M. RANDALL HOLMES The structure of the
ordinals and the
interpretation of ZF in
double extension set theory

Abstract. Andrzej Kisielewicz has proposed three systems of “double extension set the-
ory”, of which we have shown two to be inconsistent in an earlier paper. Kisielewicz
presented an argument that the remaining system interprets ZF', which is defective: it ac-
tually shows that the surviving possibly consistent system of double extension set theory
interprets ZF with Separation and Comprehension restricted to Ay formulas. We show
that this system does interpret ZF', using an analysis of the structure of the ordinals.
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1. Introduction

Various systems of double extension set theory have been proposed by An-
drzej Kisielewicz in the papers [3] and [4]. Of these, all but one was shown
to be inconsistent by the author of this paper in [2].

The purpose of this paper is to examine the claim of Kisielewicz that the
surviving possibly consistent system of double extension set theory interprets
ZF. For technical reasons, the account he gives in [4] is unsatisfactory: it
only shows that double extension set theory interprets bounded ZF (with
comprehension and replacement restricted to A formulas). We show that
nonetheless double extension set theory does interpret ZF'; we do this by
examining the structure of the ordinals in double extension set theory.

I wish to acknowledge useful conversations with Andrzej Kisielewicz and
Olivier Esser, including corrections of some earlier errors.

2. Definition of the Theory

Double extension set theory (hereinafter DEST) is a first-order theory with
equality and two primitive binary predicates € and € which are to be thought
of as two different flavors of membership. Objects of our theory are called

Presented by Melvin Fitting; Received 777

Studia Logica 68: 1-77, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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“sets”; but notice that each “set” has two different extensions. The interest-
ing sets, called “regular” sets, will have the same extension in both senses.

DEFINITION 2.1. We say that a set A is regular iff (Vx.x € A=xeA). We
abbreviate this as reg(A). Sets which are not regular are said to be irregular.

We have the following

Axiom 2.2. (Axiom of Mixed Extensionality)
(VAB.(Vz.x € A=zeB) - A= B)

Observe that a set shown to be equal to another set by this axiom of
extensionality will necessarily be regular. The axiom also implies that any
set with the same extension as a regular set in the sense of either membership
relation is actually equal to that regular set.

In [2] it is shown that in the full system of DEST it is provable that there
are distinct objects with the same extension in terms of one or the other
membership relation. It is not known whether it is consistent to assume
that objects with both extensions the same are equal.

We introduce an axiom which ensures that regular sets are somewhat
well-behaved.

DEFINITION 2.3. We say that a set A has regular elements just in case
(Vz.(r € AVzeA) = reg(x)) (i.e., when all its elements in either sense are
regular).

DEFINITION 2.4. We say that a set A is partially contained in a set B when
(Ve.x € A— x € B)V (Vr.xe A — zeB) (i.e., when A is a subset of B in
one sense or the other).

Axiom 2.5. (Regularity Axiom) A set which is partially contained in a set
with regular elements is regular.

Now we introduce the basic idea that drives double extension set theory.

DEFINITION 2.6. A formula is said to be uniform if it contains no occurrence
of e.

DEFINITION 2.7. For any formula ¢, we define ¢*, the dual of ¢, as the
formula which results when every occurrence of € in ¢ is replaced with €
and vice versa.



AxioM 2.8. (Axiom Scheme of Comprehension) For each uniform formula
¢ with free variables z, 1, ..., x,, there is an object {x | ¢} such that

(Va1 .. /\ = (Vo.(z e {z| o} =¢") A (ze{z | ¢} = 9)))

This completes the statement of the axioms of DEST.

It is instructive to observe how the theory avoids Russell’s paradox. = & x
is a uniform formula with no free variables other than x. By the comprehen-
sion scheme, there is then an object {z | = & =} (the Russell class), which we
may abbreviate R, with the property that t € R=2z fex AxeR=z & «,
for all . In particular, letting x = R, we find that R € R = R /e R, so
instead of discovering a paradox we find that R is an irregular set. Later in
the paper we will have a close encounter with the Burali-Forti paradox as
well.

The restriction to regular parameters (or at least some restriction on
parameters) is necessary. Otherwise consider the set A* = {z | x € A}:
we would have z € A* = x ¢ A, and by mixed extensionality A = A* would
be regular — for any set A, including, for example R. But we have already
established that R is not regular.

It is useful to observe that a formula of the form ze{x | ¢}, with ¢
uniform, is actually equivalent to a uniform formula and so can be allowed in
uniform formulas (this will usually be useful when a lengthy set abstract has
been given a name). This observation can be generalized to give a beautiful
version of the theory allowing general (not necessarily regular) parameters
in a very natural way — but the resulting theory turns out to be inconsistent
(the theory which results is a subtheory of the theory of [3], and the proof
of inconsistency is found in [2]).

We prove a basic lemma about regular sets, due to Kisielewicz in [4].

DEFINITION 2.9. We say that = has a singleton (abbreviated S(x)) just in
case (Jy.(Vz.z € y = z = x)). We denote the dual notion by S*(x). Notice
that there is no implication that the singleton is unique.

LEMMA 2.10. (Singleton Lemma) (VA.reg(A) = (S(z)AS*(x))). In English,

a set is reqular iff it has a singleton in both senses.

PROOF. Suppose that a is regular. {z | z = a} isaset. y € {z | x = a} iff
ye{zr |z =a} iff y =a, so {x | z = a} witnesses the truth of both S(a) and
S*(a).
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Now suppose that S(a) is true and S*(a) is true. Then there is a b whose
€-extension has a as its only element and a ¢ whose e-extension has a as its
only element. By mixed extensionality, b = ¢ and so b = c is regular. Use
the notation {a} for this object. Since {a} is regular, we can consider the
set A* ={z| (3y.z € yAy € {a})}. Forany z, xe A" iff (Jy.x € yAy € {a})
iff x € A, from which it follows that A = A* by mixed extensionality and
further that A is regular.

This completes the proof of the Lemma.

We prove a useful relationship between sentences ¢ and ¢*.

LEMMA 2.11. (Duality Lemma) For any formula ¢ with free variables
Z15---yZn,

(Va1 ...2p. /\ reg(z;) — ¢ = ¢*)

i=1

PRrROOF. Consider the set D = {z | ¢}, z not free in ¢ (supposing that all
free variables in ¢ are to take regular values, as is required for the axiom
scheme of comprehension to apply). For any z, z € D = ¢*, and ze D = ¢,
by comprehension. Note that the extension of D in either sense is either V
or (), from which it follows that D =V or D = () (by mixed extensionality)
and so its two extensions are the same, by regularity of V and (), from which
it follows that ¢ = ¢*.

[

Here is a second Lemma about sets definable using a uniform formula
with regular parameters.

LEMMA 2.12. (Definability Lemma) Suppose that ¢(x) is a uniform formula
in which all free variables other than x are understood to have reqular values,
and it is the case that

(Fz.p(x)) A (Vay.p(x) Nod(y) = Vzz €x =2z €y));

i.e., there are witnesses to (Jzx.¢(x)) and all such witnesses have the same
€-extension (of course it suffices for the witness to be unique as well). Then
there is one and only one x such that ¢(x), it is reqular, and it is also the
unique x such that ¢*(x).



ProOF. The set X = {y | (3z.¢(z) ANy € x)} exists by the comprehension
scheme, and its e-extension is the same as the €-extension of any x such that
¢(x). By our extensionality axiom, it follows that X is regular and is the
unique z such that ¢(z). By the Duality Lemma, there is one and only one
x such that ¢*(z), and by comprehension the €-extension of X is the same
as the e-extension of the unique z such that ¢*(z), so they are the same
object.

|

3. Interpreting bounded ZF in DEST

The claim of Kisielewicz in [4] is that the class of “hereditarily regular sets”
supports all mathematical constructions of ZF. We will reproduce his devel-
opment (with some modifications) and point out why we get an interpreta-
tion of bounded ZF rather than full ZF.

First, we need to verify that the set of hereditarily regular sets is actually
definable. We will further refine the definition so that our interpreted theory
will satisfy Foundation.

DEFINITION 3.1. We say that a set A is transitive iff (Vo € AVy € z.y € A).
We abbreviate this as Trans(A) and observe that it is a uniform formula.

DEFINITION 3.2. We define A C B as (Vz.x € A — z € B).

DEFINITION 3.3. Let A be a regular set. Define TC(A) (called the transitive
closure of A) as the intersection of all transitive sets which contain A as a
subset: TC(A) = {x | (VB.A C B A Trans(B) — x € B)}.

DEFINITION 3.4. A set A is hereditarily reqular iff A is regular and TC(A)
has regular elements (i.e., all members of TC(A) in either sense are regular).
Note that this implies immediately that A itself is regular and also that
TC(A) itself is regular (but it is not equivalent to either of these assertions!)

It is useful to observe that not all regular sets are hereditarily regular.
V = {x | x = z}, the universal set, has all sets as its elements in both senses,
and so is regular. But V' is not hereditarily regular, because TC(V') = V has
the irregular set R as an element (notice that we have an example of a set A
such that A is regular, TC(A) is regular, but A is not hereditarily regular).

In addition, we wish to stipulate that sets of the interpreted ZF should
be well-founded.
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DEFINITION 3.5. Define < y as (Vz.(y C z A Trans(z)) -z € z). If y
happens to be regular, x < y =z € TC(y). If y is transitive, x < y =z € y.
It is easy to see that < is a transitive relation.

DEFINITION 3.6. We say that a transitive set A is well-founded iff
VC.(Vz(r e ANz e CNEFy<zyel)) - (Fz<zzeCANMv<zz¢g
()))). We abbreviate this wf(z). In English, this asserts that if a set C
meets A at an element z, then either x itself is a <-minimal element of C
or some z < z (which will also be an element of A because A is transitive)
is a <-minimal element of C.

OBSERVATION 3.7. The form of the definition makes it obvious that a tran-
sitive subset of a well-founded transitive set is also well-founded transitive.

DEFINITION 3.8. We call a general set A a well-founded set just in case it is
a subset of a well-founded transitive set. The preceding observation ensures
that there will be no conflict between the definitions of well-foundedness for
transitive sets and general sets.

LEMMA 3.9. (Wellfoundedness Lemma) A hereditarily reqular set
all of whose elements are well-founded is well-founded.

PROOF. Let A be hereditarily regular and let all elements of A be well-
founded. We aim to show that TC(A) is well-founded transitive, which is
sufficient to show that A is well-founded. Let z be an element of TC(A)
which €-belongs to a set C' but is not <-minimal in C. If x belongs to any
element y of A, well-foundedness of y and so of TC(y) implies that there is a
<-minimal element of C' in TC(y) and so in TC(A). If x does not belong to
the transitive closure of any element of A, it must itself be an element of A
(for A hereditarily regular, we can define the set consisting of all elements
of A and all elements of TC(y)’s for y € A (regularity of the sets TC(y) for
y € A allows us to define this using a uniform formula): this set is clearly
transitive and contains A). There is y < x which belongs to C, and by well-
foundedness of TC(x) there is z < y < x which is <-minimal in C, completing
the proof of the lemma.

[

The intention is that the set of well-founded hereditarily regular sets
should model ZF'.

We review the status of the axioms of ZF, following Kisielewicz in [4] for
the most part. Our treatment of comprehension and replacement points out
the technical error, and Kisielewicz’s definition of the natural numbers and



proof of Infinity in the interpreted ZF' is not used because it is difficult to
prove that the set as he defines it is well-founded: we prove the interpretation
of Infinity as part of our development of the properties of ordinals below (we
prove that there is a regular limit ordinal).

Pairing: If a and b are well-founded hereditarily regular sets, then {a,b}
exists by comprehension and is regular. TC({a,b}) is the intersection
of all sets which contain {a, b} as a €-subset (i.e., contain both a and
b as elements) and are transitive. It is straightforward to show that
a set belongs to the transitive closure (in either sense) of the pair iff
it is equal to a, equal to b, or belongs to the transitive closure (in
the same sense) of one of these two sets: the collection of things with
these properties is transitive and a superset of {a,b}, so contains all
elements of the transitive closure of the pair, and any element of this
set clearly must belong to any transitive set which contains both a
and b as elements. So the pair is also hereditarily regular. The pair is
well-founded because it is hereditarily regular and all its elements are
well-founded.

Union: if A is a well-founded hereditarily regular set,

UA:{a;|(EIy.ac€y/\y€A)}

exists by comprehension. It is regular because all elements of elements
of a (in either sense) belong to its transitive closure (in that same sense)
and so are regular. It is hereditarily regular, because the transitive
closure of the union of A is clearly included in the transitive closure of
A: if one belongs to any transitive set which contains all elements of
elements of A, one clearly belongs to any transitive set which contains
all elements of A. Since the transitive closure of the union is included
in the transitive closure of A, all elements of the transitive closure of
the union are regular. It is also the case that the transitive closure
of the union is well-founded, from which it follows that the union is
well-founded.

Power Set: if A is a well-founded hereditarily regular set,
PA) ={z| Vyyecxz—yecA)}

exists by comprehension. Any element of the power set (in either sense)
is partially contained in a set with regular elements, so is regular, and
so the power set itself is regular. The union of the power set of A and
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the transitive closure of A is a transitive set which includes the power
set of A as a subset, so includes (in fact is equal to) the transitive
closure of the power set. This is all that is needed to see that all
elements of the transitive closure of the power set are regular, so it is
hereditarily regular. It is also easy to see that the transitive closure of
the power set is well-founded. If a set C' meets the transitive closure of
the power set at an element x of the transitive closure of A, we know
that there is a <-minimal element of C' in the transitive closure of z
and so in the transitive closure of the power set. If a set C' meets the
transitive closure of the power set at an element x of the power set of
A, then either z is <-minimal in C itself or there is y < x in C' which
belongs to the well-founded transitive closure of A, so that it either is
or has as an element of its transitive closure a <-minimal element of
C. Thus the power set is well-founded.

“Comprehension”: For any uniform formula ¢ and well-founded heredi-
tarily regular set A, the set {x € A | ¢} exists by comprehension. Any
element of the transitive closure of this set also belongs to the transi-
tive closure of A and so is regular (and the transitive closure of this set
inherits the well-foundedness of the transitive closure of A). So this
set is well-founded and hereditarily regular. But this is not really the
comprehension axiom of the interpreted ZF': quantification over the
universe of the interpreted ZF would involve reference to the predi-
cate “hereditarily regular”, which is not uniform and so cannot occur
in ¢. Bounded quantification (in which every quantifier is restricted
to a specific hereditarily regular set) will be successfully interpreted in
this way.

“Replacement”: For any uniform formula ¢ and well-founded hereditarily
regular set A, suppose we know that for each x in A there is exactly
one well-founded hereditarily regular y such that ¢(x,y). Under these
conditions ¢(z,y) = ¢*(z,y) for each y and for z € A by the Duality
Lemma above. It follows that {y | (3z € A.¢(x,y))} is hereditarily
regular. It is well-founded because a hereditarily regular set all of
whose elements are well-founded is well-founded. Quantification over
the universe of the interpreted ZF in ¢ is not supported because the
formula ¢ would not be uniform.

Infinity: The proof of Infinity is deferred: it falls out as a byproduct of
our analysis of the ordinals below. The treatment of Kisielewicz in [4]
would not be satisfactory here because there appears to be no easy



way to prove that the set he defines there is well-founded.

Other Axioms: Extensionality obviously holds. Foundation holds because
we consider well-founded hereditarily regular sets (this was not done
in [4]).

We have shown, following Kisielewicz’s argument from [4], that the re-
stricted version of ZF — Infinity in which the comprehension and replace-
ment schemes are restricted to Ay formulas is interpretable in the well-
founded hereditarily regular sets of DEST.

4. The Plan to Interpret ZF

Further work allows us to show that in fact double extension set theory does
interpret ZF'. The result to be proved which implies this is the following:

CrAIM 4.1. One of the extensions of the set of all ordinals contains exactly
the regular ordinals.

This presupposes a definition of the ordinals, which will be given explic-
itly in the next section, but all we need to know about this definition at
this point is that the regular ordinals will coincide with the ordinals of the
interpretation of bounded ZF — Infinity given in the previous section.

We can quantify over all ordinals because the ordinals will be defined by
a uniform formula: in one sense this will amount to quantification over the
regular ordinals, and in the other sense it will amount to quantification over a
larger domain. The fact that the quantification is equivocal is harmless. Let
¢ be a formula involving quantification over the set of ordinals, to be used in
an instance of separation or replacement. Suppose that the interpretation of
¢ involves quantification over all regular ordinals, while the interpretation of
¢* involves the other extension of the set of ordinals. If A is well-founded and
hereditarily regular, it is sufficient to know that {x € A | ¢} merely exists
to know that it is regular (and indeed well-founded and hereditarily regular)
so the x in A for which ¢ is true are the same as the z in A for which
¢* is true. This justifies separation for conditions containing unbounded
quantifiers over the ordinals.

The proof which follows of replacement for formulas which contain un-
bounded quantifiers over the ordinals first demonstrates a different scheme
which we call “Axiom R”, which we show to be equivalent to Replacement.

If {y | ¢(z,y)} is well-founded and hereditarily regular for each x in a
well-founded and hereditarily regular set A, that is sufficient for ¢(z,y) and
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¢*(z,y) to be equivalent whenever x € A, and this means that the extension
of {y | (3z € A| ¢(x,y))} is unequivocally defined, and so regular. Since all
of its elements are well-founded and hereditarily regular, it is well-founded
and hereditarily regular as well.

This shows that the following axiom scheme holds in the interpreted
set theory (to be adjoined to Zermelo, not to double extension set theory):
if ¢(z,y) is a formula which may contain unbounded quantifiers over the
ordinals, and we have for each x € A that {y | ¢(z,y)} is a set, it follows
that {y | (3z € A.¢(z,y))} is a set. Call this scheme “Axiom R”.

Axiom R implies replacement (in the presence of the other axioms of
Zermelo set theory). Suppose that for each x € A there is exactly one set
y such that ¢(z,y). By the axiom of pairing, {y | ¢(x,y)} is a set for each
x € A. By axiom R, {y | (3z € A.¢(x,y)} is a set.

Replacement implies axiom R (in the presence of the other axioms of
Zermelo set theory). Suppose that for each x € A, {y | ¢(z,y)} is a set.
Then for each x € A there is exactly one w such that (Vy.y € w = ¢(z,y))
Then by replacement the set {w|(3x € A.(Vy.y € w = ¢(x,y)))} exists, and
the union of this set is {y | (3= € A.¢(z,y))}.

If we could quantify over the regular ordinals in instances of separation
and replacement, we claim that we can quantify over all sets of the inter-
preted ZF, by replacing any unbounded quantifier (Vx.¢) with (Va.(Vx €
Va.¢)) (and similarly for existential quantifiers). This does require that we
prove something: we prove below that the hereditarily regular well-founded
sets are exactly those sets which belong to V, for some regular ordinal «
(Olivier Esser pointed out the need to prove this, and simplified our original
proof of this result).

So it remains to prove the theorem about ordinals, prove Infinity, and
prove that the sets of the interpreted ZF are exactly the elements of regular-
indexed ranks to complete the proof that ZF is interpretable in the well-
founded hereditarily regular sets of DEST.

5. The Structure of the Ordinals in DEST

We recall from above that we define Trans(x) as the €-formula
(Vy e xVz € y.z € x).

We define Trichotomy(z) as the €-formula asserting that for any y, z € x,
exactly one of y € z, z € y, and y = z is true.
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We define S as

{z|(Fy.(Vzz ey=2z=1x))}.

This is the set of all sets which have €-singletons; the Singleton Lemma from
above is equivalent to the assertion that a set x is regular iff z € S Az eS.

We recall the definition of wf(A) as (VO.(Vz.(x € ANz € CA(Ty <
zy€C)) = (Fz<z.(2 € CAVw < zzw ¢ C)))). Under the hypothesis that
A is transitive, this expresses the notion that A is well-founded. Note that if
A is transitive and all elements of A are transitive (as will be the case with
ordinals) all occurrences of < can be replaced with €, since these relations
are equivalent on transitive sets.

We define Ord, the set of ordinals, as

{a| (VB € a.feS)ATrans(a)A (VS € a.Trans(f))ATrichotomy(a)Awf(c)}.

We refer to e-elements of Ord as €-ordinals and to €-elements of Ord as e-
ordinals. The motivation of the definition is that we intend all elements of
an ordinal to have singletons and we intend the ordinal to be transitive and
strictly well-ordered by membership.

The main result of this section is the following

THEOREM 5.1. One of the extensions of the set of ordinals consists exactly
of the reqular ordinals. The other extension properly includes the collection
of reqular ordinals.

PROOF. It is straightforward to check that any €-transitive €-subset of an
€-ordinal is an ordinal; it follows that any €-element of an €-ordinal is an €-
ordinal as well. Further, no €-ordinal can be an €-element of itself (because
it is strictly well ordered by €).

We insert the check: let B be a &-transitive subset of the €-ordinal
. Certainly all elements of B have &-singletons. B is &-transitive by
hypothesis. All elements of B are elements of «, and so are €-transitive.
Any €-subset of «a is €-trichotomous, so B is €-trichotomous. B is well-
founded by the Wellfoundedness Lemma. So any &-transitive €-subset of an
€-ordinal is an ordinal, from which it follows immediately that any €-element
of a €-ordinal is a €-ordinal.

A “regular ordinal” is defined as a regular set which is a €-ordinal. Ob-
serve that if « is regular and a €-ordinal, then it is also a e-ordinal by the
Duality Lemma.

An element of a regular ordinal is a regular ordinal: a regular ordinal has
all elements having singletons in both senses, since it is both a €- and an
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e-ordinal, and this is sufficient for all its elements to be regular. In fact, this
implies that a regular ordinal is a well-founded hereditarily regular set (it is
well-founded transitive and all its elements are regular). This further implies
that regular ordinals have all properties of ordinals provable in bounded ZF
without Infinity, because they are actually the ordinals of our interpreted
bounded ZF without Infinity. They are sets of the interpreted bounded ZF
— Infinity because they are hereditarily regular, and it is obvious that any
ordinal in the sense of DEST which is a set of the interpretation is also an
ordinal in the sense of ZF.

Any irregular €-ordinal has all regular ordinals as €-elements. Suppose
otherwise: suppose 3 irregular does not contain « regular as an €-element. (8
must meet the complement of «, because any subset of a hereditarily regular
set is regular. The complement of « is a set, because « is regular. So there
must be an element v of 5 which belongs to the complement of o but which
contains only elements of «, by well-foundedness of 5. This is only possible
if v = «a, by standard reasoning about ordinals (v, being a subset of «, must
be regular). This is a contradiction.

It cannot be the case that all ordinals are regular in both senses, for the
Burali-Forti paradox would follow: in this case Ord would itself be an ordinal
(this would be proved by standard methods, because the regular ordinals
satisfy all familiar properties of ordinals), and so self-membered, which is
impossible because ordinals are strictly well-ordered by membership.

Without loss of generality we suppose that there is an irregular €-ordinal,
which we call «. If o has no irregular €-element, then we are done: « will
have as its €-elements exactly the regular ordinals. So suppose that o has
an irregular €-element. Observe that the elements of o which are regular are
exactly those which €-belong to S: every €-element of o has a &-singleton
because « is a €-ordinal: an element of a will be regular iff it also has a
e-singleton, which obtains exactly if it €-belongs to S. a meets S (because
it has an irregular €-element). S° is a set, so there is an element [ of «
which belongs to S¢ and contains only elements of S, by well-foundness of
«. This 5 must have as its €-elements all the regular ordinals (because it is
irregular) and only the regular ordinals (because all its elements are regular).
This completes the proof of the main theorem.

|

We conclude further that if there is an irregular €-ordinal there cannot be
an irregular e-ordinal. If there were, we would have an e-ordinal 8* whose
elements are exactly the regular ordinals, by the dual of the argument of
the previous paragraph. We would have 8 = * by mixed extensionality,
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and so we would have a set consisting exactly of the regular ordinals in both
senses. But the Burali-Forti paradox could then readily be derived: standard
reasoning about the regular ordinals would show that § was also a regular
ordinal and so was self-membered.

Further, observe that all regular ordinals (in the case considered so far in
this paper all e-ordinals) are the only sets with their e-extensions, so, by the
Duality Lemma, all €-ordinals are the only sets with their €-extensions. This
has the amusing consequence that the €-ordinal with €-extension containing
exactly the regular ordinals is in fact the same object as the set Ord whose
€-members are the e-ordinals, so Ord e Ord (Ord is an €-ordinal) is a theorem.

We show that Ord is a limit €-ordinal, from which it follows by duality
that there is a limit e-ordinal, so, equivalently, a regular limit ordinal. It
follows that Infinity holds in the interpreted ZF. This is easy: if o™ = Ord,
then o < Ord would be a regular ordinal, but of course then o would also
be a regular ordinal (we can define o™ as {8 | 8 € aV 3 = a}, and this is
clearly regular since « is regular), and we know that while Ord is an ordinal,
it is not a regular ordinal.

To complete the proof that DEST interprets ZF', we need to prove one
more theorem.

THEOREM 5.2. The sets of the bounded ZF are exactly those sets which
belong to Vy, (suitably defined) for some regular ordinal c.

PROOF. We describe an approach to definitions by transfinite recursion on
the regular ordinals.

Let ¢(z,y) be any uniform formula with any free variables other than z
and y understood to have regular values. For any regular ordinal «, we define
F$(z) to be the formula which asserts that 2 is a function (a €-extension con-
sisting of e-Kuratowski pairs with the usual properties: a notion definable
entirely in terms of €) with domain av+ 1 and the property that ¢(z[ 8, z(3))
for each 8 < a.

If there is a unique z such that Fg(z), it is a regular set by the Definability
Lemma, which is also the unique z such that Fj*(z). Moreover, 2(3) will be
regular for each f < « (and the same object as z(f) understood in the dual
sense) for the same reason: it is easy to see that z(/) is uniquely described by
a uniform formula with regular parameters (note that o and g are regular).

Note further that if Fif*(z) is not true, the set of 8 < o such that —|F£(z)
exists by comprehension, is nonempty, and so has a least element. This
means that (with care) we can use this machinery to carry out proofs by
transfinite induction.
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Now we specify the formula ¢(x,y) that we will use: this formula asserts
that z is a function with domain an ordinal # and y is the union of the
power sets of the elements of the range of x, and that each element of y has
a singleton. (“power set of x” here means a unique object whose €-extension
consists of all €-subsets of x; if some required power set fails to exist, the
formula fails to be true.) It should be clear that in the usual set theory
if z witnesses Fg(z), then z(a) will be V,: we define V; in this way (this
definition was considerably simpified by Olivier Esser).

By considerations above V, is regular for each ordinal a for which it
exists, and if there is a regular ordinal « for which V,, does not exist, there
is a least such ordinal. Further, if V, exists, we see that each element of
V, is regular, because each element of V, has a singleton in both senses.
Suppose that 3 is the least regular ordinal such that Vs does not exist. If
B is a successor v + 1, we see that V,, a regular set with regular members,
has a uniquely determined regular power set, which we can use as a value
to extend the function z such that F(Z(z) to a function z such that Ff(z),
contradicting the choice of 3. If 3 is limit, then the union of the V,’s for
v < [ will be definable, regular, and suitable to serve as the value at 3 of a
function z witnessing F' f (z), which it is then straightforward to construct.

We can also prove by a similar transfinite induction argument that each
V3 is transitive and so hereditarily regular, and it is easy to prove that each
V3 is well-founded, for quite standard reasons.

It remains to prove that every hereditarily regular well-founded set be-
longs to some V, for « regular. We carry out part of our argument in
bounded ZF. Note that in bounded ZF' as interpreted in DEST, each set
has a transitive closure (because the transitive closure of a hereditarily reg-
ular well-founded set is also a hereditarily regular well-founded set). This
means that membership restricted to the transitive closure of any element
of our bounded ZF' defines a set relation. This relation will be well-founded
and will have an ordinal rank in the usual sense. In bounded ZF', we cannot
prove that this ordinal rank can be implemented as a von Neumann ordinal,
but we can prove that it can be implemented as a Scott ordinal (a Scott
ordinal is the equivalence class of all well-orderings of minimal rank similar
to a given well-ordering).

It remains to prove that every Scott ordinal corresponds to a von Neu-
mann ordinal. If there is a Scott ordinal which does not correspond to a von
Neumann ordinal, there is a first one. Choose a well-ordering W belonging
to the first bad von Neumann ordinal. In the ambient DEST, construct the
map sending each element of W to the von Neumann ordinal with the same
type as the segment below that element in W. This map is definable as a set
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abstract because it is defined by a uniform formula with a regular parame-
ter. It must be regular, because it is clear that the value of the function at
each element of W must be the same in either sense. But this means that
it is hereditarily regular and well-founded, because every element of the set
is clearly in the interpreted bounded ZF'. This would further imply that its
range, the set of all regular ordinals, is regular, which is absurd.

|

This completes the proof that DEST interprets ZF'.

It might seem that one could show that Ord is inaccessible, and so by
duality that there is an inaccessible regular ordinal, but this appears not to
be the case. One can show Ord to be strong limit, but there is no obvious
way to show that it is regular: there can’t be a cofinal subset of 0rd which
is shorter than Ord and which is definable by a formula with parameters
taken from Ord (because such a set can be shown to be regular, by using its
regular length as an additional parameter, and would have as its union the
irregular Ord) but there is no obvious obstruction to the existence of such a
cofinal subset which is not so definable. This situation is closely analogous
to the status of the first proper class ordinal in Ackermann set theory.

The results for the structure of the ordinals have consequences for the
structure of the cumulative hierarchy. As we have seen above, there is a
notion of ordinal rank definable in terms of a single membership relation.
Now consider the set of all sets which belong to some ordinal rank (in the
sense defined in terms of €). This set will have as its €-extension the col-
lection of objects which belong to an ordinal rank in the sense of €, which
is exactly the universe of our interpreted ZF (the collection of well-founded
hereditarily regular sets); its e-extension will contain the objects which have
an ordinal rank in the sense of €, which will properly extend the collection
of hereditarily regular sets for the same reason that the €-ordinals properly
extend the e-ordinals. The rank Vpyq (recall that Ord is the first irregular
€-ordinal) will have as its €-elements exactly the elements of the interpreted
ZF as well, and can be shown to be equal to the set of all objects which
belong to some ordinal rank in the same way that we showed that the first
irregular ordinal is the same object as Ord (by showing that all ordinal ranks
in the sense of € are the unique objects with their €-extension, since the
dual statement is obviously true).

It is well-known that the following set of axioms is essentially equivalent
to ZF' (this is important in the study of Ackermann set theory):

Zermelo without infinity: Assume all axioms of Zermelo except infinity.
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There is a special rank: A special rank Vj; of the cumulative hierarchy is
specified.

The special rank is elementarily equivalent to V: For any sentence ¢
with parameters taken from Vj, the truth value of ¢ is the same as the
truth value of the relativization of ¢ to V.

It is worth noting that this theory is readily interpreted in DEST": let V
be the collection of all objects belonging to an ordinal rank in the sense of
€ and let kK = Ord. The elementary equivalence of the interpreted V and
V, follows from the Duality Lemma. We know that the interpreted Vj; (the
universe of hereditarily regular sets) satisfies Zermelo without infinity, so we
know that V satisfies Zermelo without infinity by the elementary equivalence
already established. Olivier Esser encouraged us to include this observation;
it was already clear to us that there was some analogy between the interpre-
tation of ZF in DEST and the interpretation of ZF' in Ackermann set theory
(re my comments about Ackermann set theory and its relation to reflection
properties of ZF just described, see [1] and [5]).

The results of this paper allow us to draw a distinction between the
membership relations (the symmetry between them is broken). We can
stipulate, for example, as we did in this paper, that € is the membership
relation such that there are irregular €-ordinals, so x € Ord means °
regular ordinal”, or we could adopt the opposite convention.

‘r is a
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