
Noname manuscript No.
(will be inserted by the editor)

Representation of Functions and Total Antisymmetric
Relations in Monadic Third Order Logic

M. Randall Holmes

1 Higher order logics TT and TT3

We start by formalizing higher order logic in order to carefully formulate the
question we are addressing.

The theory we present initially is the simply typed theory of sets, equiva-
lently higher order monadic predicate logic of order ω, which we call TT (for
“theory of types”). This theory is often confused with the type theory of Rus-
sell and Whitehead’s [14], but is far simpler: before TT could be formulated,
it had to be noted that n-ary relations could be implemented as sets via a
representation of ordered pair (first done by Wiener in [16]) and the ramifi-
cations of the type theory of [14], motivated by predicativist scruples, had to
be stripped out, as by Ramsey ([12]). The history of this theory is outlined in
[15]: it seems to actually first appear in print about 1930, long after [14]. We
are specifically concerned with an initial segment TT3 of this theory.

TT is a first-order theory with sorts indexed by the natural numbers. Its
primitive predicates are equality and membership. Atomic sentences x = y
are well-formed iff the sorts of the variables x and y are the same. Atomic
sentences x ∈ y are well-formed iff the sort of y is the successor of the sort of
x. The axiom schemes of TT are extensionality:

(∀xy : (∀z : z ∈ x↔ z ∈ y)→ x = y),

for each assignment of sorts to x, y, z which yields a well-formed sentence, and
comprehension:

(∃A : (∀x : x ∈ A↔ φ)),

for each formula φ in which A does not occur free, and for each assignment
of sorts to variables which makes sense. The witness to the instance of com-
prehension associated with a formula φ, which is unique by extensionality, is
denoted by {x : φ}, a term whose sort is the successor of the sort of x.
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For each natural number n, the theory TTn is the subtheory of TT using
only the n sorts indexed by m with 0 ≤ m < n. TTn is a formalization
of nth order monadic predicate logic (the logic of unary predicates, that is,
properties). Sort 0 is inhabited by individuals; sort m+ 1 < n is inhabited by
sets of sort m objects representing properties of sort m objects: the axiom of
extensionality gives us an identity condition for properties which is defensible
though not uncontroversial, and the axiom of comprehension ensures that all
properties of a parameter x of sort m which we can represent by a formula of
first order logic φ(x) are in fact represented by sort m+ 1 objects.

We are interested here in the representation of binary relations and func-
tions in fragments of TT. The existence of the standard Kuratowski pair (for
which the index reference is [7]) shows that TT4 contains a full implemen-
tation of second order logic of binary relations on sort 0: a relation repre-
sented by a formula φ(x, y) with sort 0 parameters x, y is represented by
{{{x}, {x, y}} : φ(x, y)}, an object of sort 3. More generally, TT3n−2 con-
tains a full implementation of the nth order logic of binary relations [in which
each “unary relation” (i.e., property) P (x) could be represented by the binary
relation xP ∗ y defined as holding iff x = y∧P (x)], and TT itself is just as good
an implementation of higher order logic of binary relations as of higher order
logic of monadic predicates. Standard reductions of higher arity relations to
binary relations via pairing establish that TT implements higher order logic
of any order over relations of any arity.

We are not really concerned with relations of higher arity here, but we note
that there is a specific small n such that models of TTn with infinitely many
individuals (in the sense of the metatheory: they need not satisfy an axiom of
infinity) will contain a full implementation of the second order theory of m-ary
relations for each concrete m. Because there are at least m−1 individuals, the
concrete Frege natural numbers 0, . . . ,m−1 exist in sort 2, so m-tuples can be
represented as functions with domain {0, . . . ,m − 1} in sort 5, and arbitrary
m-ary relations on sort 0 objects are representable in sort 6. This shows that
n = 6 works: we are not certain that 6 is the minimal value for which this
works, but we are not concerned to address this question here.

It is useful to note that there is an internal notion of finite set in TT3.
A sort 2 collection F is said to be inductive iff ∅1 ∈ A and for each A ∈ F
and x 6∈ A, A ∪ {x} ∈ F . A finite set (of sort 1) is a set belonging to every
inductive set (of sort 2).

The precise question that concerns us here is the representability of binary
relations and functions in TT3, where the ordered pair of Kuratowski is not
available.

It is worth noting that TT3, that is, monadic third order logic, is essen-
tially the logical framework used by David Lewis in his Parts of Classes ([8]),
so this investigation is relevant to the capabilities of that system.1 In partic-
ular, it is applicable to an inquiry into the extent to which that framework

1 Lewis’s framework is articulated in terms of plural quantification and mereology in a
way which might make it hard to recognize this. One would interpret sort 2 as inhabited
by (singularized) referents of plurally quantified variables, sort 1 as inhabited by fusions of
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can express quantification over relations. More generally, our investigation fits
into a program of justifying logically and mathematically useful concepts with
minimal ontological assumptions. It is worth noting in particular that it is
known that in the presence of Lewis’s framework, various systems of set the-
ory are equivalent to assertions about the cardinality of the universe, which
might be thought to give interest to the fact that we investigate definitions of
cardinality in monadic third order logic below.

2 Representation of binary relations in TT3

To begin with, a fact known from the beginnings of set theory is that reflexive,
transitive relations (and so in particular equivalence relations and partial or-
ders) are representable in TT3. The basic idea is that an order is representable
by the collection of its segments. If xR y represents a formula φ(x, y) with x, y
of sort 0, and this relation is symmetric and transitive in the obvious sense,
then R is represented by the set [R] = {{y : y Rx} : xRx} of sort 2. The
assertion xR y is equivalent to y ∈

⋃
[R] ∧ (∀z ∈ [R] : y ∈ z → x ∈ z). This

fact allows us to note that the assertion that there is a linear order on sort 0
can be formulated in TT3. For any set A, we can define a reflexive transitive
relation RA on

⋃
A: xRA y iff (∀z ∈ A : y ∈ z → x ∈ z). It is the case that

R[RA] is the same relation as RA, though [RA] will not as a rule be the same
set as A. Zermelo used this technique to represent well-orderings as sets in his
1908 proof of the Well-Ordering Theorem ([17]): this was important because
at that time it was not known how to represent ordered pairs as sets.

Symmetric relations on sort 0 are obviously representable in TT3 as sort 2
sets of unordered pairs.

If there is a linear order on sort 0 in a model of TT3 with at least ten
individuals (we do not know whether 10 is minimal), then there is a method
of defining for sort 0 objects x, y an ordered pair in sort 1, and so all binary
relations are representable in sort 2, completely solving the problem of repre-
sentability of binary relations and functions in TT3 in this case. Let ≤ be a
linear order on the universe, represeented internally by the set of its segments
as indicated above. Let a, b, c, d, e, f, g, h, i, j be ten distinct sort 0 objects.
Define (x, y) as {x, y}∆{a, b, c, d, e} if x ≤ y and as {x, y}∆{f, g, h, i, j} oth-
erwise.

The situation described in the previous paragraph can be obtained under
a weaker hypothesis. If there is a total antisymmetric relation C(x, y) on sort
0 (a relation C such that C(x, x) is always true, and if x and y are distinct,
exactly one of C(x, y) and C(y, x) is true; C(x, y) may be read “x is chosen
over y”) and this relation may be used in instances of comprehension, then a
sort 1 ordered pair (x, y) may be defined as {x, y}∆{a, b, c, d, e} if C(x, y) and
as {x, y}∆{f, g, h, i, j} otherwise, and all binary relations on sort 0 may be
represented as sort 2 sets of ordered pairs in the usual way as in the previous

atoms and sort 0 as inhabited by atoms. There are some quibbles about the empty set in
either of the sorts of positive index, which admit straightforward resolutions.
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paragraph. If we were in TT or even TT5, we could understand existence of
a total antisymmetric relation as a choice principle, the existence of a choice
function from all pairs.

We show that total antisymmetric relations can be represented in TT3 if
they satisfy a technical condition weaker than transitivity.

For each x, let Cx be defined as {y : C(y, x)}. Let C1 be defined as
{Cx : x = x}. Let C2 be defined as {Cx \ {x} : x = x}.

We would like to claim that for each x, we can define Cx as the unique
element A of C1 such that x ∈ A and A\{x} belongs to C2. Certainly A = Cx
has this property. Suppose that for some other set B = Cu ∈ C1, we also have
x ∈ B and B \ {x} = Cv \ {v} ∈ C2. By hypothesis, A 6= B, so x 6= u. Thus
u ∈ Cu \{x} = Cv \{v}, so C(u, v) and u 6= v. We have Cu = (Cv \{v})∪{x}.
If v = x we would then have Cu = Cv = Cx which we know is false.

So we have a bad case in which there are u and v such that

Cu = (Cv \ {v}) ∪ {x}

and x 6∈ Cv.
This motives the following definition.

Definition 1 Let C be a total antisymmetric relation on sort 0 of a model of
TT3 understood from context. We define Cx as {y : C(y, x)} (as above) for any
sort 0 object x, For any sort 0 object x, a pair {u, v} is called a bad pair (in C)
with respect to x if we have u 6= v, uC v, x 6∈ Cv, and Cu = (Cv \ {v}) ∪ {x}.
We summarize some consequences: this gives us ¬xC v, so v C x, xC u, so
¬uC x. All w not in {u, v, x} satisfy wC u ↔ wC v. A pair {u, v} is simply
called a bad pair iff there is an x such that {u, v} is a bad pair with respect
to x.

We can then rule out this bad case by modifying our attempt to define Cx:
Cx is the unique element A of C1 such that x ∈ A and A\{x} ∈ C2, and further
there is no B ∈ C1 and v of sort 0 such that x 6∈ B and (B \ {v}) ∪ {x} = A.
The additional condition rules out the alternative possibility that A = Cu
where {u, v} is a bad pair for x.

With the new definition, the only way that Cx can fail to be defined is if
there is a bad pair {u, v} with respect to x and x itself is a member of a bad
pair {x, s} with respect to some t. Note that if {u, v} is a bad pair, u and v
have the same C relations to every object other than u, v, x. Thus if there is a
bad pair {u, v} with respect to x and x itself is a member of a bad pair {x, s}
with respect to some t, we have that either s is one of u, v or that x and s
have the same C relations to u, v, and the latter is impossible, since this would
mean that s had different C relations to u, v. If s = u, we know that x ∈ Cu,
so it is {x, u} that is the bad pair, and Cx = Cu \ {u} ∪ {t}. The only thing
that t can be is v, as we know that v ∈ Cx (as x 6∈ Cv) and v 6∈ Cu. It further
follows that Cx\{x}∪{u} = (Cu\{u}∪{v})\{x}∪{u} = Cu\{x}∪{v} = Cv,
so {v, x} is also a bad pair. Similar reasoning shows that if s = v we also have
{v, x} and {x, u} bad pairs with respect to u and v respectively.

This motivates a definition.
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Definition 2 Let C be a total antisymmetric relation on sort 0 of a model of
TT3 given in the context. For any u, v, x of sort 0, we say that {u, v, x} is a
bad triple (in C) iff {u, v} is a bad pair in C with respect to x and {v, x} is a
bad pair in C with respect to u and {x, u} is a bad pair in C with respect to v.
The discussion above implies that any two of these conditions imply the third.
Note that we have uC v, v C x and xC u and further that for any w 6∈ {u, v, x}
we must have that wC x, wC u, wC v all have the same truth value (from
which it follows that distinct bad triples must be disjoint). We further define
the circulation of C as the relation C◦ such that xC◦ y holds iff either x = y
and x is not an element of any bad triple in C, or x, y are two of the elements
of some bad triple in C and xC y. Note that the circulation of C is in every
case a function (in fact a bijection), permuting the elements of each bad triple
and fixing all other sort 0 objects.

Thus we can assert the existence of a particular kind of total antisymmetric
relation (one which has no bad triples) in the language of TT3 by asserting
the existence of sets D and E such that for each x of sort 0 there is a unique
Dx ∈ D such that x ∈ Dx and Dx \ {x} ∈ E, and no B ∈ D and v satisfy
x 6∈ B and Dx = (B \ {v}) ∪ {x}, and satisfying the additional condition that
for each x and y distinct, exactly one of x ∈ Dy and y ∈ Dx holds: one can
then define C(x, y), a total antisymmetric relation, as x ∈ Dy, and define an
ordered pair of sort 0 objects in sort 1 and so a complete representation of
binary relations on sort 0 in sort 2 as above. The technical condition on the
relation that it has no bad triples follows from the claimed conditions on D
and E as above; it does not need to appear in the claimed conditions. That
the existence of a total antisymmetric relation with no bad triples implies the
existence of such sets representing it is shown above.

3 Representation of a large class of functions in TT3

In the absence of any choice principles, we present a result about representabil-
ity of a wide class of functions. We state to begin with that we will focus on
representing functions taking sort 0 objects to sort 0 objects which are of uni-
versal domain (defined on all of sort 0). When we do want to represent partial
functions with a given domain, each function f with domain D a proper subset
of sort 0 will be identified with the extension of f which agrees with f on D
and acts as the identity function on the complement of D.

Definition 3 We fix a sort 0 variable x and a sort 0 variable y. We call a
formula φ functional iff (∀x : (∃y : φ) ∧ (∀xyz : φ ∧ φ[z/y] → y = z) holds.
When φ is functional, we will usually write φ(u, v) for φ[u/x][v/y], the result
of substituting u for x and v for y in φ, so the condition already stated can be
written

(∀x : (∃y : φ(x, y)) ∧ (∀xyz : φ(x, y) ∧ φ(x, z)→ y = z).
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We write fφ(x) for the unique y such that φ(x, y). For any set A, we let fφdA
abbreviate f(x∈A∧φ)∨(x 6∈A∧y=x) [this is an example of the treatment of partial
functions announced above].

Definition 4 If φ is a functional formula and A is a sort 1 set, we say that
A is closed under fφ iff (∀x ∈ A : φ(x, y) → y ∈ A). If x ∈ dom(φ) we define
orbitφ(x), the forward orbit of x in fφ, as the intersection of all sets which are
closed under fφ and contain x as an element. We define a finite cycle in fφ as a
finite set orbitφ(x) such that for each y ∈ orbitφ(x), orbitφ(x) = orbitφ(y).
We are interested in finite cycles of cardinality greater than two: by this we
simply mean finite cycles which are not singletons or unordered pairs (we
do not presuppose a development of the notion of cardinality by using this
phrase).

Theorem 1 We work in an arbitrary model of TT3. There is a uniform way
to represent functional formulas φ by sets [fφ] for each φ for which there is a
choice set Cφ for finite cycles in fφ of cardinality greater than 2.

Proof The set [fφ] which we take as representing the function fφ is the set of
all items of the following kinds:

1. forward orbits in the restriction fφd(V 1 \ Cφ). (V 1 being the sort 1 set
of all sort 0 objects). It is important to note that in accordance with our
convention about partial functions, fφd(V 1 \Cφ) fixes each element of Cφ.
It is also important to note that every forward orbit in fφ is also a forward
orbit of this restriction.

2. singletons of elements of Cφ
3. singletons of elements of fφ“Cφ = {y : (∃x ∈ Cφ : φ(x, y)))}.

Given a set F , we indicate how to reverse engineer a functional formula φ
such that F = [fφ] if there is one, and how to recognize when there is no such
formula.

Note first that if F = [fφ], then
⋃
F = V 1.

Notice next that in any function representation F = [fφ], an element A
includes a finite cycle in fφ of cardinality > 2 as a subset if and only if it
includes exactly two singletons belonging to F as subsets. The element A is
a finite cycle in fφ of cardinality > 2 iff it has the previous property and
in addition no proper subset of A which belongs to F includes two singletons
belonging to F as subsets. Further, if A is a finite cycle in fφ, each of its proper
subsets which belongs to F and is not a singleton will include the singleton
of the element of A which belongs to Cφ as a subset and no proper subset of
A which belongs to F and is not a singleton will include the singleton of the
element of A which belongs to fφ“Cφ as a subset.

This motivates the following

Definition 5 Let F be an arbitary sort 2 set such that
⋃
F = V 1. The

collection of supercycles of F is defined as the collection of all elements of F
which include exactly two singletons belonging to F as subsets. The collection
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of cycles of F is defined as the collection of all supercycles of F which have no
proper subsets which are supercycles of F . We define CF as the collection of
all x such that {x} ∈ F and for some cycle A in F of cardinality > 2, x ∈ A
and every proper subset B ∈ F of A has x as an element. We define DF as the
collection of all x such that {x} ∈ F and for some cycle A in F , x ∈ A and {x}
is disjoint from each proper subset of A belonging to F other than {x}. We
say that F is C-good if

⋃
F = V 1 and each cycle of F is finite and contains

as elements exactly one element of CF and exactly one element of DF .

Further note if F = [fφ], the forward orbits in fφ are exactly those sets
which are either supercycles in F or not included in any supercycle in F . The
forward orbit of any sort 0 object x is the intersection of all forward orbits
containing x. Further, the forward orbits in fφd(V 1 \ Cφ) are exactly those
elements of F which are not singletons of elements of DF . This motivates the
following

Definition 6 Let F be any C-good sort 2 set. Define F ∗ as the set of all ele-
ments of F which are either supercycles of F or not included in any supercycle
of F . For any sort 0 object x, define OrbitF (x) as the intersection of all ele-
ments of F ∗ which contain x. Define F ∗∗ as the set of all elements of F which
are not singletons of elements of DF . Define Orbit∗F (x) as the intersection of
all elements of F ∗∗ which contain x. We say that a C-good set F is orbit-good
iff each OrbitF (x) is an element of F , each Orbit∗F (x) is an element of F , and
all elements of F are either OrbitF (x)’s, Orbit∗F (x)’s, singletons of elements
of CF or singletons of elements of DF .

Further, note that for any element x of V 1 \ Cφ, fφ(x) is the unique y in
the forward orbit O of x in fφd(V 1 \ Cφ) such that the forward orbit of y in
fφd(V 1 \ Cφ) is either O \ {x}, or is equal to O which is equal to {x, y} (this
last case does not exclude the possibility that x = y). For each element x of
Cφ, fφ(x) is the element of fφ“Cφ contained in the same finite cycle in fφ.
This motivates the following

Definition 7 For any orbit-good F and x of sort 0, we define F [x] as follows:

1. If x belongs to CF , define F [x] as the element of DF belonging to the same
cycle in F .

2. If x does not belong to CF , define F [x] as the unique y such that either
Orbit∗F (y) = Orbit∗F (x) \ {x} or Orbit∗F (y) = Orbit∗F (x) = {x, y} (which
does not rule out y = x, note).

We say that F is value-good iff F is orbit-good, F [x] is defined for every x
and further for each x the minimal set O(x) such that x ∈ O(x) and (∀y : y ∈
O(x)→ F [y] ∈ O(x)) satisfies O(x) = OrbitF (x).2

2 An example of a value-good F which would not be orbit-good would be the collection
of final segments of an infinite well-ordering with order type > ω).
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We have now described precisely how to determine for any F whether it
represents a function and what the extension of the represented function is.
The value-good sets are the sets which represent functions, and for each value-
good F we have F = [fy=F [x]], where of course y = F [x] abbreviates a very
complicated formula.

Notice that under the hypothesis ACfin = “every collection of pairwise
disjoint finite sets has a choice set”, every function is representable in this
sense.

4 Applications: cardinality can be represented in TT3 and NF3;
more about total antisymmetric functions

An immediate application of this partial representation of functions is a demon-
stration that the notion of cardinality is definable in TT3 (for sets of sort 1).
It is not the case that every bijection is representable in this way. However,
if there is a bijection fφ from a set A to a set B which is represented by a
formula φ(x, y) as discussed above (extended to act as the identity function on
non-elements of A), there is also a representable function f∗ whose restriction
to A is a bijection from A to B and which acts outside A as the identity. The
value f∗(x) for x ∈ A is defined as x if x belongs to a finite cycle of cardinality
greater than 2 in fφ (which will be a subset of A∩B) and otherwise as fφ(x).
The function f∗ is clearly both representable by a formula and representable
by a set [f∗] defined as above. An application of this is the observation that
the notion of cardinality is definable in the fragment NF3 of Quine’s New
Foundations (the set theory described in [11], usually abbreviated NF) shown
to be consistent by Grishin ([4]). This was shown by somewhat different meth-
ods in unpublished work by Henrard (discussed in [9], [3]). That cardinality is
definable in NF3 is not obvious, as there is no notion of ordered pair definable
in this theory. It is elegant that the notion of cardinality that we are able to
define is such that the domain and range of any bijective functional relation
defined by a formula will be of the same cardinality, even if we cannot repre-
sent the function by a set. Since we have defined the notion of sets A and B
(of sort 1 in TT3) having the same cardinality, we do have the ability to define
the cardinal |A| as the (sort 2 in TT3) collection of all sets B which are of the
same cardinality as A.

We regard it as worth noting that considerations about NF3 are actually
very general considerations about third order logic. We outline the reasons
for this. NF can briefly be described as the one-sorted first order theory with
equality and membership whose axioms are the axioms of TT with distinctions
of sort between variables dropped (without creating identifications between
variables); NFn has the same relationship to TTn. NF4 was shown in [4] to be
the same theory as NF. Any two externally infinite models of TT2 with the
splitting property (any set which is externally infinite can be partitioned into
two externally infinite sets) which have the same cardinality are isomorphic by
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a back-and-forth construction. Any model of TT3 which is externally infinite3

is readily shown to be elementarily equivalent to a countable model of TT3

which is externally infinite and has the splitting property. A countable model
of TT3 which is externally infinite and has the splitting property possesses an
isomorphism from the substructure consising of sorts 0 and 1 to the substruc-
ture consisting of sorts 1 and 2, by the observation about TT2 above, and so
can be made into a model of NF3 by using the isomorphism to identify the
sorts, by results of Specker in [13]. The net effect of this is that the stratified
theorems of NF3 (the ones which can be read as theorems of TT3 by assigning
sorts to variables) are in fact the theorems which hold in all externally infi-
nite models of TT3 (including externally infinite models of TT3 in which the
axiom of infinity is false): NF3 is in effect a very general system of third order
logic. The original reference for this fact is [1]. NF4, on the other hand can be
viewed as a very odd system of fourth order logic, and NF can be viewed as
a similarly odd system of higher order logic of order ω. It is well-known that
NF is strange and presents vexed problems: the point of this paragraph is that
NF3, though perhaps unfamiliar to the reader, is not particularly strange and
in fact is rather generic. The results of this paper show something about the
mathematical competence of this system. It is worth mentioning the result of
Pabion ([10]) that NF3 with the Axiom of Infinity is equivalent in strength to
second order arithmetic.

Another application of the partial representation of functions is a stronger
representation of total antisymmetric relations: let C be a total antisymmetric
relation such that there is a choice set from its bad triples: represent C by three
sets, C1 defined as above, C2 defined as above, and C3 the set representing the
circulation C◦ of C (defined above) as a function in the way just described,
using the given choice set to handle its nontrivial cycles, the bad triples of C.
Cx can then be defined as in the partial represention of total antisymmetric
relations given above, when x does not participate in a bad triple: when x
belongs to a bad triple, C3 provides the needed additional information.

The condition asserting the existence of such a representation of a total
antisymmetric relation follows: there are sets D, E, and F such that for each
x we are given either a unique Dx ∈ D such that x ∈ Dx and Dx \ {x} ∈ E,
and no B ∈ D and v satisfy x 6∈ B and Dx = (B \ {v}) ∪ {x}, or a unique set
D−x and pair of sort 0 objects u, v distinct from x and from each other such
that each union of D−x with a two element subset of {x, u, v} belongs to D
and each union of D−x with a one-element subset of {x, u, v} belongs to E. We
refer to {x, u, v} as a bad triple in the latter case. The additional conditions
are asserted to hold that for any distinct x, y, exactly one of x ∈ Dy and
y ∈ Dx holds (if Dx and Dy are defined): if Dx and/or Dy are not defined,
the same statement holds with D−x and/or D−y in place of Dx and/or Dy,
respectively, if it is not the case that both D−x and D−y are both defined and
are the same set (that is, if x and y do not belong to the same bad triple). F

3 By “externally infinite” we simply mean that the model is infinite in terms of the
metatheory. We emphasize this because an externally infinite model of TT3 may satisfy the
negation of the Axiom of Infinity: it may believe internally that all sets are finite.
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is the set representation of a bijection whose domain is the union of the bad
triples and which has each bad triple as a cycle. The relation C(x, y) is defined
as “x ∈ Dy ∨ x ∈ D−y ∨ y = F [x] ∨ y = x”. Of course, if this condition holds
we can define a complete implementation of binary relations.

Note that under the hypothesis AC3 = “every pairwise disjoint collection
of three-element sets has a choice set”, any total antisymmetric relation has
such a set implementation, and we can express in the language of TT3 the
assertion that there is a total antisymmetric relation. We are not saying that
AC3 implies that there is such a relation; we see no reason to believe this to
be true.

5 There is no uniform representation of functions or of total
antisymmetric relations in TT3

We now present the negative result that there is no uniform way in which all
functions representable by functional formulas can be represented by sets in
TT3, nor is there any uniform way to represent total antisymmetric relations
representable by formulas as sets. First we state precisely what we mean.

Definition 8 We say that a formal implementation of functions in TT3 is
constituted by two formulas funF and app satisfying conditions which we
describe. funF is a formula in a language extending the language of TT3 with
a new primitive binary function symbol F (x, y) for a binary relation with
parameters of sort 0. The variable f (of a sort we choose not to specify) is the
only variable free in funF : we will usually write it funF (f) in order to signal
this. app is a formula in the language of TT3 without F in which the sort
0 variables x and y and the same variable f of sort not stated are the only
free variables: we will usually write app(f, x, y) to signal this. In the extension
of TT3 with the addition of axioms that F (x, y) is a functional formula and
that all instances of the comprehension scheme for TT3 involving the new
primitive relation F hold, with no other additional axioms, we require that
(∃f : funF (f)) is a theorem and that funF (f)→ (app(f, x, y)↔ F (x, y)) is a
theorem.4

Definition 9 Similarly, we say that a formal implementation of total antisym-
metric relations in TT3 is constituted by two formulas tarelR and tarelapp

satisfying conditions which we describe. tarelR is a formula in a language
extending the language of TT3 with a new primitive binary function symbol
R(x, y) for a binary relation with parameters of sort 0. The variable r (of a
sort we choose not to specify) is the only variable free in tarelR: we will usu-
ally write it tarelR(r) in order to signal this. tarelapp is a formula in the

4 The single variable f may be replaced throughout by a finite vector f1, . . . , fn, if the
representation uses more than one object: for example, the representation of functions we
would obtain if we had a total antisymmetric relation would consist of the usual collection
of ordered pairs representing the function, but also the three sets coding the total antisym-
metric relation and the ten sort 0 objects used in the definition of the ordered pair.
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language of TT3 without R in which the sort 0 variables x and y and the same
variable r of sort not stated are the only free variables: we will usually write
tarelapp(r, x, y) to signal this. In the extension of TT3 with the addition of
axioms that R(x, y) is a total antisymmetric relation and that all instances
of the comprehension scheme for TT3 involving the new primitive relation R
hold, with no other additional axioms, we require that (∃r : tarelR(r)) is a
theorem and that tarelR(r)→ (tarelapp(r, x, y)↔ R(x, y)) is a theorem.5

We leave it to the reader to evaluate our assertion that this formalizes
exactly what we mean by saying that there is a uniform implementation of
functions or of total antisymmetric relations as sets in TT3. The intended
sense of funF (f) is “f is the set implementation of the functional binary
relation F”; the intended sense of app(f, x, y) is “y is the result of applying the
function represented by the set f to x”. The intended sense of tarelR(r) is “r
is the set implementation of the total antisymmetric relation R”; the intended
sense of tarelapp(r, x, y) is “xR y, where R is the total antisymmetric relation
represented by r”.

We use a Fraenkel-Mostowski permutation model to demonstrate our nega-
tive result (a textbook reference for this method is [6]). At this point we stipu-
late that our metatheory is ZFA (the usual set theory ZFC with extensionality
weakened to allow atoms) and that we assume the existence of infinitely many
atoms. It is well-known that ZFA with a collection of atoms of any desired
size is mutually interpretable with ZFC. A much weaker metatheory could be
used, but this one is conventional.

We also note that any model of TT3 in which the set implementing sort 0 is
not larger than the collection of atoms is isomorphic to a model of TT3 in which
sort 0 is implemented by a set of atoms, sort 1 is implemented by a subset of
the power set of the set implementing sort 0, sort 2 is implemented by a subset
of the power set of the set implementing sort 1, and the membership relations
of the model are subrelations of the membership relation of the metatheory.
We call such a model of TT3 a “natural model” of TT3 in ZFA. Natural models
of TTn for any finite n can be defined similarly.

Theorem 2 There is no formal implementation of functions in TT3, nor is
there any formal representation of total antisymmetric relations in TT3.

Proof We set out to construct a natural model of TT4 in ZFA in which the set
of atoms implementing sort 0 is infinite and partitioned into three element sets,
which are orbits under a bijection f from sort 0 to sort 0 in the metatheory.
We add a new predicate F (x, y) to our language, with the meaning y = f(x).
We will allow the predicate F to be used in instances of comprehension. We
use the convention that any permutation π of the atoms is extended to all sets
by the rule π(A) = π“A. The group G of permutations defining the FM model
will be the permutations of sort 0 which act on each orbit in f independently as

5 As above, the single variable r may be replaced with a finite vector of variables r1, . . . , rn:
for example, the partial representation of total antisymmetric relations already given has
three components.
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either the identity, f or f2 = f−1. A set or atom A is said to be symmetric iff
there is a finite set S of atoms such that for any permutation π ∈ G such that
π(s) = s for each s ∈ S, we also have π(A) = A: it is obvious that each atom
is symmetric. A set belongs to the FM model iff it is hereditarily symmetric
in this sense; all atoms belong to the FM model. Standard results about FM
models tell us that we obtain an interpretation of ZFA (without Choice) in
our original ZFA in this way. Sort 0 of our model of TT4 will consist of the set
of atoms already mentioned. Sort 1 of our model of TT4 will be the power set
of the set implementing sort 0 in the sense of the FM interpretation. Sort 2 of
our model of TT4 will be the power set of the set implementing sort 1 in the
sense of the FM interpretation. Sort 3 of our model of TT4 will be the power
set of the set implementing sort 2 in the sense of the FM interpretation. This is
clearly a model of TT4 both in the FM interpretation and in our original ZFA
metatheory, also satisfying the assertion that F (x, y) is a functional formula
and satisfying all instances of comprehension mentioning F : we can see this
because the usual Kuratowski implementation of f is a set in the model of
TT4.

A set of sort 1 in this model is of the form S∪T where S is a finite set and
T is a union of orbits in f . The closure of S under f is a support of this set. A
set of sort 2 with support S, a finite set closed under f , is an arbitrary union
of basis sets, each one determined by a finite subset A of S and a function g
from the orbits of f not included in S to {0, 1, 2, 3} which has only finitely
many domain elements mapped to 1 or 2. The basis element determined by A
and g is the collection of all sets A∪B where B does not meet S and for each
orbit o in f which does not meet S we have |B ∩ o| = g(o). These descriptions
of sort 1 and sort 2 sets follow directly from the criterion that a set of a given
sort in our model with a given support S is an arbitrary union of orbits of
permutations in our group which fix the given support.

Now observe (it is evident from the descriptions of sort 1 and sort 2 sets)
that the model of TT3 consisting of sorts 0,1,2 of the model of TT4 which we
have constructed has the property that all of its sets are hereditarily symmetric
with respect to the larger group G∗ of permutations which fix each orbit of
f and act within each orbit entirely arbitarily. But it is still the case that all
instances of comprehension mentioning F hold in this model: this property is
inherited from the model of TT4 defined with the smaller group G.

By examination of the model of TT3 just described as an initial segment
of the model of TT4 we started with, we can show that in fact there can
be no formal implementation of functions as sets. For if there were such an
implementation based on given formulas funF and app, we would be able to
identify f such that funF (f) (letting F denote the specific functional relation
we introduced in the model construction). Now the object f would have to
have a finite support set S: for any permutation π ∈ G∗ fixing each element
of this finite set S, we would have π(f) = f .

It is straightforward to show that for any permutation π ∈ G∗ we will
have app(f, x, y) ↔ app(π(f), π(x), π(y)). This follows from the fact that
each atomic formula u = v or u ∈ v (F will not appear in app) is in-
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variant under application of any π ∈ G∗ to both sides, and induction on
the structure of formulas. And this cannot be true. Choose any x, y which
are not in S such that y = f(x) and choose π ∈ G∗ such that π(y) =
f−1(π(z)) (we can do this because each orbit in F can be permuted in any
arbitrary way by elements of G∗), and this falsifies the theorem relating app

and funF : we would have funF (f) ∧ app(f, x, y), from which we could de-
duce funF (π(f))∧app(π(f), π(x), π(y)) (noting that we have π(f) = f), from
which we have both F (π(x), π(y)), by the fact that this is supposed to be a
formal representation of functions, and F (π(y), π(x)) by the choice of π, which
is impossible.6

We can further show that there can be no representation of total anti-
symmetric relations in the same sense. The exact model we are considering
supports a total antisymmetric relation (representable in the usual way as a
set of sort 3). There is a linear ordering ≤ of the orbits under f because we are
in ZFA with Choice. The total antisymmetric relation defined by “the orbit
of x in f is strictly less than the orbit of y in f or y = f(x) or y = x” is
invariant under permutations in G and so is present in the FM interpreta-
tion. If we add a primitive predicate representing this relation, all instances
of comprehension mentioning this predicate will hold in the model of TT4

and in the model of TT3 which is its initial segment. No formulas tarelR(r)
and tarelapp(R, x, y) in the language of TT3 (in the first formula augmented
with a total antisymmetric relation R) can constitute a formal representa-
tion of total antisymmetric relations by a very similar argument to that given
above. Let r satisfy tarelR(r) where R denotes the total antisymmetric re-
lation defined above in terms of f . Let S be a support of r with respect to
G∗. Let x, y be chosen such that neither belongs to S and y = f(x). Let
π ∈ G∗ fix each element of the support S and satisfy π(y) = f−1(π(x)).
We would have tarelR(r) ∧ tarelapp(r, x, y), from which we could deduce
tarelR(π(r)) ∧ tarelapp(π(r), π(x), π(y)) (noting that we have π(f) = f ,
and that tarelapp(r, x, y) ↔ tarelapp(π(r), π(x), π(y)) for reasons already
discussed in connection with app), from which we have both R(π(x), π(y)), by
the fact that this is supposed to be a formal representation of functions, and
R(π(y), π(x)) by the choice of π, which is impossible.7

This has a corollary with an ironic flavor: if we provide a predicate R
representing the total antisymmetric relation described above, we do obtain an
ordered pair on sort 0 in sort 1 and a representation of binary relations and so
of functions in this model: this does not contradict our results here because the
definition of ordered pair and so the definition of a relation holding between two
objects or application of a function to an object depend essentially on R. This
unintended representation of relations and functions can be killed by allowing
permutations in G to exchange orbits as well as permute objects independently
in each orbit. We do not know whether we can express the assertion that there

6 Note that the argument goes in exactly the same way if the single variable f representing
the function is replaced by a finite vector f1 . . . , fn.

7 Note that the argument goes in exactly the same way if the single variable r representing
the total antisymmetric relation is replaced by a vector r1, . . . , rn.
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is some total antisymmetric relation on sort 0 in the language of TT3: we
have shown above that we can express the assertion that there is some total
antisymmetric relation on sort 0 if we have the additional hypothesis AC3 that
each collection of disjoint three-element sets has a choice set.

We make a final (cautionary) remark about choice principles in these trun-
cated models of type theory. The choice principle AC2 = “every disjoint collec-
tion of pairs has a choice set” holds in the model of TT3 under consideration,
because all hereditarily symmetric pairwise disjoint collections of sort 1 (un-
ordered) pairs of sort 0 objects are finite. However, if we build a model of TT5

in the same way in the FM interpretation using G∗, we will find that AC2 fails
for sort 2 objects: the existence of a choice function for pairs can be proved
from the existence of a choice set for the collection of unordered pairs of the
form {(x, y), (y, x)} where x, y are of sort 0 and the ordered pairs are Kura-
towski pairs, and it is straightforward to argue that the FM interpretation
using G∗ cannot enjoy a choice function for pairs.

This shows that the result on representability of functions above is some-
thing like the best possible: the limitation that one must be able to choose an
element from each finite cycle of length greater than two has something to do
with actual obstructions that can prevent representability of functions in the
absence of choice.

It is also worth noting the corollary of the negative result that there is no
ordered pair of sort 0 objects definable in sort 1 in TT3 without additional
hypotheses, as otherwise there would clearly be a formal representation of
functions as sets along standard lines.

6 Related work

We have already noted the unpublished work of Henrard on the definability of
cardinality in NF3, which was the original inspiration of this work. The only
accessible sources known to us which discuss this work are the master’s theses
[9], [3]. Henrard’s aim was to represent cardinality, not functions per se, in the
theory NF3 in which no ordered pair is available. He represented orbits in a
bijection f as sets of pairs {x, f(x)}: an orbit would be a minimal set of such
pairs closed under the relation of having nonempty intersection, in which each
pair {x, y} intersected no more than two pairs {u, x} and {y, v} (and might
intersect one pair or none). Notice that the representations of the orbits of f
and f−1 are indistinguishable. It is then reasonably straightforward to give a
definition of the conditions under which a set of pairs would be the union of the
representations of the orbits in a bijection from a set A to a set B, thus allowing
the definition of the notion of sets A and B having the same cardinality,
though without actually providing a formal representation of a bijection from
A to B: we do not give the details. Our approach was developed with prior
knowledge of his, and betters it by providing an actual representation of some
bijection from A to B when there is any bijection from A to B (though not
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of all such bijections), and providing representations of many functions which
are not bijections. Our results give more information about the mathematical
competence of TT3 and NF3 than Henrard’s methods: we acknowledge that
we are indebted to his work. We believe that it is important to note (as we
do at length above) that NF3 is not a special case: every externally infinite
model of TT3 is elementarily equivalent to a model of NF3 (in the sense that
the stratified assertions true in the model of NF3 correspond exactly to the
assertions true in the model of TT3).

We further need to discuss the relationship between the results of our pa-
per and the entirely independent work of Hazen in [5], of which we became
aware after we had already obtained the results on functions described here.
Hazen argues that there cannot be a general representation of binary relations
in TT3 (which he calls “monadic third-order logic”, terminology we adopted
in our title) for reasons essentially similar to reasons given in our analysis.
He certainly gives an accurate general description of the reasons for this fact,
using the same approach of partitioning sort 0 into three-element sets and
considering a function with these sets as its orbits. We are not sure that his
argument is completely rigorous (it may actually be, but the style is unfa-
miliar to us); Hazen himself says (personal communication, quoted with his
permission) that his argument looks like a Fraenkel-Mostowski construction
argument for his result framed by someone who had never heard of Fraenkel-
Mostowski constructions. We note that Hazen also has shown in prior work
([2]) that existence of a linear order on sort 0 is sufficient to yield a represen-
tation of binary relations in monadic third order logic.8 We believe that we
should in justice grant that Hazen has given a very similar argument for non-
representability of binary relations in general prior to ours; we have made the
further contributions however, of a more rigorous presentation of a similar ar-
gument using FM model techniques, positive results concerning representation
of large classes of functions and total antisymmetric relations in monadic third
order logic, and proofs of non-representability in the specific cases of functions
and total antisymmetric relations. Our detailed analysis of the case of total
antisymmetric relations is new. Hazen has pointed out to us the relevance of
our results to evaluation of the capabilities of David Lewis’s logical framework
exhibited in Parts of Classes ([8]).

We wish to acknowledge very useful conversations with Allen Hazen in the
course of this work.
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