayed forms of whose arguments are not in lexicographic order,
the theorem ?thm is applied; otherwise nothing is done. The intention
is to support the ability to define canonical forms for expressions built
with commutative operators, by sorting terms.
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4. Experience with the prover

4.1. Experiences of users

The Watson prover has a shallow initial learning curve. Undergraduate
students can learn to prove equational theorems in an algebraic style
with the prover quite rapidly.

The more complex case expression and stratified abstraction facil-
ities seem also to be accessible to the advanced undergraduate and
graduate math and CS students who have been users of the system.

The use of the tactic language to write complex recursive tactics has
been mostly confined to the designer and one student. All users have
been able to make effective use of tactics provided in libraries.

Users do not seem to have trouble with the default order of opera-
tions of the prover, but we have provided full support for conventional
order of operations for applications (such as those in education) where
the use of conventional order of operations would be advisable.

Users do not seem to have trouble with the use of deBruijn levels
in place of conventional variable binding; those who have done reason-
ing with quantifiers or higher-order functions seem to have adapted
to this. Since de Bruijn levels are a notational variant on the usual
treatment of bound variables (we believe it would be harder to adapt
to deBruijn indices), we don’t find this surprising. A tactic is available
in the libraries which makes the notation for abstracts look more like
standard notation: this tactic decorates each bracket term with a null
occurrence of the variable bound in it at its head (e.g., [?1 + ?1]

becomes [?1.?1 + ?1], where the defining theorem of the connective
. is ?x.?y = ?y. Another tactic removes the annotations supplied by
the first tactic.

The tactic language has been useful in several contexts. A tautology-
checking tactic has been used extensively. Recently, we have imple-
mented type inference algorithms as tactics in a theory of natural
numbers, integers, rationals and reals in which manipulation of type
labels (retractions with strongly cantorian range) was becoming bur-
densome. The use of tactics for application of theorems to subterms
of the selected term, composition and conversion of tactics, and global
rewriting (of more than one variety) is ubiquitous.

Watson theories can be saved and retrieved in two different ways. If
one is only interested in the theorems in a theory, there are storeall

and load commands which respectively store and retrieve the theorems
of a given theory. If one is interested in the details of proofs (especially
if one needs to change a theory by modifying the details of proofs) the
correct approach is to develop a proof script in a text editor. Originally,
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proof scripts were run under ML using its use command, but this was
too slow. The prover now has its own script command which reads
scripts (which are also usually readable by the ML interpreter). Scripts
can be nested in a way which supports the development of libraries of
theories, though the modularity provided is not very sophisticated.

A refinement we have considered but not implemented (due to the
ease of use of proof scripts) is the development and storage of “proof
objects” which would represent proofs in a way which could be manip-
ulated by prover functions rather than a text editor. There is a natural
way to do this in Watson (proofs could be represented as tactics) but
there is as yet little need for this.

Multiple theorems under construction in multiple theories can be
stored on the desktop at the same time in a Watson session; this
facilitates development work.

There is a facility, little-used so far, which can be used to prove
theorems in one theory by analogy with theorems from another: if the
user provides a match between primitives and axioms of a source theory
and concepts and theorems of a target theory, theorems of the source
theory can be exported to the target theory (with automatic transla-
tion of notions of the source theory to notions of the target theory as
needed). This theorem export facility also allows the export of tactics;
if a tactic is exported, all of the subtactics it needs will automatically be
exported as well. We believe that this facility of the prover will become
more important as mathematical libraries grow more extensive. We
have used it in one place in the publicly available libraries to transfer
a proof of complete induction and related principles between theories
with conflicting notation.

4.2. Experience with mathematical content areas

The Watson prover has been used to develop theories of propositional
and predicate logic in several styles. An equational style (as exemplified
in (??)) is most natural, and theories implementing the propositional
and predicate logic chapters of (??) in detail exist. We have also imple-
mented a sequent calculus and a goal driven natural deduction prover.
A tableau approach to first-order logic has natural relationships with
Watson’s built-in logic of case expressions, and a tableau approach
to propositional logic has been used to develop a complete tautology
checker as a tactic. A goal-directed natural deduction prover has been
implemented as an interactive tactic using the INPUT command.

Watson’s notation for propositional logic presents no difficulties.
Experience leads us to believe that users can readily adapt to the
somewhat nonstandard notation for quantifiers. There are few problems
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with the stratification functions of the prover as long as the boolean
type has been declared as strongly cantorian and the propositional
connectives and quantifiers made scin or scout as appropriate.

The prover has been used to develop theories of basic arithmetic
and algebra needed for the projected computer science applications.
Watson readily supports algebraic reasoning; its case expression ma-
chinery allows a natural way to handle exceptions to algebraic rules
(such as those occasioned by the need to avoid division by zero) which
are usually ignored by computer algebra systems, making the typical
CAS logically unsound. We have also shown that Watson is a practical
environment for carrying out proofs by induction in a development of
Peano arithmetic. A theory of program semantics based on (??) is un-
der construction. A student has recently completed a master’s project
involving the verification of published proofs of security properties of
communication protocols using Watson.

For example, students working on this project have been able to
develop the following theory files (this list is not exhaustive):

Sets: Sets are defined as abstractions from boolean terms (predicates),
and set membership as a specialization of function application. A
library of elementary theorems has been developed covering the
topics of set membership, equivalence, complements, unions, in-
tersections, differences, subsets, proper subsets, and disjoint sets.
On a more purely mathematical note, the designer used the student
work described above in a proof of the Schröder-Bernstein theorem.

NatOrder: A theory file related to the order properties of natural
numbers (requiring proofs by induction).

Bit Values: A theory file that contains definitions and theorems to
assist in the mapping between compositions of Boolean values
(bit strings) and natural numbers to be used in hardware circuit
specification and verification.

Gates: A theory of basic gates, including and, or, xor, inv, nand, nor
and multiplexors. This also includes a theory covering boolean
algebra for the basic logic gates. Specifically this file focuses on the
composition and comparison of basic gates including associativity
and symmetry laws as well as De Morgan laws for the gates.

Protocols: With help from the authors, a student has developed a the-
ory of protocol specifications and verification based on the CAPSL
specification language (??) and the SvO logic (??). An interesting
aspect of this project was that it required the implementation
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of a modal logic (of belief) under Watson, which proved possible
despite the designer’s doubts.

Program Semantics: The designer and a student have been collab-
orating on a file which implements a theory of program semantics
in the style promoted by Dijkstra and Gries, following (??). This
file has involved extensive use of the higher-order features of the
prover, since reasoning about complex function types is involved.

The designer has developed a theory of synthetic combinatory logic,
with a variety of different abstraction and reduction tactics, which he
hopes to use as a research tool in collaboration with a specialist in this
area. The fact that the prover is good for this application area is not
surprising, as the development of the control structures of the tactic
language was largely driven by the now abandoned attempt to use a
synthetic combinatory logic rather than a λ-calculus as the logic of the
prover.

5. Related Work

There are dozens of theorem provers available and in use in the world3.
The majority of these are based on classical predicate or propositional
logic. However, there are only a few systems, including Watson, that
have the power to perform reasoning in a higher-order logic. In addition
some provers are interactive like Watson whereas others are much more
automated. It is appropriate to limit detailed consideration to interac-
tive higher-order logic systems in this section due to space limitations
of this paper. A complete treatment would compare the propositional,
predicate, tableau and other capabilities of Watson with respect to
systems that support those styles of reasoning.

In our laboratory we have passing experience with several theorem
proving systems, but have really focused our efforts on HOL (??; ??; ??)
and Watson. In this section we first provide the mathematical com-
parison between Watson and other systems and then provide a more
detailed comparison to the HOL system.

5.1. Mathematical Comparison

The designer gained his first appreciation of interactive theorem prov-
ing from reading about Nuprl ((??)) but there is no obvious genetic
relationship between Watson and Nuprl.

3 A comprehensive list of theorem provers can be found at http://www-
formal.stanford.edu/clt/ARS/systems.html.
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The prover work would have been impossible without the availability
of the programming language Standard ML ((??)), which itself is a
byproduct of the development of the Edinburgh LCF theorem prover
((??)).

Watson is contrasted with such provers as Automath ((??)) or Nuprl
((??)) by the use of classical rather than constructive logic. Overall,
Watson is probably most similar to HOL ((??; ??; ??)) in its outlook
on things (classical higher-order logic) but it is still very different from
HOL.

Watson is mostly devoted to manipulation of terms/expressions rather
than to propositions (there is some treatment of propositions rather
than terms in the built-in mechanisms for handling case expressions),
and in this way is like rewrite rule systems (such as RRL ((??))).
But it is once again remote from actual rewrite rule based provers;
for example, the Knuth-Bendix algorithm ((??)) has no application to
Watson so far (though it might be interesting to develop an interface
between Watson and an implementation of Knuth-Bendix which would
serve as a tactic generator).

Watson may share some “look and feel” with computer algebra
systems (CAS) like Maple ((??)) and Mathematica ((??)); it looks
more like a system for calculation than do most theorem provers. An
interesting project would be to implement a baby CAS as a package
of tactics in Watson; some work like this has been done with earlier
versions of the system. Watson is much smaller than a CAS (much
more is left for users to do) and is also more demanding than a CAS
(computer algebra systems are not in general logically sound).

Watson is not really at all comparable to systems designed for fully
automated proof like Otter ((??)) and the Boyer-Moore prover ((??)).
Otter was the vehicle for the only other work we know of in which
automated reasoning software has been applied to systems related to
Quine’s New Foundations ((??)). In principle, tactics written in Wat-
son could effectively become automatic theorem provers (the existing
tautology checker might fall into this category) but real work along
these lines would require that the tactic language of Watson be given
a much more efficient implementation.

Watson is distinctive in its use of an untyped logic (though some type
inference is supported), in its approach to rewriting and the details of
its tactic language, and in the application of the logical properties of
expressions defined by cases (via a system of conditional rewriting).
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5.2. HOL

HOL is a general theorem proving system developed at the University
of Cambridge (??; ??; ??) that is based on Church’s theory of simple
types, or higher-order logic (??). Although Church developed higher-
order logic as a foundation for mathematics, it can be used for reasoning
about computational systems of all kinds. Similar to predicate logic
in allowing quantification over variables, higher-order logic also al-
lows quantification over predicates and functions, thus permitting more
general systems to be described.

Watson also has a relationship to Church’s simple theory of types:
its logic can be obtained by using polymorphism to collapse a subset
of Church’s type system.

Like Watson, HOL is not a fully automated theorem prover but is
more than simply a proof checker, falling somewhere between these
two extremes. HOL has several features that contribute to its use as a
verification environment:

1. Several built–in theories, including booleans, individuals, numbers,
products, sums, lists, and trees. These theories build on the five
axioms that form the basis of higher-order logic to derive a large
number of theorems that follow from them. In Watson, these the-
ories could be built-in for efficiency purposes, however to date we
have not chosen to do that. Watson does provide some basic prim-
itive operations for booleans and natural numbers, with additional
types being considered.

2. Rules of inference for higher-order logic. These rules contain not
only the eight basic rules of inference from higher–order logic, but
also a large body of derived inference rules that allow proofs to pro-
ceed using larger steps. The HOL system has rules that implement
the standard introduction and elimination rules for Predicate Cal-
culus as well as specialized rules for rewriting terms. This is similar
to some of the built-in rules in Watson used for equational reason-
ing. The difference in the approach of the two systems permits a
natural use of deduction in HOL with extra support required for
rewriting. In Watson the converse is true with deduction requiring
the additional machinery and rewriting being the natural extension.

3. A large collection of tactics. Examples of tactics include REWRITE TAC

which rewrites a goal according to some previously proven theorem
or definition, GEN TAC which removes unnecessary universally quan-
tified variables from the front of terms, and EQ TAC which says that
to show two things are equivalent, we should show that they imply
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each other. In Watson, tactics are not ML scripts or operations on
the basic theory objects but are represented as equational theorems
containing unexecuted applications of theorems (possibly recursive)
as discussed earlier.

More than one implementation of propositional and predicate logic
is provided in Watson: there is an implementation of Gries’s equa-
tional system, a sort of ”tableau” approach using the case-definition
machinery (the style which students typically learn) and recently
an implementation of sequent proofs and a goal-directed natural
deduction prover implemented as an interactive tactic using the
INPUT command. In addition there is a library that provides an
automatic tautology checker.

The ”native” style of Watson reasoning heavily emphasizes rewrit-
ing and relies on deductive power for reasoning by cases with con-
siderable use of reasoning by contradiction. Other styles have been
utilized and tactics can be written that support a more deductive
approach.

None of these approaches are as sophisticated yet as the HOL proof
package but there is no reason to believe that they cannot be up-
graded to this level; this is a matter of system maturity. There has
been some effort to implement “HOL tactics” in Watson.

4. A proof management system that keeps track of the state of an
interactive proof session. The basic HOL system is similar to that
of Watson. In addition Watson keeps track of theorem and axiom
usage in a manner that permits automatic invalidation of theorems
proven using axioms that have been invalidated.

5. A metalanguage, ML, for programming and extending the theorem
prover. Using the metalanguage, tactics can be put together to form
more powerful tactics, new tactics can be written, and theorems
can be aggregated to form new theories for later use. The meta-
language makes the verification system extremely flexible. Watson
is also based on ML, but prefers to utilize its internal language to
specify tactics as well as theorems. Watson is also based on ML,
but prefers to utilize its internal language to specify tactics as well
as the proof scripts for theorems. This may make it easier for users
to learn to program in Watson, though the style of programming
is unusual. In our experience, development of complex tactics is
difficult regardless of the language used. It is our belief that using
the same language for proof scripts, specifications, theorems and
tactics may simplify the tactic development effort. However, at this
time we have no empirical evidence to support this claim.
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In general, the core HOL and Watson systems are similar in capa-
bilities and support environment but are developed from a different
approach. In HOL, theorem specification and manipulation are based
on propositions. A theorem is specified as a predicate that has been
reduced to true using the proof structure of HOL. In Watson, all theo-
rems are equations. Although it is trivial to transform predicates into
equations and back, the underlying approach used in the system plays
a direct role on proof developments. An equational prover, such as
Watson, allows the user to specify theorems in a more natural form,
X = Y . This leads to a potentially different proof structure. In the
HOL system, the user who wishes to prove that X = Y must specify
this at the outset and then reduce this to true. In Watson, the user may
follow this same approach, resulting the in theorem (X = Y ) = true or
alternatively they may start with X(Y ) and reduce the term to Y (X).
The flexibility allows a more general approach to proof development,
permitting the use of whichever technique is more appropriate to the
specific theorem under development.

5.3. Other Comments

We describe a research direction for Watson which takes us into the
area of automated proof. Watson supplies a command which will tell
the user if it is possible to convert the currently displayed term to a
desired form in a single step; we have extended this feature so that
it will search for two-step proofs (in which two theorems are applied
as rewrite rules). Beyond two steps, the explosion in size of the search
space becomes a problem. After discussions with a colleague who works
in parallel programming, we think that it may be possible to increase
the efficiency of an algorithm which searches automatically for proofs
involving a few rewriting steps by applying parallel programming tech-
niques, and we hope to start doing research in this area in the not too
distant future. (In addition, the search could be made more effective by
applying heuristic or AI based search strategies for multi-step solutions.
This is currently not a focus of the research group.) Our interest is not
in completely automating proofs, but in making it so that the prover
will be a more intelligent assistant to the user in interactive proofs.

We are philosophically interested in the distinction between a “big
theory” and a “little theory” approach advocated by the developers of
IMPS ((??)). Watson’s higher-order logic is strong enough to support
a “big theory” approach (in which everything is ultimately founded
on concepts defined in the built-in higher-order logic) but we have
provided support for a “little theory” approach (in which users can
axiomatize their own application areas in little theories, then fit these
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theories together). Our mechanism for theorem export is motivated
by the desire to support something like the IMPS approach, but the
IMPS group can do much more impressive things with their system: for
example, it is possible in Watson to search for theorems which apply
to the currently displayed term, but it is not possible to search for
theorems in other theories on the desktop which could be exported to
the current theory and applied: IMPS has a capability analogous to this
which we would like to emulate. This is a research direction we need to
work in: the modularity provided by Watson needs improvement.
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