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1 Introduction

CL Watson is a version of the Watson theorem prover. Watson is an interac-
tive equational higher-order prover whose higher-order logic is based on the
weakly extensional version NFU of Quine’s set theory “New Foundations”,
presented as a stratified lambda-calculus.

CL Watson is based on combinatory logic instead of lambda-calculus.
The intention is to implement stratified lambda-calculus without actually
explicitly implementing either stratification or lambda-calculus. Part of the
intention is that all manipulations of terms made by the computer represent
logical moves which are directly, locally justifiable without any appeal to such
nonlocal conditions as stratification of terms or position in terms defined by
cases.

CL Watson uses variable binding notation of the usual kind, unlike Wat-
son. It uses the metaphor of navigation in terms to handle application of
theorems (which are all understood as rewrite rules). Navigation is extended
to include navigation to formal values as well as to subterms: this is how
“lambda-terms” are implemented. A term (λx.T ) has no subterm of the
form T : it is a combinator which evaluates to T when applied to the variable
x. The display functions of the prover recognize the term as an “abstrac-
tion”, and so display it as a λ-term, and the navigation functions allow one to
navigate to the “subterm” T , but what actually happens when T is rewritten
involves abstraction from the rewritten form.
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2 The Logic

The basic logical rules are those of equational logic which are assumed to be
familiar. All theorems are equations, supposed universally quantified over
any variables present.

Primitives are constants Abst, Id, and Eq. If T and U are terms, then
T (U) is a term (the application of T to U) and |T | is a term (the constant
function with value T ).

The combinatory logic axioms proper are

Identity: Id(x) = x

Constant: |T |(U) = T

Distribution: Abst(T )(U)(V ) = T (|V |)(U(V ))

Constant Expansion: |T (U)| = Abst(|T |)(|U |)

These axioms support a meta-theorem.

Definition: If A is a set of integers, define A+1 as the set of all successors of
elements of A and A− 1 as the set of all predecessors of elements of A.
Where U is a term and T is a term, define type(U, T ), a set of integers,
as follows. type(T, T ) = {0}. type(U, T ) = Z (the set of all integers)
if T is atomic and U is distinct from T . type(U, |T |) = type(U, T )− 1.
type(V, T (U)) = (type(V, T )+1)∩type(V, U). It should be clear that
type(, T ) is always either Z (if U does not occur in T ), a singleton set
{n} (in which case we say that U has type n in T ), or ∅ (in which case
we say that U is ill-typed in T ).

Abstraction Theorem: If 0 ∈ type(x, T ), then there is a term (λx.T ), not
containing the variable x, such that (λx.T )(x) = T is a theorem.

Proof: For any term T , we can construct a term T ′ which contains no sub-
term of the form |T (U)| by repeated rewriting using the Constant Ex-
pansion axiom.

For any terms T and U , we define a term (λU.T ) as follows: if T = U ,
define (λU.T ) as Id. If T is an atomic term or constant function term
distinct from U define (λU.T ) as |T |. If T is a composite term V (W )
define (λU.T ) as Abst(λ|U |.V )(λU.W ).
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Induction on the structure of terms, along with the defining axioms for
the combinators, establishes that (λU.T )(U) = T is a theorem for any
T and U . Our further claim is that if T ′ is chosen (as it always can
be) such that T = T ′ is a theorem and T ′ contains no subterm of the
form |V (W )| and if type(x.T ) contains 0, and if U is either atomic or
an iterated constant function of an a tomic term, then (λU.T ′) (which
is already seen to satisfy (λU.T ′)(x) = T ′ = T ) will further not have U
as a subterm.

We run through the induction again. If T ′ = U , then (λU.T ′) = Id

contains no occurrence of U . If T ′ is an atomic term distinct from U ,
then (λU.T ′) = |T ′| contains no occurrence of U . If T ′ is a constant
function, it must be an iterated constant function of an atomic term. If
this term is U , then type(U, T ) is the singleton set of a negative integer,
and so does not contain 0. If this term is not U , then (λU.T ′) = |T ′|
does not contain an occurrence of U . If T ′ is of the form V (W ) then
(λU.T ′) = Abst(λ|U |.V )(λU.W ) and we need to argue that neither
(λ|U |.V ) nor (λU.W ) contain x if type(U, T ) contains 0. We must
have 0 in type(U,W ), so induction tells us that (λU.W ) contains no
occurrence of U . We must have −1 in type(U, V ). Any occurrence of
U in V must be in the context |U |, and all these occurrences of |U |
must have type 0 in V . From this it follows that (λ|U |.V ) contains no
occurrence of |U | by induction, and so can contain no occurrence of U ,
since any occurrence of U in (λ|U |.V ) would need to be derived from
an occurrence of U in V , which would appear as part of a subterm |U |
eliminated by the abstraction algorithm.

We introduce a weak extensionality axiom. The motivation is that we
allow rewrites inside abstraction terms (λx.T ).

Extension Axiom: If T = U is a theorem, so is (λx.T ) = (λx.U). Further,
(λx.T (x)) = T , where T is of one of the forms Abst, Abst(U).

Refinement of the Abstraction Algorithm: The abstraction algorithm
can be modified as follows: when it happens that (λ|U |.V ) = |V | and
(λU.W ) = |W |, define (λU.V (W )) as |V (W )| (this is equal to the ab-
straction obtained under the original algorithm by the axiom of Con-
stant Expansion); define (λx.U(x)) as U in case U is of one of the forms
Id, |V |, Abst, Abst(V ) or Abst(V )(W ) (justified by the Extension Ax-
iom), and otherwise define it as usual. Further, replace (λx.T (x) with

3



T in the contexts U , V in terms Abst(U), Abst(U)(V ) (also justified
by the Extension Axiom).

[Internally to CL Watson, an “inertia operator” is applied to U when it
is chosen as (λx.U(x)): this helps make the reduction algorithm inverse
to the abstraction algorithm in case U itself is a “lambda-term”.]

The CL Watson logic of equality will be discussed as it is implemented.
The intention is that Eq(|||T |||)(||U ||)(|V |)(W ) (which actually can be
written V {T = U} W in CL Watson infix notation, though it will ini-
tially be written V {||T|| = ||U||} W ) means “if T = U then V else
W”. The axioms are

True Equation:

Eq(|||X|||)(||X||)(|Y |)(Z) = Y

False Equation:

Eq(|||Id|||)(|||Id|||)(|Y |)(Z) = Z

The nesting of constant functions obscures the fact that this axiom
asserts that Id and |Id| are distinct. This is a generic choice for
drawing a distinction because these are in effect the projection
operators: Id(|X|)(Y ) = X and |Id|(|X|)(Y ) = Y .

Application Distribution:

Eq(|||T |||)(||U ||)(|A(B)|)(C(D))

=
Eq(|||T |||)(||U ||)(|A|)(C)(Eq(|||T |||)(||U ||)(|B|)(D))

Constant Function Distribution:

Eq(|||T |||)(||U ||)(||A||)(|B|)

=
|Eq(|||T |||)(||U ||)(A)(B)|

Substitution under Hypotheses:

Eq(|||T |||)(||U ||)(|T |)(B)

=
Eq(|||T |||)(||U ||)(|U |)(B)

4



Weak Extensionality/Choice:

Eq(|||(λx.T (x))|||)(||(λx.U(x))||)(|V |)(W )

=

Eq(|||T (Diff(|T |)(U)(X))|||)(||U(Diff(|T |)(U)(X))||)(|V |)(W )

3 The Program

3.1 The Term Language

Constant atomic terms of the language of CL Watson are either strings of
letters with the initial capitalized and any others lower case (A is a term) or
strings of special characters (precise definition is the function isspecial in
the source).

Variable atomic terms of the language of CL Watson have the letter x

followed by a numeral.
If T is a term and U is a term then |T| and T(U) are terms. These con-

structions correspond to the application and constant function constructions
of the logic.

CL Watson supports infix notation. T U V is syntactic sugar for U(|T|)(V)
(this resembles the usual “currying” used to implement functions of two vari-
ables in combinatory logic, but notice the adjustment of the type of T so that
it is the same as the type of U). If T is an infix term, it will be enclosed
in parentheses. If U is an infix term, it will be enclosed in braces. If T is
an infix term in the context T(U), it will be enclosed in braces. Redundant
braces and parentheses are all right. This all has the effect of enforcing
APL operator precedence: we expect to eventually implement some sort of
user-defined operator precedence. CL Watson draws an internal distinction
between constant function constructors explicitly supplied by the user and
those which appear in the internals of infix notation, so as to avoid terms
acquiring unexpected infix forms.

CL Watson supports lambda-notation. If x1 represents x and T represents
T, then [x1=>T] represents (λx.T ). Note that the internal representation
of [x1=>T] contains no variable analogous to x1, and the bound variable
displayed by the system when displaying a term may be different from the
bound variable the user enters.
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CL Watson displays F([x1=>T]) as [F(x1)=>T] where F is an atomic
constant (in order to support standard notation for quantifiers and other
binders). This sometimes has odd effects where atoms not normally thought
of as binders are applied to abstractions. CL Watson will sometimes also
display terms in a way involving infix notation “accidentally”.

One must be careful with whitespace: spaces actually have meaning in
the syntax of CL Watson (they separate infixes from neighboring terms). In
certain cases CL Watson may supply these spaces when they are omitted
(next to special characters; never before an opening parenthesis). It is safer
to write them and they are always displayed. Redundant spaces in locations
not next to infixes should always be avoided.

A very new feature is the presence of “quoted” terms "T", which represent
interpretations of terms in a model of the logic. These are intended for use
in supporting unstratified quantification.

3.2 The Proof Model

The model of prover use is this: the user enters a term, applies theorems to
it as rewrite rules until a new term is obtained, then records the equation of
the original term and the final term as a new theorem usable as a rewrite
rule.

At any point, one views the right side of the theorem under construction,
and a selected subterm where rewrite rules will be applied.

The command
Start "T"

sets up a new proof environment with the term T as both left and right
term in the “theorem under construction”. s is an abbreviation for Start.

The command
Look()

allows one to see the right side of the current term. Variants Look1()

and Look2() support different term views. View 1 supports neither abstrac-
tion nor infix notation. View 2 supports abstraction but not infix notation.
Commands view1() and view2() will reset the default view to view 1 or 2;
they also change the effect of the navigation commands. view3() restores
default behavior.

The commands
workback()

interchanges the left and right sides of the theorem under construction.
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The command
lookback()

allows one to look at the left side of the theorem under construction and
return to the right side.

The command
startover()

sets both left and right sides of the theorem to the current left side.
Now we consider navigation commands, which reset the current subterm.
right()

left()

These commands are multipurpose. They will go to the right or left
subterm of a function application term, to the right or left subterm of an infix
term (leaving aside the infix). They will go to the body of an abstraction
(that is,to a formal value of the abstraction term).

middle()

function()

These commands are dedicated to infix terms. middle() goes to the infix
subterm of an infix term. function() goes to the left subterm of an infix term
when it is considered as a function application term (the subterm U(|T|)

which disappears from view when U(|T|)(V) is presented as T U V). The
use of the function() command can be avoided by using toggleinfix() to
change the way the term is viewed.

value()

This goes to the formal value of any “abstract” term: it works where an
“abstract” is not actually presented in abstract form (this is true of terms Id,
|T|, and Abst, and may be true of more terms in later forms of CL Watson).

Terms dedicated to infix terms will not work in view 2; terms dedicated
to abstraction terms will not work in view 1. In view 1 or 2, right() and
left() will not do the same thing as in view 3. Any movement command at
all takes one to the interior of the quotes in a quoted term.

up()

top()

The up() command reverses the effect of the most recent movement com-
mand; the top() command takes one to the top of the term.

We now consider the application of theorems.
If T and U are terms, then T :>: U and T :<: U are terms, with the

same reference as U. The effect is to signal the intent to apply a rewrite
represented by the term T; the alternative form applies the theorem in the
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opposite direction. The head of the term T will be the name of a theorem (or
theorem-like internal function of the prover); the rest of the term can supply
parameters to the theorem.

The command ri "T" introduces an embedded theorem T at the current
selected subterm. The command rri "T" introduces an embedded theorem
using the alternative infix :<:.

The command Execute() carries out all rewrites signalled by embedded
theorems in the selected subterm. Rewrites are carried out in a depth-first
manner, and new rewrites introduced by executed rewrites are carried out in
their turn until all are eliminated. ex() abbreviates Execute().

The command Onestep() carries out a single step of the reduction process
which is carried out aggressively by Execute().

The command assign1 n "T" implements a global substitution of T for
the variable xn (n is a numeral) in both the left and right sides of the current
theorem under construction. The command assigninto n "T" substitutes
the left and right sides of the current term for xn in T to get new left and
right sides.

The command Extract "T" converts the selected term U to [T=>U](U),
where possible. The command Red() is the reverse operation of beta-reduction.

The command makeinert() makes the selected term “inert” (this is a
technicality in the reduction algorithm). The command toggleinfix will
toggle the display of a potential infix term between the forms T(|U|)(V)

and U T V (it resets the hidden bit in the representation of the constant
function between user-supplied and implicit).

The command prove "T" proves a new theorem, with left side the left
side of the current theorem under construction and right side the right side
of the current theorem under construction. The head of the term T will be
the name of the new theorem: it may have arguments which can be used to
pass information to the theorem. In examples, we will see that theorems may
have quite complex execution behavior, using built-in higher-order matching
facilities, information passed to them in parameters, and introducing new
embedded theorems which will in their turn be executed.

The command axiom "name" "T" "U" introduces an axiom named name

asserting T = U.
The command reflect "name1" "name2" converts a theorem called name1

of the form "T" = "U" to a theorem called name2 (if this name is free) of the
form T = U: it allows theorems proved about the object model to be exported
to the meta-model. This is logically strong: we’ll see if it is useful.
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The command thmdisplay "T" displays the theorem with name T.
Further commands analogous to those in the Watson user manual may

be expected to appear.

4 Examples
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