
Separating Hierarchy and Replacement

Randall Holmes

4/16/2017 1 pm

This is a set of working notes, not a formal paper: where I am merely
sketching what I think is true (or think might be true) I hope I am saying
this.

1 The cumulative hierarchy understood in Zer-

melo set theory

We describe an inessential extension of second-order Zermelo set theory in
which we can talk about the cumulative hierarchy perfectly sensibly. We
say second-order Zermelo set theory because we allow proper classes and
moreover we allow quantification over proper classes in instances of class
comprehension and separation.

This is a first-order theory with equality and membership. General ele-
ments of its domain are called entities.

We define “x is an object” as “(∃y : x ∈ y).”. We define object(x) as
meaning (∃y : x ∈ y).

We definite “x is an class” as “(∃y : y ∈ x).”. We define class(x) as
meaning (∃y : y ∈ x). Non-classes are called “atoms”.

A class which is not an object will be called a “proper class”. It is an
odd effect of our terminology that the empty set is an atom and not a class.

Axiom of Extensionality:

(∀AB : (∃x : x ∈ A) ∧ (∀y : y ∈ A↔ y ∈ B)→ A = B)

The observant reader may notice that we are allowing atoms, which
agrees with the intentions of Zermelo.
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Axiom of Class Comprehension: For any formula φ in which the vari-
able A does not appear,

(∃A : (∀x : (φ↔ (x ∈ A ∧ object(x)))))

The entity A is uniquely determined if it is nonempty, by the Axiom of
Extensionality. When (∃x : φ∧object(x)) holds, we define {x ∈ V : φ}
as the witness A to the axiom above.

Axiom of Atoms:

(∀e : (∀z : z 6∈ e)→ object(e))

Elementless entities are objects. This isn’t essential but seems to be
needed for tidiness: counterexamples would have no relation to any-
thing else in the theory! Note that Class Comprehension implies the
existence of at least one elementless entity, and all such entities will be
objects by this axiom.

Definitions: Fix one object ∅ with no elements, and define {x ∈ V : φ} as ∅
when (∃x : φ∧object(x)) does not hold. Define V as {x ∈ V : x = x}.
For any class C, define {x ∈ C : φ} as {x ∈ V : x ∈ C ∧ φ}.

Axiom of Elementary Sets: If x is an object, {z ∈ V : z = x} is an
object, which we write {x}. If x and y are objects,

{z ∈ V : z = x ∨ z = y}

is an object, which we write {x, y}. (Zermelo’s version included a clause
for the empty set, but we do not need it).

Axiom of Separation: For any object A and formula φ: {x ∈ A : φ} is an
object.

Definition: Define “x is a set” or set(x) as x = ∅ ∨ (∃yz : y ∈ x ∧ x ∈ z).
Define A ⊆ B as set(A)∧(set(B)∨class(B))∧(∀x : x ∈ A→ x ∈ B).

Axiom of Power Set: For any object A, P(A) = {x ∈ V : x ⊆ A} is an
object.

Axiom of Union: For any object A,
⋃
A = {x ∈ V : (∃y : x ∈ y ∧ y ∈ A}

is an object.
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Axiom of Infinity: The class

N = {n ∈ V : (∀I : ∅ ∈ I ∧ (∀m : m ∈ I → {m} ∈ I)→ n ∈ I)

is an object.

Definition: Define A ∩ B as {x ∈ V : x ∈ A ∧ x ∈ B}. Say that A and B
are disjoint iff A∩B = ∅. Say that P is a pairwise disjoint class iff for
any A,B ∈ P , A and B are either equal or disjoint. If P is a pairwise
disjoint class, we say that C is a choice class for P iff each element of
P has exactly one element which is also an element of C.

Axiom of Choice: Any pairwise disjoint class of nonempty sets has a choice
class.

Zermelo was, I believe, known to object to proper classes, but this for-
mulation is very close to his actual second order intentions for his set theory,
if one views the objects as the elements of his domain and the classes as
representing properties of elements of his domain. I have adopted a stronger
form of choice, but we know now that choice is fairly harmless. The use of
proper classes or of the stronger form of choice are not essential to what I am
doing here re the cumulative hierarchy: but I think they are useful features
for a satisfactory foundational scheme at this level of strength.

Nothing introduced so far is entirely novel. We now do something new
(actually, I am sure it has been done before, but it is not standard axiomat-
ics).

Definition: Let < be a strict well-ordering of a class W (we suppose the
necessary preliminaries required to define a well-ordering to be inter-
polated). We say that a function F is a rank function along < iff the
<-first element of W (if there is one) is mapped to ∅, and for each
element w ∈ W which has a predecessor u, F (w) = P(F (u)), and for
each other w ∈ W , F (w) =

⋃
{F (u) : u < w}.

Theorem: For any two strict well-orderings <1 and <2 of classes W1 and
W2 respectively, with rank functions F1 and F2 along <1 and <2 re-
spectively, and ρ an isomorphism from <1 to an initial segment of <2,
we will have F1(w) = F2(ρ(w)) for all w ∈ W1.

Axiom of Rank: For every x there is a rank function F such that x belongs
to some element of the range of F .
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Further observations: Ordinals can now be described: for any well-ordering
≤ (non-strict, now), the order type of ≤ is the set of all ≤′ isomorphic
to ≤ which belong to the minimal element of the inclusion order on
the range of any (and so every) rank function which contains a well-
ordering isomorphic to ≤. Cardinals and other isomorphism types can
be defined similarly. This is the Scott trick. The class of all order types
is the class of all ordinals.

Definition: For any ordinal α, Vα is the element of the range of some (and
so of any) rank function F such that the order type of the inclusion
order on all properly smaller elements of the range of F is α. We say
that a set x is of rank α iff α is the minimal ordinal such that x ⊆ Vα.

The version of the axiom of rank which I have just stated enforces foun-
dation and strong extensionality. It could be modified to allow atoms by
stipulating that there is a set A which contains all and only the atoms, and
modifying the definition of rank function to set F (w) = A for the ≤-first ele-
ment of W . Zermelo set theory (or our stronger base theory) is equiconsistent
with the same theory plus the Axiom of Rank.

It could be modified further to allow a proper class of atoms by weakening
the definition of rank function to assert that F (w) is some set of atoms for
the <-first element of W : the Theorem on identification of initial segments of
rank functions would apply only if the rank functions started with the same
set of atoms. With a proper class of atoms, we would appear to lose the
Scott trick, so we are not really interested in this modification: if we have a
global well-ordering of the atoms, we can have a proper class of atoms and
carry out a version of the Scott trick (details not given here).

Pathologies of the original form of Zermelo set theory are eliminated by
this axiom. All sets have transitive closures. Since the set of natural numbers
has a rank, and the rank of each natural number is clearly finite, Vω exists,
as the minimal rank containing N. The usual von Neumann natural numbers
each exist (as they do in the original theory) but the von Neumann ordinal ω
also exists, by applying Separation to Vω. Thus we could use the more usual
von Neumann definition of the natural numbers. We do not want to use the
von Neumann definition of general ordinals, however, since the existence of
the von Neumann ω · 2 is not provable. This is not a problem for the theory
of ordinals: the Scott ordinal ω · 2 certainly does exist.

Following in the vein of Mac Lane and Potter, we advocate something
like this as the working foundation of mathematics. Contra Mac Lane, we
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think that bounded separation is an annoyingly technical axiom. In keeping
with Zermelo’s original views and noting pathologies observed by Mathias,
we think that second order Zermelo is better than first, and this theory is
essentially second order Zermelo (it is to Zermelo as Morse Kelly is to ZF).

2 Why not Replacement? I: Replacement is

excessive.

Why do we not advocate including the axiom of replacement in our founda-
tions?

We do not deny that the axiom of replacement is powerful and useful.
It is more than is needed for the usual applications. It is often claimed

that we need replacement to define the von Neumann ordinals (and define
cardinals as initial ordinals). Zermelo set theory, it is said, does not have
ordinals past ω · 2. In the presence of the Axiom of Rank, however, the
Scott trick allows natural definitions of cardinals, ordinals, and indeed of any
structural isomorphism classes at all.

It can further be noted that the von Neumann ordinals and cardinals
become usable if we adopt the axiom “there is a rank function along every
set strict well-ordering”, which implies that Vα exists for every α. This is a
minimal implementation of the intuition of the cumulative hierarchy, and is
much weaker than Replacement. We will see that we do advocate inclusion
of this axiom in our foundations, so we are actually willing to use the von
Neumann ordinals, but deny that Replacement is required to justify them.

The pathologies of the original definition (failure of the existence of tran-
sitive closures or of Vω and related objects) are dealt with by the Axiom of
Rank.

Kanamori in his essay in praise of Replacement discusses the important
of the scheme {xi : i ∈ I}, where I is a set and xi denotes an arbitrary way
to choose an xi for each index i ∈ i. If one insists on always being able to
do this, however xi is defined, and obtain a set, one is of course assuming
replacement. But one only needs replacement if there is a danger that the
xi’s have unbounded rank as i ranges over the set I, and this is in fact a most
unlikely situation in typical mathematical applications. If (x ∈ I 7→ xi) is
demonstrably a set, which is true if the rank of xi is bounded as i ranges
over I, then {xi : i ∈ I} is unproblematic.
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He further discusses transfinite recursion. He claims that Potter is im-
plicitly using replacement in his argument in his book: this is not the case,
as Potter is proving transfinite recursion only along set ordinals. I’ve gone
back and read Potter’s argument: I do not find an appeal to replacement,
implicit or otherwise, on p. 183 of Potter. We exhibit a more powerful result
than Potter’s, provable without replacement and justifying recursion along
the proper class ordinal in some cases.

Transfinite Recursion Theorem (class version): Let F be the set of all
functions whose domain is a proper initial segment of the ordinals. Let
g be an increasing class map from the ordinals to the ordinals. Let G
be a map from F to V with the property that G(f), has rank bounded
by g(α), where α is the order type of the domain of f . Then there is
a class map F from ordinals to V such that F (α) = G(F dα). Sethood
of F dα is ensured because the rank of its outputs is bounded by g(α).

This is a theorem of the system outlined above, which has basically no
Replacement at all.

Sensible mathematical constructions with motivations outside of higher
set theory are not going to fail this boundedness condition. Of course, the
need to state and check the boundedness condition might be regarded as an
annoyance.

3 Why not Replacement? II: Replacement is

not motivated by the cumulative hierarchy

picture of the world, and might be danger-

ous

The official story behind modern set theory (on an intuitive level) is that
we are working in the von Neumann (or Zermelo) cumulative hierarchy of
sets. It is commonly said that the cumulative hierarchy intuition motivates
all the axioms of ZF. In our opinion, this is not true. Replacement is vastly
more powerful than the cumulative hierarchy intuition, and less intuitively
evident. We will lay out reasons for this.

The pathologies of Zermelo set theory have to do with the fact that it
was not motivated by the cumulative hierarchy picture (though one can see
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its outlines darkly). The motivation of Zermelo set theory is actually that
its axioms are exactly the axioms that Zermelo needed to prove the Well-
Ordering Theorem (a very respectable genealogy).

Our Axiom of Rank added to Zermelo set theory ensures that its world
looks like an initial segment of the cumulative hierarchy, removing patholo-
gies re transitive closures, different definitions of the natural numbers, and
existence of Vω.

The intuition of the cumulative hierarchy certainly motivates the

Axiom of Hierarchy: There is a rank function along any set strict well-
ordering.

We adopt this axiom forthwith. Unlike Boolos (reference?) we do think
that the cumulative hierarchy motivates more than this axiom provides. It
is worth observing that the first stage Vα of the cumulative hierarchy which
provides a model of this axiom is indexed by the first beth fixed point: iα is
defined as |Vω+α|. The first beth fixed point is the limit Γω of the sequence Γi
defined by Γ0 = i0; Γi+1 = iΓi

. In the universe with index Γω, the sequence
Γ is a definable countable proper class. So Replacement fails rather badly in
this model. We repeat our remark above that if the Axiom of Hierarchy is
assumed, we can use the usual von Neumann ordinals and cardinals.

Now we consider limited forms of Replacement. If κ is a cardinal, and we
consider V κ+ as a model for our universe of sets (with V (κ+)+1 as its universe
of classes), this model will satisfy the assertion that every class such that
there is a class bijection from that class to a set of size κ is a set. We will call
this κ-Replacement. More generally, κ-Replacement holds in any stage of the
cumulative hierarchy (considered as a model for the sets of the universe) when
the cofinality of the stage is greater than κ. So if we assume Hierarchy, we can
build a model of κ-Replacement (in which Hierarchy does not generally hold).
If we assume ω-Replacement (which we will call Countable Replacement) and
Hierarchy, we get the ability to construct a set beth fixed point above any
set ordinal (by the iterative procedure described above for constructing the
first beth fixed point and an application of countable replacement).

We state an axiom with a parameter and a further theorem motivated by
these considerations.

Convention: Fix an infinite regular cardinal κ and term all sets of cardi-
nality ≤ κ “small”. This cardinal will be at least ω.
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Axiom of Small Replacement: If there is a class bijection from a small
set A to a class B, then B is a set.

Strong Hierarchy Theorem: There is a set beth fixed point above any
set ordinal.

One might imagine that one could iterate the process of enforcing κ-
replacement, enforcing replacement for the αth regular cardinal at stage α+1
by extending the hierarchy to have cofinality greater than the αth regular
cardinal. The problem is at limit stages: the degree of replacement enforced
at a limit stage λ is determined by cf(λ), and at the very end of the process,
one has only enforced replacement for the cardinality of the proper class
ordinal if in fact it is regular: no evidence that it is regular is produced by
this process.

We present an argument justifying Replacement in terms of the cumula-
tive hierarchy which does not work. This will clarify our concerns. Suppose
that we can define an object xi for every x in a set I (this is a definition
using a formula φ(i, y): xi is defined as the unique y such that φ(i, y), for
each i ∈ I). Each object F (i) for i ∈ I has a rank αi. If there is an ordinal
α∞ which is the supremum of the ordinals αi, then we can define {xi : i ∈ I}
as {y ∈ Vα∞ : (∃i ∈ I : φ(i, y))}. The only way that this can fail is if the
sequence of ordinals αi is cofinal in the entire sequence of ordinals.

Now we bring in the idea that the cumulative hierarchy can always be
extended further: there is no reason for the construction of the universe
to stop at stage α∞: suppose that we take it a step further (and further
steps required to close things up under the axioms) and it would appear that
{xi : i ∈ I} will exist at or before the new rank Vα∞+1 (which certainly exists
as the power set of the new rank Vα∞).

But this does not work. The difficulty is that the formula φ(i, y) may in
general contain quantifiers over the entire universe V . When we postulate
that we extend the universe by adding more ranks, we may change the values
of xi’s and indeed change the upper bound of their ranks. This argument
does not work unless the definition of xi by the formula φ(i, y) is suitably
absolute.

We will use the following absoluteness theorem.

Levy absoluteness lemma: If α = iα = |Vα| (α is a beth fixed point) then
Vα is absolute for Σ1 sentences: if ψ is a bounded formula (by which we
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mean that every quantifier in ψ is bounded in a set), (∃x ∈ Vα : ψ(x)) iff
(∃x ∈ V : ψ(x)) (and so of course it is also absolute for Π1 sentences).

This lemma holds in the theory of this paper for the same model-theoretic
reasons that it holds in ZFC: it does not depend on Replacement. The basic
idea is that certainly (∃x ∈ Vα : ψ(x)) implies (∃x ∈ V : ψ(x)): now suppose
that (∃x ∈ V : ψ(x)): build a transitive model of size β < α of the theory of
V where α = |Vα|, with no more than β constants specified (including any
parameters in ψ): there will be an x in this model which the model thinks
satisfies ψ(x), and this object actually will satisfy ψ(x) because the formula
ψ(x) is bounded, and the model, and so this witness x, will be included in
Vα because all sets of size hereditarily less than α are in Vα.

Now we adapt the argument above, not to motivate replacement, but to
motivate Σ2 replacement.

Suppose that xi is defined by a formula φ(i, y) such that for each i ∈ I
there is exactly one y = xi such that φ(i, y). Further, suppose that φ(i, y)
is of the form (∃u : ∀v : ψ(i, y, u, v)) where all quantifiers in ψ are bounded,
that is, that φ is a Σ2 formula.

We want to establish that each assertion y = xi is absolute, in the sense
that expanding V suitably will not change its truth value. This assertion
says that y is the unique object such that (∃u : ∀v : ψ(i, y, u, v)). We tweak
this a little bit, to assert that there are pairs (y, u) such that ∀v : ψ(i, y, u, v).
The assertion defining the relationship between i and a pair (y, u) involves
a single unbounded universal quantifier over v, so is absolute for any beth
fixed point above the ranks of i and (y, u). By the strong axiom of hierarchy
there are such beth fixed points which are sets, and by the Levy absoluteness
lemma expanding V above Vα∞ will not perturb the truth value of any of
these statements: no such statements about i, y, u of rank below α∞ will
change either from true to false or from false to true. If the expanded universe
contained an additional y of higher rank than α∞ which participated in a pair
(y, u) making y an additional candidate to be xi, then the model theoretic
construction above would give more than one candidate value for xi in a
beth fixed point rank below α∞ determined by the rank of i and the original
(xi, u), which contradicts the original assumptions. Thus the definition of
the class {xi : i ∈ I} remains stable, and the class becomes a set when the
universe is expanded.

So, to the foundations we rely on we add another axiom

Scheme of Σ2 replacement: For each class function f such that y = f(x)
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is equivalent to a Σ2 formula (∃u : ∀v : ψ(x, y, u, v)) [where each quan-
tifier in ψ is bounded in a set], we assert the axiom that for any set I,
f“I is a set.

It should be noted that the quantifier over the set I here makes this a
very strong move: we are not extending the universe once, but allowing it to
be extended for any set I we wish to consider. Carrying out the expansion
of the universe described κ+ times for an instance should work: difficulties
arise only from sets which have been constructed, and all sets constructed at
a particular stage have their images under f constructed at the immediately
following stage. We say κ+ times because the sequence of stages is otherwise
a set by small replacement and a further stage then becomes visible. It
seems that all instances are being handled uniformly, but I’m not sure I have
everything straight in my head: note that each single stage needs to have
its proper class ordinal a beth fixed point of cofinality κ+ above the proper
class ordinal of the previous stage in order to preserve hierarchy and small
replacement for the next stage, and it appears that carrying this extension
out κ+ times simply enforces Σ2 replacement uniformly for every formula
while preserving hierarchy and small replacement. This may be too good to
be true!

So far our results are positive. We have verified a limited form of Replace-
ment on what seem to be reasonable intuitions, and considerably extended
the foundations we regard as reliable. However, we do not see a way to
go much further toward Replacement (there are certainly further extensions
which can be made).

An instance of Π2 replacement says that f“I is a set if f is a class function
with domain I such that f(x) = y is equivalent to a formula (∀u : ∃v :
ψ(x, y, u, v)) [ψ bounded]. Observe that the truth of this formula is in effect
witnessed for each x, y by the existence of a class function taking each u of
whatever rank to the nonempty set of all objects v of minimal rank such that
ψ(x, y, u, v). It is very hard to see how the existence of such an unbounded
class function could be shown to be absolute in general: I’m thinking about
whether there is a justification using levels of the cumulative hierarchy closed
under class functions with suitably bounded definitions. Rough notes follow.
We first consider the absoluteness or lack thereof of Π2 sentences. A sentence
(∀u : ∃vψ), ψ bounded breaks up into statements about individual objects u:
∃v : ψ is absolute for each u for which it holds at beth fixed points. ∀v : ¬ψ
is absolute for each u for which it holds at beth fixed points. So (∀u : ∃vψ)
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can change from true to false as the universe is extended (the universe always
viewed as a beth fixed point), but not vice versa: it remains true until a u
not in the domain of the relation described by ψ is encountered, whereupon
it remains false. Now consider a formula (∀x ∈ I : ∃!y : ∀u : ∃v : ψ). As the
universe is extended, it appears possible for this statement to oscillate: for a
given x and any y that have been encountered, the statement about u’s and
v’s either remains true or becomes false as the universe is extended: as soon
as it is true of exactly one y for the given x the whole statement becomes true,
but then that in turn may become false. Addition of new y’s at higher ranks
may cause the whole statement to go from false to true (if it was true of no
y and then became true of one) or true to false (if it was true of exactly one
y and then became true of more than one as new y’s were discovered). The
definition of a class by such an instance of Replacement is not stable in the
way that we want: when the universe is extended, the y originally associated
with a given x may cease to be associated with it (by discovery of a u such
that (∀v : ¬ψ(x, y, u, v)) holds) and in the course of the same extension a new
y′ may be introduced for which (∀u : ∃v : ψ(x, y′, u, v)): the extension of the
class supposed to be defined by the instance of Replacement changes as the
universe is changed. It appears to us that there is a convincing argument that
Π2 Replacement cannot be justified on the basis of the cumulative hierarchy
picture in the way in which we have suggested that Σ2 Replacement can be
so justified.

One might say that one can simply postulate an inaccessible cardinal.
But we are expressing not actual doubt, but the position that doubt is con-
ceivable, that there are inaccessibles or that ZFC is consistent. And further,
our claim is that postulating a regular uncountable strong limit cardinal is
a strong axiom of infinity, a combinatorial principle, not motivated by the
cumulative hierarchy picture: cutting the Gordian knot of our objections by
simply postulating an inaccessible makes our point that this is a separate
idea from the cumulative hierarchy.

We see no fundamental reason why there cannot be a definable class of
ordinals cofinal in the proper class ordinals and provably of set size. The
argument above convinces us that the class map from a set I to such a
class of ordinals will not be defined by a Σ2 formula, but there is no clear
obstruction to the possibility that such a class can be defined. Attempts
to extend the universe to capture this class as a set will simply perturb the
definition of the class so that it remains cofinal in the ordinals. The size of
the set I would also vary as the size of the universe varied: it could not be
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smaller than the cofinality of the proper class ordinal, which it appears can
be as large as desired.

On the flip side, we see no fundamental reason why there cannot be an
as yet undiscovered proof that all uncountable strong limit cardinals are
singular. If such a proof applied to class strong limit cardinals as well as
sets, we would be in the same place: ZFC would be inconsistent.

Do we think that ZFC is inconsistent? On the basis of experience, no.
But there is no convincing argument from the intuition of the cumulative
hierarchy to full replacement. We regard the reasoning in this paper up
to the schemes of Σ2 replacement and small replacement as affording con-
vincing intuitive justification for the theory presented. We do not see any
way to proceed past this point to actually put the intuition behind ZFC on
unquestionable ground.

We would suggest that the chapter 0 foundations in every math book
really should be something more like the base theory here, or perhaps the
base theory with the Axiom of Hierarchy if one really wants the von Neumann
definition of the ordinals. This is not because we actually think that ZFC is
in any danger of being shown to be inconsistent: but it is far stronger than
is necessary for any purpose outside of technical set theory.

There is a decent argument that the Scott trick should not be underrated:
it provides a general method of implementing any isomorphism classes (for
example an abstract group is readily defined as the intersection of the iso-
morphism class of a concrete group (G, ∗) with the smallest rank that it
meets). If the Scott trick is promoted as the general method for handling
isomorphism classes, then Scott ordinals and cardinals become the natural
choice.

4 A variation: modified Ackermann set the-

ory

This line of thought has suggested to us the following modification of the set
theory of Ackermann.

Modified Ackermann set theory is a first order theory with equality, mem-
bership, and a primitive sethood predicate. General objects of the theory are
called classes. Note that there is no presumption that a class is a set because
it is an element: it is provable from the axioms given that there are classes
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with elements that are not sets.

Axiom of extensionality: Classes with the same elements are equal.

Axiom of class comprehension: For any formula φ, {x : set(x)∧φ} is a
class.

Axiom of elements: Elements of a set are sets.

Axiom of subclasses: Subclasses of a set are sets.

Axiom of set comprehension: Let φ be a bounded formula (each quan-
tifier is bounded in a class) in which all parameters other than v are
taken to represent sets and the sethood predicate is not mentioned. If
all objects x such that (∀v : φ) are sets, then {x : (∀v : φ} is a set. If
all objects x such that (∃v : φ) are sets, then {x : (∃v : φ)} is a set. Of
course, if all objects x such that φ are sets and v does not occur in φ,
{x : φ} is a set by either of the previous two clauses.

Axiom of foundation: Every class has an element from which it is disjoint.

Axiom of choice: Each nonempty class partition has a choice class.

The modification is the restriction in set comprehension to formulas with
a single unbounded quantifier over classes. The idea is that we are building
a theory motivated not by the full reflection principle found in ZFC but by
the limited reflection justified by Levy’s lemma. The axiom of foundation is
not in Ackermann’s original theory, but has been added for convenience by
later workers to allow restriction to well-founded sets and classes. Choice is
not normally included in Ackermann set theory but it is important for us to
include it as we want to construct beth fixed points.

Theorem: ∅ is a set. This follows by set comprehension applied to the
formula x 6= x.

Theorem: If a is a set, so is {a}. This follows by set comprehension applied
to the formula x = a.

Theorem: If a, b are sets, so is {a, b}. This follows by set comprehension
applied to the formula x = a ∨ x = b.
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Theorem: If A is is a set, so is P(A). This follows by set comprehension
applied to the formula (∀v : v ∈ x → v ∈ A). Note the unbounded
quantifier. Note that the axiom of subclasses tells us that any x satis-
fying this formula is a set.

Theorem: If A is a set, so is
⋃
A. This follows by set comprehension applied

to (∃y ∈ A : x ∈ y). Note that the axiom of elements tells us that any
x satisfying this formula is a set, and this formula is bounded and has
all parameters sets.

Theorem: Define 0 as ∅. Define n+1 as {n}. Define an inductive class as a
class I such that (∀n ∈ I : n+ 1 ∈ I). Observe that the class of sets is
inductive by an earlier theorem. The class N of all n such that “for all
inductive classes I, n ∈ I” is thus a set. This is by set comprehension
on the formula (∀I : (∀n ∈ I : n+ 1 ∈ I)→ x ∈ I).

Theorem: We call a class H a hierarchy iff it is linearly ordered by inclusion
and every successor in the inclusion order on H has all of its elements
subclasses of its predecessor and every non-successor x in H has each
of its elements y the union of all z preceding x in the inclusion order
on H. For any set well-ordering W , define VW as the collection of all
objects such that there is a class isomorphism from W to a hierarchy
starting with ∅ which contains the given object in an element of its
range. A straightforward induction on W shows that all elements of
this collection are sets, and it is then a set by set comprehenson [“class
isomorphism from W to a hierarchy” has a bounded description]. We
want it to be the case that ifW has a last element, VW is the power set of
VW ′ , where W ′ is the restriction of W to all non-final elements of W ; we
already know that unions are taken at successor stages. We can prove
this by induction, since any subclass of the field of W defined in any old
way is actually a set: we can inquire concerning the first VU where U is
an initial segment of W and VU is not (if a successor) the appropriate
power set. We can further construct a beth fixed point above any
stage VW in a very similar way [details to be presented carefully], by
constructing a sequence of hierarchies along well-orderings of the unions
of preceding hierarchies.

Here is a way to think of the world of Ackermann set theory. The col-
lection of all sets is the actual universe V . The “collection” of classes is a

14



potential extension of V . The axiom of elements tells us that V is transitive
as one would expect. The axiom of subclasses tells us that V contains all
subcollections of its elements. The axiom of class comprehension tells us that
any subcollection of V that we can define is a class, which we would expect
to be the case since the universe of classes is a potential extension of V , and
at the very least we would add one more stage, as it were.

The set comprehension scheme has a more complicated motivation. We
expect V to be a limit of beth fixed points. If φ is a Π1 or Σ1 (or bounded)
formula over classes with all parameters sets, and doesn’t mention the set-
hood predicate (which would amount to mentioning V ), then we expect
a stage W of the cumulative hierarchy below V indexed by a beth fixed
point and containing all parameters to be absolute for this formula, and
{x ∈ W : φ} = {x : φ} will be a set. Theorems above show that V (the
class of all sets) actually is a limit of beth fixed points as this motivation
presumes.

Full Ackermann set theory (without the complexity restriction on set
comprehension) is similarly motivated, relying on the full reflection princi-
ple of ZF. The weakness of its motivation is as above: there is no obvious
reason to believe that the world of potential collections (classes) has suitable
absoluteness relations to the world of actual collections (sets). The poten-
tial collections are by their nature indefinite or extensible, and their exact
extent may perturb the meaning of quantifiers over all classes = potential
collections.

5 Closing remark

Of course, if one is willing to postulate an inaccessible (if only a proper
class inaccessible), then the axiom of replacement and the strong reflection
principle are clearly satisfied in set models of our base theory, and ZFC is
put on a firm footing. But one has to postulate the inaccessible to achieve
this. An inaccessible really is a large cardinal: there is no argument to it
from below. What is not true is that there is any clear argument from the
cumulative hierarchy picture to the existence of an inaccessible (whether a set
or proper class inaccessible), and that is the point we are trying to make. The
cumulative hierarchy picture (with the idea that the cumulative hierarchy is
indefinitely extensible in a suitable sense) does motivate a kind of set theory,
and quite a strong one, but not ZFC.
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