
MLC 2003 Preliminary Version

Polymorphic type-checking for the ramified
theory of types of Principia Mathematica

M. Randall Holmes 1

Department of Mathematics, Boise State University, 1910 University Drive,
Boise, Idaho 83725-1555, USA

Abstract

A formal presentation of the ramified theory of types of the Principia Mathe-
matica of Russell and Whitehead is given. The treatment is inspired by but differs
sharply from that in a recent paper of Kamareddine, Nederpelt and Laan. A com-
plete algorithm for determining typability and most general polymorphic types of
propositional functions of the ramified theory of types is presented, unusual in re-
quiring reasoning about numerical inequalities in the course of deduction of type
judgments (to support unification of orders). Software implementing these algo-
rithms has been developed by the author, and examples of the use of the software
are presented. This is an abridged version of a longer paper which may appear later
elsewhere.

This paper was inspired by reading [3], where Kamareddine, Nederpelt
and Laan present a formalization of the ramified theory of types (usually
to be abbreviated RTT) of [5], the Principia Mathematica of Russell and
Whitehead (hereinafter PM). It is surprising that the theory of types of PM
(the oldest one) is nowhere given a rigorous formal description; in fact, PM
has no notation for types! There are various formal systems of ramified type
theory in the literature (the author has even presented one in [1]), but the one
in [3] is the only one known to us that is close to PM in details of its notation.

While reading [3], we developed a type checker ([2]) for its version of RTT .
We used the same notation for propositional functions that is used in [3] (ex-
cept that we were able to omit type labels on quantified variables, which makes
our notation closer to that of PM), but we took a quite different approach to
reasoning about types. From the checker it is possible to “reverse engineer” a
formal treatment of the type system of RTT different from that of [3], which
we give here.

This is an abridged version of a longer paper which we hope to publish
elsewhere. Here we omit a section which discusses differences between the

1 Email: holmes@math.boisestate.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Holmes

notation of [3] and the original notation of PM .

The logical world of PM is inhabited by individuals and propositional func-
tions . We will usually abbreviate “propositional function” as “pf” (following
[3]). In this section we introduce notation for these.

An individual is denoted by one of the symbols a1, a2, a3, . . . (in the com-
puter implementation, a1, a2, a3...). We call these symbols “individual
constants”.

Before we present the notation for propositions, we need to introduce
variables and primitive relation symbols. A variable is one of the symbols
x1, x2, x3, . . . (x1, x2, x3... in the computer implementation). A primitive
relation symbol is a string of upper-case letters with a numerical subscript
indicating its arity (in the paper, R1 and S2 are primitive relation symbols:
these would be R1 and S2 in the computer implementation).

We note that we will freely use the word “term” in the sequel for any piece
of notation, whether propositional notation, the name of an individual, or a
variable.

Now we present the definition of notation for propositions. The notion of
free occurrence of a variable in a proposition is defined at the same time. It
is worth noting here that notation for a proposition is usually but not always
also notation for a propositional function (pf).

atomic proposition: A symbol Rn(v1, . . . , vn) consisting of a primitive rela-
tion symbol with arity n followed by a list of n arguments vi, each of which
is either a variable xji or an individual constant aji , is an atomic proposi-
tion. (R0() is also an atomic proposition in the system of [3], and for us as
well for now. The software that motivates this paper supports the ability
to turn on or off a requirement that primitive relation symbols and proposi-
tional functions have positive arity). The free occurrences of variables in an
atomic proposition are exactly the typographical occurrences of variables in
it.

negation: If P is a proposition, then ¬P (∼P in the computer implementa-
tion) is a proposition, the negation of the proposition P . The free occur-
rences of variables in ¬P are precisely the free occurrences of variables in
P .

binary propositional connectives: If P and Q are propositions, then (P ∨
Q) is a proposition. Other connectives can be defined. In the computer
implementation, propositional connectives are strings of lower case letters:
(P v Q), (P implies Q), (P and Q), (P iff Q). The free occurrences
of variables in (P ∨ Q) are the free occurrences of variables in P and Q;
defined binary connectives would have the same rule.

quantifiers: If P is a proposition in which the variable xi occurs free (this
condition is what requires us to define “free variable” at the same time as
“propositional notation”), (∀xi.P) is a proposition (this is written [xi]P in
the computer implementation). The existential quantifier (∃xi.P) (written

2

Holmes

[Exi]P in the computer implementation) can be introduced by definition.
The free occurrences of variables in (∀xi.P) are the free occurrences of
variables other than xi in P (and similarly for any other quantifier).

In [3], the structure of the typing algorithm required the attachment of
explicit type labels to variables bound by quantifiers. In our system, this
is not necessary. This is closer to the situation in PM , where no type
indices appear (There is no notation for types in PM , so there can’t be
type indices; there are occasional appearances of numerical superscripts
representing “orders”).

propositional function application (“matrix” and general): If xi is a
variable and A1, . . . , An is an argument list in which each Ai is of one of
the forms aji (an individual constant), xji (a variable) or Pi (notation for a
proposition, representing a pf), then xi(A1, . . . , An) and xi!(A1, . . . , An) are
propositions. In the latter notation, the exclamation point indicates that
the “order” of the type of the variable xi is as low as possible: this will be
clarified when types and orders are discussed. The notation xi!(A1, . . . , An)
does not appear in [3]; its use in this paper is a generalization of the notation
for “matrices” (predicative functions) in PM . xi() is also a proposition in
the system of [3] (the variable xi represents a proposition in this case); xi()
and xi!() are propositions for us as well for now: if we require that primitive
relation symbols and pfs have positive arity, then we exclude such proposi-
tions). The free occurrences of variables in xi(A1, . . . , An) or xi!(A1, . . . , An)
are the head occurrences of xi and those Ai’s which are variables: note that
the free occurrences of variables in those Ai’s which are pf notations are not
free occurrences of variables in xi(A1, . . . , An) or xi!(A1, . . . , An).

completeness of definition: All propositional notations are constructed in
this way.

As usual, an occurrence of a variable in a proposition which is not free is
said to be bound. Note that a variable xi is not a propositional notation.

The notation for a propositional function is the same as the notation for
a proposition: a pf is construed as a function of the variables which appear in
it (or rather of the variables which appear free in it). When 0-ary predicates
are forbidden (this is arguably the case in PM (see remark on p. 38) and is
supported as an option by our checker), a propositional notation must contain
a free variable to represent a pf; otherwise a propositional notation without
free variables will represent a 0-ary propositional function. The full system
of the checker also allows propositional variables (which are used in PM) but
does not allow occurrences of propositional variables in pfs.

Since we do not have head binders in the notation for pfs to determine the
order of multiple arguments, we allow the order of the indices of the variables
(which we may refer to occasionally as “alphabetical order”) to determine the
order in which arguments are to be supplied to the function. This follows PM .

We refer to the atomic propositions and the propositional function applica-

3

Holmes

tion terms as “logically atomic”, and to other terms as “logically composite”.

We now give the recursive definition of simultaneous substitution of a list
of individuals, variables and/or propositional functions Ak for variables xik in
a proposition P , for which we use the notation P [Ak/xik]. The clauses of the
definition follow the syntax. It is required that the subscripts ik be distinct
for different values of k.

atomic propositions: Let Rn(v1, . . . , vn) be an atomic proposition. For each
vi and index k, define v′i as Ak if vi is xik ; define v′i as vi if vi is not any
xik . If any v′i is a pf notation, Rn(v1, . . . , vn)[Ak/xik] is undefined; otherwise
Rn(v1, . . . , vn)[Ak/xik] is defined as Rn(v′1, . . . , v

′
n).

negation: (¬P)[Ak/xik] = ¬(P [Ak/xik])

binary propositional connectives: (P∨Q)[Ak/xik] = (P [Ak/xik]∨Q[Ak/xik]).
The rule is the same for any binary propositional connective.

quantification: Let (∀xj.P) be a quantified sentence (the rule is the same
for any quantifier). Define A′

k as xj in case ik = j and as Ak otherwise.
Then (∀xj.P)[Ak/xik] is defined as (∀xj.P [A′

k/xik]).

pf variable application: Let xj(V1, . . . , Vn) or
xj!(V1, . . . , Vn) be a proposition built by application. Define B′ for any nota-
tion B as Ak if B is xik and as B otherwise. We define xj(V1, . . . , Vn)[Ak/xik]
as x′j(V

′
1 , . . . , V

′
n) and xj!(V1, . . . , Vn)[Ak/xik] as x′j!(V

′
1 , . . . , V

′
n) except in the

case where x′j is a pf notation Q: in this case something rather more com-
plicated happens. It will be undefined unless there are precisely n variables
which occur free in Q. If there are n variables which occur free in Q, define
tk so that xtk is the kth free variable in Q in alphabetical order. Then define
xj(V1, . . . , Vn)[Ak/xik] or xj!(V1, . . . , Vn)[Ak/xik] as Q[V ′

k/xtk].

There is a serious difficulty with this “definition”. Consider the pf ¬x1(x1)
(this certainly is a pf by our definition above). Now substitute ¬x1(x1) for the
variable x1 in the proposition ¬x1(x1) itself. We will obtain the negation of the
result of replacing x1 with ¬x1(x1) in x1(x1). Giving ¬x1(x1) the name R for
the moment, we see that the result of the latter substitution will be R[R/x1];
but this is exactly the substitution we started out trying to make, so we have
landed in an infinite regress. This illustrates the fact that the circularity of
the proposed “definition” of substitution is essential – in the last clause, there
is no guarantee that the instance of substitution Q[V ′

k/xtk] to be carried out
is “simpler” in any way than the original substitution x′j(V1, . . . , Vn)[Ak/xik]
being defined, and our example shows that it need not be.

It is hoped that the reader will notice that this is essentially Russell’s
paradox of naive set theory. Our solution will be the official solution of PM :
we will impose a type system, under which the term ¬x1(x1) will fail to denote
a pf, and the problem will disappear. For the moment, we withdraw the
definition of substitution, and will return to it after we have presented the
type system.

4

Holmes

The self-contained approach to the definition of substitution taken here
may be contrasted with the rather elaborate invocation of λ-calculus in [3].
Though our definition appears to have failed at this point, the type system
will allow us to give the definition above as a legitimate inductive definition.
The reason we can do this and the authors of [3] cannot is that their definition
of the typing algorithm depends on the notion of substitution, and ours does
not. (Our algorithm does depend on the notion of substitution into notations
for types , as we will see below, but the definition of substitution into types
does not present logical difficulties presented by the definition of substitution
into propositions or pfs).

We follow [3] in presenting the simple theory of types without orders first,
though historically it was presented by Ramsey as a simplification of the ram-
ified theory of types of PM .

The base type of the system of PM is the type 0 inhabited by individu-
als. (Nothing prevents the adoption of additional base types, or indeed the
avoidance of commitment to any base type at all).

All other types are inhabited by propositional functions. In the simple
theory of types, the type of a pf is determined precisely by the list of types of
its arguments.

We introduce notation for simple types:

Individuals: 0 is a type notation.

Propositions: () is a type notation (for the type of propositions).

Propositional Functions: If t1, . . . , tn are type notations, (t1, . . . , tn) is a
type notation. (If pfs were required to have positive arity, we would require
ti 6= () here).

Variable Types: For each variable xi, we provide a type notation [xi]. (This
notation is an innovation for this paper: it represents an unknown (polymor-
phic) type to be assigned to xi; these types may also be called “polymorphic
types”).

Completeness of Definition: All simple type notations are derived in this
way.

No Nontrivial Identifications: Types not containing variable types are equal
precisely if they are typographically identical.

As is noted in [3], there is no notation for types in PM : this notation is
apparently due to Ramsey (except for our innovation of variable types, whose
purpose will become clear below).

Our aim in this essay is to avoid the necessity of assigning types overtly
to variables, which is truer to the approach taken in PM itself. It is useful to
consider what a system with explicit type assignment would look like, though.

The type assignment is represented as a partial function from terms to
types: τ(xi) is the type to be assigned to xi, and more generally τ(t) is the type
to be assigned to the individual constant, variable, or propositional function

5

Holmes

t. Types in the range of τ are constant types (they contain no type variables
[xi]). We require that bound variables be typed as well as free variables,
and identity of variables implies identity of type regardless of free or bound
status. We stipulate that every variable is in the range of τ and that the
inverse image of each type under τ contains infinitely many variables: this
has the same effect as providing infinitely many variables labelled with each
type. The following rules simultaneously tell us which terms are typable (have
values under τ) and how to compute the value of τ if there is one. Functions
τ satisfying these rules are called “type functions on P”, where P is a fixed
proposition or propositional function.

individuals: If xi appears as an argument in an atomic subproposition of P ,
τ(xi) = 0. τ(ai) = 0 for any individual constant ai.

propositional functions: If Q is a propositional function appearing as a
subterm of P , every subterm of Q has a value under τ , and the n free vari-
ables of Q, indexed in increasing order, are xik , τ(Q) = (τ(xi1), . . . , τ(xin)).
If Q contains no free variables, then τ(P) = ().

variable application: If xj(A1, . . . , An) or xj!(A1, . . . , An) is a subterm of
P , then τ(xj) = (τ(A1), . . . , τ(An)).

These rules are to be understood as additional restrictions on well-formedness
of terms: a term P is to be considered well-formed iff there is a type function
τ on P . Notice that the value of τ at every term (or its lack of value) is
completely determined by the values of τ at variables. The process described
terminates by induction on the structure of propositional notations: to com-
pute the type (or assess the typability) of any notation other than a variable
or individual constant, we appeal only to the types of proper subterms of that
notation, and we are given types of variables and individual constants at the
outset.

We now proceed to develop a system for expressing and reasoning about
type assignments to subterms of propositional functions, adopting rules on the
basis of their validity for an intended interpretation in terms of type functions.

There are four kinds of type judgments. In the following, P stands for a
propositional function or proposition, t, u stand for types (variable types [xi]
are permitted to appear as types and as components of complex types) and xi
stands for a variable. The meanings of these judgments will be modified by a
redefinition of the notion of “type function on P” which will be given below.

ill-typedness: “P is ill-typed” is defined as “there is no type function τ on
P”.

propositional function type assignment: “P has type t” means “for all
type functions τ on P , τ(P) = t”, where any type [xi] appearing in t is
interpreted as τ(xi).

variable type assignment: “xi has type t in P” means “for all type func-
tions τ on P , τ(xi) = t”, where any type [xj] appearing in t is interpreted

6

Holmes

as τ(xj).

type equality: “t = u in P” is defined as “for all type functions τ on P ,
t = u”, where any type [xj] appearing in t or u is interpreted as τ(xj).

We now develop rules for deduction about type judgments, showing that
the rules are valid in the intended interpretation.

We begin with the observation that the conditions defining a type function
on P depend only on the appearances of variables in logically atomic subterms
of P : these conditions assign types to arguments appearing in atomic propo-
sitions, to propositional functions, which can only appear as arguments of
propositional function application terms, and to the head variables of propo-
sitional function application terms. It follows immediately from this that τ
is a type function on P under precisely the same conditions under which it
is a type function on ¬P or on (∀xi.P) (if the latter is well-formed), since
these terms contain precisely the same logically atomic subterms. Further, it
follows that any type function on (P ∨Q) is also a type function on P and on
Q, since it will satisfy the conditions on logically atomic subterms of P and
Q, since the set of logically atomic subterms of (P ∨Q) is the union of the set
of logically atomic subterms of P and the set of logically atomic subterms of
Q.

These facts can be expressed as rules for reasoning about type judgments:

negations: ¬P is ill-typed iff P is ill-typed. xi has type t in ¬P iff xi has
type t in P .

quantification: (∀xi.P) (if well-formed) is ill-typed iff P is ill-typed. xj has
type t in (∀xi.P) iff xj has type t in P .

binary propositional connectives: If P or Q is ill-typed, (P ∨ Q) is ill-
typed. If xi has type t in P or xi has type t in Q, then xi has type t in
(P ∨Q).

There are three kinds of occurrences of variables in logically atomic sub-
terms: a variable can appear as an argument of an atomic proposition, as the
head variable of a pf application term, or as an argument of a pf application
term. The following rules express the type judgments we can make about
occurrences of variables in each context:

individual variables: If xi = Ak in Rn(A1, . . . , An), then xi has type 0 in
Rn(A1, . . . , An).

applied variables: If Ai has type ti for each i, then xj has type (t1, . . . , tn)
in xj(A1, . . . , Ak) or xj!(A1, . . . , Ak).

argument variables: xi has type [xi] in P for any propositional function P
(this kind of occurrence gives us no type information).

In this way a possibly variable type may be assigned to each occurrence of
a variable on the basis of its logically atomic context. This is called the “local”
type of the occurrence. However, more than one typographically different type

7

Holmes

may be assigned to the same variable. For example, x1 is assigned type 0 and
type [x1] in R1(x1)∨x2(x1). Different types assigned to the same variable will
of course be equal. We can express this in terms of type judgments.

multiple types: If xi has type t in P and xi has type u in P then t = u in
P .

variable type equations: If [xi] = t in P then xi has type t in P .

Definition: We assign an integer arity to each type which is not a type
variable. 0 has arity −1. () has arity 0. (t1, . . . , tn) has arity n. Note that
a type may have variable type components, but it will still have arity if it
is not itself a type variable. Note also that types which are equal will have
equal arity if their arity is defined.

type distinction: If t and u each have arity and have distinct arities and
t = u in P , then P is ill-typed.

absurdity: If P is ill-typed, then P has type t, t = u in P and xi has
type t in P for any t, u, and xi (this is obviously true under the intended
interpretation – we need it for a completeness result).

componentwise equality: If (t1, . . . , tn) = (u1, . . . , un) in P , then ti = ui
in P for each i.

type substitution: If xi has type t in P and xj has type u in P , then xj has
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in u.

A consideration related to type substitution is that no type can be ill-
founded: the type of a variable xi cannot have [xi] as a proper component.

ill-foundedness: If xi has type t in P and t[t/[xi]] 6= t, then P is ill-typed.

Finally, we need the rule for typing propositional functions.

propositional function type: If the variables free in P , listed in order of
increasing index, are (xi1 , . . . , xin) and xik has type tk for each k, then P
has type (t1, . . . , tn).

An additional rule is stated which we do not use in the computer imple-
mentation for simple type theory (though we do use it in ramified type theory),
but which is needed for a completeness result for type functions as we have
defined them.

types from arguments: If xi has type t inAk, then xi has type t in xj(A1, . . . , An)
and xj!(A1, . . . , An).

It should be clear that each of these rules is sound for the intended inter-
pretation. We will prove that this set of rules is complete for the intended
interpretation as well.

Theorem: For each propositional function P , there is a type t such that “P
has type t” is deducible from the rules above and the types possible as
values τ(P) for a type function τ on P are precisely the types obtainable
by substituting arbitrary types for each type variable appearing in t.

8

Holmes

Proof of Theorem: We describe the computation of the type t. The idea is
to construct a set of judgments “xi has type ti” deducible using the type
judgment rules which satisfies all the rules for a type function except that
ti’s may type variables: arbitrary instantiation of the type variables (and
extension of the function to variables not appearing in P) then yields a true
type function.

Begin the construction of the set of judgments by computing the “local”
type of each occurrence of each variable xi. We prove the theorem by
structural induction: we assume that each pf argument of pf application
terms can be assigned a type satisfying the conditions of the theorem (so
that we can assign types to the head variables of these terms).

This fails to induce a type function on P (mod instantiation of type
variables with concrete types) only if more than one type is assigned to the
same variable. We describe a procedure for resolving such situations.

If any variable is assigned types of different arities, or if any variable xi
is assigned a type which contains [xi] as a proper component, the process
terminates with the judgment that P is ill-typed.

If xi is assigned any type t which is not a variable type (t may be a
composite type with variable components) replace all occurrences of [xi] in
types assigned to other variables with the type t. If xi is assigned type [xj]
(j 6= i), replace all occurrences of the type xmin{i,j} in types assigned to all
variables with the type xmax{i,j}. This is justified by the type substitution
rule. In the process described below, carry out these substitutions whenever
a new type assignment is made. Notice that such a substitution will occur
at most once for any given variable xi, since it eliminates the target type
everywhere. Of course, if [xi] is introduced as a proper component of the
type of xi, terminate with a judgment of ill-typedness.

If xi is assigned types [xj] and t in P , add the judgment “xj has type t
in P” and eliminate the type assignment “xi has type [xj] in P” (note that
all occurrences of [xj] will then be eliminated if t is not a type variable). In
one special case we proceed differently: if xi is assigned types [xj] and [xk],
we assign xi, xj, and xk the type xmax{i,j,k}.

If xi is assigned types (t1, . . . , tn) and (u1, . . . , un) in P , the judgments
ti = ui follow for each relevant i. From these equality judgments continue
to deduce further equality judgments in the same way. This process will
terminate with either a judgment that P is ill-typed or a finite nonempty
set of nontrivial judgments of the form [xk] = vk, each of which has “xk has
type vk” as a consequence, which we add to our list of type assignments.
Assign to xi the type which results if all these types xk are replaced with
the corresponding vk’s in either of the two types being reconciled (the same
type results in either case). Note that no new assignment to xi can result,
because [xi] cannot be a component of the type assigned to xi unless P is
ill-typed.

This process must terminate, because each step of the process described

9

Holmes

eliminates at least one variable type [xi] from consideration or terminates
with a judgment of ill-typedness.

When the process terminates, we will either have concluded that P is ill-
typed (and this judgment will be honest because the rules are sound for the
intended interpretation) or we will have obtained a set of type assignments
to the variables appearing in P satisfying the conditions for a type function:
any instantiation of type variables appearing in these types with constant
types will give a type function on P .

It is important to note that this is a type algorithm based on the quite
standard approach of type unification implemented, for example, in the type
checking of the computer language ML (a standard reference is [4]).

We can now salvage the definition of substitution given above.

Convention: We stipulate henceforth that propositional notations are well-
formed iff they are well-formed under the original definition and the judg-
ment “P is ill-typed” cannot be deduced using the algorithm given above.

Theorem: P [Ak/xik], defined as above, will be well-defined as long as there
is a fixed set of substitutions σ of types for polymorphic type variables such
that the type of each Ak is the result of applying σ to the type of xik in P .

Proof of Theorem: We only need to consider the case in which a proposi-
tional function Q is substituted for the variable xj in a term xj(A1, . . . , An)
or xj!(A1, . . . , An).

We reproduce the problematic clause from the definition of substitution.
“Let xj(V1, . . . , Vn) or xj!(V1, . . . , Vn) be a proposition built by applica-

tion. We carry out the substitution of a finite list of terms Ak for correspond-
ing variables xik . Define B′ for any notation B as Ak if B is typographically
xik and as B otherwise. We define xj(V1, . . . , Vn)[Ak/xik] as x′j(V

′
1 , . . . , V

′
n)

and xj!(V1, . . . , Vn)[Ak/xik] as x′j!(V
′
1 , . . . , V

′
n) except in the case where x′j is

a pf notation Q: in this case something rather more complicated happens. It
will be undefined unless there are precisely n variables which occur free in Q.
If there are n variables which occur free in Q, define tk so that xtk is the kth
free variable in Q in alphabetical order. Then define xj(V1, . . . , Vn)[Ak/xik]
or xj!(V1, . . . , Vn)[Ak/xik] as Q[V ′

k/xtk].”
The type of the pf Q being substituted for xj in P is the image under

the fixed substitution σ of the type of xj in P , and so is the image under
σ of a proper component of the type of P . Thus, by a structural induction
on types, the substitution Q[V ′

k/xtk]) into Q used to define the substitution
into P succeeds, because the image under σ of the type of Q is simpler than
the image under σ of the type of P . Note that because P is well-typed,
that substitution Q[V ′

k/xtk]) will meet the typing conditions we require for
substitutions: the fact that Q has the same type that xj has in P , each
V ′
k has the same type as Vk in P , and xj(V1, . . . , Vn) is a subterm of P is

sufficient to see this.

So the problem of substitution is solved by the adoption of simple type

10

Holmes

theory.

The motivation behind the ramified theory is as follows. The type of a
pf in STT is determined by the types of its arguments, and all types of its
arguments must be proper components of its type and thus simpler than its
type. It can said further (though such qualms are no longer fashionable)
that understanding the meaning of a pf involves understanding the entire
type over which any quantified variable appearing in the function ranges,
so the type of a pf must be more complex than that of any variable over
which quantification occurs in the pf. More concretely, Russell suggests in
PM that a quantified sentence is to be understood as expressing an infinitary
conjunction or disjunction in which sentences referring to every object of the
type quantified over must occur. If quantified sentences are to be interpreted
in this way, then the appearance of a quantified variable in a propositional
function of the same type as the propositional function or of a more complex
type would lead to formal circularity on expansion to infinitary form.

The restriction is enforced in RTT by adding to each type a new feature,
a non-negative integer called its “order”. The order of type 0 (the type of
individuals) is 0 (zero). The type () of propositions in simple type theory
is partitioned into types ()n for each natural number n, where the order n
will be the least natural number greater than the order of the type of any
variable which occurs in the proposition (including quantified variables). A
propositional function P containing n free variables xik (listed in increasing
order) with types tk will have type (t1, . . . , tn)m, where m is the smallest
natural number greater than the order of any of the types tk and the order of
the type of any variable quantified in P . A similar rule applies to the typing
of head variables xi in expressions xi(A1, . . . , An) or xi!(A1, . . . , An): the type
of xi will be (t1, . . . , tn)r where each tk is the type of Ak, and the order r is
larger than the orders of the tk’s; in the term xi!(A1, . . . , An), the order r must
be the smallest order larger than all orders of tk’s.

Polymorphic type-checking for this system is made difficult by the fact
that a polymorphic type [xi] has unknown order (denoted by |xi|) and a term
xi(A1, . . . , An) has only a lower bound on its order, and so it is necessary to
do a certain amount of arithmetical reasoning on unknown orders. A typical
order is the maximum of a natural number n and several expressions of the
form |xi|+m. Unification of orders is a not entirely trivial problem.

This is all made concrete as follows. We begin with the definition of formal
polymorphic orders.

Natural numbers are polymorphic orders. |xi| is a polymorphic order for
each xi. Formal maxima of polymorphic orders are polymorphic orders and
so is the formal sum of a polymorphic order and a natural number.

Elementary properties of maximum and addition allow us to reduce any
polymorphic order to a canonical form, which will be the maximum of a single
natural number (if the natural number is 0 it is omitted) and a list of ex-
pressions |xi|+m (if m is 0 it is omitted) presented in ascending order of the

11

Holmes

parameter i. Adding a natural number to such a standard form and taking
the maximum of two such standard forms are computable operations.

If m and n are polymorphic types, we say m > n when max(m,n + 1) =
m. This is not a total order, of course.

The result u[m/|xi|] of substituting a polymorphic order m for the poly-
morphic order |xi| in a polymorphic order u is the result of replacing the
occurrence of |xi| in u (if there is one: otherwise the result of the substitution
is u) with m, then simplifying to canonical form.

Substitution into orders is needed to handle changes in order which take
place when a more detailed type is substituted for a polymorphic type variable.

Now we are in a position to define ramified types (and their orders, simul-
taneously).

individuals: 0 is a ramified type of order 0.

propositions: If n is a polymorphic order, ()n is a ramified type of order n.

propositional functions: If t1, . . . , tn are ramified types andm is a polymor-
phic order greater than the order of any of the types tk, then (t1, . . . , tn)m

is a ramified type of order m.

polymorphic types: For each variable xi, there is a ramified type [xi] of
order |xi|.
We present the rules for a term-typing function τ as above. Notice that

here the orders will be fixed non-negative integers.

individuals: If xi appears as an argument in an atomic proposition, τ(xi) =
0. τ(ai) = 0 if ai appears.

propositional functions: If P is a propositional function and the n free vari-
ables of P , indexed in increasing order, are xik , τ(P) = (τ(xi1), . . . , τ(xin))m,
where m is one greater than the maximum of the orders of the types of the
variables appearing in P (free or bound). If P contains no free variables,
then τ(P) = ()m, where m is one greater than the maximum of the orders
of the types of the variables appearing in P .

variable application: If xj!(A1, . . . , An) is a term, then τ(xj) = (τ(A1), . . . , τ(An))m,
where m is one plus the maximum of the orders of the types of the Ai’s.
If xj(A1, . . . , An) is a term, then τ(xj) = (τ(A1), . . . , τ(An))m, for some m
greater than the order of the type of any Ai.

Notice that in the ramified theory there is an additional case where the
type of a variable cannot be rigidly deduced from its context: as before, the
type of a variable argument to a pf variable is polymorphic (though it may
be determined from other features of the context) and in addition the order
of the type of xj in a term xj(A1, . . . , An) only has a lower bound, not a fixed
value (though further information in the context might fix the order or further
restrict it). This will be reflected in additional appearances of polymorphic
variables in our algorithm.

12

Holmes

We will regard a pf as well-formed when there is a type function τ which
assigns a type to that function. Some pfs will have many possible types, as
above, which will be indicated by the appearance of type variables [xi] and
order variables |xi| in the type resulting from the algorithm.

We now develop rules for deduction about type judgments, showing that
the rules are valid in the intended interpretation. Our development will be
parallel to the development for simple type theory above. We present only
those clauses which differ from the clauses in the development for STT .

applied variables: If Ai has type ti for each i, and the order of tk is ok
for each k, then xj has type (t1, . . . , tn)r in xj!(A1, . . . , Ak), where r =
1 + max(o1, ..., ok), and xj has type (t1, . . . , tn)s in xj(A1, . . . , Ak), where
s = max(|xj|, o1 + 1, . . . , on + 1).

Definition: We assign an integer arity to each type which is not a type
variable. 0 has arity −1. () has arity 0. (t1, . . . , tn)m has arity n. Note
that a type may have variable type components, but it will still have arity
if it is not itself a type variable. Note also that types which are equal will
have equal arity if their arity is defined. (this clause appears simply because
order appears in composite types – note that the order has no effect on the
arity).

componentwise equality: If (t1, . . . , tn)m1 = (u1, . . . , un)m2 in P , then ti =
ui in P for each i. (this clause appears, again, simply because order is
mentioned; it is also the case that m1 = m2 will hold, but we have no
judgment of this form available to us).

type substitution: If xi has type t in P and xj has type u in P , then xj has
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in u.
If xi has type t in P and u = v in P , then u[t/[xi]] = v[t/xi] in P . (this
clause appears because we need substitution into equality judgments; such
a rule would be valid in STT but is not needed there).

In the rules above and below, it is important to note that substitution of
a type t for a type variable [xi] also has the effect of substituting the order of
t for all occurrences of the order variable |xi|.
ill-foundedness: If xi has type t in P and t[t/[xi]] 6= t, then P is ill-typed.

(Note that the computation of t[t/[xi]] includes the reduction of its order
to standard form).

There is a form of circularity which does not lead to ill-typedness: a vari-
able xi may have a type whose order t is a maximum of types including |xi|;
the calculation of t[t/[xi]] includes the simplification of the order of t, which
will reduce t[t/[xi]] to t.

propositional function type: If the variables free in P , listed in order of
increasing index, are (xi1 , . . . , xin), and the variables quantified in P are
(xin+1 , . . . , xim), xik has type tk for each k and type tk has order ok for each
k, then P has type (t1, . . . , tn)r, where r = 1 + max(o1, . . . , om).

13

Holmes

It should be clear from our discussion that each of these rules is sound for
the intended interpretation. However, this set of rules is not complete.

We now introduce the notion of “bounding variable” of an order.

Definition: If an order n is presented in the standard form max(n0, n1 +
|xi1|, . . . , nk + |xik |), and some nj with (j 6= 0) is equal to 0, then xij is said
to be a “bounding variable” of n.

It is important to observe that the only orders deduced by any of our rules
which can have bounding variables are the polymorphic orders |xi| themselves
and the orders assigned to xj in terms xj(A1, . . . , An), which have bounding
variable |xj|. Any other polymorphic order that we assign is the successor 1+n
of some order n, and it is clear that no successor order can have a bounding
variable.

Further, the following rule clearly holds for types assigned by our algo-
rithm:

bounding variables: If xi has type t in P and the order of t has bounding
variable xj, then xj has type t in P .

The reason for this is that any rule which assigns a type with bounding
variable xj in the first instance actually assigns this type to the variable xj.
Further, this implies that we can assume that any type with a bounding
variable has only one, since the types of the bounding variables can be shown
to be equal by this rule, and type substitution can then be used to eliminate
one of them.

We present an incomplete but often successful algorithm for computation of
the type of a proposition or propositional function P in RTT . This algorithm
follows the STT algorithm very closely.

Provisional algorithm: We describe the computation of the type t. The
idea, as before, is to construct a set of judgments “xi has type ti” deducible
using the type judgment rules which satisfies all the rules for a type function
except for possibly containing type variables: arbitrary instantiation of the
type variables then yields a true type function.

Begin the construction of the set of judgments by computing the “local”
type of each occurrence of each variable xi. The algorithm is recursive in
the same way as the STT algorithm: we assume that each pf argument of
pf application terms has been successfully assigned a type.

If any variable is assigned types of different arities, or if any variable xi
is assigned a type which contains [xi] as a proper component, the process
terminates with the judgment that P is ill-typed (note that if xi is assigned a
type with bounding variable |xi|, this does not lead to forbidden circularity).

If xi is assigned any type t which is not a variable type (including com-
posite types with variable components) replace all occurrences of [xi] in
types assigned to other variables with the type t. Note that this does not
necessarily eliminate all occurrences of xi: if the type of xi has bounding

14

Holmes

variable xi, occurrences of |xi| will remain.
The assignment of type [xj] to a variable xi is handled as in the STT

algorithm.
Such substitutions will usually occur at most once for any given variable

xi, since the target type is usually eliminated everywhere. Of course, if
[xi] is introduced as a proper component of the type of xi, terminate with a
judgment of ill-typedness. The exception in which the variable xi is assigned
a type with bounding variable xi remains to be considered. Notice that
as soon as a variable is assigned a type which does not have a bounding
variable, any type which that variable may have been assigned which had
a bounding variable will be converted to a form which does not have a
bounding variable by the global substitution process.

If xi is assigned types [xj] and t in P , add the judgment “xj has type t in
P” and eliminate the type assignment “xi has type [xj] in P”, except in two
special situations which follow: if xi is assigned types [xj] and [xk], we assign
xi, xj, and xk the type xmax{i,j,k}, as in the STT algorithm. If the type t has
bounding variable xj, it must be the case that the judgment “xj has type
t in P” has already been made. In this case we define t′ as t[[xmax{i,j}]/xj]
and assign this type to both xi and xj, replacing all occurrences of [xi] and
[xj] in all type judgments with [xmax{i,j}]. Observe that in each case at least
one polymorphic type has been eliminated from all type judgments.

If xi is assigned types (t1, . . . , tn)m1 and (u1, . . . , un)m2 in P , the judg-
ments ti = ui follow for each relevant i. From these equality judgments
continue to deduce further equality judgments in the same way, ending up
with a finite set of nontrivial judgments “xk has type vk” which can be used
to unify the two composite types just as in the STT algorithm.

If xi is assigned types (t1, . . . , tn)m1 and (u1, . . . , un)m2 in P , or if xi is
assigned types ()m1 and ()m2 , the orders m1 and m2 should be the same.
If m1 has bounding variable xj and m2 has no bounding variable, we make
the additional judgment “xj has type (u1, . . . , un)m2 in P” and replace all
occurrences of |xj| with m2 (other occurrences of [xj] should already have
been eliminated). We proceed symmetrically if m2 has a bounding variable
and m1 has no bounding variable. If m1 and m2 have bounding variables
xj and xk respectively, we make the additional judgments “xj has type
(u1, . . . , un)m2 in P” and “xk has type (t1, . . . , tn)m1 in P”, then replace
all occurrences of |xj| and |xk| (there should be no frank occurences of [xj]
or [xk]) in type judgments with |xmax{j,k}|. Both of these maneuvers are
justified by the bounding variable rule.

This process must terminate. Each step of the process described elim-
inates at least one variable type [xi] from consideration (along with any
occurrences of |xi|) or terminates with a judgment of ill-typedness.

When the process terminates, we will either have concluded that P is
ill-typed (and this judgment will be honest because the rules are sound
for the intended interpretation) or we will have type assignments to the

15

Holmes

variables appearing in P almost satisfying the conditions for a type function:
“almost” because the same variable may be assigned distinct ramified types
corresponding to the same simple type but having typographically different
orders. If each variable has been assigned a unique type by the end of the
process, then the algorithm succeeds in defining a type function τ up to
assignments of concrete type values to type variables, as above.

This algorithm is still based on the quite standard approach of type uni-
fication implemented, for example, in the type checking of the computer
language ML (see [4]).

The algorithm above is sound but incomplete. If it yields a type, it will
always be a correct type, but there are propositions and pfs which cannot
be typed by this algorithm but which are typable in RTT . In practice, the
algorithm is quite good; it is not easy to write a typable term of RTT which
it will not type (though we shall present an example).

A complete algorithm requires true order unification. This will depart from
the usual methods of type checking, because it will require reasoning about
numerical inequalities.

It might seem that we would need new judgments “m = n in P”, where
m,n are orders, but in fact the type judgment “()m = ()n in P” is equivalent.
We do allow ourselves the abbreviation “m = n in P” for “()m = ()n in
P” where it is clear that orders are being discussed (we call type equality
judgments of this form “order equality judgments”), but not in the statement
of the following (obviously sound) additional rules:

componentwise equality of composite types (order): If (t1, . . . , tn)m1 =
(u1, . . . , un)m2 in P , then ()m1 = ()m2 in P .

order substitution: If xi has type t in P andm is the order of t, and ()p = ()q

in P , then ()p[m/|xi|] = ()q[m/xi] in P .

We outline our basic approach to reasoning about order unification. An
order equality judgment in standard form will take the form max{n0, n1 +
|xi1|, . . . , nk + |xik |} = max{m0,m1 + |xj1|, . . . ,ml + |xjl |}. This is equivalent
to a disjunction of conditions, each of which asserts the equality of one of the
terms of the first maximum with one of the terms of the second maximum
along with the inequalities asserting that the two chosen terms are greater
than or equal to the other terms of the respective maxima from which they
are taken. If one or both of the orders has a bounding variable, the bounding
variable is the only possible maximum chosen (which simplifies the calculation
in these cases by reducing the number of cases).

All of the resulting statements can be expressed using assertions of the
form |xi| ≥ n, |xi| ≤ n, or |xi| − |xj| ≤ n, where n is an integer. Any equation
or inequality between terms of the forms n0 or nk + |xik | can be converted to a
conjunction of inequalities of the forms above by substracting an appropriate
quantity from each side of the equality or inequality and converting an equa-
tion to the conjunction of two inequalities in the obvious way. Any conjunct

16

Holmes

of the form |xi| ≤ r where r < 0 (which will also be obtained (e.g.) from an
equation |xi| + m = |xi| + n where m 6= n) can be used to conclude that an
entire conjunction is false.

We now describe the computation of complete conditions for well-typedness
of a term from a number of order equality judgments. Convert each order
equality judgment to a disjunction of conjunctions of inequalities of the forms
described above. A conjunction of disjunctions of conjunctions is converted
to a disjunction of conjunctions in the obvious way.

Now each conjunction of inequalities is processed separately. Present all
inequalities in a uniform way by rewriting |xi| ≤ n, |xi| ≥ n as |xi| − 0 ≤ n,
0 − |xi| ≤ −n, respectively. Every inequality is then written in the form
A − B ≤ n. For each xi which appears, include 0 − |xi| ≤ 0, 0 − 0 ≤ 0 and
|xi| − |xi| ≤ 0 in the conjunction. Wherever A − B ≤ n1 and A − B ≤ n2

both appear, retain just A − B ≤ min{n1, n2}. Wherever A − B ≤ m and
B−C ≤ n both appear, add A−C ≤ m+n to the conjunction. Apply these
operations repeatedly if necessary. If any conjunct of the form |xi|−0 ≤ r with
r < 0 or |xi|− |xi| ≤ r with r < 0 appears, conclude that the conjunct is false.
We claim that this procedure will produce a canonical complete conjunction
equivalent to the conjunction we started with.

Lemma: Any conjunction of a set of inequalities of the form A − B ≤ n,
where A and B are either 0 or variables with natural number values, is
converted to a canonical equivalent form by the procedure described above.

Proof of Lemma: The proof of the Lemma is omitted from this abridged
version of the paper.

Conjunctions can then be simplified by eliminating redundant conjuncts (a
conjunct is redundant if eliminating the conjunct then computing the canoni-
cal form gives the same result as computing the canonical form of the original
conjunction): in practice this gives quite manageable displayed forms for con-
ditions.

Once each disjunct is computed, identical disjuncts or conjunctions weaker
than other disjuncts can be recognized and eliminated (by comparing canonical
forms) and a simplified form of the disjunction of conditions under which the
term is well-typed can be computed (or ill-typedness can be reported if all
conjuncts reduce to falsehood).

This can be applied to produce a complete algorithm: use the provisional
algorithm described above to generate a list of type assignments whose failures
of uniqueness are induced only by failures to unify order, then apply the
procedure described above to reduce the order equality judgments that are
required to arithmetic assertions about polymorphic orders. Note that under
the resulting conditions it is possible to select any of the types given for each
variable or propositional function as correct, since all types given for any one
object will be equal under the conditions derived from the unification of the
orders.

17

Holmes

The simplification of the arithmetic conditions on polymorphic orders
made possible by the use of canonical forms for conjunctions combined with the
elimination of redundant conjuncts and disjuncts is essential for manageable-
sized output (earlier versions showed this) and gives good results.

The reasoning above was informal arithmetical reasoning. It is theoret-
ically interesting to observe that it can be handled by an extension of our
system of type judgments. This is not how the software does it, and we do
not discuss the details in this abridged version of the paper.

Here we omit a section in which comparisons between the system of this
paper and the system of [3] is found, except for the comment in the following
paragraph. The other points listed in the section found here in the unabridged
paper are made (perhaps briefly) elsewhere in the paper.

The range of terms recognized as well-typed by our system is far larger
than that recognized by the system of [3], and apparently larger than that
recognized by PM ! The system of [3] only supports types all of whose com-
ponent types are “predicative”. Probably the modifications of the system
required to lift this restriction would not be extensive. On reading [3] orig-
inally, we thought this was a weakness of their development, but in fact it
seems to reflect the intentions of the authors of PM : see p. 165. However, we
think that more complex impredicative pfs would be needed for work in PM
without the axiom of reducibility (and if one assumes this axiom one might
as well work in STT).

We are working in RTT in all examples, but the software does not display
order superscripts on types when the order is the smallest possible. Some
features of the output of our software are suppressed.

Term input:

S2(a1,a2)

final type list:

unconditional type:

()

Just as in example 49, clause 1, of [3], the propositional notation S(a1, a2)
is recognized as a proposition because it contains no free variables.

Term input:

(R1(x1) v S1(x1))

final type list:

x1: 0

unconditional type:

(0)

This is parallel to the second example in clause 2 in example 49 of [3].

Term input:

(R1(x1) v S1(x2))

final type list:

18

Holmes

x1: 0

x2: 0

unconditional type:

(0,0)

This term R1(x1) ∨ R2(x2) would be treated quite differently from the
term above in the system of [3], whereas the treatment of both propositional
functions in the system of this paper is very similar. In both terms, our checker
first generates the list of free variables, then each free variables is typed using
local rules, and the types of the free variables are listed to form the type of
the pf.

The system of [3] uses a different (and more usual) kind of context than our
system. The form of a type judgment of the system of [3] is Γ |= f : t, where
f is a term, t is the type assigned to that term, and Γ, the “context”, is a list
of assignments of types to variables. In our system, a type judgment about
an entire term (propositional notation) has no context, while type judgments
about variables have as context the term in which they appear.

In the system of [3], the term R1(x1)∨R2(x1) is typed by first considering
the typing of R1(a1)∨R2(a1), which is immediately seen to have type (), and
in which the term a1 has type 0, then using the rule for typing substitutions
to insert new component with type 0 into the type () of R1(a1) ∨ R2(a1) to
obtain the type (0). The term R1(x1)∨R2(x2) is typed by observing that the
two disjuncts have the property that all variables of the first are alphabetically
prior to the variables of the second, typing the first and the second as (0) in
the same way we typed the previous term, then concluding that the type of the
whole is the “product” (0, 0) of two copies of (0) (speaking somewhat loosely).
This might give some idea of the very different flavor of the two approaches.

Term input:

[x1](x1!() v ~x1!())

final type list:

x1: ()

unconditional type:

()^1

This is example 51 from [3]. Order is important in this example. Note
that the variable x1 represents a proposition (a 0-ary propositional function);
the order of its type is 0. The entire term is also a proposition (it contains no
free variables, because x1 is bound by the quantifier) but its order is at least
1, because it must be greater than the order of the quantified variable. It is
precisely 1 because we used “predicative” pf application. The order 0 of the
type of x1 is not displayed because it is as small as possible.

We can see an explicit polymorphic type by implementing the term in
Remark 58 of [3], stipulating that the application is predicative.

Term input:

x2!(x1)

19

Holmes

final type list:

x1: [x1]

x2: ([x1])

unconditional type:

([x1],([x1]))

In this term, x1 is of a completely unknown type [x1], while x2 is seen to
be of type ([x1]) (it is a predicate of objects of type [x1]), so the whole term
is of type ([x1], ([x1])): the order of the components is determined by the fact
that x1 is alphabetically prior to x2.

In [3], two different derivations are given, showing how two different types
can be assigned to this pf, whereas here we get a single computation yielding
all types. If we get more information from the context, the type will become
more specific:

Term input:

(x2!(x1) v S1(x1))

final type list:

x1: 0

x2: (0)

unconditional type:

(0,(0))

Here we know from local information elsewhere in the term that the type
of x1 is 0, so we get a more specific type for the whole pf.

We now give a large example. There are two different conditions under
which the given pf is well-typed.

Term input:

(x1!(x2,x2) v x1!([x3][x5]x3!(x5,x8),[x6][x9]x6!(x4,x9)))

unconditional type:

?!?

conditional type:

((([x8])^max(|x5|+2,

|x8|+2,2),([x8])^max(|x8|+2,|x9|+2,2)),

([x8])^max(|x5|+2,|x8|+2,2))

WITH

|x5| <= |x9| and

|x8| <= |x9| and

|x9| <= |x5|

OR

|x5| <= |x8| and

|x9| <= |x8|

In more standard notation, the propositional function is

x1!(x2, x2) ∨ x1!((∀x3.(∀x5.x3(x5, x8))), (∀x6.(∀x9.(x6!(x4, x9)))))
20

Holmes

The entire term is a propositional function of the arguments x1 and x2;
it is necessary to figure out what the types of x1 and x2 are. Because of the
presence of the subterm x1!(x2, x2), we know that the two arguments of any
occurrence of x1 must be of the same type. So the propositional functions
(∀x3.(∀x5.x3(x5, x8))) and (∀x6.(∀x9.(x6!(x4, x9))) are of the same type. Each
of these is a function of one variable, x8 in one case and x4 in the other, so x4
and x8 are of the same type. This base type is polymorphic: we know nothing
about it.

Now we need to analyze orders. The order of the type of (∀x3.(∀x5.x3(x5, x8)))
is two greater than the maximum of the orders of [x5] and [x8]. The increment
of two is because x3 has type one greater than this maximum, and the order
is raised one more because of the quantifier over the type of x3. Similarly, the
order of the type of (∀x6.(∀x9.(x6!(x4, x9))) is two greater than the maximum
of the order of [x4] = [x8] and the order of [x9]. These two orders have to be
the same. There are two ways for this to happen: either the order of [x5] is
greater than the order of [x8], in which case the order of [x9] also has to be
greater than the order of [x8] and actually must be the same as the order of
[x5], or the order of [x8] is greater than or equal to the orders of [x5] and [x9]
(which in this case need not be the same). And these two cases are what the
output above describes.

The type of x1 will be ([x2], [x2]); the type of x2 will be (x8). So the
underlying simple type of this expression is ((([x8]), ([x8])), ([x8])), and this is
what we see above, adorned with appropriate orders.

We omit a section on applications to proof-checking for PM which will
appear in the unabridged paper.

References

[1] Holmes, M. Randall, “Subsystems of Quine’s “New Foundations” with
Predicativity Restrictions”, Notre Dame Journal of Formal Logic, vol. 40, no.
2 (spring 1999), pp. 183-196.

[2] Holmes, M. Randall, software files (in standard ML) rtt.sml (source
for the type checker) and rttdemo.sml (demonstration file), accessible at
http://math.boisestate.edu/∼holmes/holmes/rttcover.html.

[3] Kamareddine, F., Nederpelt, T., and Laan, R., “Types in mathematics and
logic before 1940”, Bulletin of Symbolic Logic, vol. 8, no. 2, June 2002.

[4] Milner, R., “A theory of type polymorphism in programming”, J. Comp. Sys.
Sci., 17 (1978), pp. 348-375.

[5] Whitehead, Alfred N. and Russell, Bertrand, Principia Mathematica (to *56),
Cambridge University Press, 1967.

21

	References

