Disguising recursively chained rewrite rules as
equational theorems, as implemented in the
prover EFTTP Mark 2 *

M. Randall Holmes

Boise State University, Boise, Idaho, USA

1 Introduction

This paper describes an approach to writing a tactic language for an equational
theorem prover which is implemented in the author’s theorem prover EFTTP
Mark 2 (research on this prover is supported by a grant from the US Army
Research Office, to which the author is very grateful). Since the official name of
the prover is long, we abbreviate it as Mark2 hereafter.

Mark2 is written in ML (SML/NJ and Caml Light) and we expected at the
outset to follow the lead of other provers (HOL,Nuprl; see [3], [1], respectively)
in using ML to write tactics. This turned out not to be needed. Tactics in Mark2
are expressed as equational theorems. They are proven in the same way that any
equation is proven and they are stored in the same way as other theorems. An
interesting side effect of this is that Mark2 is independent of ML; we are in the
process of implementing it in C4++ with an eye to improving efficiency, which
would not be possible if we were dependent on ML for tactic writing.

The source code for the SML/NJ version of the prover and a limited manual
are available at (http://math.idbsu.edu/faculty/holmes.html); the author may
be contacted at (holmes@math.idbsu.edu).

2 A Brief Introduction to the Mark2 Prover as a Dumb
Equational Prover

The philosophy of the Mark2 prover is to implement purely algebraic reasoning
with as few distractions as possible. Purely equational reasoning is as powerful
in principle as the apparently more complex forms of reasoning embodied in
first order and higher order logics, in the presence of suitable axioms (see, for
example, [8], [7], [2] or our [5]). The premise of our project is that, in the presence
of automated assistance, purely equational reasoning should prove as effective
in practice as other logical frameworks. We do not claim to have proven our
point with the present implementation of Mark2 (which lacks various obvious
optimizations)!

We designed the prover to keep the notion of substitution as simple as possi-
ble. We avoid the use of bound variables. There is no built-in system of absolute

* Supported by the U. S. Army Research Office, grant no. DA AH04-94-G-0247



types, although the definition facility enforces a system of relative typing anal-
ogous to that in Quine’s “New Foundations” (see our [4] or unpublished [6]).

The syntax of the input language is straightforward; we note that infix prece-
dence is not supported at the moment (all operators associate to the right as
far as possible); we will supply parentheses for clarification that the prover itself
might not give. Two notational conventions which are not usual are noted: func-
tion application is represented by the infix @, and the constant function with
value a term T is represented by [T]. Variables begin with question marks.

A session with the prover (in its simplest form) begins with the user entering a
term, intended to serve as the left side of a theorem to be proved, then proceeding
to apply equational theorems as rewrite rules until a final term is reached, at
which point the user issues a command recording a theorem, which will then be
usable in the same way as the theorems already available.

One problem with this very basic kind of proving is the difficulty of controlling
the application of theorems to subterms. We provide the ability to move around
the tree representing the term in order to make this easier. The user has the
option of applying a theorem in the current theory as a rewrite rule (in either
direction) to the currently accessible subterm (only at the top level, not to
any of its subterms) or of moving his attention to a different subterm: the basic
commands provided are “move to the left subterm”, “move to the right subterm”,
“move up (to the smallest term properly containing the current subterm)” or
“move to the top”; more powerful “movement” commands are also available.

This is a very laborious way to prove theorems. Our original intention was
to add tactics written in ML which manipulated subterms in more powerful but
still safe ways; this turned out to be unnecessary for the most part.

3 The Transformation of a Dumb Equational Prover into
a Programming Environment

The underlying idea which led to the development of the tactic-writing method
used in Mark?2 is simple. We decided to add a device for introducing names of the-
orems into terms, to signal our eventual intention of applying a given theorem to
a given subterm. Suppose “COMM?” is the name of the theorem ?z+7y =7y+7x,
the commutative law of addition. The term COM M => (?a+7b)+?c would have
the same denotation as the term (?a+7?b)+7¢, but would convey to the reader
the additional information of our intention to apply the theorem COMM to it;
the infix => was introduced to construct this kind of term, along with an in-
fix <= which signals the intention to apply a theorem in reverse. A term like
COMM =>7zx?y would have the same denotation as ?x*?y but would express
the odd intention to apply the commutative law of addition to this term. Our
original intention went no farther than to allow the introduction of embedded
theorem names at various points in a term prior to issuing a command “execute”
which would apply all of the theorems thus embedded in the current subterm
(where application was possible). The “execute” command simply removed em-
bedded theorem names which did not apply or which it did not recognize. Note



that embedded theorems are applied only to the top level term to which they are
attached, not to subterms as is more usual (though this effect can be achieved
using the tactic-writing method described below; it usually proves more efficient
to exercise some control over what subterms are taken to be targets of the rule).

Unexpectedly, it becomes possible to prove “theorems” with interesting be-
havior. For example, consider the theorem ZERO: 047z =7z, which one might
expect to find in a theory containing the axiom COMM cited above. One can cer-
tainly prove a theorem COMMZERQO: 7z + 0 =7z, using COMM and ZERO to-
gether. But the theorem EITHERZERO: 7z = (ZERO => COMMZERO =>
?z) is a different matter. Certainly it is true—embedded theorem names have
no effect on the values of terms. If the command “execute” is defined so as to
aggressively carry out all theorem applications it encounters, including those in-
troduced in the course of applying previously applied theorems then the effect
of the theorem EITHERZERO will be to apply the identity axiom for addition
in either its left or right form, if appropriate (actually, it is possible that it will
be applied twice). This is rather surprising behaviour for what appears to be a
single equational theorem.

The following is certainly true: (0+?z) = (ZEROES =>7x) So we can
prove this theorem and give it the name ZEROES (a declaration of ZEROES as
a prospective theorem is required before the proof). The effect of this “theorem”
when applied to a term is to eliminate any number of zeroes added on the left
and then (equally importantly) stop. The reason that it continues to be applied
as long as it sees a zero added on the left is that it introduces an application of
itself each time it is successfully applied. This recursion is well-founded because
an application of ZEROES eventually encounters a subterm not of this form and
fails to be applicable, whereupon it is simply removed by the “execute” process.

The exact behaviour of such theorems depends on the way in which the
“execute” command is implemented. The current version proceeds in a “depth-
first” manner, applying every embedded theorem that is present initially or is
generated by earlier theorem applications, always applying innermost embedded
theorems first. A referee pointed out correctly that there is an analogy between
the choice of execution order here and PROLOG implementation issues. Con-
fluence holds, so execution order will not affect results of computations which
terminate, but termination and efficiency could be affected by the choice of a
different order. We are investigating a different execution order more appropriate
for a parallel machine.

Since all steps allowed in the execution of theorems interpreted as programs
are applications of theorems in the current theory, programs are safe in the sense
that they will not lead the prover to prove false theorems. They may fail to prove
any theorem, by failing to terminate.



4 An example: the construction of a limited abstraction
algorithm

The first major application of this technique was the implementation of abstrac-
tion and reduction algorithms. These were needed to support the avoidance of
bound variables in Mark2, which requires the use of synthetic abstraction terms
instead of A-terms. We describe the way in which an abstraction algorithm for
a limited class of terms is implemented.

Before we describe this algorithm, we need to describe two refinements of the
tactic-writing language.

We mentioned a problem which arises with the theorem EITHERZERO de-
fined above: if EITHERZERQ is applied to a suitable term (e.g., 0+?xz + 0), two
successive applications of the identity for addition may occur (on different sides)
which is a little untidy. The solution is to introduce variants =>> and <<= of
the theorem embedding infixes with the property that the indicated theorem is
to be applied only if the immediately preceding theorem application fails. This is
used to build lists of theorems to be applied as alternatives, suppressing the dan-
ger that more than one of them might be applied in sequence. EITHERZERO
would now have the form 7z = (COMMZERO =>> ZERO =>7x), where
we could be certain that there would be only one application of the identity for
addition.

The second refinement is the introduction of parameterized theorems. Con-
sider the theorem CONST which defines the expected behavior of constant func-
tions: CONST: [72]@?y =?z. Now consider application of this theorem in reverse:
the result of CONST <=?a is [?a]@Q?7?y (the system supples the two additional
question marks when it is forced to create a variable, in order to avoid unintended
collisions of variables). A more sophisticated version of the converse of CONST
would be the following: (REVCONST@Q?y) : 7z = [?2]@?7y. The parameterized
theorem is treated as a “function” applied to its argument. An example: the
term (REVCONST@2) =>7x would become [?2]@2. The use of parameters is
convenient in other contexts where it is desirable to provide information to a
tactic which is not contained in the term to which it is applied. Tactics can take
both objects of the theory and other theorems or tactics as arguments; they can
also take multiple arguments (in different styles: (TACTIC@argl)@Qarg2 and
TACTICQ(argl,arg2) are both possible forms).

The tactic ABSTRACT is intended to have the following effect: a term
(ABSTRACTQ@?2)QT (where T is a complex term, usually containing occur-
rences of ?z) should take the form UQ?7x when executed, where U is expected
to contain no occurrences of ?z. One should think of U as (A?z)(T). If T is not
a term of a suitable form, the algorithm may fail, in the sense that U will not
be free of occurrences of ?z. It should also be noted that the argument passed
to ABSTRACT does not need to be a variable; one term can be expressed as a
function of another term of arbitrary form using the ABSTRACT tactic.

Recall that the infix “@Q” is used to represent function application. The the-
ory in which ABSTRACT is implemented also includes an identity function



W [k

Id, an infix “” implementing pairing, a infix “;” implementing function prod-
uct (with defining axiom PROD: (?f;?g)Q%x = (?f@Q7x), (?7g@Q7x)) and an infix
“@Q@” implementing composition (with defining axiom COMP: (? fQQ7¢g)Q7z =
?fQ(?7gQ7z).

The theorem ABSTRACT has the form (ABSTRACTQ?x) : Ty =
(ABSCONST@?z) =>> (ABSCOMPQ?x) =>> (ABSPRODQ?x) =>>
(ABSID@?z) =>7?y. This is not very informative; it tells us that one of a
sequence of alternative tactics to which the same argument will be passed will
be applied to the target term (which may have any form).

The theorem ABSID first applied has the form (ABSID@Q?z) : 7z = [dQ?z,
where Id is the identity function. This is an obvious base case of the abstraction
algorithm.

The theorem ABSPROD next applied has the form (ABSPROD@Q?z) :
(?y,72) = PROD <= ((ABSTRACTQ@?z) =>7),((ABSTRACTQ?x) =>
?z)). The intention is that the recursive applications of ABSTRACT will yield
something of the form PROD <= ((?Y@?x), (?Z@Q?z)) which the reverse appli-
cation of PROD will convert to (7Y;?2)Q7z.

The theorem ABSCOMP next applied has the form (ABSCOMPQ?z) :
(7fQ?y) = COMP <= (?fQ((ABSTRACTQ?z) =>7y)); the intention is that
a term of the form COM P <=7 fQ(?Y @?z) result, which the reverse application
of COMP converts to (?f@QQ?7Y)@7x. Note that it is assumed that the term
matching ?f will not contain any occurrences of the term matching 7z (this is
one of the restrictions on the class of terms for which this algorithm works).

Finally the theorem ABSCONST has the form (ABSCONSTQ?x) :
7y = [?y]@?z (the same as REVCONST above). It will only be applied if the
target term is neither the same as the argument nor composite in the sense of
being a pair or a function application. Note that if we did not use the alternative
forms of the theorem application infixes, this would always be applied, which
would not give the desired results!

The full implementation of ABSTRACT uses a built-in “theorem” which
automatically generates theorems parallel in form to PROD for other infixes
(the theorem for addition would read (7f :+ 7¢)@Q%x = (?fQ%x) + (7¢Q7zx),
for example). The tactic REDUCE which reverses the effect of ABSTRACT is
somewhat simpler to implement.

5 Closing Remarks

The effect of the theorems ABSTRACT and REDUCE has been to make it
possible to make complex substitution processes invisible to the user, supporting
the avoidance of bound variables. The synthetic abstraction terms constructed by
ABSTRACT are fairly readable, since they are exactly parallel in structure to the
original term, but this is seldom an issue, because ABSTRACT and REDUCE
are most often used together in a way which makes it unnecessary for the user of
complex theorems built with their help ever to see a function abstraction term.
(We are considering the introduction of bound variables to the prover, to make



the notation more readable; we are considering how the presence of variable-
binding constructions would interact with the tactic-writing strategy discussed
in this paper).

Examples of tactics which we have implemented include a full automatic
tautology-checker (not very efficient), as well as algebraic expansion and simpli-
fication algorithms for the usual algebra and Boolean algebra. A nice example
of a tactic taking another tactic as a parameter is a tactic DU AL for a theory of
Boolean algebras which generates the dual of its argument (even if its argument
is a tactic rather than a simple equation)!

It may be of interest to note that Mark2 allows one to bind a theorem to a
function, so that that theorem is applied automatically wherever that function
appears applied to an appropriate number of arguments (determined by the form
of the theorem bound to it). This works for higher-order functions as well. Thus
functional programming can be simulated under the prover.

References

1. R. Constable and others, Implementing Mathematics with the Nuprl Proof Devel-
opment System, Prentice-Hall, Englewood Cliffs, 1986.

2. H. B. Curry and R. Feys, Combinatory Logic, Vol. I, North Holland, Amsterdam,
1958.

3. Mike Gordon, “HOL, a Proof Generating System for Higher Order Logic”, in VLSI
Specification, Verification, and Synthesis, edited by Birtwistle and Subrahmanyam,
Kluwer, 1987.

4. Holmes, M. R. “Systems of combinatory logic related to Quine’s ‘New Founda-
tions’”. Annals of Pure and Applied Logic, vol. 53 (1991), pp. 103-133.

5. M. Randall Holmes, “A Functional Formulation of First-Order Logic ‘With Infinity’
Without Bound Variables”, preprint.

6. M. Randall Holmes, “Untyped A-calculus with relative typing”, preprint.

7. W. V. O. Quine, “Algebraic Logic and Predicate Functors”, Bobbs-Merrill, 1971
(booklet).

8. Alfred Tarski and Steven Givant, A Formalization of Set Theory Without Variables,
American Mathematical Society, Providence, 1988.

This article was processed using the I/ TEX macro package with LLNCS style



