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Abstract. A system of untyped λ-calculus with a restriction on function
abstraction using relative typing analogous to the restriction on set com-
prehension found in Quine’s set theory “New Foundations” is discussed.
The author has shown elsewhere that this system is equiconsistent with
Jensen’s NFU (“New Foundations” with urelements) + Infinity, which
is in turn equiconsistent with the simple theory of types with infinity.
The definition of the system is given and the construction of a model is
described. A semantic motivation for the stratification criterion for func-
tion abstraction is given, based on an abstract model of computation. The
same line of semantic argument is used to motivate an analogy between
the notion of “strongly Cantorian set” found in “New Foundations” and
the notion of “data type”; an implementation of absolute types as do-
mains of retractions with strongly Cantorian ranges is described. The
implementation of these concepts in a theorem prover developed by the
author is sketched.

1 Introduction

We discuss a system of λ-calculus which is, strictly speaking, untyped, but in
which abstraction is limited by a relative typing scheme. The criterion used to
limit abstraction is essentially the criterion of “stratification” used to limit set
comprehension in Quine’s set theory “New Foundations”, in a version appropri-
ate to a theory of functions. We have shown elsewhere (in [7]) that the system
we present is equivalent in consistency strength and expressive power to the
theory NFU + Infinity (“New Foundations” with urelements plus the Axiom of
Infinity) introduced and shown to be consistent relative to ZFC by Jensen in
[11].

We define the system and describe a model. We then present a semantic mo-
tivation for the system in terms of (very abstract) theoretical computer science
ideas. We show how to reintroduce a notion of absolute type into this system,
via the concept of “strongly Cantorian set” peculiar to Quine-style set theory,
and argue for its appropriateness in terms of our semantic motivation. We con-
clude by sketching some features of an actual implementation of these ideas in
a theorem prover.

We introduced systems of synthetic combinatory logic equivalent in strength
to “New Foundations” and some of its fragments in [7] and [8]; the description
of the kind of λ-calculus discussed here is implicit in those papers. An extensive
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discussion of the set theory NFU with some discussion of the possible application
of related systems of combinatory logic in computer science is found in our [9];
the definition of the λ-calculus we discuss here is briefly stated in that paper.
Good references for the kind of set theory alluded to here are Rosser’s [12] (old)
and Forster’s excellent [4] (current).

2 A Simply Typed λ-Calculus

It seems best to us to motivate the untyped system we will present by first
introducing a typed version. The type labels in the typed system will be the
natural numbers 0, 1, 2 . . .. Type n + 1 can be understood as the type n → n
of functions from type n to type n, and each type n is identified with the type
n×n, the cartesian product of type n with itself. This very simple type structure
is analogous to the type structure of the simple theory of types of Russell and
Whitehead, as simplified by Ramsay, in which each type can be thought of as
the power set of the preceding type. More complicated function and product
types can be coded in this type system by the device of using (possibly iterated)
constant functions of an object to represent it in higher types. For example,
maps from type n + 1 to type n could be encoded as maps of type n + 2 all of
whose values are constant functions (of type n+ 1, used to represent their type
n values). In this way, all the types of a more usual typed λ-calculus with all
cartesian product and arrow types can be identified with subtypes of the more
limited supply of types in this system.

Atomic terms are constants π1, π2 in each type above 0 , a constant eq in
each type above 1 and a countable supply of variables of each type. If T and U
are terms of type n, (T,U) is a term of type n (this expresses the identification
of type n with n×n). If T is a term of type n+1 and U is a term of type n, T (U)
is a term of type n. If T is a term of type n and x is a variable of type n, then
(λx)(T ) is a term of type n+ 1. (These two conditions express the identification
of type n+ 1 with type n→ n.)

Observe that the types of all subterms of a term can be inferred from the
type of the larger term. We will take advantage of this and generally not express
type superscripts.

The axioms of the theory are those of first-order logic plus the following
non-logical axioms:

Proj: πi(x1, x2) = xi for i = 1, 2
Prod: (f, g)(x) = (f(x), g(x))
Prodλ: (λx)(T,U) = ((λx)(T ), (λx)(U))
Surj: (π1(x), π2(x)) = x
Abst1: (λx)(T )(x) = T
Eq: eq(x, y) = if x = y then π1 else π2
Nontriv: π1 6= π2

Each of these axioms is “typically ambiguous”; any type which makes sense
may be assigned to the two sides of an axiom (and then the types of subterms



can be inferred as observed above). The axioms (Prodλ) and (Abst1) are axiom
schemes with term parameters represented by T and U .

An axiom of extensionality

Ext: if for all x, f(x) = g(x), then f = g

is certainly consistent with this system but will not be adjoined to it for our
purposes. A model of this system is easily obtained by taking as type 0 any
infinite set X and selecting a surjective map from X ×X onto X to determine
the pairing relation, then identifying type 1 with XX and in general, if the
set Y implements type n, using Y Y to implement type n + 1. Axiom (Prod)
determines the definition of the ordered pair in each type above 0. The axiom
(Ext) is satisfied in this model, of course.

3 The Stratified λ-Calculus

Just as in Russell’s type theory, the phenomenon of “typical ambiguity” presents
itself. Each definable object and theorem has a precise analogue in each higher
type (not necessarily in each lower type). Following Quine in his motivation of
the set theory “New Foundations”, we suggest that the types may be identifi-
able with one another, in which case the type indices can profitably be omit-
ted from the theory entirely, obtaining a type free theory, but that only those
instances of (Abst1) should be retained which involve λ-terms which would
well-formed in the typed theory with a suitable assignment of types. Thus,
for example, in the untyped λ-calculus each function f has the fixed point
(λx)(f(x(x)))((λx)(f(x(x)))), but this cannot be typed with integer types as
above, and so this λ-term is not associated with an instance of (Abst1) (in fact,
it is not even a well-formed term under the rules stated below).

We present the term formation criteria of the type free theory in the form of
two mutually recursive definitions.

Definition 1. An “atomic term” of the type free theory is any one of π1, π2, eq,
or one of a countable supply of variables. A “well-formed term” of the type free
theory is either an atomic term, a string of the form (T,U) or T (U), where T
and U are well-formed terms, or a string of the form (λx)(T ), where T is a well-
formed term and x is a variable which does not occur in T with “relative type”
(see Definition 2) other than 0. The class of well-formed terms is the smallest
class closed under these constructions.

Definition 2. Let T be a well-formed term of the type-free theory. The “relative
type” of each occurrence of a subterm of T is an integer chosen as follows: the
relative type of T with respect to itself is 0; if an occurrence of the subterm (U, V )
has relative type n, the obvious occurrences of U and V are assigned relative
type n; if an occurrence of the subterm U(V ) has relative type n, the obvious
occurrences of U and V are assigned relative types n + 1 and n, respectively;
if an occurrence of the subterm (λx)(U) has relative type n, then the relative



types assigned to the obvious occurrences of x and U will be n − 1 (x will not
occur in U with a relative type other than 0 by Definition 1 above).

Note that negative relative types are possible; this exploits Wang’s observa-
tion in [14] that the simple theory of types or the type theory described above can
be extended to allow all negative types, which follows from a simple compactness
argument.

We give an example. The term x(x) is clearly well-formed. The relative type
of the first occurrence of x in this term is 1; the relative type of the second
occurrence is 0. Since the variable x occurs in the term x(x) with a relative type
other than 0, the term (λx)(x(x)) is not well-formed (more generally, the term
(λx)(f(x(x))) used in the construction of a fixed point of f is not well-formed).

We call λ-terms which are well-formed in the type-free theory “stratified”
λ-terms, and we call this theory the stratified λ-calculus.

The axioms of the stratified λ-calculus are typographically the same as those
given for the typed theory above, except, of course, that type indices are not to
be supplied.

Theorem 3. The stratified λ-calculus is consistent (if the usual set theory is
consistent).

Proof. A model for the stratified λ-calculus may be constructed as follows (this
construction is given in the author’s Ph. D. thesis [6]). Choose an infinite base
set X as in the construction of a model of the typed theory, supplied with a
bijection with X × X used for the representation of pairs of elements of X as
elements of X. Let ⊥ denote a fixed element of X (it is necessary for the pair
(⊥,⊥) to be represented by ⊥). We indicate the construction of a cumulative
system of types indexed by the ordinals based on X. If the type indexed with α
is represented by a set Y , the type indexed by α+ 1 will be represented by the
set Y Y of all functions from Y to Y . The difficulty with this is that Y Y does not
include Y ; we resolve this by choosing a subset of type α + 1 at each stage to
be identified with type α (details of this identification follow). Each element of
type 0 is identified with its constant function in type 1. When type α has been
embedded in type α+1, we represent the object of type α+1 associated with an
object x of type α as x+. Let f be an element of type α+ 1; we identify it with
the function f+ in type α+2 which takes each x+ (of type α+1) to (f(x))+ and
each element of type α+1 not identified with any element of type α to ⊥. This is
how we embed type α+1 in type α+2. The cumulative nature of the type system
thus defined allows the type indexed by a limit ordinal λ to be defined as the
union of all types α < λ. Note that an object of a limit type λ has already been
assigned a value as a function of type α+ 1 for each type α < λ, and its values
as a function in each type are identified by construction, so it has already been
in effect assigned a value as a function of type λ + 1 (with value ⊥ everywhere
off its natural domain). Thus, each type λ can be embedded in type λ+1, which
is needed for the process of cumulative embedding of types described above to
continue past limit ordinals. Essentially this technique of making function types



cumulative was introduced by Dana Scott in connection with domain theory
(see [13]). It is straightforward to verify that this cumulatively typed structure
satisfies all the axioms of the typed theory, if the pair in higher types is defined
in accordance with axiom (Prod).

Now consider this structure in a nonstandard model of set theory with an
automorphism j moving a nonstandard ordinal α upward. The model of the
stratified λ-calculus we construct will be type α in this structure. Pairing in the
model will coincide with pairing in type α. Function application f(x) for f and
x objects of type α will be redefined as j(f)(x). The effect of this redefinition is
to cause the functions in type j−1(α) + 1 to be assigned the extensions of the
functions in type α+1 (which are all the functions from type α into itself); objects
of higher type will each be assigned the same extension as some element of this
type. The denotation of (λx)(T ) will be the unique object of type j−1(α)+1 with
the correct extension, for each stratified term T (that each such object exists
requires verification). It is straightforward to verify that all axioms of stratified
λ-calculus hold in this model; proofs in [9] can be adapted to this purpose,
for instance (originally derived from the model construction for NFU given by
Maurice Boffa in [1]). ut

We recapitulate an example from above to make it clearer what is happening.
The term x(x) presents no difficulty (for x some fixed object); it will be repre-
sented by j(x)(x), where j is the external automorphism. However, we cannot
expect there to be a function (λx)(x(x)) in the model of stratified λ-calculus,
because it would be interpreted by the inverse image under j of a map taking
each x in type α to j(x)(x), and the latter map cannot be expected to exist (and
indeed will not exist) because j is an external automorphism of the nonstandard
model of set theory used.

We have demonstrated in [7] that the consistency strength of the stratified
λ-calculus described here is exactly that of NFU + Infinity; the strength of
the latter theory is known to be the same as that of the theory of types with
infinity. Stronger extensions of these theories are possible, paralleling the strong
extensions possible for the usual set theory.

Note that the model is NOT extensional. The type-free theory with (Ext)
has the same strength as Quine’s “New Foundations” with full extensionality,
whose consistency remains an open question. But the non-extensional version
is mathematically entirely adequate for applications. A canonical function with
each extension is available in type j−1(α) + 1 in the model; it happens that
there are infinitely many additional objects with each extension in the higher
types. A disconcerting feature of “New Foundations” is that the Axiom of Choice
can be disproven; this is not the case in NFU or in the stratified λ-calculus
without extensionality. The model of the stratified λ-calculus constructed above
will satisfy AC (suitably expressed) if the underlying set theory satisfies AC.

Axiom (Abst1) can be used to define a notion of β-reduction (applicable only
to stratified λ-terms); the fact that the theory with integer types is a subsystem
of the usual typed λ-calculus with arrow types and cartesian products, mod an
identification of types, allows us to see that this notion of reduction is Church-



Rosser and strongly normalizing. A direct proof of this is given in the author’s
thesis [6]. The fact that the theory with integer types is a subsystem of the
usual typed λ-calculus with arrow types and cartesian products also makes it
clear that the stratified λ-calculus is very weak, considered as a programming
language. It can be strengthened by the addition of a stratified iteration or
recursion combinator (acting on Church numerals) (I thank a referee for bringing
the need for this comment to my attention).

It is possible to replace the axiom scheme (Abst1) with finitely many in-
stances of the scheme and obtain a system of synthetic combinatory logic, in
which the variable binding operator is eliminated. We introduce a new term
construction: if T is a term, K[T ] is a term (the constant function of T ), and if
K[T ] is assigned relative type n, T is assigned relative type n − 1. New atomic
terms Abst and Λ are introduced. The axioms used to replace (Abst1) are

Const: K[x](y) = x

Abst2: Abst(f)(g)(x) = f(K[x])(g(x))

Lambda: Λ(x)(y) = x(y);Λ(Λ(x)) = Λ(x);Λ(x, y) = (Λ(x), Λ(y))

Ext2: if f(x) = g(x) for all x, then Λ(f) = Λ(g)

The interpretation of K[T ] is obvious; Abst is a variation of the S combi-
nator which respects stratification; Λ is the canonical retraction (λf)(λx)(f(x))
sending each object to a uniquely determined object with the same extension,
for which special axioms are needed to preserve the weak extensionality implicit
in the fact that substitutions for terms containing variables can be made into
λ-terms. This synthetic combinatory logic also has a typed version with integer
types as above. The notion of relative type for subterms of terms of the synthetic
theory is defined as in Definition 2, except that the clause for λ-terms is replaced
by a clause to the effect that if an occurrence of K[U ] in a term T is assigned
type n relative to T , then the obvious occurrence of U is assigned relative type
n− 1.

In our paper [7], we proved the following abstraction theorem:

Theorem 4. For each term T of the language of the synthetic theory and vari-
able x which occurs in T with no relative type other than 0, there is a term
“(λx)(T )” in which the variable x does not occur such that (λx)(T )(x) = T is a
theorem of the synthetic theory.

Note that the term formation rules and axioms of the synthetic theory make
no reference to relative type at all; relative type is introduced only in order to
state the abstraction theorem above. This is analogous to the situation with
the set theories: NF or NFU can be finitely axiomatized using finitely many
instances of stratified comprehension (so not mentioning stratification in the
definition of the theory) from which stratified comprehension can be proven as
a meta-theorem. Such an axiomatization was first presented by Hailperin in [5];
we give a more accessible one in [9].



4 A Semantic Motivation for the Stratified λ-Calculus

We introduce an (extremely abstract) model of computation in terms of which
we will give a semantic motivation for the stratification criterion for functional
abstraction (it is worth noting that this is also an indirect semantic motivation
for the set theories like NF , which are often regarded as motivated purely by a
“syntactical trick”).

Our abstract machine has an infinite setX of “addresses”. There is a bijection
pair:X ×X → X: we use pair(x, y) to represent the pair of addresses (x, y). We
refer to functions from X into X as “abstract programs”; the “state” of our
machine is specified by a function stateX → XX ; state(x) may be thought of as
the program stored in address x.

When x and y are addresses, we use (x, y) and x(y) to abbreviate pair(x, y)
and state(x)(y), respectively. We introduce (λx)(T ), for each term T and variable
x, to represent an address (if there is such an address – an arbitrary one is chosen
if there is more than one) such that (λx)(T )(x) = T for each address x. λ-terms
can be thought of as program specifications.

We now consider the “program” ∆ = (λx)(x(x)) as a sample of the kind of
program which is ruled out by the stratification criterion for function abstraction.
We suggest that there is an a priori reason to rule out any obligation to provide
a program with specification ∆, based essentially on the notion of security of
abstract data types. Moreover, this a priori reason, considered in full generality,
motivates precisely the stratification criterion for function abstraction.

In our model of programming, programs are stored in and manipulated by
reference to addresses. An abstract program is simply a function from X into X;
but a program as implemented on our abstract machine has the additional fea-
ture of being stored in a particular address. Security of the data type “program”
as represented on our machine requires that when we manipulate an address
as representing a program, we use no information except information about its
extension as a function. But the program ∆ tells us to take the program stored
in address x and apply it to address x; here we are expected to consider x both
as a program and as the address in which that program is stored. A formal way
to see that ∆ violates the security of the program data type is to consider that a
permutation of the assignments of programs to addresses could send the program
stored in x to a new address y, and that the new value of y(y) could differ from
the old value of x(x), although the new extension of y would be precisely the
old extension of x. (A very precise result illuminating the relationship between
stratification and permutations in a set-theoretical context is found in Forster’s
[4] (p. 87); similar reasoning is applied to typed λ-calculus in [3]) A preliminary
version of the criterion which excludes program specifications like ∆ would as-
sert that if a parameter is used to represent an abstract program we should not
have access to information about its identity as an address and vice versa.

The criterion can be sharpened by observing that there are more than two
abstractions implemented by addresses on our machine: each address is an ad-
dress and represents an abstract program via the state function; but one can
also interpret the values of the abstract program represented by an address as



abstract programs themselves, and thus interpret an address as a function from
abstract programs to abstract programs. In this way we obtain a sequence of
abstractions which are implemented by addresses on our machine precisely anal-
ogous to the sequence of types denoted by integers above; the objects at each
level of abstraction are functions from the set of objects of the previous level of
abstraction into itself.

The criterion restricting program specifications (λ-terms) is that each param-
eter in a specification should appear as representing an object at just one level of
abstraction in this scheme; and this is precisely the criterion of stratification. To
exploit the fact that the same address represents objects at two different levels
of abstraction would be a violation of the security of the representations of the
various levels of abstraction. The treatment of pairing has not been discussed,
but it is precisely analogous to what is done above; it is technically tricky to see
that axiom (Prod) and similar axioms are reasonable assumptions (that they are
practicable is verified by our model construction above).

The failure of extensionality in the stratified λ-calculus as modelled above
does not compromise the data type security argument. If we suppose that mul-
tiple addresses on our machine represent the same program, we must conclude
that the proper identity criteria for addresses (considered as programs, as they
are at all levels of abstraction except level 0) must be extensional; addresses are
to be identified if they contain the same abstract program. We nonetheless end
up with failure of extensionality when we attempt to interpret programs whose
extensions do not respect this relation of identity of extension (which send di-
verse objects with the same extension to objects of different extensions); such
programs must be assigned extensions which do respect the new identity cri-
terion, presumably extensions already implemented by programs respecting the
identity criteria, and will correspond to the many non-canonical programs with
each extension found in the model described above. An example of a method
for making such assignments would be to assign a given program a default value
⊥ at each “value” (extension) at which it originally returned values with dif-
ferent extensions. The argument sketched in this paragraph is based on Marcel
Crabbés proof that the theory SC with the axiom scheme of stratified com-
prehension alone interprets NFU (with its apparently stronger form of weak
extensionality), given in [2].

As in the set theory “New Foundations” and its variants such as NFU , all
objects are actually of the same kind, but abstraction (in set theory, set com-
prehension) is limited by a scheme of relative typing. The idea that all objects
are ultimately of the same sort, but that they should be treated in abstractions
(program specifications) as belonging to specific roles, is a very reasonable gen-
eral outlook in computer science, where all objects, of whatever intended type,
are in fact implemented as sequences of binary digits, but the type of the in-
tended referent of an object controls the ways in which it can be manipulated
in a program.

Of course, it is not necessary to use relative typing schemes in programming;
it is not strictly necessary to acknowledge overtly that all objects are of one



underlying sort. But it is often tempting, for it is often the case that an oper-
ation which is useful on one type is actually useful on objects of many related
types or even of all types. A certain amount of polymorphism is implemented
in our scheme; a very simple example is the presence of the identity function
(λx)(x) which acts on all objects whatsoever. More useful further examples of
polymorphic objects definable in stratified λ-calculus are the Church numerals
“n” = (λf)(λx)(fn(x)) for each natural number n. The polymorphism provided
by this scheme is somewhat limited, however, by comparison with the kind of
polymorphism provided in the second-order polymorphic λ-calculus, or, to give a
concrete example, in the type system of the computer language ML. The motive
behind polymorphic type systems is similar to the motive behind the attempt to
adopt a relative typing scheme. We will discuss the implementation of data types
usual to computer science below; we do not take them to be implemented by the
very simple scheme of relative types used in the definition of stratification!

5 Interpreting Data Types in the Stratified λ-Calculus

The scheme of relative typing which underlies the definition of stratification is a
very simple type structure, not adequate for the needs of computer science. We
present a second notion of absolute type, essentially orthogonal to the notion of
relative type used in stratification, which corresponds to a fundamental concept
of set theory in the style of “New Foundations” which has no analogue in the
usual set theory ZFC .

We briefly describe the analogous situation in set theory. Cantor’s theorem in
the usual set theory establishes that the power set (the collection of all subsets)
of a set A must have a larger cardinality than A. If this argument is applied to
the universal set V , we obtain “Cantor’s paradox”; the power set of the universe,
the collection of all sets, is shown to be larger than the universe! Of course, the
conclusion to be drawn from this is that there is no such set V in the usual set
theory. In NF and related set theories, there is a universal set, so this argument
must break down somehow. The outcome is best understood by referring to
the theory of types, where A and its power set are objects of different types
which cannot be compared, and the result analogous to Cantor’s theorem proves
instead that the set of all one-element subsets of A (the set of singletons of
elements of A) is smaller in cardinality than the power set of A. The rather odd
result in NF and the related set theories is that the universe V is larger than
the set of all singletons. The map (λx)({x}), which would provide a bijection
between these two sets, is seen not to exist, which is not especially surprising,
since its definition is unstratified.

But Cantor’s theorem will hold in its original form for any set A which has the
same cardinality as its image under the singleton operation. Such sets are said to
be “Cantorian”. A set A is said to be “strongly Cantorian” if the restriction of
the singleton operation to A defines a function; such a set is certainly Cantorian.
The properties “Cantorian” and “strongly Cantorian” are unstratified and do
not define sets.



The “class” of strongly Cantorian sets includes all sets of standard finite
size. If the assertion that the set of natural numbers is strongly Cantorian (it
is provably Cantorian) is adopted as an axiom, then all finite sets are strongly
Cantorian as well. This axiom, Rosser’s Axiom of Counting, is known to be
consistent with NFU (and strengthens it essentially); its analogue will hold in
our model of stratified λ-calculus iff the automorphism j used in the construction
fixes each natural number. The “class” of strongly Cantorian sets is closed under
cartesian product, power set, and the construction of function spaces. Strongly
Cantorian sets are “small” in relation to the big sets like V ; it has been suggested
that they are the analogues of the small sets studied in the usual set theory, whose
criterion for sethood is “limitation of size”. This position is strengthened by the
fact that stratification restrictions can be subverted for variables restricted to
strongly Cantorian sets; the type of any reference to such a variable can be
shifted by replacing references to the object with references to its singleton (we
will show how this is done in the context of stratified λ-calculus below). We
have discussed in our paper [9] and our unpublished [10] how this analogy can
be shown to be precise under suitable assumptions.

We suggest, and will motivate in terms of our abstract model of programming,
the proposition that the notion “strongly Cantorian set” is a reasonable analogue
in our scheme to the notion of “data type”. We see above that the usual types
of booleans and natural numbers can be accommodated, and that the class is
closed under the most obvious type constructors.

We represent sets in our theory as ranges of retractions (maps t such that
t(t(x)) = t(x) for all x). The best analogue of the singleton map in our theory
is the operation which takes each x to K[x] = (λy)(x), its constant function.
A retraction t represents a strongly Cantorian set iff there is a map Kt such
that Kt(t(x)) = K[t(x)] for each x. Notice that the relative type of x can be
changed by applying this equation, if we know that x belongs to the range of t
(and so is fixed by t); this allows the subversion of the stratification restrictions
for variables restricted to strongly Cantorian sets. For example, if t is a retrac-
tion whose range is strongly Cantorian, we can define ∆t = (λx)(t(x)(t(x))) as
(λx)(K−1

t (K[t(x)])(t(x))); the first λ-term requires definition because it is un-
stratified and so ill-formed; but the trick of replacing the occurrence of t(x) at
relative type 1 with K−1

t (K[t(x)]) lowers the type of the first occurrence of x
to 0, making the term stratified. An occurrence of t(x) can be raised in type by
replacing it with Kt(t(x))(0) (the use of 0 is just as a convenient constant). The
net effect is that variables with a type retraction t applied to them (effectively,
variables restricted to the range of t) do not need to satisfy the stratification
restrictions, if t is a retraction with strongly Cantorian domain.

What does the existence of Kt tell us about the range of t in the context
of our abstract model of computation? It allows us to correlate Kt(t(x)), with
K[t(x)]; if the occurrence of t(x) is to be understood as taking the role of an
address on the right, it must be understood as taking the role of an abstract
program on the left. In other words, Kt is a representation as a function of the
correlation of objects in the range of t considered as programs and as addresses,



which is exactly what the stratification criterion operates to prevent in general.
Metaphorically, Kt tells us exactly how the programs in the range of t are stored
in the “memory” of our abstract machine; a class of objects which we know how
to store in memory seems like a reasonable abstract description of the concept
“data type”. Concretely, we have seen above that commonly used data types are
subsumed under this notion. Type constructors are represented by operations
(not always functions) on retractions in a straightforward way. Notice that types
themselves, being functions, are first-class objects in this scheme.

We are aware that there is nothing novel about the use of retractions to
represent types; this is a very commonly used technical device. The (hoped-for)
novelty is all in the use of the notion of “strongly Cantorian set”, in the guise
“retraction with strongly Cantorian range”.

We exhibit the construction of arrow types. Given a retraction s and a retrac-
tion t, we can construct a retraction s→ t whose domain is the set of functions
from the domain of s to the domain of t easily: s→ t = (λf)(t ◦ f ◦ s) (composi-
tion of functions is a stratified construction). An important thing to note is that
the relative type of s→ t is one higher than that of s and t; thus, the arrow type
constructor is not a function (the cartesian product constructor does turn out to
be a function). This construction is not presented as being original in any way;
we are simply pointing out its features in the context of stratified λ-calculus.

We have investigated the representation of more complex type systems, in-
cluding the second-order polymorphic λ-calculus mentioned above. To achieve
polymorphism of this kind, in which objects can be constructed with type pa-
rameters, it is necessary to have an actual strongly Cantorian set of types to
which we restrict ourselves; the collection of all absolute types (strongly Can-
torian sets) is not a set at all, much less a strongly Cantorian set, so cannot
be an absolute type. One reason that the set of types in such a scheme must
be strongly Cantorian is that the arrow type constructor is type-raising; on a
strongly Cantorian set of types, it can be represented by a function, but not
on the whole domain of types. It seems more natural in this context to have a
hierarchy of ever more inclusive notions of type, analogous to the universes of
Martin-Löf type theory (though certainly different in detail).

We think that it is interesting that the notion of “strongly Cantorian set”,
peculiar to the Quine-style set theories, may turn out to have a useful role in
our extension of this set theoretical paradigm to computer science. We also think
that it is interesting to see the notion of type break into two orthogonal parts,
the relative type scheme restricting the formation of global abstractions and
the representation of data types as local domains on which we have additional
information which allows us to subvert these global restrictions.

6 The Use of these Concepts in a Theorem Proving
Project Sketched

We now discuss the ways in which we have used these concepts in the actual im-
plementation of an equational theorem prover (a technical report on this project



should be available from the author fairly shortly). This project was originally
not intended to implement stratified λ-calculus; but it turned out that imple-
menting stratification was the easiest way to modify an earlier version of the
prover to support higher-order reasoning.

The prover we have implemented avoids the use of bound variables; there
are no λ-terms or other variable-binding operations. The situation where strati-
fication is applied is in definitions of functions and operators. The syntax of the
input language allows unary prefix and binary infix operators. Each operator
is assigned a relative type for each of its arguments (only if these are zero is
the operator actually a function). For example, the operator @ (function ap-
plication) has relative type 1 for its first argument and relative type 0 for its
second argument. If the user attempts to define a function ∆ by the equation
∆@x = x@x, the prover will attempt to type all subterms of the expression and
discover that x cannot be consistently assigned the same type everywhere, so the
definition will be rejected: if the term x@x is assigned type 0, we must assign
type 1 to the first occurrence of x and type 0 to the second occurrence of x,
and when the same variable must be assigned two different types the stratifica-
tion procedure fails. It is also possible to define new prefixes and infixes which
have different relative types from their arguments (and so are not genuine func-
tions); the operators which form singletons and constant functions or the arrow
type constructor operating on retractions would be examples. Their definitions
also require attention to stratification (the technical term for such operators is
“stratified but inhomogeneous”).

An amusing fact about the implementation of stratification is that it is a
matching operation. A usual application of matching checks whether each vari-
able in one term is structurally correlated with the same subterm of another
term, checking for parallelism of structure and consistency of assignments to the
same variable everywhere in the term. The stratification checker in the prover
assigns an integer to each subterm of a term (this always succeeds), but needs
to check further whether the assignments of integers to occurrences of variables
are consistent; it shares essential code with the matching functions of the prover.
Thomas Forster has made the same observation (oral communication).

If only stratified equational axioms are used, the prover can be understood
as working in the typed theory described above, with a system of type infer-
ence replacing explicit typing, which allows polymorphic function definitions
introducing the defined function in all types simultaneously; this parallels the
mathematical practice of those who work in Russell’s type theory. However, the
absence of explicit typing makes it tempting to introduce unstratified axioms
(an example would be the defining equation of any Kt for a retraction t with
strongly Cantorian domain). The subversion of the type system by introducing
Kt’s has been seen above to be useful in allowing more general function abstrac-
tion for terms with variables restricted by application of retractions to strongly
Cantorian domains; once unstratified equations are introduced, we are working
in the stratified λ-calculus (given the absence of bound variables, we may to be
said to be working in the equivalent synthetic system).



Automatic features of the prover allow the absolute typing scheme using
retractions to be largely inferred rather than explicit as well; occurrences of
retractions can be removed where unnecessary (where their presence can be re-
stored by a type inference) automatically and reintroduced equally automatically
when needed; they can be treated as if they were type labels in appropriate con-
texts. Type inference for the usual constructed types can be implemented in a
straightforward fashion. Since types in the sense of strongly Cantorian domains
are represented by retractions, they are first-class objects in this system, which
allows definition of new type constructors and implementation of extended type
inference schemes by the user.
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