The Urysohn Space Embeds in Banach Spaces
in Just One Way

M. Randall Holmes

This note will give a brief account of the research found in my master’s
thesis [3] of 1985 and the following paper [4] of 1992 in which I described the
Urysohn universal separable metric space, which I had discovered indepen-
dently but which was of course not new (see [7]), and of the unique separable
Banach space which appears as the linear closure of any isometric copy con-
taining 0 of the Urysohn space in a Banach space, which was my original
contribution.

The question which I was asked in a graduate general topology class was
“Is there a universal separable metric space (implicitly, up to homeomor-
phism)”? That is, is there a separable metric space X such that for any
separable metric space at all, there is a homeomorphic embedding from X
into X7

Now of course an isometry is a homeomorphism, and I perhaps foolishly
asked the harder question “Is there a universal separable metric space up to
isometry”?

To investigate this question, I defined the concept of a “possible combina-
tion of distances” from a metric space X. It should be noted that of course
Urysohn defined the same concept in [7], but I did not become aware of this
for some time.

Let (X,d) be a metric space (which we will refer to as X, as is usual, if
logically dubious). The metrics on all spaces will be d as long as the intended

space can be understood from context: otherwise the metric on X will be
dx.

Definition 1. Let Y C X. Let p be a function from Y to the non-negative
reals, satisfying p(u) — p(v) < d(u,v) < p(u) + p(v) for all w and v in Y. (Of
course |p(u) — p(v)| < d(u,v) then holds by symmetry). Such a function will
be called a possible combination of distances from Y (as a subspace of X ).
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If the domain of p is X, we can adjoin a new point ¢q to X, stipulating that
d(q,z) = p(z) for each z € X, and it is straightforward to verify that X U{q}
is a metric space with this metric. If the domain Y of p is a proper subset of
X, one can extend p to the whole of X by making its value at eachx € X —-Y
as large as possible: let p/'(z) be defined as inf{d(x,y) + p(y) | y € X}. Tt
is straightforward to verify that p’ agrees with p on Y and is a possible
combination of distances from the whole of X. Thus it is possible to adjoin
a point to X in such a way that its distance from every point y of Y is p(y).
The notion “possible combination of distances from Y” exactly captures the
possible combinations of distances from Y of a new point to be adjoined to
the ambient metric space X.

Definition 2. Of course possible combinations of distances from a proper
subset Y may be handled by points already found in ¥ — X: we say that
x € X realizes p if d(z,y) = p(y) for each y € Y.

The universal separable metric space of Urysohn can be characterized
using this notion. Up to isometry, U is the unique complete separable metric
space which has the property that any possible combination of distances from
a finite subset of U is realized in U (this characterization was of course given
much earlier by Urysohn in [7]).

U can be constructed using this notion as well. Let X be a metric space
and let X’ be the set of all possible combinations of distances from the
whole of X. We put the metric d(p,q) = sup{|p(z) — ¢(z)| | * € X} on
X’. X’ has a canonical subspace isometric to X (consisting of the possible
combinations of distances p, which take on the value zero at some point x
of X). Moreover, for any p € P, we have d(p,p,) = p(x). The space X’
contains new points realizing every possible combination of distances from
(the natural isometric copy of) X, with any two new points as close to one
another as their distances from the natural embedded copy of X permit.
Unfortunately, X’ is not as a rule separable; so we define a subspace X" of
X" as the completion in X’ of the set of extensions to all of X (as described
above) of possible combinations of distances from finite subsets of X. X" can
be shown to be separable if X is separable. Now let X be a one-point space
and define X, 1 as X for each natural number n. The completion of the
direct limit of the X;’s (using the natural isometric embedding of each space
in the sequence into the next to construct the direct limit) is isometric to U.
This was my original construction of a universal separable metric space up
to isometry when I discovered this space independently in 1983. The same



construction was published by Katétov in [5], in 1988, but I did not become
aware of this until 2006!

No one at SUNY Binghamton had heard of the Urysohn space, but many
people there knew of the well-known theorem of Banach and Mazur that
C10,1] (the space of continuous functions from [0, 1] to the reals with the
sup metric) is a universal separable metric space up to isometry (and in fact
a universal separable Banach space up to linear isometry) (see [1]). So the
natural question in my mind was “how do U and C[0, 1] embed into each
other?”

It was immediately clear that the spaces are different. Consider the con-
stant functions 1,2,3. A possible combination of distances from these points
which cannot be realized in C[0, 1] maps each of these points to 1. But 2 is
the only point in C'[0, 1] which is at distance 1 from each of 1 and 3.

The perhaps valuable original contribution of my work on the Urysohn
space from 1983 to 1985 is contained in the following series of observations.

Definition 3. We define a possible combination of values of a set of functions
F C C[0,1] with 0 € F as a function p from F to the reals such that for any
f,g € F, we have p(0) = 0 and |p(f) — p(g)| < d(f,g). Further, we say that
a real r realizes p iff for each f € F, we have f(r) = p(f). It should be clear
that for any r € [0, 1], the function sending each f € F to f(r) is a possible
combination of values for F' (justifying the terminology).

Suppose that F' is a finite subset of an isometric copy of U in C|0, 1],
0 € F, and p is a possible combination of values for F. It is straightforward
to verify that for large enough N (twice the diameter of F' will work) the
function (f € F +— N —p(f)) is a possible combination of distances from F,
and so there is a function g in the isometric copy of U which realizes these
distances from F. Extend p by defining p(g) = N (obviously the extended p
is still a possible combination of values). Now further it is straightforward to
show that (f € FU{g} — N + p(f)) is a possible combination of distances
from F U {g}, so there is a function h in the isometric copy of U which
realizes these distances from F'U {g}. Now d(g,h) = 2N by construction,
so there must be a real 7, such that |g(r,) — h(r,)] = 2N. Since 0 € F
and d(g,0) = d(h,0) = N, we are forced to have either g(r,) = N and
h(r,) = —N or g(r,) = —N and h(r,) = N. For each f € F, we have
£(r)— glry)| < N—p(f) and [£(r,)— h(r)| < N +p(f). So'in the first case
f(rp) is forced to have the value p(f) for each f € F and in the second case



f(rp) is forced to have the value —p(f) for each f € F. So we have shown
the following rather surprising

Theorem 4. For any finite subset F' of an isometric copy of U with 0 € F,
and any possible combination of values p for F', either p is realized at some
rp € [0,1] or —p is realized at some r, € [0,1].

This is very strange! It implies, for example, the following

Corollary 5. Any element of an isometric copy of U in C[0, 1] which con-
tains 0, other than 0 itself, is a component of something which is almost a
Peano space-filling curve.

Proof. Let f be such a function. A possible combination of distances from
f and 0 is the map sending 0 to |f| and |f]| to 2|f], so there is a point fy at
distance | f| from 0 and 2|f| from f in the isometric copy of U. Any element
of [—|fI,|f]]? is of the form (p(f),p(f2)) where p is a possible combination
of values for f and f, (and all possible p are associated with points in this
way). Thus for every point (z,y) in [—|f],|f|]* there is a real r such that
either f(r) = z and fo(r) =y or f(r) = —x and fy3(r) = —y: f and f, are
the components of a continuous curve which visits each point of a square
centered at the origin or its mirror image through the origin. O

So we see that no familiar function in C]0, 1] except the constant 0 can
be an element of such a copy of Ul What, on the face of it, does the universal
separable metric space of Urysohn have to do with space-filling curves?

Further, consider the linear closure of an isometric copy of U in C[0, 1]
containing 0. Consider in particular any finite linear combination Xc¢;f; of
elements of the copy of U. The norm of ¥¢;f; is the supremum of all sums
lcifi(r)| for r € [0,1]. But this means that it is the supremum of all sums
leip(f;)] where p is a possible combination of values for the set of f;’s, because
every such possible combination of values or its uniform negative is realized
at some r. This supremum depends only on the distances among the f;’s
and 0, so such norms are determined entirely by the metric structure of U
and the selection of a point to correspond to 0. This completes the proof of
another surprising

Theorem 6. The linear closure of an isometric copy of U in C[0, 1] which
contains 0 is a uniquely determined separable Banach space U, up to linear



isometry (and so, because of the known universality of C|0, 1], the linear clo-
sure of an isometric copy of U containing 0 in any Banach space is uniquely
determined up to linear isometry).

The anonymous referee advises us to emphasize the point that a formally
stronger result is proved here: an isometric embedding of the Urysohn space
in a Banach space determines a unique norm, in the sense that the norm of
any linear combination of points of U is uniquely determined as soon as the
point mapping to 0 is chosen. It is not clear that this property is equivalent
to the property of determining a unique linear closure up to linear isometry;
it might be stronger.

There are two questions about this which present themselves. One of
them was ours, on which we made little progress, but we were able to answer
a question of Sierpinski.

Question 7. We know that U is a universal separable metric space up to
isometry. Is its uniquely determined linear closure U a universal separable
Banach space up to linear isometry?

I did not make much headway on this. In [4] I got as far as demonstrating
that U did not have a certain homogeneity property which would have fa-
cilitated a proof of universality. This question has been answered positively
by Godefroy and Kalton in [2], as a corollary of a much stronger result: if
a separable Banach space embeds isometrically into another Banach space,
Godefroy and Kalton showed that it also embeds linearly isometrically, which
neatly solves the problem at hand: any separable Banach space embeds iso-
metrically in U so of course into U, and by the result of Godefroy and Kalton
embeds linearly isometrically into U.

The second question, which I did answer, is difficult to phrase precisely.
The usual proofs that C[0,1] is a universal separable Banach space under
linear isometry (at least, the ones familiar to us) involve space-filling curves.
We present a version adapted to embedding metric spaces rather than Banach
spaces (we believe this adaptation is from [6]). Let X be a separable metric
space and fix an element of X which will be mapped to 0. Let D be a
countable dense subset of X. Take the space D* of all possible combinations
of values of D (defined as above, but of course this was not their terminology)
and put the pointwise convergence topology on it. This space is a connected
compact metric space, so one can define a continuous map f from [0, 1] onto
D*. Now with each point d € D associate the function which sends each



r €[0,1] to f(r)(d). Under the supremum metric, these functions will make
up an isometric copy of D in C[0, 1] whose completion will be a copy of X.
Sierpinski observed, in commenting on this proof in [6], that for most familiar
spaces nothing as nasty as this construction using a Peano curve is required,
and he asked specifically this

Question 8. (Sierpinski) Is there a better way to embed U in C|0, 1] than
the general method of Banach and Mazur, as adapted to metric spaces?

The results above linking isometric embeddings of U with C[0, 1] strongly
suggest that the answer should be No. However, it is tricky to formulate the
negative answer precisely.

In [4], T formulated precise conditions under which a finite subset F of
([0, 1] can be extended to an isometric copy of U containing 0. The condition
is equivalent to the statement that there is a positive constant N and a
function ¢ at distance N + d(0, f) from f for each f € F', such that for each
possible combination of values p for F'U {g}, either p is realized or —p is
realized. It follows easily from the discussion above that these conditions
are necessary; additional work is required to show that these conditions are
sufficient. Such a set F' is called inflatable in [4]. The basic idea of the proof
is that one can choose any possible combination of distances p from F, then
use g to guide the construction of two functions, a function f’ which has
the desired distances from the elements of f and a function ¢’ which has
distance N +d(f,0) from each f € FU{f’}. This allows the construction of
a countable dense subset of a copy of U from an inflatable set, and taking the
completion of a subset of C[0, 1] of course presents no difficulties. This allows
an exposition of the construction of U entirely in terms of C0, 1], which is
given in detail in [4].

An easy way to answer Sierpinski’s question is the following: any embed-
ding of U into C[0, 1] is associated via the construction outlined above with
a continuous curve in D* (where D is a countable dense subset of U) which
“half-fills” D* (visits each element of D* or its negative). So mod the differ-
ence between “half-space-filling curves” and frankly space-filling curves, the
answer to the question of Sierpinski is indeed No. A more subtle approach
involves choosing D cleverly so that a universal construction of isometric
embeddings of U in C'[0, 1] can be presented whose only parameter is a “half-
space-filling curve” in the usual Hilbert cube. This can be done in such
a way that there is a one-to-one correspondence between half-space-filling



curves and isometric embeddings, if D is chosen in such a way that all in-
stances of the triangle inequality are strict (so no finite assignment of values
at a given r to points of D can exactly fix the value at r of any other element
of D) (it is noted that this can be done in [4] but complete details are not
given for the more refined version).

I close with some acknowledgements. I am grateful to the organizers of
the Workshop on the Urysohn Space for inviting me, and happy to see that
this interesting area of mathematics is being actively explored (and that [4]
is being read!). I am very grateful to the anonymous referee for catching
some serious slips in the original version of this paper, and also for making
sure that results were correctly attributed; I freely admit my ignorance of
the literature and frequent re-invention of the wheel during the brief period
I was working in this area. The referee asked why the publication of [4] did
not occur until 1992, when I say that the work was done between 1983 and
1985. Immediately after I completed my Master’s thesis in 1985, I became
immersed in the entirely different research in set theory and combinatory
logic which led to my Ph. D. in 1990; after that I was looking for a job,
which was difficult at that time. But I felt that the work I had done on
the Urysohn space and the question I had left open should be published in
a more accessible format than [3], and once I was employed and settled I
turned my attention to preparing and submitting [4], which contained some
new ideas not found in [3], notably the attempt to present the construction
of U entirely in terms of C[0, 1], but for the most part presented refinements
of the results I had in 1985.
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