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Abstract

A formal presentation of the ramified theory of types of the Principia Math-
ematica of Russell and Whitehead is given (along with the simplified theory of
types of Ramsey). The treatment is inspired by but differs sharply from that in
a recent paper of Kamareddine, Nederpelt and Laan. Algorithms for determining
whether propositional functions are well-typed are described, including a complete
algorithm for the ramified theory of types, which is unusual in requiring reasoning
about numerical inequalities in the course of deduction of type judgments. Software
implementing these algorithms has been developed by the author, and examples of
the use of the software are presented. The approach is compared with that of
Kamareddine, Nederpelt and Laan, and some brief observations are made about
use of the type checker in a proof checker for the ramified theory of types under
development.

1 Introduction

This paper was inspired by careful reading of the paper [?], where Kamared-
dine, Nederpelt and Laan present a formalization of the ramified theory of
types of [?], the Principia Mathematica of Russell and Whitehead (hereinafter
PM ). It is surprising to discover on close reading of PM that its theory of types
(the oldest one) is nowhere given a complete formal description which is up
to modern standards of rigor. There are various formal systems of ramified
type theory in the literature (the author has even presented one, based on
earlier work of Marcel Crabbé, in [?]), but the one in [?] is clearly motivated
by a desire to closely implement the notation of PM , although the approach
to formalization of reasoning about types they take is much more modern.

During our reading of [?] we developed a type checker ([?]) for the for-
malized version presented in that paper of the ramified theory of types of PM
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(hereinafter RTT ). The approach we took to the type system in the course of
the development of this checker was quite different from the approach taken
in [?], and allows type-checking for a wider range of terms of the language of
RTT than does the system of [?]. From the implementation of type check-
ing we developed at that time, it is possible to “reverse engineer” a formal
treatment of the type system of RTT , which we give here.

2 Informal Presentation of the System of Principia Math-
ematica

We give an informal presentation of the notions of proposition and proposi-
tional function as actually given in PM , in order to motivate the formalization
of [?]. We feel that such a presentation is necessary because superficial exam-
ination reveals that the system of [?] is not identical to the system presented
in PM . This section is intended to provide support for the claim that the
system of [?] (with certain modifications which we will indicate) is in fact an
accurate formalization of the intentions of PM .

At the outset, PM takes some selection of the propositional connectives
as primitive. We follow the original text and take negation and disjunction
as primitive; the last edition of PM suggests the use of the Sheffer stroke. It
should be noted that PM uses propositional variables, a feature not found in
[?], and we include propositional variables in our formal language developed
below. Propositional variables are not important for the investigation of type
theory of propositional functions (in fact, no propositional variable is allowed
to appear in a propositional function in our implementation) but they turn out
to be indispensible in practical formalization of reasoning about propositions.

The “atomic propositions” of PM are of the form Rn(ai1 , . . . , ain), in which
Rn is an n-ary predicate of individuals and the ai’s are names of individuals.
The type of individuals is the sole base type of the system of PM . The system
of [?] allows the case n = 0, which would give us constant propositions R0();
PM does not allow this. Our software allows one to choose to allow or exclude
0-ary predicates.

The “elementary propositions” of PM are formed by combining atomic
propositions with logical connectives.

Variables (taking individual values at this point) are now introduced. Vari-
ables xi (we also use y, z, w in this paper) can appear in the same contexts
as individual constants ai. An elementary proposition containing variables
is an ambiguous proposition (its meaning is not determined until values are
assigned to the variables).

The next step is to introduce propositional functions . A propositional
function is obtained by replacing each variable xi in an ambiguous elementary
proposition with x̂i. The resulting expression denotes a function of as many
variables as appear in it. The order in which arguments are supplied to the
function is determined by the alphabetical order of the variables appearing in
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it (in our notation, this is determined by the order of the numerical indices
of the variables). For example, in an arithmetic context x̂ < ŷ and b̂ > â
would be the same propositional function (or at least would have the same
extension).

PM defines quantifiers in terms of propositional functions. The sentence
(xi)(φxi) ((∀xi.φ(xi)) in our notation) is obtained by applying an operation of
“generalization” to the propositional function φx̂. The official line in PM is
that propositions in which quantified sentences appear as arguments of propo-
sitional connectives do not really occur: a system of contextual definitions
“defines away” sentences which apparently have this feature as sentences in
prenex normal form. It would be extraordinarily inconvenient to actually take
this view in a computer implementation, and fortunately PM presents an al-
ternative formulation of logical rules for quantified sentences which allows the
propositional functions to take quantified sentences as arguments in the usual
way. The one unfamiliar feature is that since a propositional function must
actually contain its variable argument, the scope of a quantifier must include
a free occurrence of the quantified variable for the sentence to be well-formed,
and our software does enforce this. Our formalization does not otherwise
acknowledge the dependence of quantifiers on propositional functions.

Since we take this view, we associate propositional functions φx̂ with quan-
tified sentences φx of arbitrary complexity with free occurrences of the variable
x.

We now discuss higher-order variables and propositional functions. The
notation of PM for arbitrary ambiguous propositions, considered as propo-
sitional functions, is φx̂, φ(x̂, ŷ), etc. Parentheses are not used to enclose
argument lists of length one, and argument lists of length 0 (yielding vari-
able propositions φ()) do not occur, though they do occur in the system of
[?]; permission to use such expressions can be turned on or off in our soft-
ware. Note that variables φ have been introduced representing propositional
functions. An eccentricity of the PM notation is that when φx̂ occurs as an
argument to a propositional function, it is written φx̂, not φ. Quantifiers over
functions are written (φ), (∃φ), though there is an assertion in PM that this
is an abbreviation for (φx̂), (∃φx̂). This penchant for complex “variables” for
propositional functions seems to be motivated by a desire to clearly indicate
the status (for PM ) of propositional functions as “incomplete symbols”.

It seems to us that the implementation of this in more complicated cases
in PM is incorrect. For example, PM tells us (p. 52) that F (φx̂) is an
ambiguous expression for a function with a single argument which is itself a
propositional function of a single individual variable. We are then told that
a variable representing a function of this kind would be written F (φ̂x̂) (with
the circumflex over the φ). But this seems wrong. The symbol φ̂x̂ should be a
constant, the name for the propositional function A such that A(φx̂, a) = φa
(this function is often mentioned as an example in PM , but notation for it
is never given). So F (φ̂x̂) should represent the application of an ambiguous
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third-order function to this constant second-order function. A bound variable
standing for an arbitrary first order function should properly be written φ̂x̂
(with the circumflex over the entire complex variable), and a variable second-

order function should be written F (φ̂x̂). It is not our purpose here to reform
the notation of PM , as we actually prefer the notation of [?], but this problem
ought to be noted.

Constant propositional functions do not appear in applied position either
in PM or in [?]. The reason for this is that a constant propositional function
is an expression with holes in it, and to apply the function is to substitute
the arguments for the holes in the original expression. Our computer im-
plementation does support syntax for constant function application without
substitution, but we will not use it here.

Because of the very limited use of notation for propositional functions in
PM , we do not see examples of constant propositional functions appearing as
arguments to propositional functions in PM , but it seems reasonable that if
one were to take the function F (x̂ = ŷ, a, b), and instantiate F with φ̂(ẑ, ŵ),
that one would obtain a = b. At any rate, this extension of notation (allowing
constant propositional functions to appear as arguments) is found in [?].

It is not true that variables x always represent individuals. PM takes
advantage of “systematic ambiguity” (what we would call “polymorphism”);
the type of variables x whose type cannot be determined by examination of
an expression may be arbitrarily complex. But any variable which appears
in applied position somewhere will appear with formal arguments whenever it
appears as an argument to a variable function itself.

We now discuss the types and orders of PM . PM does not anywhere give a
formalized discussion of its type system; in fact, there is no notation for types
in PM ! But the informal discussion is clear enough that the intentions of the
authors can be determined.

Type is determined as follows. The simplest type is that of individuals.
The type of a propositional function (abstracting out the order of the type,
which we will address in the next paragraph) is determined by the types of its
arguments.

Every type has an order. The order of the type of individuals is 0. The
order of a propositional function is one plus the maximum of the orders of the
types of its arguments and the orders of the types of quantified variables. It
is the effect of quantification on order that makes order a nontrivial concept.
The motivation of this concept is that a quantified sentence is viewed as being
in effect an infinite disjunction or conjunction over the type of the quantified
variable: thus it is important to prevent the possibility of a propositional
function containing a quantifier over its own type (or a more complex type),
as this would lead to a formal circularity.

Ramsey simplified the type system of PM to eliminate the orders: this
“simple theory of types” (contrasted with the “ramified theory of types” of
PM ) is discussed in [?] and in this paper as well.
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Thus for any list of types of arguments to be supplied to a function, an
infinite sequence of function types of higher and higher order is obtained.
PM gives a special status to “predicative” functions, whose order is the least
possible given the orders of the types of the arguments of the function, and
whose arguments are all in their turn of predicative types. A special notation
φ!x is used for the application of functions of predicative types. This notation
is not used in [?], but we introduce it here, with a generalization. For us,
φ!(x1, . . . , xn) refers to a function of the arguments xi whose order is the least
possible given the orders of the types of the xi’s, but we do not require that
the types of the xi’s be predicative themselves for this notation to be used.

We can now briefly describe the notation of [?] (our extension of this
notation is formally described in the next section). In the notation of [?],
all variables are simply letters, and there are no circumflexed variables. All
occurrences of variables within propositional functions are to be understood
as circumflexed (bound as arguments of the propositional function). The only
ambiguity this introduces is that a top-level expression for a proposition looks
the same as the expression for the corresponding propositional function. This
ambiguity exists only at the top level, because propositions do not occur as
arguments to propositional functions. It appears that a formalized version of
the language of PM along the lines suggested above (with the correction to
scopes of circumflexes) would be readily intertranslatable with the language
we introduce in the next section, mod occasional renamings of bound variables
due to the fact that a bound individual variable and a bound function variable
in different contexts might take the same shape in our language and would
have to renamed before translation into the original PM notation.

3 Propositions as Mere Syntax

The logical world of PM is inhabited by individuals and propositional func-
tions .

Notation for individuals is simplicity itself: an individual is denoted by
one of the symbols a1, a2, a3, . . . (in the computer implementation, a1, a2,

a3...).

The base type of the system of types of PM is the type of individuals,
denoted by the symbol 0.

Notations for propositional functions are notations for propositions which
happen to include variables. Before we present the notation for propositions,
we need to introduce variables and primitive relation symbols. A variable is
one of the symbols x1, x2, x3, . . . (x1, x2, x3... in the computer implemen-
tation): we may occasionally use y for x2 and z for x3 in the paper. (We call
these “general” variables on the few occasions when we need to distinguish
them from “propositional variables” introduced below.) A primitive relation
symbol is a string of upper-case letters with a numerical subscript indicating
its arity (in the paper, R1 and S2 are primitive relation symbols: these would
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be R1 and S2 in the computer implementation).

We note that we will freely use the word “term” in the sequel for any piece
of notation, whether propositional notation, the name of an individual, or a
general variable.

Now we present the definition of notation for propositions. The notion of
free occurrence of a (general) variable in a proposition is defined at the same
time.

propositional variable: A variable taken from p1, p2, p3 . . . (p1, p2, p3...

in the computer implementation) is a proposition. This is a propositional
variable. (There are no propositional variables in the system of [?], but there
are in PM ). No (general) variables occur, free or otherwise, in a proposi-
tional variable.

atomic proposition: A symbol Rn(v1, . . . , vn) consisting of a primitive rela-
tion symbol with arity n followed by a list of n arguments vi, each of which
is either a variable xji or an individual constant aji , is an atomic proposi-
tion. (R0() is also an atomic proposition in the system of [?], and for us as
well for now. The software that motivates this paper supports the ability
to turn on or off a requirement that primitive relation symbols and proposi-
tional functions have positive arity). The free occurrences of variables in an
atomic proposition are exactly the typographical occurrences of variables in
it.

negation: If P is a proposition, then ¬P (∼P in the computer implementa-
tion) is a proposition, the negation of the proposition P . The free occur-
rences of variables in ¬P are precisely the free occurrences of variables in
P .

binary propositional connectives: If P and Q are propositions, then (P ∨
Q) is a proposition. Disjunction is the only primitive binary propositional
connective in PM , but we will allow use of other connectives: (P → Q),
(P ∧ Q), (P ≡ Q) with the usual meanings. In the computer imple-
mentation, propositional connectives are strings of lower case letters: (P

v Q), (P implies Q), (P and Q), (P iff Q). In the computer imple-
mentation, the parentheses are currently mandatory (I didn’t lavish effort
on the parser); we will be more lax in examples in the paper. The free
occurrences of variables in (P ∨ Q) are the free occurrences of variables in
P and Q; the rule is the same if a different binary propositional connective
is used.

quantifiers: If P is a proposition in which the variable xi occurs free (this
stipulation is what requires us to define freedom of variables at the same
time as syntax of propositions), (∀xi.P ) is a proposition (this is written
[xi]P in the computer implementation). The existential quantifier (∃xi.P )
(written [Exi]P in the computer implementation) can be introduced by
definition: the computer allows any string of upper-case letters to be used as
a quantifier, and other quantifiers could be introduced. The free occurrences
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of variables in (∀xi.P ) are the free occurrences of variables other than xi in
P .

In [?], the structure of the typing algorithm required the attachment of
explicit type labels to variables bound by quantifiers. In our system, this
is not necessary. This is closer to the situation in PM , where no type
indices appear (There is no notation for types in PM (though there are
occasional uses of numerical indices representing orders) so there can be no
type indices!)

propositional function application (“matrix” and general): If xi is a
variable and A1, . . . , An is an argument list in which each Ai is of one of
the forms aji (an individual constant), xji (a variable) or Pi (notation for a
proposition, representing a propositional function – no propositional vari-
able can occur in any Pi, and if we require primitive relation symbols and
propositional functions to have positive arity, we need to require that Pi

contain at least one free variable), then xi(A1, . . . , An) and xi!(A1, . . . , An)
are propositions. In the latter notation, the exclamation point indicates that
the “order” of the type of the variable xi is as low as possible: this will be
clarified when types and orders are discussed. The notation xi!(A1, . . . , An)
does not appear in the paper [?]; its use in this paper is a generalization of
the use of a similar notation for “matrices” (predicative functions) in PM .
xi() and xi!() are also propositions in the system of [?] (the variables xi rep-
resent propositions in this case) and are propositions for us as well for now:
if we adopt the requirement (supported as a option by the software) that
primitive relation symbols and propositional functions must have positive
arity, then we exclude such propositions.). The free occurrences of variables
in xi(A1, . . . , An) or xi!(A1, . . . , An) are the head occurrences of xi and those
Ai’s which are variables: note carefully that the free occurrences of variables
in those Ai’s which are propositional notations are not free occurrences of
variables in xi(A1, . . . , An) or xi!(A1, . . . , An).

completeness of definition: All propositional notations are constructed in
this way.

As usual, an occurrence of a variable in a proposition which is not free is
said to be bound. Note that a variable xi is not a propositional notation.

The notation for a propositional function is the same as the notation for
a proposition: a propositional function is construed as a function of the vari-
ables which appear in it (or rather of the variables which appear free in it).
A proposition which contains a propositional variable does not represent a
propositional function. When 0-ary predicates are forbidden, it is required
that some variable appear free in a propositional notation for it to represent a
propositional function; otherwise a proposition without free variables will rep-
resent a 0-ary propositional function. In PM (e.g., on p. 38) it states clearly
that a proposition must contain a free variable to be read as a propositional
function, which motivates our implementation of the option to exclude 0-ary
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relation symbols and propositional functions.

There are no binders in notation for a propositional function, which will
give our treatment a somewhat unfamiliar flavor. Since we do not have head
binders to determine the order of multiple arguments, we allow the order of the
indices of the variables (which we may refer to occasionally as “alphabetical
order”) to determine the order in which arguments are to be supplied to the
function.

We refer to the atomic propositions and the propositional function appli-
cation terms as “logically atomic” (propositional variables are also logically
atomic, but they do not occur in propositional functions), and to other terms
as “logically composite”.

4 The Definition of Substitution and Its Failure

We now give the recursive definition of simultaneous substitution of a list of
individuals, variables and/or propositional functions Ak for variables xik in a
proposition P , for which we use the notation P [Ak/xik ]. The clauses of the
definition follow the syntax. It is required that the subscripts ik be distinct
for different values of k.

propositional variable: pj[Ak/xik ] = pj.

atomic propositions: Let Rn(v1, . . . , vn) be an atomic proposition. For each
vi and index k, define v′i as Ak if vi is typographically the same as xik ;
define v′i as vi if it is not typographically the same as any xik . If any v′i
is a propositional function, Rn(v1, . . . , vn)[Ak/xik ] is undefined; otherwise
Rn(v1, . . . , vn)[Ak/xik ] is defined as Rn(v′1, . . . , v

′
n).

negation: (¬P )[Ak/xik ] = ¬(P [Ak/xik ])

binary propositional connectives: (P∨Q)[Ak/xik ] = (P [Ak/xik ]∨Q[Ak/xik ]).
The rule is the same for any binary propositional connective.

quantification: Let (∀xj.P ) be a quantified sentence (the rule is the same
for any quantifier). Define A′k as xj in case ik = j and as Ak otherwise.
Then (∀xj.P )[Ak/xik ] is defined as (∀xj.P [A′k/xik ]).

propositional function variable application: Let xj(V1, . . . , Vn) or
xj!(V1, . . . , Vn) be a proposition built by application. Define B′ for any
notation B as Ak if B is typographically xik and as B otherwise. We
define xj(V1, . . . , Vn)[Ak/xik ] as x′j(V

′
1 , . . . , V

′
n) and xj!(V1, . . . , Vn)[Ak/xik ]

as x′j!(V
′
1 , . . . , V

′
n) except in the case where x′j is a propositional function

Q: in this case something rather more complicated happens. It will be
undefined unless there are precisely n variables which occur free in Q. If
there are n variables which occur free in Q, define tk so that xtk is the kth
free variable in Q in alphabetical order. Then define xj(V1, . . . , Vn)[Ak/xik ]
or xj!(V1, . . . , Vn)[Ak/xik ] as Q[V ′k/xtk ].
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There is a serious difficulty with this “definition”. Consider the propo-
sitional function ¬x1(x1) (this certainly is a propositional function by our
definition above). Now substitute ¬x1(x1) for the variable x1 in the proposi-
tion ¬x1(x1) itself. We will obtain the negation of the result of replacing x1
with ¬x1(x1) in x1(x1). Giving ¬x1(x1) the name R for the moment, we see
that the result of the latter substitution will be R[R/x1]; but this is exactly
the substitution we started out trying to make, so we have landed in an infinite
regress. This illustrates the fact that the circularity of the proposed “defini-
tion” of substitution is essential – in the last clause, there is no guarantee that
the instance of substitution Q[V ′k/xtk ] to be carried out is “simpler” in any
way than the original substitution x′j(V1, . . . , Vn)[Ak/xik ] being defined, and
our example shows that it need not be.

It is hoped that the reader will notice that this is essentially Russell’s
paradox of naive set theory. Our solution will be the official solution of PM :
we will impose a type system, under which the term ¬x1(x1) will fail to denote
a propositional function, and the problem will disappear. For the moment,
we withdraw the definition of substitution, and will return to it after we have
presented the type system.

The self-contained approach to the definition of substitution taken here
may be contrasted with the rather elaborate invocation of λ-calculus in [?].
Though our definition appears to have failed at this point, the type system
will allow us to give the definition above as a legitimate inductive definition.
The reason we can do this and the authors of [?] cannot is that their definition
of the typing algorithm depends on the notion of substitution, and ours does
not (NOTE: be clearer here about why substitution for types (as opposed to
propositional function notations) is straightforward) our definition of the type
algorithm does depend on type substitution, but not on term substitution,
and type substitution is always straightforward).

5 The Simple Theory of Types

We follow [?] in presenting the simple theory of types without orders first,
though historically it was presented by Ramsey as a simplification of the ram-
ified theory of types of PM .

All other types are inhabited by propositional functions. In the simple
theory of types, the type of a propositional function is determined precisely
by the list of types of its arguments.

We introduce notation for simple types:

Individuals: 0 is a type notation.

Propositions: () is a type notation (for the type of propositions).

Propositional Functions: If t1, . . . , tn are type notations, (t1, . . . , tn) is a
type notation. (If propositional functions are required to have positive arity,
no complex type will have () as a component; this will be enforced by
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requiring ti 6= () here).

Variable Types: For each variable xi, we provide a type notation [xi]. (This
notation is an innovation for this paper: it represents an unknown (polymor-
phic) type to be assigned to xi; these types may also be called “polymorphic
types”).

Completeness of Definition: All simple type notations are derived in this
way.

No Nontrivial Identifications: Types not containing variable types are equal
precisely if they are typographically identical.

As is noted in [?], there is no notation for types in PM : this notation is
apparently due to Ramsey (except for our innovation of variable types, whose
purpose will become clear below).

Our aim in this essay is to avoid the necessity of assigning types overtly
to variables, which is truer to the approach taken in PM itself. It is useful to
consider what a system with explicit type assignment would look like, though.

The type assignment is represented as a function from variables to types:
τ(xi) is the type to be assigned to xi, and more generally τ(t) is the type to
be assigned to the individual constant, variable, or propositional function t.
Types in the range of τ are constant types (they contain no type variables
[xi]). We require that bound variables be typed as well as free variables, and
identity of variables does for us imply identity of type regardless of free or
bound status. We stipulate that every variable is in the range of τ and that
the inverse image of each type under τ contains infinitely many variables: this
has the same effect as providing infinitely many variables labelled with each
type. The following rules simultaneously tell us which terms are typable (have
values under τ) and how to compute the value of τ if there is one. Functions
τ satisfying these rules are called “type functions on P”, where P is a fixed
proposition or propositional function.

individuals: If xi appears as an argument in an atomic subproposition of P ,
τ(xi) = 0. τ(ai) = 0 if ai appears.

propositional functions: If Q is a propositional function appearing as a
subterm of P , every subterm of Q has a value under τ , and the n free vari-
ables of Q, indexed in increasing order, are xik , τ(Q) = (τ(xi1), . . . , τ(xin)).
If Q contains no free variables, then τ(P ) = ().

variable application: If xj(A1, . . . , An) or xj!(A1, . . . , An) is a subterm of
P , then τ(xj) = (τ(A1), . . . , τ(An)).

These rules have to be understood as additional restrictions on well-formedness
of terms: a term P is to be considered well-formed iff there is a type function
τ on P . Notice that the value of τ at every term (or its lack of value) is
completely determined by the values of τ at variables. The process described
terminates by induction on the structure of propositional notations: to com-
pute the type (or assess the typability) of any notation other than a variable
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or individual term, we appeal only to the types of proper subterms of that no-
tation, and we are given types of variables and individual terms at the outset.
(NOTE: work on terminology for kinds of notation).

A weakening of this algorithm is possible if we take into account the pos-
sibility of renaming bound variables. This is implemented in our software for
the simple theory of types, both for quantified variables and for most variables
appearing in constant propositional function arguments, but not in the rami-
fied type theory implementation. Renaming of bound variables can be forced
by a command in the software prior to application of the type algorithm,
however.

We now proceed to develop a system for expressing and reasoning about
type assignments to subterms of propositional functions, adopting rules on the
basis of their validity for an intended interpretation in terms of type functions.

There are four kinds of type judgments. In the following, P stands for a
propositional function or proposition, t, u stand for types (variable types [xi]
are permitted to appear as types and as components of complex types) and
xi stands for a general variable. The meanings of these judgments will be
modified by a redefinition of the notion of “type function on P” which will be
given below.

ill-typedness: “P is ill-typed” is defined as “there is no type function τ on
P”.

propositional function type assignment: “P has type t” means “for all
type functions τ on P , τ(P ) = t”, in which any type [xi] appearing in t is
interpreted as τ(xi).

variable type assignment: “xi has type t in P” means “for all type func-
tions τ on P , τ(xi) = t”, in which any type [xj] appearing in t is interpreted
as τ(xj).

type equality: “t = u in P” is defined as “for all type functions τ on P ,
t = u”, where any type [xj] appearing as in t is interpreted as τ(xj).

We now develop rules for deduction about type judgments, showing that
the rules are valid in the intended interpretation.

We begin with the observation that the conditions defining a type function
on P depend only on the appearances of variables in logically atomic subterms
of P : these conditions assign types to arguments appearing in atomic propo-
sitions, to propositional functions, which can only appear as arguments of
propositional function application terms, and to the head variables of propo-
sitional function application terms. It follows immediately from this that τ
is a type function on P under precisely the same conditions under which it
is a type function on ¬P or on (∀xi.P ) (if the latter is well-formed), since
these terms contain precisely the same logically atomic subterms. Further, it
follows that any type function on (P ∨Q) is also a type function on P and on
Q, since it will satisfy the conditions on logically atomic subterms of P and
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Q, since the set of logically atomic subterms of (P ∨Q) is the union of the set
of logically atomic subterms of P and the set of logically atomic subterms of
Q.

These facts can be expressed as rules for reasoning about type judgments:

negations: ¬P is ill-typed iff P is ill-typed. xi has type t in ¬P iff xi has
type t in P .

quantification: (∀xi.P ) (if well-formed) is ill-typed iff P is ill-typed. xj has
type t in (∀xi.P ) iff xj has type t in P .

binary propositional connectives: If P or Q is ill-typed, (P ∨ Q) is ill-
typed (note that this is equivalent to “if there is a type function on (P ∨Q)
there is a type function on P and a type function on Q”). If xi has type
t in P or xi has type t in Q, then xi has type t in (P ∨ Q). (Note that if
τ(xi) = t must be true for any type function τ on some subterm of P , it
must be true for any type function τ on P .)

There are three kinds of occurrences of variables in logically atomic sub-
terms. Any appearance of xi as an Ak in Rn(A1, . . . , An) will force τ(xi) = 0.
An appearance of xj in xj(A1, . . . , Ak) or xj!(A1, . . . , Ak) will cause xj to
have the composite type (τ(A1), . . . , τ(An)). An appearance of xi as an Ak in
xj(A1, . . . , An) or xj!(A1, . . . , An) does not constrain the type of xi at all.

These facts can be expressed in terms of type judgments.

individual variables: If xi = Ak in Rn(A1, . . . , An), then xi has type 0 in
Rn(A1, . . . , An).

applied variables: If Ai has type ti for each i, then xj has type (t1, . . . , tn)
in xj(A1, . . . , Ak) or xj!(A1, . . . , Ak).

argument variables: xi has type [xi] in P for any propositional function P .

In this way a possibly variable type may be assigned to each occurrence of
a variable. This is called the “local” type of the occurrence. However, more
than one typographically different type may be assigned to the same variable.
For example, x1 is assigned type 0 and type [x1] in R1(x1)∨ x2(x1). Different
types assigned to the same variable will of course be equal. We can express
this in terms of type judgments.

multiple types: If xi has type t in P and xi has type u in P then t = u in
P .

variable type equations: If [xi] = t in P then xi has type t in P .

Definition: We assign an integer arity to each type which is not a type
variable. 0 has arity −1. () has arity 0. (t1, . . . , tn) has arity n. Note that
a type may have variable type components, but it will still have arity if it
is not itself a type variable. Note also that types which are equal will have
equal arity if their arity is defined.

type distinction: If t and u each have arity and have distinct arities and
t = u in P , then P is ill-typed.

12
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absurdity: If P is ill-typed, then P has type t, t = u in P and xi has
type t in P for any t, u, and xi (this is obviously true under the intended
interpretation – we need it for a completeness result).

componentwise equality: If (t1, . . . , tn) = (u1, . . . , un) in P , then ti = ui
in P for each i.

type substitution: If xi has type t in P and xj has type u in P , then xj has
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in u.

A consideration related to type substitution is that no type can be ill-
founded: the type of a variable xi cannot have [xi] as a proper component.

ill-foundedness: If xi has type t in P and t[t/[xi]] 6= t, then P is ill-typed.

Finally, we need the rule for typing propositional functions.

propositional function type: If the variables free in P , listed in order of
increasing index, are (xi1 , . . . , xin) and xik has type tk for each k, then P
has type (t1, . . . , tn).

An additional rule is stated which we do not use in the computer imple-
mentation for simple type theory (though we do use it in ramified type theory),
but which is needed for a completeness result for type functions as we have
defined them.

types from arguments: If xi has type t inAk, then xi has type t in xj(A1, . . . , An)
and xj!(A1, . . . , An).

It should be clear from our discussion that each of these rules is sound for
the intended interpretation. We will prove that this set of rules is complete
for the intended interpretation as well.

Theorem: For each propositional function P , there is a type t such that “P
has type t” is deducible from the rules above and the types possible as
values τ(P ) for a type function τ on P are precisely the types obtainable
by substituting arbitrary types for each type variable appearing in t.

Proof of Theorem: We describe the computation of the type t. The idea
is to construct a set of judgments “xi has type ti” deducible using the
type judgment rules which satisfies all the rules for a type function except
for possibly containing type variables: arbitrary instantiation of the type
variables then yields a true type function.

Begin the construction of the set of judgments by computing the “local”
type of each occurrence of each variable xi. We prove the theorem by
structural induction: we assume that each propositional function argument
of propositional function application terms can be assigned a type satisfying
the conditions of the theorem (this is needed to compute the “local” types
of head variables of propositional function application terms).

The only way in which this can fail to induce a type function on P (mod
instantiation of type variables with concrete types) is if more than one type
is assigned to the same variable. We describe a procedure for resolving such

13



Holmes

situations.
If any variable is assigned types of different arities, the process terminates

with the judgment that P is ill-typed. If any variable xi is assigned a type
which contains [xi] as a proper component, the process terminates with the
judgment that P is ill-typed.

If xi is assigned any type t which is not a variable type (including com-
posite types with variable components) replace all occurrences of [xi] in
types assigned to other variables with the type t. If xi is assigned type [xj]
(j 6= i), replace all occurrences of the type xmin{i,j} in types assigned to all
variables with the type xmax{i,j}. This is justified by the type substitution
rule. In the process described below, carry out these substitutions whenever
a new type assignment is made. Notice that such a substitution will occur
at most once for any given variable xi, since it eliminates the target type
everywhere. Of course, if [xi] is introduced as a proper component of the
type of xi, terminate with a judgment of ill-typedness.

If xi is assigned types [xj] and t in P , add the judgment “xj has type t in
P” and eliminate the type assignment “xi has type [xj] in P” (note that all
occurrences of [xj] will then be eliminated if t is not a type variable). In one
special case we proceed differently: if xi is assigned types [xj] and [xk], we
assign xi, xj, and xk the type xmax{i,j,k} (actually, this happens automatically
due to the substitution procedure described above).

If xi is assigned types (t1, . . . , tn) and (u1, . . . , un) in P , the judgments
ti = ui follow for each relevant i. From these equality judgments continue
to deduce further equality judgments in the same way. This process will
terminate with either a judgment that P is ill-typed or a finite nonempty
set of nontrivial judgments of the form [xk] = vk, each of which has “xk has
type vk” as a consequence, which we add to our list of type assignments.
Assign to xi the type which results if all these types xk are replaced with the
corresponding vk’s in either of the two types being reconciled (the same type
results in either case). Actually, this happens automatically as a result of
the substitution procedure described above, applied to the new judgments
“xk has type vk”. Note that no new assignment to xi can result, because
[xi] cannot be a component of the type assigned to xi unless P is ill-typed.

This process must terminate. Each step of the process described elimi-
nates at least one variable type [xi] from consideration or terminates with
a judgment of ill-typedness.

When the process terminates, we will either have concluded that P is ill-
typed (and this judgment will be honest because the rules are sound for the
intended interpretation) or we will have obtained a set of type assignments
to the variables appearing in P satisfying the conditions for a type function:
any instantiation of type variables appearing in these types with constant
types will give a type function on P .

It is important to note that this is a type algorithm based on the quite
standard approach of type unification implemented, for example, in the type
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checking of the computer language ML (a standard reference is [?]).

The algorithm actually implemented in our software for simple type theory
differs from the theoretical algorithm in not using the rule deducing types of
variables from types of their occurrences in propositional function arguments.
This means that the type of a variable xi in a propositional function argument
will only interact with the types of variables in the larger term if the type [xi]
appears as a component type of the type of the argument. This is legitimate,
because we could arrange for all variables of the propositional function argu-
ment (being bound) to be renamed to avoid collisions with types of variables
appearing elsewhere. However, variables whose polymorphic type appears in
the type assigned to the argument are not considered as being renamed.

We can now salvage the definition of substitution given above.

Convention: We stipulate henceforth that propositional notations are well-
formed iff they are well-formed under the original definition and the judg-
ment “P is ill-typed” cannot be deduced using the algorithm given above, in
the version which implicitly allows renaming of bound variables appearing
in propositional function arguments but not in their polymorphic types.

Theorem: P [Ak/xik ], defined as above, will be well-defined as long as there
is a fixed set of substitutions σ of types for polymorphic type variables such
that the type of each Ak is the result of applying σ to the type of xik in P .

Proof of Theorem: We only need to consider the case in which a proposi-
tional function Q is substituted for the variable xj in a term xj(A1, . . . , An)
or xj!(A1, . . . , An).

We reproduce the problematic clause from the definition of substitution.
“Let xj(V1, . . . , Vn) or xj!(V1, . . . , Vn) be a proposition built by applica-

tion. We carry out the substitution of a finite list of terms Ak for correspond-
ing variables xik . Define B′ for any notation B as Ak if B is typographically
xik and as B otherwise. We define xj(V1, . . . , Vn)[Ak/xik ] as x′j(V

′
1 , . . . , V

′
n)

and xj!(V1, . . . , Vn)[Ak/xik ] as x′j!(V
′
1 , . . . , V

′
n) except in the case where x′j is

a propositional function Q: in this case something rather more complicated
happens. It will be undefined unless there are precisely n variables which
occur free in Q. If there are n variables which occur free in Q, define tk
so that xtk is the kth free variable in Q in alphabetical order. Then define
xj(V1, . . . , Vn)[Ak/xik ] or xj!(V1, . . . , Vn)[Ak/xik ] as Q[V ′k/xtk ].”

The type of the constant propositional function Q being substituted for
xj in P is the image under the fixed substitution σ of the type of xj in P ,
and so is the image under σ of a proper component of the type of P . Thus,
by a structural induction on types, the substitution Q[V ′k/xtk ]) into Q used
to define the substitution into P succeeds, because the image under σ of
the type of Q is simpler than the image under σ of the type of P . Note that
because P is well-typed, that substitution Q[V ′k/xtk ]) will meet the typing
conditions we require for substitutions: the fact that Q has the same type
that xj has in P , each V ′k has the same type as Vk in P , and xj(V1, . . . , Vn)
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is a subterm of P is sufficient to see this.

So the problem of substitution is solved by the adoption of simple type
theory.

6 The Ramified Theory

The motivation behind the ramified theory is as follows. The type of a propo-
sitional function in STT is determined by the types of its arguments, and
all types of its arguments must be simpler than its type: understanding the
meaning of the propositional function involves understanding the entire range
of the types of its arguments, so it cannot without circularity be an item in one
of those types. But it can further be said that understanding the meaning of a
propositional function involves understanding the entire type over which any
quantified variable appearing in the function ranges, so the type of a propo-
sitional function must be more complex than that of any variable over which
quantification occurs in the propositional function. More concretely, Russell
suggests in PM that a quantified sentence is to be understood as expressing
an infinitary conjunction or disjunction in which sentences referring to every
object of the type quantified over must occur. If quantified sentences are to
be interpreted in this way, then the appearance of a quantified variable in a
propositional function of the same type as the propositional function or of a
more complex type would lead to formal circularity on expansion to infinitary
form. This restriction does not occur in STT .

The restriction is enforced in RTT by adding to each type a new feature,
a non-negative integer called its “order”. The order of type 0 (the type of
individuals) is 0 (zero). The type () of propositions in simple type theory
is partitioned into types ()n for each natural number n, where the order n
will be the least natural number greater than the order of the type of any
variable which occurs in the proposition (including quantified variables). A
propositional function P containing n free variables xik (listed in increasing
order) with types tk will have type (t1, . . . , tn)m, where m is the smallest
natural number greater than the order of any of the types tk and the order of
the type of any variable quantified in P . A similar rule applies to the typing
of head variables xi in expressions xi(A1, . . . , An) or xi!(A1, . . . , An): the type
of xi will be (t1, . . . , tn)r where each tk is the type of Ak, and the order r is
larger than the orders of the tk’s; in the term xi!(A1, . . . , An), the order r must
be the smallest order larger than all orders of tk’s.

Polymorphic type-checking for this system is made difficult by the fact
that a polymorphic type [xi] has unknown order (denoted by |xi|) and a term
xi(A1, . . . , An) has only a lower bound on its order, and so it is necessary to
do a certain amount of arithmetical reasoning on unknown orders. A typical
order is the maximum of a natural number n and several expressions of the
form |xi|+m. Unification of orders is a not entirely trivial problem.

This is all made concrete as follows. We begin with the definition of formal
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polymorphic orders.

natural number: A natural number n is a polymorphic order.

polymorphic variable: For each variable xi, the symbol |xi| is a polymor-
phic order.

addition: The formal sum of a polymorphic order and a natural number is a
polymorphic order.

maximum: The formal maximum of two polymorphic orders is a polymor-
phic order.

simplification: Addition is understood to be commutative and associative.
Each sum appearing in a polymorphic order is of the form |xi| + m: two
polymorphic variables are never added, so there is no need for more complex
sums.

Maximum is understood to be commutative and associative. The identity
max(a, b)+c= max(a+c, b+c) can be used to convert any polymorphic order
to a maximum of sums. No more than one natural number not added to
a polymorphic order needs to appear in such a maximum of sums (because
max(m,n) can be simplified to either m or n). No more than one sum
involving the same |xi| needs to appear, since max(|xi| + m, |xi| + n) =
|xi| + max(m,n). So there is a unique canonical form for polymorphic
orders, the maximum of a single natural number (if the natural number is
0 it is omitted) and a list of expressions |xi| + m (if m is 0 it is omitted)
presented in ascending order of the parameter i. Adding a natural number
to such a standard form and taking the maximum of two such standard
forms are readily computable operations.

order of polymorphic orders: If m and n are polymorphic types, we say
m > n when max(m,n+ 1) = m. This is not a total order, of course.

substitution into orders: The result u[m/|xi|] of substituting a polymor-
phic order m for the polymorphic order |xi| in a polymorphic order u is the
result of replacing the occurrence of |xi| in u (if there is one: otherwise the
result of the substitution is u) with m, then simplifying.

Substitution into orders is needed to handle changes in order which take
place when a more detailed type is substituted for a polymorphic type vari-
able.

Now we are in a position to define ramified types (and their orders, simul-
taneously).

individuals: 0 is a ramified type of order 0.

propositions: If n is a polymorphic order, ()n is a ramified type of order n.

propositional functions: If t1, . . . , tn are ramified types andm is a polymor-
phic order greater than the order of any of the types tk, then (t1, . . . , tn)m

is a ramified type of order m.

polymorphic types: For each variable xi, there is a ramified type [xi] of
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order |xi|.
There are two possible ways of understanding the relationships between

the orders. Explicit assertions in PM support the idea that any two types
must be disjoint, and so two types (t1, . . . , tn)r and (t1, . . . , tn)s with r 6= s
must be disjoint. This is the view we take here. There is a possible alternative
approach, taken up by other workers (see [?]), that (t1, . . . , tn)r ⊆ (t1, . . . , tn)s

holds when r < s. We do not take this view, but we found consideration
of this alternative view very useful in constructing early versions of the type
inference algorithm for RTT .

We present the rules for a term-typing function τ as above. Notice that
here the orders will be fixed non-negative integers: polymorphic orders appear
in our algorithm because the structure of terms gives insufficient information
to fix orders precisely in some cases.

individuals: If xi appears as an argument in an atomic proposition, τ(xi) =
0. τ(ai) = 0 if ai appears.

propositional functions: If P is a propositional function and the n free vari-
ables of P , indexed in increasing order, are xik , τ(P ) = (τ(xi1), . . . , τ(xin))m,
where m is one greater than the maximum of the orders of the types of the
variables appearing in P (free or bound, outside proper propositional func-
tion arguments). If P contains no free variables, then τ(P ) = ()m, where m
is one greater than the maximum of the orders of the types of the variables
quantified over in P .

variable application: If xj!(A1, . . . , An) is a term, then τ(xj) = (τ(A1), . . . , τ(An))m,
where m is one plus the maximum of the orders of the types of the Ai’s. If
xj(A1, . . . , An) is a term, then τ(xj) = (τ(A1), . . . , τ(An))m, where the only
requirement on m is that it be strictly greater than the order of the type of
any Ai.

Notice that in the ramified theory there is an additional case where the type
of a variable cannot be rigidly deduced from its context: as before, the type of a
variable argument to a variable propositional function is polymorphic (though
it may be determined from other features of the context) and in addition the
order of the type of xj in a term xj(A1, . . . , An) only has a lower bound, not
a fixed value. This will be reflected in additional appearances of polymorphic
variables in our algorithm.

As above, we will regard a function as well-typed when there is a type
function τ which assigns a type to that function. Some functions will have
many possible types, as above, which will be indicated by the appearance
of type variables [xi] (and order variables |xi|) in the type resulting from
the algorithm. As above, a more liberal type algorithm could be obtained by
requiring that bound variables be renamed to be distinct from one another and
from free variables when this preserves meaning, but this is not implemented
in our software. There is a tool which will rename all bound variables in
such a way that they are typographically distinct whenever possible; this
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can be applied before typing to get the most general typing conditions for a
propositional function.

We now develop rules for deduction about type judgments, showing that
the rules are valid in the intended interpretation. Our development will be
parallel to the development for simple type theory above.

The following rules of type inference hold for the same reasons that they
hold for simple type theory:

negations: ¬P is ill-typed iff P is ill-typed. xi has type t in ¬P iff xi has
type t in P .

quantification: (∀xi.P ) (if well-formed) is ill-typed iff P is ill-typed. xj has
type t in (∀xi.P ) iff xj has type t in P . It is convenient here that xi is forced
to have the same type in P that it has in (∀xi.P ) and terms containing the
latter term (not allowing relaxations which might be permitted in consid-
eration of the bound status of xi); otherwise the management of the effect
on order of quantified variables would be more difficult.

binary propositional connectives: If P or Q is ill-typed, (P ∨ Q) is ill-
typed (note that this is equivalent to “if there is a type function on (P ∨Q)
there is a type function on P and a type function on Q”). If xi has type
t in P or xi has type t in Q, then xi has type t in (P ∨ Q). (Note that if
τ(xi) = t must be true for any type function τ on some subterm of P , it
must be true for any type function τ on P .)

The rules which follow govern the assignment of types to variables in the
four different logically atomic contexts in which variables can appear (four
rather than three because xj(A1, . . . , Ak) and xj!(A1, . . . , Ak) are now to be
distinguished). The rules for variables appearing as arguments are unchanged.
The modification for the types of variables appearing in applied position fol-
lows our remarks on types of such variables above. The assignments derived
using these rules are called “local” type assignments as above.

individual variables: If xi = Ak in Rn(A1, . . . , An), then xi has type 0 in
Rn(A1, . . . , An).

applied variables: If Ai has type ti for each i, and the order of tk is ok
for each k, then xj has type (t1, . . . , tn)r in xj!(A1, . . . , Ak), where r =
1 + max(o1, ..., ok), and xj has type (t1, . . . , tn)s in xj(A1, . . . , Ak), where
s = max(|xj|, o1 + 1, . . . , on + 1).

argument variables: xi has type [xi] in P for any propositional function P .

The rules for resolution of assignments of typographically different types
to the same variable follow. The rule covering type substitutions is extended
to apply to type equations; this is clearly sound for either theory but was not
needed for the algorithm in simple type theory.

multiple types: If xi has type t in P and xi has type u in P then t = u in
P .
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variable type equations: If [xi] = t in P then xi has type t in P .

Definition: We assign an integer arity to each type which is not a type
variable. 0 has arity −1. () has arity 0. (t1, . . . , tn)m has arity n. Note that
a type may have variable type components, but it will still have arity if it
is not itself a type variable. Note also that types which are equal will have
equal arity if their arity is defined.

type distinction: If t and u each have arity and have distinct arities and
t = u in P , then P is ill-typed.

absurdity: If P is ill-typed, then P has type t, t = u in P and xi has
type t in P for any t, u, and xi (this is obviously true under the intended
interpretation – we need it for a completeness result).

componentwise equality (identification of components): If (t1, . . . , tn)m1 =
(u1, . . . , un)m2 in P , then ti = ui in P for each i.

type substitution: If xi has type t in P and xj has type u in P , then xj has
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in u.
If xi has type t in P and u = v in P , then u[t/[xi]] = v[t/xi] in P .

Ill-foundedness is treated in the same way. There is a permitted circularity
(the type of the variable xi may have an order which is a maximum of orders
including |xi|) which does not cause ill-typedness when this rule is applied.

In the rules above and below, it is important to note that substitution of
a type t for a type variable [xi] also has the effect of substituting the order of
t for all occurrences of the order variable |xi|.
ill-foundedness: If xi has type t in P and t[t/[xi]] 6= t, then P is ill-typed.

(Note that the computation of t[t/[xi]] includes the reduction of its order to
standard form; this renders the circularity of types with unbounded order
harmless.)

As above, we need the rule for typing propositional functions. This rule
needs to take into account the effect of quantified variables on order.

propositional function type: If the variables free in P , listed in order of
increasing index, are (xi1 , . . . , xin), and the variables quantified in P are
(xin+1 , . . . , xim), xik has type tk for each k and type tk has order ok for each
k, then P has type (t1, . . . , tn)r, where r = 1 + max(o1, . . . , om).

We need the following rule and we do not subsequently relax it as in simple
type theory.

types from arguments: If xi has type t inAk, then xi has type t in xj(A1, . . . , An)
and xj!(A1, . . . , An).

It should be clear from our discussion that each of these rules is sound for
the intended interpretation. However, this set of rules is not complete.

We now introduce the notion of “bounding variable” of an order.

Definition: If an order n is presented in the standard form max(n0, n1 +
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|xi1 , . . . , nk + |xik |), and some nj with (j 6= 0) is equal to 0, then xij is said
to be a “bounding variable” of n.

It is important to observe that the only orders deduced by any of our rules
which can have bounding variables are the polymorphic orders |xi| themselves
and the orders assigned to xj in terms xj(A1, . . . , An), which have bounding
variable |xj|. Any other polymorphic order that we assign is the successor 1+n
of some order n, and it is clear that no successor order can have a bounding
variable.

Further, the following rule clearly holds for types assigned by our algo-
rithm:

bounding variables: If xi has type t in P and the order of t has bounding
variable xj, then xj has type t in P .

The reason for this is that any rule which assigns a type with bounding
variable xj in the first instance actually assigns this type to the variable xj.
Further, this implies that we can assume that any type with a bounding
variable has only one, since the types of the bounding variables can be shown
to be equal by this rule, and type substitution can then be used to eliminate
one of them.

We present an incomplete but often successful algorithm for computation of
the type of a proposition or propositional function P in RTT . This algorithm
follows the STT algorithm very closely.

Provisional algorithm: We describe the computation of the type t. The
idea, as before, is to construct a set of judgments “xi has type ti” deducible
using the type judgment rules which satisfies all the rules for a type function
except for possibly containing type variables: arbitrary instantiation of the
type variables then yields a true type function.

Begin the construction of the set of judgments by computing the “local”
type of each occurrence of each variable xi. The algorithm is recursive in the
same way as the STT algorithm: we assume that each propositional function
argument of propositional function application terms has been successfully
assigned a type (this is needed to compute the “local” types of head variables
of propositional function application terms).

The only way in which this can fail to induce a type function on P (mod
instantiation of type variables with concrete types) is if more than one type
is assigned to the same variable. We describe a procedure for resolving such
situations.

If any variable is assigned types of different arities, the process terminates
with the judgment that P is ill-typed. If any variable xi is assigned a type
which contains [xi] as a proper component, the process terminates with
the judgment that P is ill-typed (note that if xi is assigned a type with
bounding variable |xi|, this does not lead to forbidden circularity: the only
occurrence of [xi] in the type assigned to xi is the occurrence of |xi| in its
order. Substitution of the type t of xi for [xi] in t has the effect of replacing
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|xi| with the order of t in the order of t, and after simplification the order
is left the same.)

If xi is assigned any type t which is not a variable type (including com-
posite types with variable components) replace all occurrences of [xi] in
types assigned to other variables with the type t. Note that this does not
necessarily eliminate all occurrences of xi: if the type of xi has bounding
variable xi, occurrences of |xi| will remain.

If xi is assigned type [xj] (j 6= i), replace all occurrences of the type
xmin{i,j} in types assigned to all variables with the type xmax{i,j}. This is
justified by the type substitution rule. In the process described below,
carry out these substitutions whenever a new type assignment is made.

Notice that such substitutions will usually occur at most once for any
given variable xi, since the target type is usually eliminated everywhere. Of
course, if [xi] is introduced as a proper component of the type of xi, termi-
nate with a judgment of ill-typedness. The exception in which the variable
xi is assigned a type with bounding variable xi remains to be considered.
Notice that as soon as a variable is assigned a type which does not have
a bounding variable, any type which that variable may have been assigned
which had a bounding variable will be converted to a form which does not
have a bounding variable.

If xi is assigned types [xj] and t in P , add the judgment “xj has type t in
P” and eliminate the type assignment “xi has type [xj] in P”, except in two
special situations which follow. Note that all occurrences of [xj] will then be
eliminated if t is not a type variable and does not have order with bounding
variable xj. In these special cases where [xj] would not be eliminated we
proceed differently: if xi is assigned types [xj] and [xk], we assign xi, xj,
and xk the type xmax{i,j,k} (actually, this happens automatically due to the
substitution procedure described above). If the type t has bounding variable
xj, it must be the case that the judgment “xj has type t in P” has already
been made. In this case we define t′ as t[[xmax{i,j}]/xj] and assign this
type to both xi and xj, replacing all occurrences of [xi] and [xj] in all type
judgments with [xmax{xi,xj}].

If xi is assigned types (t1, . . . , tn)m1 and (u1, . . . , un)m2 in P , the judg-
ments ti = ui follow for each relevant i. From these equality judgments
continue to deduce further equality judgments in the same way. This pro-
cess will terminate with either a judgment that P is ill-typed or a finite
nonempty set of nontrivial judgments of the form [xk] = vk, each of which
has “xk has type vk” as a consequence, which we add to our list of type
assignments. Assign to xi the type which results if all these types xk are re-
placed with the corresponding vk’s in either of the two types being reconciled
(the same type results in either case). Actually, this happens automatically
as a result of the substitution procedure described above, applied to the
new judgments “xk has type vk”. Note that no new assignment to xi can
result, because [xi] cannot be a component of the type assigned to xi unless
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P is ill-typed.
If xi is assigned types (t1, . . . , tn)m1 and (u1, . . . , un)m2 in P , or if xi is

assigned types ()m1 and ()m2, the orders m1 and m2 should be the same. In
this algorithm, the only situation in which we use this information is that
in which one or both of the orders m1 or m2 has a bounding variable. If m1

has bounding variable xj and m2 has no bounding variable, we make the
additional judgment “xj has type (u1, . . . , un)m2 in P” and replace all occur-
rences of |xj| with the order of m2 (other occurrences of [xj] should already
have been eliminated). We proceed symmetrically if m2 has a bounding
variable and m1 has no bounding variable. If m1 and m2 have bounding
variables xj and xk respectively, we make the additional judgments “xj has
type (u1, . . . , un)m2 in P” and “xk has type (t1, . . . , tn)m1 in P”, then re-
place all occurrences of |xj| and |xk| (there should be no frank occurences
of [xj] or [xk]) in type judgments with |xmax{j,k}|. Both of these maneuvers
are justified by the bounding variable rule.

This process must terminate. Each step of the process described elimi-
nates at least one variable type [xi] from consideration or terminates with
a judgment of ill-typedness.

When the process terminates, we will either have concluded that P is
ill-typed (and this judgment will be honest because the rules are sound for
the intended interpretation) or we will have obtained a set of type assign-
ments to the variables appearing in P almost satisfying the conditions for
a type function: the difficulty is that the same variable may be assigned
distinct ramified types corresponding to the same simple type but having
typographically different orders. If each variable has been assigned a unique
type by the end of the process, then the algorithm succeeds in defining a
type function τ up to assignments of concrete type values to type variables,
as above.

This algorithm is still based on the quite standard approach of type uni-
fication implemented, for example, in the type checking of the computer
language ML (see [?]).

The algorithm above is sound but incomplete. If it yields a type, it will al-
ways be a correct type, but there are propositions and propositional functions
which cannot be typed by this algorithm but which can be read as well-typed
terms of RTT . In practice, the algorithm is quite good; it is not easy to write
a typable term of RTT which it will not type (though we shall present some
examples).

A complete algorithm requires true order unification. This will depart from
the usual methods of type checking, because it will require reasoning about
numerical inequalities.

A new kind of type judgment with associated rules is introduced to handle
unification of polymorphic orders.

Definition: Where m and n are polymorphic orders and P is a proposition
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or propositional function, the judgment “m = n in P” means “for any type
function τ on P , the polymorphic orders m and n will be equal if each
polymorphic order |xi| is interpreted as representing the order of τ(xi).

Obviously sound additional rules are

componentwise equality of composite types (order): If (t1, . . . , tn)m1 =
(u1, . . . , un)m2 in P , then m1 = m2 in P . If ()m1 = ()m2 in P , then m1 = m2

in P .

order substitution: If xi has type t in P and m is the order of t, and p = q
in P is an order equality judgment, then p[m/|xi|] = q[m/xi] in P .

We outline our basic approach to reasoning about order unification. An
order equality judgment in standard form will take the form max{n0, n1 +
|xi1|, . . . , nk + |xik |} = max{m0,m1 + |xj1|, . . . ,ml + |xjl |}. This is equivalent
to a disjunction of conditions, each of which asserts the equality of one of the
terms of the first maximum with one of the terms of the second maximum
along with the inequalities asserting that the two chosen terms are greater
than or equal to the other terms of the respective maxima from which they
are taken. If one or both of the orders has a bounding variable, the bounding
variable is the only possible maximum chosen (which simplifies the calculation
in these cases by reducing the number of cases).

All of the resulting statements can be expressed using assertions of the
form |xi| ≥ n, |xi| ≤ n, or |xi| − |xj| ≤ n, where n is an integer. Any equation
or inequality between terms of the forms n0 or nk + |xik | can be converted to a
conjunction of inequalities of the forms above by substracting an appropriate
quantity from each side of the equality or inequality and converting an equa-
tion to the conjunction of two inequalities in the obvious way. Any assertion
of the form |xi| ≤ r where r < 0 (which will also be obtained (e.g.) from an
equation |xi| + m = |xi| + n where m 6= n) can be used to conclude that an
entire conjunction is false.

We now describe the computation of complete conditions for well-typedness
of a term from a number of order equality judgments. Convert each order
equality judgment to a disjunction of conjunctions of inequalities of the forms
described above. A conjunction of disjunctions of conjunctions is converted
to a disjunction of conjunctions in the obvious way.

Now each conjunction of inequalities is processed separately. Present all
inequalities in a uniform way by rewriting |xi| ≤ n, |xi| ≥ n as |xi| − 0 ≤ n,
0 − |xi| ≤ −n, respectively. Every inequality is then written in the form
A − B ≤ n. For each xi which appears, include 0 − |xi| ≤ 0, 0 − 0 ≤ 0 and
|xi| − |xi| ≤ 0 in the conjunction. Wherever A − B ≤ n1 and A − B ≤ n2

both appear, retain just A − B ≤ min{n1, n2}. Wherever A − B ≤ m and
B−C ≤ n both appear, add A−C ≤ m+n to the conjunction. Apply these
operations repeatedly if necessary. If any conjunct of the form |xi|−0 ≤ r with
r < 0 or |xi|− |xi| ≤ r with r < 0 appears, conclude that the conjunct is false.
We claim that this procedure will produce a canonical complete conjunction
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equivalent to the conjunction we started with.

Lemma: Any conjunction of a set of inequalities of the form A − B ≤ n,
where A and B are either 0 or variables with natural number values, is
converted to a canonical equivalent form by the procedure described above.

Proof of Lemma: We will refer to items such as A and B above as “literals”
for the moment. In our application, literals are 0 and polymorphic orders.

We claim first that inconsistency of the conjunction of a set of inequalities
is always detected by this procedure. Suppose we have a partial assignment
of values to literals (of course 0 is always assigned the value 0) and we wish
to consider possible values of a literal A to which a value has not been
assigned. The conditions of forms A− B ≤ n, C − A ≤ m for B and C to
which values have been assigned determine intervals in which the value A
can lie. Now intervals have the logically interesting property that any set
of intervals which intersect pairwise actually have nonempty intersection. If
it is not possible to assign a value to A consistent with given inequalities
involving A and assignments of value, then there must be a pair of intervals
A−B ≤ n, C−A ≤ m for B and C to which values have been assigned which
do not intersect (as intervals of the same kind obviously always intersect).
The values assigned to B and C then cannot satisfy C −B ≤ m+n, which
is one of the equations added to the set by our procedure, as well as being a
logical consequence of the original conjunction, so the values assigned to B
and C were already inconsistent with the conjunction of inequalities. This
means that if a conjunction of literals is actually satisfiable, then we can
proceed by completing the conjunction as above, and using the completed
conjunction to determine the value assigned to each literal A at each step.

We claim further that two equivalent conjunctions will be expanded to
the same form by this procedure. This is easy: suppose one conjunction,
when expanded, contains B − 0 ≤ n0 and the other contains B − 0 ≤ n1.
It follows that the range of values which can be assigned to B at the very
first step of the process of assignments of values to literals is different,
so the original conjunctions cannot have been equivalent. Now suppose
that one conjunction, when expanded, contains B − A ≤ n0 and the other
contains B − A ≤ n1. Suppose we have already assigned a value to A
(compatible with its bound relative to 0). The range of values possible
to assign to B (the bound on whose value relative to 0 being the same in
both expanded conjunctions) will be different, which shows that the two
expanded conjunctions cannot be equivalent, so the original conjunctions
were not equivalent.

Conjunctions can then be simplified by eliminating redundant conjuncts (a
conjunct is redundant if eliminating the conjunct then computing the canoni-
cal form gives the same result as computing the canonical form of the original
conjunction): in practice this gives quite manageable displayed forms for con-
ditions.
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Once each disjunct is computed, identical disjuncts or conjunctions weaker
than other disjuncts can be recognized and eliminated (by comparing canonical
forms) and a simplified form of the disjunction of conditions under which the
term is well-typed can be computed (or ill-typedness can be reported if all
conjuncts reduce to falsehood).

This can be applied to produce a complete algorithm: use the provisional
algorithm described above to generate a list of type assignments whose failures
of uniqueness are induced only by failures to unify order, then apply the
procedure described above to reduce the order equality judgments that are
required to arithmetic assertions about polymorphic orders. Note that under
the resulting conditions it is possible to select any of the types given for each
variable or propositional function as correct, since all types given for any one
object will be equal under the conditions derived from the unification of the
orders.

A notable point about the algorithm is that the simplification of the arith-
metic conditions on polymorphic orders made possible by the use of canonical
forms for conjunctions combined with the elimination of redundant conjuncts
and disjuncts gives quite manageable output (earlier versions which computed
and displayed things more lazily gave unmanageably large displays which were
not useful in practice).

The reasoning above was informal arithmetical reasoning. It is useful to
observe that it can be coded into the language of order equality type judg-
ments. We do not do this in the software: the type inference algorithm just
implements the provisional algorithm described above while the inequalities
are handled by a dedicated representation of quite conventional reasoning
about arithmetic inequalities. So we feel no need to do more than sketch the
way in which this reasoning could be incorporated directly into the system of
reasoning about types.

order inequality: A judgment “m ≤ n in P” is equivalent to “n = max{m,n}
in P”, and so requires no expansion of our language of type judgments.

type subtraction: The judgments we have found it convenient to write as
“A−B ≤ n in P” can be expressed formally as “A ≤ B + n in P”.

relations to zero: The judgments 0 −m ≤ 0 and m −m ≤ 0 assumed for
all orders in the algorithm above expand to judgments automatically made
by the algorithm for simplifying polymorphic orders.

0−m ≤ 0 ≡ 0 ≤ 0 +m ≡ 0 ≤ m ≡ m = max{0,m}

m−m ≤ 0 ≡ m ≤ 0 +m ≡ m = max{m,m}
expansion of equations between maxima: “max{m,n} = p” implies “(n ≤
m and n = p) or (m ≤ n and m = p)”. Of course, this needs to be ap-
plied on both sides of the equals sign. It also requires us to expand our
language to allow the handling of cases: the distributivity of conjunction
over disjunction will also be needed if this is to be completely formalized.
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Note that the special treatment of orders with bounding variables can be
justified using the type judgment rule for bounding variables given above
combined with order unification.

“triangle inequality” steps: The deduction from A−B ≤ m and B−C ≤
n to A− C ≤ m+ n is justified as follows: we actually read A−B ≤ m as
A ≤ B+m: from A ≤ B+m and B ≤ C+n deduce A+B ≤ B+C+m+n,
and from this deduce A ≤ C+m+n using the rules “deduce m+ p ≤ n+ q
from m ≤ n and p ≤ q” and “deduce m ≤ n from m+p ≤ n+p”. These rules
doubtless can be “simplified” to corresponding rules about equations, but
the basic shape of the additional inference rules needed to justify triangle
inequality steps is clear.

absurdity: Judgments of the form m ≤ −r where r > 0 or m − m ≤ −r
where r > 0 signal absurdity: this is implemented by rules asserting that
from 0 = m + r or m = m + r (where r > 0) in P we deduce that P is
ill-typed.

7 Relations to Other Work

In this section we discuss the relationship of the development in this paper
to the development in [?]. We are not familiar with the details of any other
attempt to faithfully implement the theory of types of PM in modern terms:
we are familiar with some other treatments of the ramified theory of types,
but they seem to be more remote from the actual usage of PM .

There is a genetic relationship of sorts. We wrote the software in this
paper in order to check the examples in [?], which we were reading at the
time. However, the approach we took is quite different.

The system of [?] uses a different (and more usual) kind of context than
our system. The form of a type judgment of the system of [?] is Γ |= f : t,
where f is a term, t is the type assigned to that term, and Γ, the “context”, is a
list of assignments of types to variables. In our system, a type judgment about
an entire term (propositional notation) has no context, while type judgments
about variables have as context the term in which they appear.

There is a major notational difference between the propositional function
notation of [?] and our own. The authors of [?] attach type labels to quantified
variables. This is certainly not in the spirit of PM , where there is no notation
for types at all. It would be possible to modify their system to allow this, but
it would be necessary to include type hypotheses for bound variables in the
environment to do this, which might be thought to be inelegant.

The authors of [?] are forced by the structure of their system into adopting
a much more complicated definition of substitution. The difficulty is that one
of the rules of their system of type judgments is defined in terms of the no-
tion of substitution, so substitution has to be defined prior to the adoption of
the type system. As a result, a complicated detour through lambda-calculus
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is required to define the notion of substitution successfully, whereas in our
development we are able to correct the natural definition of substitution by
appealing to the (simple) theory of types, because we make no use of substi-
tution in our definition of types. Once we have defined types, we are able to
use the natural definition of substitution, with the additional stipulation that
all terms involved have to be well-typed and the substitutions for variables
have to reflect the types of the variables in the terms.

Polymorphism is represented differently in the two systems. In the system
of [?], there are no polymorphic type judgements, but a term may be assigned
different types in different contexts. In our system, a single (but possibly
polymorphic) type is always assigned to a term, whose structure is general
enough to indicate all possible types for the term. The side conditions on
polymorphic orders generated by the complete algorithm for RTT complicate
this picture somewhat.

The range of terms recognized as well-typed by our system is far larger than
that recognized by the system of [?], and apparently larger than that recog-
nized by PM !. The system of [?] only supports types all of whose component
types are predicative. Probably the modifications of the system required to
lift this restriction would not be extensive. On reading [?] originally, we
thought this was a weakness of their development, but in fact it seems to re-
flect the intentions of the authors of PM : see p. 165, where they assert that
all non-predicative propositional functions are to be formed from predicative
ones by generalization, and that no bound variables of non-predicative type
are needed. However, there is a problem with this (also apparently recognized
by the authors of PM in an immediately following remark on p. 165): with-
out variables of possibly non-predicative type, one cannot express the axiom
of reducibility in a typable form. PM makes a special provision for this by
introducing application of function variables without assigned order on p. 165;
we suppose that terms with such variables in them would not define proposi-
tional functions for PM if it was desired not to have types with impredicative
components. Further, we believe that if one were to work in RTT without
the axiom of reducibility, one would have to work with a wider range of types.
The system of PM can conveniently restrict impredicativity to the top level of
types as they do (while apparently forbidding quantification over impredica-
tive types) because the axiom of reducibility allows one to associate with every
element of an impredicative type with predicative components an element of
the predicative type with the same components with the same extension, and
one can quantify over this type; in the absence of the axiom of reducibility, one
would probably want to be able to quantify over impredicative types directly
in order to be able to say anything about them, and this would lead to the
ability to define propositional functions with more complex types.

The system of [?] is more modern in appearance than ours; we do recognize
this as an advantage of that system. Our program of using propositional
notations themselves as environments has at least one strange effect to go along
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with its advantages. In the simple theory of types, it is reasonable to avoid
assigning types to bound variables (that is, to define the type algorithm in
such a way as to effectively rename bound variables as they are encountered, so
that a bound variable may have the same shape as a free variable or differently
bound variable of a different type elsewhere without causing a type conflict).
However, without a conventional environment the only way to associate a
polymorphic type with a variable seems to be to name the polymorphic type
after the variable to which it is assigned. This makes it impractical to attempt
to rename variables bound in arguments of propositional functions, which has
odd effects on typing in the simple theory of types which will be seen in the
examples. In the ramified theory, it seems wise to type all variables which
appear, free or bound (even in [?], the authors remark that it is necessary to
assign types to some bound variables, but it is clear that they regard this as
something best avoided). As we have commented, the ability to type a term
independent of the names assigned to bound variables can be tested in our
system by first applying an operation which renames bound variables to be
distinct from one another and from free variables whenever possible.

We believe that our system is better in certain ways than the system of
[?]. The fact that our notation for propositional functions does not require
type indices is truer to the original system of PM (in which there was no
notation for types, anyway). The fact that the definition of our type inference
system does not depend on the notion of substitution allows the definition of
substitution to be simpler and more natural in our formalization. We believe
that our system lends itself better to mechanical implementation, but this is
perhaps unfair since the system described here was reverse-engineered from a
mechanical implementation (though it should be noted that the formal system
was reverse-engineered from an early version of the program which didn’t work
very well, and improvements in the formalization then drove improvements in
the program). It would be interesting to see whether and how well the system
of [?] lends itself to automation. The system of [?] handles bound variables
in a way a little more in accord with modern tastes than ours does (but not
entirely – they still find it necessary to assign types to certain bound variables
in the environment!) The system of [?] is more faithful to PM in limiting types
to those with predicative components, but we feel that any serious attempt to
work in RTT without reducibility would require the lifting of this restriction
(but also that the restriction could easily be lifted in the system of [?]).

The simple theory of types is of course very similar to quite standard type
systems except for its lack of head binders in function notation, and the type
inference algorithm for this system is recognizably of a standard kind, ex-
cept for the adaptations to the head-binder-free notation for functions. The
ramified theory of types is very eccentric as a type system, and the complete
algorithm we exhibit for it is unusual in its need to reason about arithmetic
in order to manage order unification. From the standpoint of modern theories
of types, the orders of RTT are peculiar union types, in which quite hetero-
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geneous kinds of thing are conglomerated together. A type system along the
same lines in which an unordered list of types quantified over in the definition
of a function took the place of the numerical order in RTT would have the
same philosophical motivation but would admit a more familiar-looking (but
still not altogether standard) sort of typing algorithm. The orders of RTT
would be unions of many types of the system just proposed.

8 Examples

True to the historical origins of this paper, we will begin by presenting some
examples from [?]. Some features of the output of our software are suppressed.

We are running the RTT checker, but in many cases this will not be
obvious, as our system does not display order superscripts on types unless the
order is more than one greater than the maximum order of the component
types.

Term input:

S2(a1,a2)

final type list:

unconditional type:

()

Just as in example 49, clause 1, of [?], the propositional notation S(a1, a2)
(the computer requires a suffix on the predicate indicating its arity) is recog-
nized as a proposition because it contains no free variables.

Term input:

(R1(x1) v S1(x1))

final type list:

x1: 0

unconditional type:

(0)

This is parallel to the second example in clause 2 in example 49; our
usage of suffixes on predicates to indicate arity forbade reproducing the form
R1(x1) ∨R2(x1) of the original.

Term input:
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(R1(x1) v S1(x2))

final type list:

x1: 0

x2: 0

unconditional type:

(0,0)

This term R1(x1) ∨ R2(x2) would be treated quite differently from the
term above in the system of [?], for reasons best discovered by examining
examples in that paper (but briefly outlined in the paragraph below), whereas
the treatment of both propositional functions in the system of this paper is
very much the same. In both terms, the list of free variables is generated,
then each free variables is typed using local rules, and the types of the free
variables are listed to form the type of the propositional function.

In the system of [?], the term R1(x1)∨R2(x1) is typed by first considering
the typing of R1(a1)∨R2(a1), which is immediately seen to have type (), and
in which the term a1 has type 0, then using the rule for typing substitutions
to insert new component with type 0 into the type () of R1(a1) ∨ R2(a1) to
obtain the type (0). The term R1(x1)∨R2(x2) is typed by observing that the
two disjuncts have the property that all variables of the first are alphabetically
prior to the variables of the second, typing the first and the second as (0) in
the same way we typed the previous term, then concluding that the type of the
whole is the “product” (0, 0) of two copies of (0) (speaking somewhat loosely).
This might give some idea of the very different flavor of the two approaches.

Term input:

(x2(a1) v S1(a1))

final type list:

x2: (0)^max(|x2|,1)

unconditional type:

((0)^max(|x2|,1))

This is the first example given in example 49 in [?]. Our system tells us
that the function x2 (called z in the original) can have a type of any order
with sole component 0: the order |x2| of this type will be at least 1, which is
expressed by writing it as the maximum of 1 and |x2| (this is an order with a
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bounding variable).

Term input:

[x1](x1() v ~x1())

final type list:

x1: ()^max(|x1|,0)

unconditional type:

()^max(|x1|+1,1)

This is example 51 from [?]. Order is important in this example. Note
that the variable x1 represents a proposition (a 0-ary propositional function);
the order of its type is 0. The entire term is also a proposition (it contains no
free variables, because x1 is bound by the quantifier) but its order is at least
1, because it must be greater than the order of the quantified variable. As in
the previous example, there is no upper bound on the possible order of the
type here. This can be changed, though, using the “predicativity” qualifier of
propositional function application:

Term input:

[x1](x1!() v ~x1!())

final type list:

x1: ()

unconditional type:

()^1

Now we know that the order of x1 is 0 (since it is the smallest possible
order it is not displayed) and the order of the type of the whole term is seen
to be exactly 1.

We have yet to see an explicit polymorphic type. This can be remedied by
considering the term in Remark 58 of [?].

Term input:

x2(x1)

final type list:
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x1: [x1]

x2: ([x1])^max(|x1|+1,|x2|,1)

unconditional type:

([x1],([x1])^max(|x1|+1,|x2|,1))

In this term, x1 is of a completely unknown type [x1], while x2 is seen to be
of type ([x1]) (it is a predicate of objects of type [x1]), so the whole term is of
type ([x1], ([x1])), in which the order of the components is determined by the
fact that x1 is alphabetically prior to x2. The order index on the type ([x1])
of x2 appears because we have no order restriction on x2. We get a prettier
display if we change this:

Term input:

x2!(x1)

final type list:

x1: [x1]

x2: ([x1])

unconditional type:

([x1],([x1]))

In [?], this is also an example of polymorphism: two different derivations
are given, showing how two different types can be assigned, whereas here we
get a single computation showing us what all types look like. If we get more
information from the context, the polymorphic type will become more specific:

Term input:

(x2(x1) v S1(x1))

final type list:

x1: 0

x2: (0)^max(|x2|,1)

unconditional type:

(0,(0)^max(|x2|,1))

Here we know from additional local information in the term that the type
of x1 is 0, so we get a more specific type for the whole propositional function.
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Here we give more complete output for a larger example term. The ex-
ample propositional function is adapted from the definition of a real number
as a Dedekind cut in example 71 in [?]. Predicative propositional function
application has been used throughout to simplify the display.

Term input:

((([Ex2]x1!(x2) and [Ex2]~x1!(x2))

and [x2][x3](x1!(x3) implies (L2(x3,x2) implies x1!(x2))))

and [x2](x1!(x2) implies [Ex3](x1!(x3) and L2(x2,x3))))

basic list:

x1: ([x2])

x1: [x1]

x1: ([x3])

x2: [x2]

x2: 0

x3: 0

x3: [x3]

unification list:

x~2: [x~1]

x~2: ([x2])

x~2: ([x3])

x~1: ([x3])

x~1: ([x2])

x~1: [x~2]

x1: ([x3])

x1: ([x2])

x1: [x1]

x2: 0

x2: [x2]

x2: [x3]

x3: [x3]

x3: [x2]

x3: 0

final type list:

x~2: (0)

x~1: (0)
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x1: (0)

x2: 0

x3: 0

unconditional type:

((0))

The additional displays shown here (suppressed in previous examples) give
some hint at the internal processes of the type algorithm. The “basic list”
contains the local information about types of variables. The “unification list”
contains information derived by unifying types pairwise. The final list is ob-
tained by the process of eliminating superfluous type variables by global sub-
stitutions. The additional variables x−1 and x−2 are used as “placeholders”
internally by the algorithm (in its internal representation of type equality
judgments). The type obtained is the same as the type ((00)1)2) claimed for
this propositional function in [?]: recall that minimal order indices are not
displayed.

We give an example of the curious type phenomena which can result from
identifications of variables with bound variables in propositional function ar-
guments which happen to be used in the names of polymorphic types.

- test "x1(x3(x2))";

final type list:

x1: (([x2],([x2])))

((([x2],([x2]))))

The format is different because we are here using the STT type algorithm.
The final line is the type of the term. x1(x3(x2)) contains one free variable x1,
which is a function taking one argument of the type of x3(x2); x3(x2) is itself a
function of two arguments, x2, whose type is [x2] (ambiguous) and x3, whose
type is ([x2]), since it takes one argument of type [x2]. The type of x3(x2)
is thus ([x2], ([x2])) (recall that arguments are supplied to a propositional
function in alphabetical order of the free variables representing them), the
type of x1 is (([x2], ([x2])))and the type of x1(x3(x2)) is ((([x2], ([x2])))).

The term x1(x2(x1)) apparently has exactly the same meaning, since x2(x1)
is the same object as x3(x2), but the result of typing this term is quite different.

- test "x1(x2(x1))";

basic list:

x1: (([x1],([x1])))

35



Holmes

unification list:

x1: (([x1],([x1])))

final type list:

x1: !?!

!?!

This fails to type. The difficulty is that the types of the two occurrences
of x1 are forced to be the same, and this results in circularity.

In other cases this is harmless in STT :

- test "x1(x1(x2))";

final type list:

x1: ((([x2]),[x2]))

(((([x2]),[x2])))

There is no problem here because, although the types of the two occur-
rences of x1 are incompatible, all information about the type of x1 is discarded
when the typing of the argument x1(x2) is finished, since it is not used in the
polymorphic type of this term. But the RTT algorithm will not accept this:

Term input:

x1!(x1!(x2))

basic list:

x1: ((([x2]),[x2]))

x1: [x1]

x1: ([x2])

x2: [x2]

unification list:

x~2: [x~1]

x~2: ([x2])

x~2: ((([x2]),[x2]))

x~1: ((([x2]),[x2]))

x~1: ([x2])

x~1: [x~2]

x1: ((([x2]),[x2]))
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x1: ([x2])

x1: [x1]

x2: (([x2]),[x2])

x2: [x2]

final type list:

x~2: ?!?

x~1: ?!?

x1: ?!?

x2: ?!?

unconditional type:

?!?

Here type information from the propositional function argument is pre-
served, and it is noticed that x1 needs to be assigned type (x2) and type
((([x2]), [x2])), which are incompatible.

We now give some examples of the application of the complete type algo-
rithm for RTT .

Term input:

(x1(x2,x2) v x1([x3]x3(x4),[x5][x7]x7(x5,x6)))

unconditional type:

?!?

conditional type:

((([x6])^max(|x3|+1,|x6|+2,2),

([x6])^max(|x5|+2,

|x6|+2,|x7|+1,2))^max(|x1|,|x3|+2,|x5|+3,|x6|+3,|x7|+2,3),

([x6])^max(|x3|+1,|x6|+2,2))

WITH

|x3| <= |x7| and

|x5|+1 <= |x7| and

|x6|+1 <= |x7| and

|x7|+2 <= |x1| and

|x7| <= |x3|

The complete checker tells us that this propositional function does not type
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under the provisional algorithm (under the heading “unconditional type”, then
gives a type and a set of conditions on polymorphic orders under which this
propositional function is well-typed in RTT .

Here is another example in which there are two different conditions under
which the given propositional function is well-typed.

Term input:

(x1!(x2,x2) v x1!([x3][x5]x3!(x5,x8),[x6][x9]x6!(x4,x9)))

unconditional type:

?!?

conditional type:

((([x8])^max(|x5|+2,

|x8|+2,2),([x8])^max(|x8|+2,|x9|+2,2)),

([x8])^max(|x5|+2,|x8|+2,2))

WITH

|x5| <= |x9| and

|x8| <= |x9| and

|x9| <= |x5|

OR

|x5| <= |x8| and

|x9| <= |x8|

We will attempt to talk our way through the typing of the second example.
In more standard notation, the propositional function is

x1!(x2, x2) ∨ x1!((∀x3.(∀x5.x3(x5, x8))), (∀x6.(∀x9.(x6!(x4, x9)))))

The entire term is a propositional function of the arguments x1 and x2;
it is necessary to figure out what the types of x1 and x2 are. Because of the
presence of the subterm x1!(x2, x2), we know that the two arguments of any
occurrence of x1 must be of the same type. So the propositional functions
(∀x3.(∀x5.x3(x5, x8))) and (∀x6.(∀x9.(x6!(x4, x9))) are of the same type. Each
of these is a function of one variable, x8 in one case and x4 in the other, so x4
and x8 are of the same type. This base type is polymorphic: we know nothing
about it.

Now we need to analyze orders. The order of the type of (∀x3.(∀x5.x3(x5, x8)))
is two greater than the maximum of the orders of [x5] and [x8]. The increment
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of two is because x3 has type one greater than this maximum, and the order
is raised one more because of the quantifier over the type of x3. Similarly, the
order of the type of (∀x6.(∀x9.(x6!(x4, x9))) is two greater than the maximum
of the order of [x4] = [x8] and the order of [x9]. These two orders have to be
the same. There are two ways for this to happen: either the order of [x5] is
greater than the order of [x8], in which case the order of [x9] also has to be
greater than the order of [x8] and actually must be the same as the order of
[x5], or the order of [x8] is greater than or equal to the orders of [x5] and [x9]
(which in this case need not be the same). And these two cases are what the
output above describes.

The type of x1 will be ([x2], [x2]); the type of x2 will be (x8). So the
underlying simple type of this expression is ((([x8]), ([x8])), ([x8])), and this is
what we see above, adorned with appropriate orders.

9 Applications to Proof Checking

We briefly discuss the application of the typing software in the development
of a proof checker for the system of PM , as expressed in our version of the
notation of [?].

Details of the proof checker itself are not especially relevant at this point
(we are attempting to follow the rules of inference in PM closely). But there
are a couple of observations worth making.

One never has any occasion to see a type index in the course of using the
proof checker. This is appropriate, since PM does not even have notation for
types, so we never see such notation in PM ’s theorems or proofs.

The type checker is used ubiquitously as part of the process of checking
well-formedness of propositions and propositional functions. This is natural.

There is one place in the logic where the type checker plays an important
and perhaps not entirely obvious role. This is in the implementation of the
rule of modus ponens . When one deduces a proposition Q from premises P
and P → Q, there is a subtle fallacy which can occur, and which use of the
type checker enables one to avoid.

All propositions of PM (and so all theorems of the nascent proof checker)
are to be understood in the most general possible way: they are to be true
for all possible values of their free variables under all possible assignments of
type. The difficulty is that the form of the proposition P → Q may give more
type information than Q (and also more than P , but this is harmless). So if
the modus ponens rule were implemented in a naive way, it might be possible
to deduce a proposition Q which is true for all type assignments to Q which
render P → Q well-typed, but not for some other type assignments for Q. So
the proof checker needs to check that the type checking of P → Q gives the
same type information about Q that the type-checking of Q alone gives.

We make the following conjectures, which we plan to discuss in a later
paper where we will have more to say about the proof checker.
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If types constructed from the type of propositions are admitted, the use of
the naive form of modus ponens will lead to paradox. The reason for this is
that under reasonable assumptions the type of propositions, for example, has
only two elements, so one could prove an assertion like (∃ab.∀x.x = a∨x = b)
using hypotheses from which one could infer that x was a proposition, but
produce the conclusion in systematically ambiguous form. This conclusion
leads to contradiction because one can prove that some other types (also con-
structible from the type of propositions) have more than two elements: for
example, ((), ()) has four elements.

On the other hand, if types constructed from the type of propositions are
not permitted (() can occur only as the type of a proposition, not as the
type of a propositional function) then we believe that use of the naive rule of
modus ponens does not lead to contradiction, though it leads to unexpected
results, such as the ability to prove the “axiom of infinity” in pure logic. The
reason for this has to do with the relationship between the ramified theory of
types and the set theory NFP defined by Marcel Crabbé in [?], which is the
predicative version of Quine’s “New Foundations”. I have shown elsewhere
(in [?]) that NFP is mutually interpretable with the ramified theory of types
with the axiom of infinity. Though there are some details to check, we believe
that it is possible to construct a model of the ramified theory of types, using
its relationship with NFP , in such a way that all the types are isomorphic
in a suitable sense, so that if Q is a theorem for any assignment of types
to its variables, it is a theorem for all assignments of types to its variables,
which is a sufficient condition for the naive rule of modus ponens to be valid.
If the type of propositions is permitted as a component, then it is possible
to construct types of distinct finite cardinalities, which cannot be isomorphic
with one another, so it is necessary to forbid the use of the type of propositions
as a component type if one wishes to exploit this (presumed) result.
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