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Abstract. Three systems of “double extension set theory” have been proposed by An-

drzej Kisielewicz in two papers. In this paper, it is shown that the two stronger systems

are inconsistent, and that the third, weakest system does not admit extensionality for

general sets or the use of general sets as parameters in its comprehension scheme. The

parameter-free version of the comprehension principle of double extension set theory is

also shown to be inconsistent with extensionality. The definitions of the systems and a

self-contained exposition of their properties is given, sufficient to develop the inconsistency

proofs.
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1. Introduction

In [1], Andrzej Kisielewicz proposed a system of “double extension set the-
ory”, based on an interesting approach to weakening the unrestricted (and
inconsistent) axiom scheme of comprehension of so-called “naive set theory”,
and gave an argument for the claim that this system implements all mathe-
matical constructions of ZF . In [2], he presented two weaker versions of this
system.

In this note, we will show that the two stronger systems of the three
are inconsistent and the weakest system does not admit extensionality for
general objects or the use of general objects as parameters in instances of
comprehension. The mathematical development here will be self-contained;
one needs to do a fair bit of work to derive the paradoxes.

Double extension set theory (in all three forms) is a first-order theory
with three primitive predicates, equality and two membership relations ∈
and ε.

The axiom of extensionality of double extension set theory, as stated in
[1], stipulates that if two sets have the same extension under either mem-
bership relation, the two sets are equal:

((∀x.x ∈ A ≡ x ∈ B) ∨ (∀x.x εA ≡ x εB))→ A = B.
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The two systems of [2] assume a “mixed” extensionality axiom involving
both membership relations:

(∀x.x ∈ A ≡ x εB)→ A = B

and do not assume the extensionality axiom of the system of [1].
We call a formula uniform if it contains no instance of ε. For any formula

φ, we define φ∗ as the formula obtained by replacing any occurrence of ∈ in
φ with ε and any occurrence of ε with ∈.

With the aid of these concepts, we can present a preliminary form of the
axiom scheme of comprehension of double extension set theory:

Axiom 1.1. (Axiom Scheme of Comprehension (parameter-free)) For each
uniform formula φ in which no variable other than x is free, the following is
an axiom:

(∃A.(x εA ≡ φ) ∧ (x ∈ A ≡ φ∗)).

We refer to this set A as {x | φ}. Sets witnessing instances of comprehen-
sion are called “set abstracts”. In English, any formula (without parameters)
which does not mention ε determines an extension for ∈ and any formula
(without parameters) which does not mention ∈ determines an extension
for ε and (crucially) the set with ε extension determined by φ is the same
object as the set with ∈-extension determined by φ∗. (It should be noted
that in the absence of additional axioms there may be other sets with the
same extension under just one of the membership relations).

The Russell paradox is thwarted: let R = {x | x 6∈ x}. Comprehension
gives us x εR ≡ x 6∈ x, so RεR ≡ R 6∈ R, and dually R ∈ R ≡ R 6 εR. This
is not a contradiction: in one sense R belongs to R and in the other it does
not.

This is very appealing, as far as it goes.

2. Formal development of the systems

The absence of parameters is a serious weakness in the system. Kisielewicz
gives two different approaches to remedying this, one of which subsumes the
other (though this is not obvious without a little work).

Parameters cannot be added in an unrestricted way. This is easy to
show. Consider the uniform formula x ∈ a. The set {x | x ∈ a}, if we were
permitted to form it, would have as its ε-members exactly the ∈-members of
a, and extensionality would imply further that a = {x | x ∈ a}. This would
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be true for any a, so the two memberships would coincide for all sets and
we would recover the Russell paradox immediately.

Definition 2.1. We say that a set A is regular iff (∀x.x ∈ A ≡ x εA): reg-
ular sets are those which have the same extension under both membership
relations.

We introduce a weak comprehension scheme (there will be a “strong
comprehension scheme” described below). Further, we assume the mixed
case of extensionality, and do not assume the extensionality axiom of [1].
Note that the mixed case of extensionality does imply those cases of the
extensionality axiom of [1] in which one or both of the sets compared is
regular.

Axiom 2.2. (Weak Axiom Scheme of Comprehension) For each uniform
formula φ in which each free variable other than x refers to a regular set
(and A is not free), the following is an axiom:

(∃A.(x εA ≡ φ) ∧ (x ∈ A ≡ φ∗)).

Kisielewicz makes an additional assumption, which we present as a sep-
arate axiom:

Definition 2.3. We say that a set A “has regular elements” iff (∀x.(x ∈
A ∨ x εA) → x is regular): any element of A in either sense is regular. We
say that a set A is “partially contained in a set B” iff (∀x.x ∈ A → x ∈
B) ∨ (∀x.x εA→ x εB).

Axiom 2.4. (Supplemental Regularity Axiom) Any set which is partially
contained in a set with regular elements is regular.

The system we have now presented is the weaker of the two systems
described in Kisielwicz’s second paper [2], though it is not formulated in
precisely the same way.

Kisielewicz folded what we call the supplemental regularity axiom into
the axiom of comprehension, by weakening the condition on parameters to
allow any set partially contained in a regular set to be a parameter. But this
is equivalent to stipulating our second and third axioms, as well as being a
quite awkward formulation. To see the equivalence, it is sufficient to observe
that if a is allowed to be a parameter, {x | x ∈ a} has as its ε-extension
the ∈-extension of a, from which it follows by mixed extensionality that
a = {x | x ∈ a} and this is a regular set (it has the same extension under
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both memberships). So allowing any class of objects to be parameters is
equivalent to asserting that objects of that class are regular.

This way of introducing parameters, which seems quite arbitrary when it
is presented in [2], is in fact a natural outgrowth of the basic comprehension
scheme. It is a restriction of a much more general way in which parameters
can be introduced which is described in Kisielewicz’s first paper [1].

Consider that any formula φ in which ε does not occur and parameters
do not occur is the ε-extension of some set. This suggests that formulas
y εA, where A is an arbitrary parameter, might be taken as standing in for
arbitrary ∈-formulas (this would be legitimate, for example, if we supposed
that all objects were set abstracts), which would motivate the following
definition and stronger comprehension scheme:

Definition 2.5. A formula φ is said to be “uniform in x”, if every occurrence
of ε in φ is in the context y ε a, where a is a free variable other than x, and
moreover, every occurrence of a free variable other than x in φ is to the right
of ε.

Axiom 2.6. (Strong Axiom Scheme of Comprehension) For each formula φ
which is uniform in x and in which A is not free, the following is an axiom:

(∃A.(x εA ≡ φ) ∧ (x ∈ A ≡ φ∗)).

From this axiom scheme, it is easy to derive the comprehension scheme
for ε-free formulas with regular parameters (our official scheme), because any
ε-free formula φ with regular parameters other than x can be transformed
into a formula uniform in x. A subformula y = z of φ, where y and z are
both parameters, can be replaced with an ε-free tautology or contradiction
(depending on its truth value). If y = z is an atomic subformula of φ in
which y is not a parameter and z is a (regular) parameter other than x, we
can replace it with the equivalent (∀u.u ∈ y ≡ u ε z), in which u is a new
variable and the occurrence of z now satisfies the requirements for uniformity
in x. If y ∈ z is a subformula of φ in which y is not a parameter and z is a
regular parameter other than x, it is equivalent to y ε z by the definition of
regularity. If z ∈ y is a subformula of φ with the same conditions on y and
z, (∃u.u ∈ y ∧ u = z), u a new variable, is an equivalent formula in which
the subformula u = z can be transformed as indicated above.

In an alternative formulation of double extension set theory given in [2],
apparently intermediate in strength between the systems already described,
Kisielewicz proposes that what we call the weak comprehension scheme be
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adopted along with the axioms

(∃B.(∀x.x ∈ B ≡ x 6∈ A) ∧ (∀x.x εB ≡ x 6 εA))

and

(∃C.(∀x.x ∈ C ≡ (x ∈ A ∨ x ∈ B)) ∧ (∀x.x εC ≡ (x εA ∨ x εB))),

which assert that the universe is a boolean algebra in both senses. These
axioms are both instances of the strong comprehension scheme. They are
sufficient to prove that any set which is partially contained in a set with
regular elements is regular: we present this proof (found in [2]) to (almost)
complete the motivation of Kisielewicz’s weaker axiom set.

Under the boolean algebra axioms, the boolean operations on the uni-
verse under either membership relation are exactly the same operation (this
is obvious from the form of the axioms). Moreover, the inclusion relation on
the universe is the same relation in either sense. If (∀x.x ∈ A→ x ∈ B), then
the set x−y (which can be defined using the boolean operations given by the
axioms above) is empty, but this means that x−y is empty in both senses by
extensionality (it must be equal to the usual empty set {x | x 6= x}, which is
empty with respect to both ∈ and ε), which means that (∀x.x εA → x εB)
must hold as well.

It is important to observe that one consequence of this is that the boolean
algebra axioms imply that any two sets which have the same ∈-extension
also have the same ε-extension: this is equivalent to two sets including each
other. The relation of coextensionality is self-dual.

This implies that a set partially contained in a set with regular elements
is itself a set with regular elements (it must be a subset of the same set with
regular elements in both senses, though we have not yet shown that it must
have the same extension in each sense). Now we show that a set with regular
elements must be regular. Suppose A has regular elements. Let a ∈ A.
Comprehension with regular parameters gives us the set {a} = {x | x = a},
whose sole member is a under either membership. We see that {a} is included
in A in the sense of ∈; we have seen that this implies that it is also included
in A in the sense of ε, from which it follows that a εA. A dual argument
shows that any ε-element of A is an ∈ element as well. A has the same
elements under both membership relations, which is what it means for A to
be regular.

At this point we have established that the set comprehension axiom of [1]
is stronger than the comprehension axioms of the intermediate system of [2],
which is in turn stronger than the weaker system of [2]. The intermediate
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system of [2] is stronger than the weaker system of [2], but we cannot con-
clude that the system of [1] is strictly stronger than these systems because
mixed extensionality does not seem to be a consequence of the axioms of [1].

However, we can conclude that the contradiction in the intermediate
system of [2] which we derive below affects the system of [1], because the
only consequence of mixed extensionality which is used in the argument is
the assertion that the set of natural numbers is regular, and this is proved
in [1] using an additional axiom we do not introduce here. It should also
be noted that the results of section 6 below show that the system of [1] is
inconsistent using only axioms we have introduced here.

3. Terms and natural numbers

From this point on, we restrict ourselves to the axioms of mixed extensional-
ity, comprehension with regular parameters, and regularity of sets partially
contained in sets with regular elements (the weaker system of [2]), and at-
tempt the derivation of a paradox. The derivation does not seem to succeed,
but it does succeed if we add as additional assumptions either the exten-
sionality axiom of the system of [1] or the boolean algebra axioms of the
intermediate system of [2].

We note that any instance of the strong comprehension scheme in which
the parameters are either regular sets or set abstracts (sets of the form {x | φ}
(φ uniform with all parameters regular)) is true, in one case simply because
the parameter is regular, and in the other case because the formula u ε {x | φ}
can be replaced by φ[u/x], which is uniform with regular parameters by
hypothesis. This will be important in our development: we originally derived
the paradox for the theory with the strong comprehension scheme, then
observed that all the occurrences of irregular parameters were inessential to
the argument.

We discuss the use of terms {x | φ} in instances of comprehension. There
are two obstructions to the use of such terms. The first is that in general
the description of {x | φ} involves both membership relations: in terms of a
definite description operator (and in the presence of extensionality assump-
tions), {x | φ} = (ιA.x εA ≡ φ) = (ιA.x ∈ A ≡ φ∗): a formula containing
one of these descriptions is in general neither an ∈-formula nor an ε-formula.
An exception to this is a term like A∪B = {x | x εA∨x εB} = (ιC.x ∈ C ≡
x ∈ A∨x ∈ B). Such terms, in which only ε appears in φ (at least in effect)
because all terms to the right of a membership relation are either parameters
or regular sets, are permitted by the strong comprehension scheme, and also
permitted under our official comprehension scheme when the parameters are
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set abstracts. The second obstruction is the fact that we only assume the
mixed extensionality axiom. This means that we cannot assume, even when
an object with the extension appropriate to {x | φ} is provided by exten-
sionality, that there is a unique such object. We nonetheless will need the
ability to use term constructions in set definitions, and we adopt a uniform
convention for this purpose.

Convention 3.1. We state the intended meanings of formulas involving set
builder notations {x | φ} and terms defined as abbreviating such notations.
The formula a = {x | φ} is taken to mean (∀y.y ∈ a ≡ φ∗). The formula
{x | φ} ∈ a is taken to mean (∀y.(∀z.z ∈ y ≡ φ∗) → y ∈ a). Note that this
asserts that all sets with the extension appropriate to {x | φ} belong to a.
The formula {x | φ} = {x | ψ} means (φ∗ ≡ ψ∗) ∧ (∃A.(∀x.x ∈ A ≡ ψ∗)).
The formula a ∈ {x | φ} means φ[x/a]∗ ∧ (∃A.(∀x.x ∈ A ≡ φ∗)). To
translate formulas involving ε, dualize the forms given here (the “equality”
formulas will not change their surface form when dualized, but the correct
membership relation to use will always be deducible from context).

These conventions will normally be applied in cases where {x | φ} is a set
permitted by the strong axiom scheme of comprehension in which φ∗ turns
out to be an ∈-formula or readily translatable to an ∈-formula.

Kisielewicz claims in [2] that double extension set theory supports all
mathematical constructions which can be carried out in ZF . We need one
of the results of his development of this claim. The set N of all natural
numbers is defined as {x | (∀I.(∅ ∈ I ∧ (∀y ∈ I.y+ ∈ I))) → x ∈ I}, where
y+ denotes y∪{y} = {z | z ε y∨z = y}, as usual, and the assertion y+ ∈ I is
defined using our convention 3.1 above (note that the translated formula is
an ∈-formula). Kisielewicz proves that N is regular, that all of its elements
are regular, and that all of its elements actually have successors (so it is an
infinite set).

For the sake of self-containedness, we reproduce this proof here. We
follow [2] very closely.

Lemma 3.2. Let S(x) represent the formula (∃y.(∀z.z ∈ y ≡ z = x)). Then
x is regular iff both S(x) and S∗(x) hold.

Proof. If a is regular, then the set {a} = {x | x = a} exists and witnesses
both S(x) and S∗(x). If S(x) and S∗(x) both hold, then the witnesses to the
two statements must be equal, by mixed extensionality. Let A be the object
that witnesses both statements, whose only element in either sense is a. Note
that A is regular, so we can define the set a′ = {x | (∃y.x ∈ y ∧ y ∈ A)}
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(in which A is a parameter). Note that x ε a′ ≡ x ∈ a, because a is the only
element of A. Note then that a′ = a (by mixed extensionality) and a = a′ is
regular (because its ε- and ∈-extensions are seen to be the same).

Definition 3.3. Let Ind(x) abbreviate ∅ ∈ x∧(∀y.(S(y)∧y ∈ x)→ y+ ∈ x).
Recall that formula y+ ∈ x is to be interpreted using our convention 3.1
above. Define the set N as {x | S(x)∧ (∀y.Ind(y)→ x ∈ y)}. The definition
of N looks just like the definition of N , except for occurrences of S(x).

Lemma 3.4. Ind(N).

Proof. Clearly ∅ ∈ N . Now suppose that S(x) holds and x ∈ N . x ∈ N →
S∗(x) by comprehension and the definition of N , whence x is regular by
Lemma 1. From regularity of x the existence of x+ = {y | y = x ∨ y ε x} =
{y | y = x ∨ y ∈ x} follows. Moreover, it is clear from the instance of
comprehension defining x+ and the regularity of x that x+ is regular and
so is the only set with its extension (in either sense). Since x+ is regular
S∗(x+) holds. Since x ∈ N , it follows by comprehension that x ε y for every
y such that Ind∗(y), which implies further that x+ ε y for every such y (by
definition of Ind∗) . Now S∗(x+) ∧ (∀y.Ind∗(y) → x+ ε y) is precisely what
is needed for x+ ∈ N to hold. Thus we have shown that Ind(N) holds.

Lemma 3.5. N is regular, and all elements of N are regular.

Proof. Suppose x εN . Then by comprehension and the definition of N ,
x ∈ y for every y such that Ind(y), so by Lemma 3.4 x ∈ N . Dually,
x ∈ N → x εN , so N is regular. Since N is regular, all elements x of N
satisfy both S(x) and S∗(x) and so are regular.

Theorem 3.6. N = N , so N is regular and has all elements regular.

Proof. N is defined as the intersection of all sets which contain ∅ and are
inductive in the usual sense. Since N contains ∅ and is inductive in the
usual sense (every element of N satisfies S(x) and has a unique successor, so
the additional conditions in the definition of Ind can be ignored), it follows
that every element of N belongs (in both senses, since the argument can
be dualized) to N . Now it is clear that N , a subset of N containing ∅ and
closed under successor, must contain all of N (because we know that S(x)
will hold of all elements of N , so any subset A of N which contains ∅ and is
inductive in the usual sense satisfies Ind(A) and so will contain all of N).
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The ability to prove the Axiom of Infinity is one of the most appealing
aspects of Kisielewicz’s theory.

We very briefly outline the approach taken by Kisielewicz to proving the
result claimed in [2] that a certain class of sets (the “hereditarily regular”
sets) support all mathematical constructions of ZF . If x is regular, we define
TC(x) as {y | (∀A.(x ⊆ A ∧ (∀zw.z ∈ w ∧w ∈ A→ z ∈ A))→ y ∈ A)}. We
say that a regular set x is hereditarily regular if all elements of TC(x) are
regular (if this is true in either sense it will of course be true in both senses).

It is straightforward to show that pairs of hereditarily regular sets are
regular, that power sets of hereditarily regular sets are hereditarily regular,
and that unions of hereditarily regular sets are hereditarily regular. Ana-
logues of the axioms of replacement and separation are hardly more difficult
to verify, but see our comments on this in the next paragraph. The set N
whose existence has just been proved can easily be shown to be hereditarily
regular, so the analogue of the axiom of infinity holds. The collection of
hereditarily regular sets cannot be used directly to develop a paradox, be-
cause, being defined in terms of both membership relations, the predicate
“hereditarily regular” cannot be mentioned in an instance of comprehension.

The fact that hereditary regularity cannot be mentioned in instances of
comprehension casts some doubt on Kisielewicz’s claim that the hereditarily
regular sets support all the mathematical constructions possible in ZF . He
proves, for example, that for any uniform formula φ and hereditarily regular
set A, the set {x ∈ A | φ} is hereditarily regular. But this does not give the
full capability of construction of sets by separation found in ZF . Instances
of separation of ZF might involve unbounded quantifiers over the universe
of ZF , which would translate to unbounded quantifiers over the class of
hereditarily regular sets, which cannot in any obvious way be expressed in
a uniform formula of double extension set theory. Bounded instances of
separation (in which each quantifier is restricted to a hereditarily regular
set) will be successfully implemented. The treatment of replacement has the
same weakness. The discussion in [2] does show that the class of hereditarily
regular sets satisfies bounded ZF (without foundation, which can be restored
by considering well-founded hereditarily regular sets), which is strong enough
for almost all mathematical purposes, but it is not immediately clear how
to prove that it satisfies full ZF . We derive this observation from a personal
communication of Olivier Esser.



10 M. Randall Holmes

4. The paradox foreshadowed; notions of pairing

Now we consider the motivation for the paradox. This is an idea we had
immediately when we saw the definition of this theory, but the execution is
quite difficult.

Russell’s paradox can be considered as a special case of the application
of a “fixed point combinator” in untyped λ-calculus. For any function f ,
we can define Cf as (λx.f(x(x))) and discover that Cf (Cf ) = f(Cf (Cf )).
Let f be negation, where the application operation x(y) is interpreted as
y ∈ x on sets (viewing a set as a function from sets to truth values), and we
have precisely Russell’s paradox. What we noticed is that it is crucial that
the period of the negation operation is 2 (f(f(x)) = x) because there are
just two membership operations in use. This might seem a silly observation,
since the domain of operation of this particular f (truth values) has just two
elements, but there are of course ways to code operations on larger sets into
set theory.

An obstruction presents itself immediately. In order to code functions
into set theory in a general way, it appears necessary (and certainly it is
usual) to use ordered pairs. The standard ordered pair is not defined on the
universe of double extension set theory. One can prove, in fact, that the
existence of {{x}, {x, y}} in the sense of both memberships implies that x
is regular (this follows from Lemma 3.2 above: if the Kuratowski pair exists
in both senses, then the singleton of x exists in both senses, and x at least
is regular). This put our doubts to rest for a bit.

Then we considered a different definition of the ordered pair, due to
Quine in [3], where it was developed for use with the set theory NF (New
Foundations).

To understand the development which follows, it is necessary to give the
construction of the Quine pair (formulated in the way appropriate to double
extension set theory).

Definition 4.1. We define x1 as the set {y | (y ε x∧y 6 εN )∨ (∃z.z ε x∧ z ∈
N ∧ y = z+)}, and x2 as x1 ∪ {0}. The Quine pair (A,B) is defined as
{a1 | a εA} ∪ {b2 | b εB}.

The sets x1 and x2 are obtained by first replacing each element of x
which is a natural number with its successor, then (in the case of x2) adding
0 as an additional element). It should be clear that x1 = y1 or x2 = y2 imply
that x and y have the same extension, and also that x1 = y2 is impossible.
The Quine pair is a kind of disjoint union construction.
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It is important to notice that in the context of double extension set theory
we expect y ∈ z1 ≡ (y ∈ z∧y 6∈ N )∨(∃u.u ∈ N∧u ∈ z∧u+ = y) (and dually
for ε): this is really a notion defined in terms of a single membership relation
(similarly for the definition of z2). In this respect, these operators are like
the boolean algebra operations on sets in the two stronger systems. The
existence and uniqueness of such sets for general z follows easily from the
strong comprehension scheme and extensionality axiom of [1] The existence
of objects with the desired extensions also follows from regularity of N and
its elements combined with the boolean algebra axioms of the intermediate
system of [2] (we do not give details, but they are not difficult). There is no
obvious argument for the existence of such objects for general x in the official
weak version of the theory, though objects with the extensions expected of
x1 and x2 do exist for each set abstract x, which turns out to be all that we
need. Similarly, x ∈ (A,B) ≡ (∃z.z ∈ A ∧ z1 = x) ∨ (∃z.z ∈ B ∧ z2 = x):
the strong comprehension scheme allows us to prove that there is a uniquely
determined object satisfying this for any A and B, but neither of the weaker
theories allow us to do this.

5. The paradox implemented

In this section, we use the weak system of [2] with the additional assumption
that sets which have the same ∈-extension also have the same ε-extension
(coextensionality is self-dual).

Note that the additional assumption holds in [1], because it follows from
the extensionality axiom of [1]. It also holds in the intermediate system of
[2], because it is a consequence of the boolean algebra axioms: inclusion is
self-dual in the presence of the boolean algebra axioms, and two sets are
coextensional if they are included in each other.

In spite of all apparent obstacles, we proceed to construct a fixed point
for an operator F with period 3, which is fatal to this system. The operator
acts on pairs of propositions. Without any real philosophical commitment
to such a position, we adopt a convention of Frege and identify the truth
values with the numbers 1 and 2 (though we use the notation t and f for
them qua truth values), and regard each proposition as a name for its truth
value. This allows us to treat pairs of propositions as objects. This is not
in any way essential to our argument, but it is advantageous as a matter
of notational convenience. A pair (p, q) is sent by the operation to the pair
(q,¬p ∧ ¬q). This operation sends (t, t) to (t, f) to (f, f) to (f, t) back to
(t, f); if one starts with any pair of truth values and applies this operation
F repeatedly, one will settle down into the indicated cycle of length 3.
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Suppose temporarily that we have strong extensionality and we have a
well-defined pair and projection operators definable in terms of either mem-
bership relation (so that they can appear in instances of comprehension).
Then the paradoxical set is readily defined.

Define X1 as {y | y ∈ π2(y)}.
Define X2 as {y | y 6∈ π1(y) ∧ y 6∈ π2(y)}.
Let X = (X1, X2). Note that π1(X) = X1 and π2(X) = X2.
Now X εX1 ≡ X ∈ X2 (by the instance of comprehension defining X1

and the definition of X) and X εX2 ≡ X 6∈ X1 ∧X 6∈ X2.
Dually, X ∈ X1 ≡ X εX2 (by the instance of comprehension defining X1

and the definition of X) and X ∈ X2 ≡ X 6 εX1 ∧X 6 εX2.
Thus we have (X ∈ X1, X ∈ X2) = F (X εX1, X εX2), and dually we

have (X εX1, X εX2) = F (X ∈ X1, X ∈ X2)
From this we draw the conclusion that (X ∈ X1, X ∈ X2) = F 2(X ∈

X1, X ∈ X2), and this is easily seen to be impossible by the periodicity
structure of F exhibited above.

But of course we are not finished yet, because we have not shown that
the pair and its projections can be defined as above. Indeed, we cannot
(though we can in the system with the strong comprehension scheme and
extensionality axiom). But we do not need to. If we assume that the pair
above is the Quine pair, we can transform the definition of X into a form
involving no explicit mention of the pairing or projection operators.

The trick is to observe that the bad sentences y ∈ πi(y) (for i = 1, 2) in
the definitions of X1 and X2 can be expressed as yi ∈ y if the pair is supposed
to be the Quine pair. It then becomes straightforward to define X as a set
directly. Further, though general computation of projections and pairs does
not work (in general, computation of x1 and x2 isn’t even guaranteed to
work) we only need to compute any of these in cases where the parameters
are set abstracts, in which case the weaker comprehension scheme is sufficient
to ensure that they work, in order to show the contradiction. We explicitly
give conventions for the use of terms u1, u2.

Definition 5.1. Where u and v are arbitrary objects, we interpret u1 = v as
signifying (∀x.x ∈ v ≡ (x 6∈ N ∧x ∈ u)∨ (x ∈ N ∧x− 1 ∈ u)). We interpret
u2 = v as signifying (∀x.x ∈ v ≡ (x 6∈ N∧x ∈ u)∨(x ∈ N∧x−1 ∈ u)∨x = 0)
Note that these are ∈-formulas: the dual ε-formulas are written ui =∗ v,
where i = 1, 2.

Definition 5.2. Where v is an arbitrary object, we interpret vi ∈ v (where
i = 1, 2) as meaning “there is a w such that vi = w and w ∈ v, and for all
w such that vi = w, we have w ∈ v”. The dual formulas are written vi ε v.
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Definition 5.3. Define X as {u | (∃v.v1 = u∧ v2 ∈ v)∨ (∃w.w2 = u∧w1 6∈
w∧w2 6∈ w)}. Please note that in the argument which follows any statement
we make about X is in fact a statement about all witnesses to the truth of
this comprehension axiom, and so about all objects with the extensions
for both memberships appropriate to this set abstract (if extensionality is
not assumed, there may be many such objects; under Convention 3.1 as
stated above, we would consider only one of the memberships (determined
by context)).

Observation 5.4. Notice that any two sets with the same ∈-extension will
either both ε-belong to X or both not ε-belong to X, and, dually, any two
sets with the same ε-extension will either both ∈-belong to X or both not
∈-belong to X, even if we assume only the mixed case of extensionality. To
see this it is necessary to look at the meanings of the atomic formulas vi = u
and vi ∈ v under our conventions just given: it is straightforward to verify
that the truth values of these formulas depend only on the extension of v
under the appropriate membership relation.

Sets with the extensions expected of X1 and X2 can be shown to exist
by comprehension: X1 = {x | (x εX∧x 6∈ N )∨(∃y.y εX∧y ∈ N ∧x = y+)}
is provided by comprehension because each formula “u εX” can be replaced
with a formula containing no instance of ε using comprehension and the
definition of X, and X2 is equally easy. More briefly, these objects exist
because X1 and X2 are defined by instances of strong comprehension in
which the parameter X is a set abstract.

Now we consider the status of the sentences X1 ∈ X and X2 ∈ X. These
sentences are to be understood as asserting that all witnesses to the com-
prehension axiom defining Xi (for i = 1, 2) ∈-belong to X; note that this is
apparently a stronger assertion than vi ∈ v for general objects v, because
the comprehension axiom places conditions on both extensions of Xi, not
just the ∈-extension. Our intention is to verify, following the argument al-
ready given above, that (X1 ∈ X,X2 ∈ X) = F (X1 εX,X2 εX) = F 2(X1 ∈
X,X2 ∈ X), which is impossible.

We give full details for the equation

(X1 ∈ X,X2 ∈ X) = F (X1 εX,X2 εX).

The second equation is proved using the dual of this result.
X1 ∈ X iff (∃v.v1 =∗ X1 ∧ v2 ε v) ∨ (∃w.w2 =∗ X1 ∧ w1 6 εw ∧ w2 6 εw),

which is in turn true iff X2 εX. This is because w2 =∗ X1 is impossible,
and v1 =∗ X1 implies that X has the same ε-extension as v, (the formula
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abbreviated v1 = X1 by our convention is dualized to an ε-formula v1 =∗ X1

when comprehension is applied), and the truth-value of v2 ε v depends only
on the ε-extension of v (because the formula v2 ε v asserts that all objects
(if any) with a certain extension defined in terms of the ε-extension of v,
are in fact ε-elements of v) , so is equivalent to that of X2 εX. There is
a subtlety here which requires the application of our additional assumption
that coextensionality is self-dual (and appears to save the weak system of
[2] from this paradox). The implication from v2 ε v to X2 εX is direct;
the converse implication is not. If X2 εX, (X2 being any witness to the
appropriate comprehension axiom) this implies that all objects with the
same ∈-extension (not ε-extension!) as X2 ε-belong to X, because the ε-
membership of X2 in X depends on properties of its ∈-extension. We apply
the additional assumption that coextensionality is self-dual to conclude that
all objects with the same ε-extension as X2 are ε-members of X. We are
indebted to an anonymous referee for pointing out this subtle issue and
saving us from making the mistaken claim made in a draft version of this
paper that this argument shows the inconsistency of the weak system of [2].

X2 ∈ X iff (∃v.v1 =∗ X2 ∧ v2 ε v) ∨ (∃w.w2 =∗ X2 ∧ w1 6 εw ∧ w2 6 εw),
which is true if and only if X1 6 εX and X2 6 εX. This is because v1 =∗ X2

is impossible, and w2 =∗ X2 implies that X has the same ε-extension as w
(the ∈-formula which “w2 = X2” abbreviates by convention is dualized to
an ε-formula w2 =∗ X2 when comprehension is applied), and the truth value
of w1 6 εw ∧ w2 6 εw depends only on the ε-extension of w, so is equivalent
to that of X1 6 εX ∧X2 6 εX. The proof of this last equivalence requires the
additional assumption that coextensionality is self-dual for the same reasons
spelled out explicitly in the previous paragraph.

We have verified (X1 ∈ X,X2 ∈ X) = F (X1 εX,X2 εX).

We have shown at this point that the system of [1] and the intermediate
system of [2] are inconsistent, and that the weak system of [2] is inconsistent
with the extensionality axiom of [1] (so there must be irregular sets which
are coextensional with respect to one membership relation but not the other)
and with the boolean algebra axioms (so that even very mild attempts to
introduce irregular sets as parameters lead to paradox).

6. Inconsistency of the parameter-free axiom with
extensionality or boolean algebra axioms

Further, we can adapt the argument to show that the parameter-free axiom
scheme of comprehension for double extension set theory is inconsistent with
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the self-duality of coextensionality (the proof as given above depends on the
use of regular parameters in the proof that N is infinite). To show this, we
abandon the quest for a perfect ordered pair altogether, and define x1 as
x− {0} and x2 as x ∪ {0}, for any x. Then define X exactly as above.

The argument will go in the same way if we can show that v1 = X1

still implies that v2 ∈ v ≡ X2 ∈ X, and w2 = X2 still implies that w1 6∈
w ∧w2 6∈ w ≡ X1 6∈ X ∧X2 6∈ X (with dual results for ε). This is no longer
immediately obvious because v1 = X1 no longer implies that v and X have
the same extension – but it still implies that 0 is the only possible element
of their symmetric difference. Now suppose v1 = X1. We have v1 = X1 iff
v2 = X2. This means that v2 ∈ v is equivalent to X2 ∈ v (it is necessary to
recall here that v2 = X2, according to the convention for use of terms given
above, merely asserts that v2 and X2 are coextensional, not that they are
actually equal – X2 ∈ v follows not by substitution of equals for equals but
by the observation that membership in X (and so in v, whether or not it
differs from X with respect to 0) depends only on extension (∈-membership
in X depends only on ε-extension, but sets with the same ε-extension also
have the same ∈-extension by self-duality of coextensionality; this holds for ε
as well by duality), which is equivalent to X2 ∈ X because obviously X2 6= 0.
The argument that v2 = X2 implies w1 6∈ w ∧ w2 6∈ w ≡ X1 6∈ X ∧X2 6∈ X
is precisely similar (we show that w1 ∈ w ≡ X1 ∈ X and w2 ∈ w ≡ X2 ∈ X
under the assumption w2 = X2 just as we showed v2 ∈ v ≡ X2 ∈ X under
the assumption v1 = X1 above).

So even the parameter-free version of Kisielewicz’s comprehension scheme
is inconsistent with the assumption that coextensionality is self-dual, and so
with extensionality and with the boolean algebra axioms. Of course this
last argument by itself proves our main thesis, but we believe it is better to
present it in the context of its motivation in terms of the Quine pair, so that
the reader can determine how we came up with it.

7. Variations?

Attempts to save the strong Kisielewicz comprehension criterion by introduc-
ing a larger finite number of membership relations with an analogous cycle of
comprehension schemes will be defeated by essentially the same argument,
involving construction of a (nonexistent) fixed point for a propositional logic
operation on a sufficiently long finite vector of truth values.

The comprehension scheme for ω such membership relations is consistent
and in fact quite weak. We introduce membership relations ∈i for each
i ∈ N . We define φi for any formula φ as the formula obtained by adding i
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to the index of each membership relation appearing in φ. We call a formula
φ “uniform in x” if it contains only equality, ∈0 and ∈1, with ∈0 appearing
only in contexts y ∈0 z, with z a free variable other than x, and with free
variables other than x appearing in no other context.

Axiom 7.1. (Axiom Scheme of Comprehension) Let φ be a formula which is
uniform in x. Then there is an object Aφ such that (∀x.x ∈n Aφ ≡ φn) is an
axiom for each n. (We need to use the explicit name Aφ, more conveniently
written {x | φ}, because we cannot express an infinitary conjunction over all
the membership relations!)

Note that φn will involve only equality and the membership relations ∈n
and ∈n+1, with ∈n appearing only to the left of a parameter.

Note also that a precise formulation of the versions of Kisielewicz set
theory with any finite number n of membership relations alluded to above
can be obtained by identifying ∈i and ∈j in this scheme whenever i ≡ j modn.
This works for the case n = 2, recovering the strong comprehension scheme
for double extension set theory.

This scheme, with all membership relations distinct, is readily seen to
be consistent by a compactness argument. We describe a model of the sub-
scheme consisting of the instances (∀x.x ∈n Aφ ≡ φn) of the comprehension
scheme with n < N . The elements of our model will be the set abstracts
Aφ = {x | φ}, φ uniform in x, considered as bits of syntax. We evaluate
every sentence A ∈N B (A and B set abstracts) as true. It is then clear
how to determine the truth value of every sentence A ∈N−1 B by consulting
the comprehension scheme (this will reduce by applying comprehension to
a sentence involving ∈N , which we have already interpreted, and sentences
C ∈N−1 D, where D is a parameter appearing in B, and these can be evalu-
ated recursively because there cannot be an infinite regress of parameters),
and thence it is clear how to determine the truth value of every sentence
A ∈N−2 B, and so forth. So the subscheme is consistent for each N , and the
full axiom scheme is consistent by compactness.

We do not believe that this “ω-extension set theory” will support a
development of set theory along the lines proposed by Kisielewicz. It is
clear from the proof that the consistency strength of the comprehension
scheme is very weak. The concept of regularity cannot be defined in this
language, though one could introduce a primitive notion regular(x) sat-
isfying axioms regular(x) → (∀y.y ∈m x ≡ y ∈n x), and there are sets
which would seem to be regular in this sense (though how to frame axioms
which would allow one to prove this is unclear). The form of extensional-
ity which we would adopt for the best analogy with Kisielewicz’s system is
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(∀x.x ∈m A ≡ x ∈n B) → A = B. Note that we have included the case
m = n of strong extensionality. The proof of infinity given by Kisielewicz
does not work here: we assume infinity as an axiom. With strong exten-
sionality and infinity, we have the ability to define the Quine pair using a
single membership relation (without strong extensionality there are obstruc-
tions involving other objects with the same extension as x1’s and x2’s). We
can then define (λx.T ) for any term T such that y = T is equivalent to a
formula φ(x, y) in x, y and one membership relation as {(x, y) | φ(x, y)}.
f(x) is a term with this property, once we indicate default values for the
cases when f is not a function or x is not in its domain. If the function f
is not regular, the value of f(x) may differ depending on the membership
relation being used: we use the notation f(x)n to signal the use of ∈n in
the definition of the term. Thus we can define F = (λx.f(x(x)) for suitable
functions f . Now consider the “fixed point” term F (F ). This is the unique
y such that (F, y) ∈ F , that is such that y = f(F (F )). Note that we applied
comprehension at the last step, so the index of the membership relation in
use was incremented, and the F (F ) appearing in the last formula is not
necessarily the F (F ) we started with: the calculation actually shows that
F (F )n = f(F (F ))n+1. However, if we take f to be the function which sends
each natural number to its successor and every other object to 0, we obtain
ω-inconsistency: F (F ) is a natural number (a different one for each choice
of index for the membership relation) but it is not equal to any standard
natural number, because F (F )n = 1 + F (F )n+1. We conjecture that the
theory with infinity and extensionality is inconsistent, but we have not been
able to prove this.

Of course, the weak system of [2] still may be consistent, and if it is,
it is of some interest, since it combines sufficient strength for almost all
mathematical purposes with admirable simplicity.
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