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le say that a logic (formal logic, formal language)

Ly is coriglstent relative Lo & logilc ﬂg, provided that it 2
contradiction can be derived in L, Then & gontradiction can~
be derived in Lg. We say thet & logle Ly is modelled in a
logic Ly 1f there has been defined & one~to-oneg corresponds-
ence between the propositlons of Ly ond a subclsss of the
propositions of Lp such thais

1} The corregpondence is effectively defined} 1.8
given & proposition of Ll, expliclt directlons aré avail-~
sble which enable ons %o construct, in a finite number of
steps, the uniyuc correspondent in Lg of the given proposi-
tion.

2} Thao correspondence preserves demonstrabilityy
is:8e, given a &a&c&stfatiaﬁ; according to the rules of Ly,
of a proposition p of Ll, 8zpi;ci§ giyae%iens are availQ
sble which enzble one to comstruct, in 2 finite number of
steps, a demonstration, according to the rules of Ly, of
the correspondent in Ly of p.

3} The correspondence preserves contradictionsj l.e.,
if = yrapasitiéﬁ pof Ly is 2 een&raﬁictisé in Ly, then
ths correspondent in Lg of p is & contradiction in %2.

If & logle Ly is modelled in z logic Ly, we shall

call the class of correspondents in Ly of the propositions

of Ly & model of Iy in Lg. Obviously if there iz & model
L

in Lg, then Ly 1s consisient relatlve Yo Lg,



o £ e
in {ﬁ},l G3del took Ly to be the system of axlomatic
set theory (with an axlom of infinity but not an axiom of
cholce) and Ly to be Ly plus sn axlom from which he derived
the axiom of cholce, the generalized continuum hypothesis,
and other theorems, The prool that Ly is congistent
relative to Lg was then effected by setting up & model of
Ly in Lg. In constructing the model of L, Gldel made ex-
tensive use of the resources of Lg, and in particular of
theorems of Ly whlch depend on the disbtincilon between sets
and classes.
We ghall show that a model of axiomatic set theory can
be set up in any loglc which contains the lower functional
- calculus plus a certain minimum of the theory of classes
F and relatlons, and of transfinite ordinal theory. . This
implies that sel theory is consistent relative fo any
system having these minimum resources {which will be speci-
fied in Part I, 82), Further, it will be seen that seb
theory itself has these minlmum resources, so that while our
model differs conslderably f;qgﬁ%ﬁat1g§_{§3,,it can never-
theless be set up within exiomatic set theory,
- Pazri ljaf,thgsjgager will be devoted to specifying
the necessary propertles of Lo, and to the construction of
the model,

In Part II we shall be concerned with ths problem of

1. Fumbers in bracksts refer to the bibiiography.
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deternining whether ths simple theory of types, or & sult-
able modificatlion thereof, lg sdequate lor the comstruc-
tion of the model of Part I. To this end & considerable
developmsnt of certain paris of ordinal theory is given,
In this development it is assumed that the reader is
familisr with the basic propertiss of ordinsls as defined in
the theory of itypes. Furthermore, the orxdinsl theory
developad is specifically directed toward the theorems which
sre nesded in Part I, so that while 1% is of inberest in it-
self, it does not constitute & systematic or complete
developrment of ordinal theory.

Ve are unable o come to a definite conelusion in Part
Il =3 to whether the simple theory of iypes is adequate for
the consiructlon of the model of Part I. It appesrs, how-
gver, that in order to set up this model, one will have to
add Lo the theory of types axioms from which two raﬁhe:
specisl resuits aboubt ordimals can be derived. Wahile one
could add these speclal cresulis themselves as axioms, they
completely luek that character of ¥inbuitive selif-svidence®
{whatever this means}) vhich seems to be considered desirable
in the axioms of systems of logic,

We proceed to show, therefore, that the two results
nzeded czn be derived from twe well known propositions of
classical ordinal theory, =znd we consider the addition Yo

the theory of types of these proposiilons as axioms, Un-
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fortunately, while one of these propositions is & weak lorm
of the axiom of cholce, the other contradlcis stronzg forms
of the axiom of cholce, This ig 2 convincing demonstration
of the confusion which exists in classical ordinal theory,
put it is hardly sabisfying as fapr a2s the guestion of
relative consistency of set theory with the theory of types
is concerned,

Thus, we are unsble to show that set theory iz con-
sistent relebive to the simple theory of types, Thers re-
pain then three possibilitiess

1} A differsnt method of modsliing might require
less ordinal theory, so thst s model of set theory could
be set up in the theory of iypes, augmented perhaps by one
or more ”aec%pﬁable?‘axioms. .

S} It may be possible to prove the two resulits we
need In the theory of $§§es, uging perhaps additional
axioms which are in some sense ﬂaécepzableﬁ, and which do
not contradict the axiom of cholce. This seems rather un-
likeiy¢‘

%} We havse gerh£§s done the best That can be done,

snd the speeial theorems which we need are actually

44

nzegsgary 1T set theory ls to be modselled in the theory of
LYpes. ?haée sesms o be no reason Lo believe that this is
true. |

In any case, 1% should be poinited séi that there 1z 5

much evidencs that the axdioms which we suggest adding to the
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asnsistend with the other axioms of that
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gysten, as there iz that the axlon of cholce is consistent
with the axloms of thet system—nnmely, no evidence in either
cuEe, Gg ¢l has stated® (but has not publichad 2 proof)

that the axion of cholce is consistent with the ramified
theory of %y?%sé but thers hos apperently been no ¢orrespond-

ing iﬁﬁesﬁigatisﬁ of the simple theory of types. In view

4

U

e¢ how & proof ecan be garried out for elther systen along
the lines used by GBdel in [5]. Some clarification of this

matter by GBdel would be most welcoms,

Part I
81, Zhe Lozic L;. (Axiomatic Set Theory.j In this
section we state the primitive symbols, basic defimitions,
and axioms of the lozic commonly known as axlomaile seib
theorys The system here defined is an attempi 2t &
formalization of the system 2 described inbuitively by

@ldel in [B]. Bince we are interesied only in reproducing

formally as close an approximstion to the system & as pos-
sible, we neglect various opportunities for removal of
redundancies which exist both in Z znd the system we deline,
The primitive symbols of Ly are the following
constamtst |, (, J, €, L, § o
Variabless x' , x°, x" ,°-+ (in &

lefinition of noun and proposition.

asbeticul order).

2. Eze [3] 2nd [4].
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1} If x is a variable, then x is 2 noun.

2} If x apd y are nouns, then (xey) is a proposition,
and {zyl is o noun,

3} If p and g are propositions and x is a variable,
then (pla)} snd ({x)p} =re propositions.

2, ¥, B, U, ¥, ¥ are used ss syntacticsl variables
whose values are variables, and p and ¢ as synbactlcal
variables whose values are propositions.

- We define ¥free occurrence of & veriable", Wbound
occurrence of s variable®, end %x bound parit of & formula®
as in [1]. The rules of inference of L; ars the usual
finitist rules {e.g., those of the system FL of [1]). The
syntactlcal notation ¥ |7 is defined as inm [1]. The
symbol "=df? betb tween two :ormulas means thet the formuls
on ghe 1efu is an abbvev1atien sf *he formula on the right,
The symnaTS ~ LV :),a are uerlnaé lﬁ.bh& nsual manner.
Paren»aeses ”lil ba oﬁi*tﬁﬁ or reyiec by dots as in
b Pflﬁﬁipi& ﬁaihemat}cd.

Defi“itiwns of Li' V |
DSL., <xy> = ar {fxx} | 73]
1 <gyz} = df<x§yz>> B

elts
Dsz. (Ex)p = af ~(x)~p.

D83, MW(x)} = af(By).zey,
D84, (x)gp = df(x} E(x}D p..
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ps5, (Ex}gp = af~v(x}g~p.
DS6. xcy = df(z) .zexDz8¥.

it

D87, x=y df(z) + ZEXEZEY o
DEs, xfy = af~{z=y).

ps9. Un(x) = af(u,v,w) 2<uvrex.<wv>ex. 2 =%,

i

Axioms of Lq.
and the lower functional calculus {e.g., the axioms of the
system F+ of [11},

Axioms for the propositlonal caleculus

Al. (x,y,2)8x=y.2 .x832Yy8ez,
A2. (x,7,z)gtze { Xy} »=.25% V2=,

23, (x,7) o(Bz) (0} tuez.2.u=x VUmy.

Bl. (Ez) (x,7) go<xy>E2=28Y .

B2, (x;7)}(Bz)(w jsuez.=.uex.uey.

83, (x)(Ey){(w g+ USYEU~ BX.

B4, (=) (By(w) jtuey.=.(Bz) g Lzwdex.

B5.  (x) (By) (u,v) g <vudsy=uex.

Bs. (D (ED(u 3 g SUVPETECTIDE X,

B7. {x)(Ey)(u,v,w) g:<avw>ey=<vinex.
88, (%) (Ey) (u,v,w) ;. <uvweys<unv>ex.

- 61, (Bujgs. (Ez}s.zam(x)s:xsn‘3,;(Ey)s.vyisu.x9.y.x#y.
2, () (By)g{u,v)gsuev. vex. D JUEY. } |
3. (A) (z)1.Un(z}:D (Ey) {u)s.usy..,,(Ev)s.vsx,«(quz.
C4. (X) (F’sf) (u)q.ucxauay,
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Dl.  (x)z.(Ey) geyext O s{Bu) g3 usxe~ (Ez) ;. 28U 28X,

From The above axiomsz one can prove, by methods
similar Lo those used in [B], the following theorem:

it

i} p is = propositiong

2} all the bound varizbles of p occur only in paris
of the form (z}gqg

2} all the free varlubles of p are conbained in ths

htd %

hi

thyﬁsxlgxgsﬁ ES ’5;{}}5 )
4} u does not occur in this sebts then

}' 1(}’2';?2; sE= 3}?23} {g’\l} i:iil,}tg,} LA ’}{ﬁ}s 3{3132‘ h ’Kn}ﬁﬁi:’?a

Feak forms of the above theorem are stated in [5] on
pe B and p. 1l4.

o

appesr in [5], but has been shown by

e d

AL Goes no

o3

4 Rabinéehn to be necessary.® Ag is stated in [5] as &
definltion. (It is not clesr, howsver, what is meant by
the word Mdefinmition® in [5].} In [5], (Eﬁg,cls(x} {every
set is a éiass} appears as an axiom, put is superfluous.
D83 appesrs in [5] es an axiom, | |

e note, Tor future referenae§ that Ly has egsentially
two universess first, ths ¢lass of all §§§§ (1;8,5 ths ¢lass
ofygll x such that M(x}}3 second, the folags® af “1 élasseg,

whether sete or not. This latter ﬁelasgﬁ iz no%, strietly

2« 121,




speaking, a cless in L,, sluce the definition of M{x) is such

Al SRS S y AT e rrqnde s BT men ] Twr # g 4
that any mewber of & ciass i1s subomsltically ¢ set. IThus,

winlle we may delling & clags for the unlvorse of seis, the

It may be of imbterest that GBdells proof of the con-
sistency of ihe &xism of cholce with Ll con b2 carried oub
if €1 is veplaced by (Ex).{x), but not if C1 is omitted
withoub f?@i&a%&%ﬁi by socms cxdom asserting Ths existence

£ 2% least one set, Also, Gldells proof is essily carried

G

o -

oub without wuss of DL, und DL can then be proved forx the
model defined in [5], thus giving a simple conslstency
proof for this azlom.

§2. ZIne Logie L. We do not abtempt to defime Lg
#ith compleie preclsion, sincs this would be possible only
if we restricted Ly %o be a particuler system of logic, and
we wish our results to be velld &t leust for a modification
of the slmple theory of types and for L, We shall, instead,
stute for Lg certaln general requirements which are satiz-
figd by most sysitems of logie, list expressions assumed %o
be definzble in Lg, and list theorems assumed to be provable
in L. I% will follow from results obtained in [5] that L,
cen be taken bo be Ly, and it will be shown in Part II thas
can be taken to be the simpls thsory éf types plus

Yy

propriste additlonal axious {(p. g4l

~ We assume that among the symbols, primitive or




w1l

-defined, of L, ere the constanis (, }, &, | «nd an infinite
set of varlables, possibly srranged in types. Ve assume
t&ét aag formuls gonstrucihed Iron these symbols znd ?&rié

ablebwhich i3 a proposition of type theory isg a proposition

We assume that the expressions (x)p, (E)p, (B x)p,
NPy PVidy Detdy, D4, pEj have been defined in the ususl
é&nﬁer, and that Lo conbains the g?ﬁpﬂééﬁi@%&i‘aaleulas
and the lowsr funetlonal saleulus, together with the usual
Tinitist rules of inference. We define the notation W} ¥
analogously %o ths notation ¥ }lﬂ of qu>

Ye define free and bound variables us in L,, and the
notation [ Sxp} (y) snd the phrase ¥confusion of bound
vapriables in {S::g} {(y3¥ as in [10]. However, if (=)
denotes a proposition, we shall write p(y) for {83:§§ (v}
@when convenient, Syn%actical varizbles are defined for
Ly ag for L, but we also use Py Ryeeo,0,8,Y 000 as
syntactieal variables whose values are variables,

HWe assume that & symbol ,=, has been defined in Ly
such that |

T, F‘(x%y)%xzytagéz}azaxazays

Z2s 1If there is no confusion of bound varisbles in
{8z p(x}] (), then |(x,3)ip(x).x=v.D .0(). |

We sssume that Ly contains abstrsctions, Xp, and
deseriptions, (xp, such that whenever p isg a2 proposition

of The theory of types then T3, T4, snd I5 sre provable.
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5. 1If there is no confusion of bound varizbles in

€S}i§} (v}, then

F (7). (82) .vez1 D sye3p. =, {szp} ().

I3 is valid in both the theory of types and Ll' it
will be moted that in every case (in Part I} where we
assert ya%g&.p{y), p is a proposition of %ypse thaory, and
one can prove (Ez).ysz in Lys

¥4, I neither z nor v occurs free in p and there is
no confusion of bound variables in {Syp} (¢ xp} or
fsyp! (v}, then | (Bz2)(v)37=z.=, [Syp} (v}2.D:, [8yp] ( t=p).

I35, If there-is mo confusion of bound variables in

{8xp] ($q), then
"(X)Ft:) * {52{?} (?"Q}»
F(p.D. {8203 ( ¢ 3a).

The second part of 5 is freguently stated as
}—(X)}}s(gly}{;“jt Isxp] (4ya)s However, from this one
can obtain the theorem in T5 by taking ( yq Bo be anything
convenient (for example, 0) in those cases where ~ (B;y)q.
See [8], 827. ’

We assurme that the ordered pair of x and ¥y KX 72
has been defined in such & way that the type (if this
is meaningful} of <x,y> is the same as the type of z and
v,% and suen that: |

(L y,u,v) i <x, o =du, v B e, T,

The comma in <x,y> will be omitited whemever this

4, Bee [71.



oplssion couses no ambiguliys

The
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48

D3,
D9
D10.
Dii,
D1g,
Di3,

- Dis.
D17.
s,
- me,
- bzo,

following are definiiions of 3323

rel=af B{{x}¢xeh. D, (Bu,v}.m=uv}.

w=af z{z~ex).

.
Sk

xyze=dl Kzyrz>.
AN

4

)
Sy=ds g{{u,s; sWisuvreiLuwrel, O, v=w).
A
wuy=0f z{zexveey),

xny=3af Z(zex.z27),

“ey=df xny.

Frne=d{ reln v,

arg(RY=af 2({Z7).<zy>aR).
val{R)=af Z((Ty}.<yzen).
c{ay=ar arg{R} u Val(R},
Ulap=ar 2(z=x}.

25 peaf W((Ex,y) +u=<xy? op) »

Can(x)=df 2((E7) ez, 2=U(y}) .

Can®(x)}=ar Can(Con(x}}.

r Can(R)=af 2 F '((gz,‘%’}g{aw}a& =02} v=0(w))
r Can®(R}=af r Can(r Can(R}), |

rml=ar 49 (<viveR

R =ar m-1,
N\ =ar ¥et=).
¥

=47 Flz=x).

by
i
Yy
o~
23
M
Faain
5
G
B2
W
,&
Ry
e
%)
e
™
a8
)
B
&
<
T
i
=
@
4
M
ﬁ—}ﬂ
)
o
I
Y
£
S’
-

xBy=af <xy>eR.
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DEL, z smgy=af Ael-l.irz(Ry=x.7a1(a)=7.
D22, x sm y=df {Eﬁ},xsmgy. -
: 323; trans=éf'gi(z,y,z):zﬁy.yaz,f).zﬁz},
Dg4, anﬁisymﬁdf‘%((x,y):xﬁyayﬁz?ID‘X?y}¢
D25, connex=af %{(X,?)ﬁx,530{3};:>¢XRyVyﬁzﬁ.
D26, rer=df R((x).xeC(8) DxRx}.
D27. ser=df trans N antisym N conmex N ref N rel,

D28, wmingu=df (z{{x)s.zeun C(R}.{y).yeu n C(R} D

XRyiEix=ril Vo§32=V ﬂJ(ﬁlx).x&a.n C{R).(¥).yeu n C(R) OxAy),
D89, pora=ar A((win# Nwu S C(8) . O(Ey) cyen.y=mingd) .

D30. {) =df bord n ser.
DB0,1. Pemorgg=df el-l.irg(R)=C(P}.Val(R}=C(3).
(x,7) +xPy DF ‘2R ¢y, xQyDE ¢ #PRy,
D8l. Psmor ¢=af (ER}. PsmorgR.
- D32, maxpuedrf (z{zeraG(R}.{x}.x5u nAC(E} D xRz},
D33, E¥7Pzéf'%{{ﬁu,v};zm{uv>.asx.zé?}sf

Most of the above symbols are more or less standard

matéticn in logice. For those that are not we give the

“fello%ing intuvitive explanation,

rel is the class of relations, Sv the class of

single valued classes, Fnc the class of functions (single

valued felatians}‘_ brg(R} znd Val(R) are the classes of

arguments and values respectively of R, Note that the

arguments of % occur as the first element of ordered pairs

in R, and the values as the second element. (Just the
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reverse holds in L.}

Can{x} is the "Cantorizn® of x, the class of unit

classses of members of x. -r Can(R} is the relational Cantorian

of R, with an analogous 1ﬁtev@ra%aﬁien,
R x; the V&Eﬁé;éa B at x, is defined 30 35 to be V 1

%X is not an srgument of B or H iIs not single valued 2t x.
This becomes convenient following T37. mingu is similarly
defined for the same reason., We do not define maxgu in
this way, zs it turnssau% we are never interested 1ln maxzu
except when we have already proved thei there is a last
element in 1 accoxrding to R, |

Host of the assumed theorems which follow are
stundard theorems of type theory, set theory, and other
systews, snd will not be proved im this peper. Those which
ere mot so well known are marked with an asterisk (¥} .nd
%ill be prc?aé iﬁ.?art II‘ ?ﬁ? éeyendﬁ on & weak form of
the axiom of eaaics (EXlQE A, D sé}, and P27 and all
th&arems ?hich dﬂpend s&.?ﬁ? are marked with 2 dagger (),
784 (y, é§§ depends on an axion iﬁXiﬁﬁ B, ps §4) vhich
apgarsat;y can ns% be pv@veé in the theory of iypes, and
T84 and theorems %hlch &eaead on it will be m@ykeé with
two éagger& CTT};

\ ?e assume that & relation, £, has been defined in Ly
such ﬁha“a‘ "

a &"' <$)Q‘a
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7, b V~ec(Q.

T7 could be replaced by F‘(Ez),xﬁasﬁig); but since
in all known treatmants of ordinal number theory one can
prove | ?“‘33{5)} we assume this theorem for convenience.

nsé,, ag=ar ¢{<3. |

D35, < =af a Plagb.a?B).

We assume that expressioms 0, 1, 8, 3, 4, 5, 6, 7, &
have been defined in Lé such tha;if |

8. | 0,1,7+,8eN0,

T9, | O=min, HO.

710, b~ (Ba).0<a<l

b~ (Ba).1<a<z
etc.

711, b 0<1.1<2.843. 748,

We assume that an expression, Z&DQ, and an operation,
+ , have been defined in L2~su£h.tbat:

712, Fw g0,

718, F 8w,

714, | («,8).0,B8H0 D a+peN0.

715, b (a,;B).a,B<W Da+p<dd, .

We assume that a relation, £ , has been defined 1in Lg
such thats

118, F gééﬂ.‘ |

#2117, b 6(<,)=2((Ba,B,¥ )10<8.8,Y a0.z=<apY >).



~1G=

w18, | (0,8, 5 w110, 4 <8,§5Y V,? eH0:.
BRI D S0 x/u.’!/ H 3*“"%1;&&{;3(9} v 3¢
mxi@{-d BV .mz{{.ﬁ(ﬁi} vo(Y'})=
maxg(U(Y ) 0 B(3 )Y <o VY =F.8<7 VY =7 p=7uag e
#219. | 24 SWOY¥ Lo |
We assume that the followlng are proveble in égg
. | (P,q,R,80:P,u Ibg?smrgié.l?s&crs%,b JB=5,
??33.. '} ®y.pe {L D rﬁdﬁ{?ﬁs& '
T2, P {Pj.Clx San{?)}=ﬁaﬁiﬁf?}§
723, F (x,v,2)¢x say.y smz.D.x smz.
#1727, b (x)ix S N0, ~ (= sm HO) . D.(Za) .celi0,
{8).pex O p<a,
#728. | (x)3ex S50, {Ea} .asN0.(5) .Bex D Bas
D&~ {x s WO}, ;
From T18 and ZZ0 we obtain at onces
228. | {Eﬁ) T
Bence we can define;
D34, J=d4f | ?(;tsm? e
D35, Jdg=df Eyﬁ{ﬁagﬁ}gaiﬁsﬁg*x~is§?,?¢5 {33§>§
- Jq=af ZF((Ba,B) 10,86 H0,x=<aB> y=T <lap?)
Tg=az 3((8a,8) +6,BsH0.x=<aB> y=T ‘BaB2) s
o DEBal. Ju=af L2{ 40050 VoM=L m T Verete Vi
M=Baz=T g} s
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D36, Kq=df ¥a(¥,aeN0.(Eu,B).BeN0, 4<8, ¥ =T ¢ Kap)
Ko=df YB(¥,BeN0.((E«,a) .ael0, w<8, Y=T < Hap).
We assume that the following theorems are provable
in Lot | | s
T80, F ?al(Ja}x;Val(Jl}L;s'?‘Jgal(38)=§O.
5L, b (w2 )3,V B UEY D Tal(Iu ) aVallly y=/].
#1582, | (a,B,u) 19,8880, 4$8.0, max (U(a) v U(B))<T < map>.
#7138, | @B, «)3a,BeN0,0< 4<8.D ,;axs(‘ii(a} VTR I<T S naB>,
%‘T?ﬁg b {a)sasN0. O .Xiagafﬁéaga,' |
#1735, | {(a)10el0,a~ 5?31(39};:>.K£a<a,3§a<a.‘
¥28, [ W eV21(J,),
We assume further that T37 {ps 25} is provable in L.
This amounts to assuming that a gertain type of d?finition
by indﬁétion, of which T87 is an instance, can be carried
out in.Lg. Theorem ?;5,¢f~[53,is easily generéliz%é %0
obtain a theorem from which 137 follows, and a theorem
guaraaﬁééing‘the'30531bility of such a definition by‘
inductiéﬁ in‘the theory of types will be proved in Part II,
We assume finally that T84 (p. 45) is provable in
L. T84 will be proved inm Part II, from the axioms mentioned
in the introduction. o
83, eonst:gﬁtién,g§,§§§ Bodel, We motivate the
method which will be used to model Ly in Ly by an intuitive
discussion of the method used by GBdel to model & logic A

(obtainedvby adding to Ly an axlom from which the axiom of



.;3_8..

choice and the generalized continuum hypothesis are proveble)
in L,

aBdel defines £ ,0,dg, " sTgsKy, ond Kg as in 82,
It follows from these defimitions that if aeVal(J;) then
s+1s?al(gi_§,l)if 1+149, and aifls‘fél(é’g) if i+1=9, Thus the
Val(J;)} function, in a sense, as congruence classes mod 95
any sequence of ordinals, @,atl,»«-,0t8 will be respectively
in a cyclic permutation of Val(Jg),s++,Val{Jgl.

A function F is then defined by transfimite induction
such that

aeV2l(dg) s 2 Fa=Val(a 1 F}

agVal(d, )« O «F ‘a=U(F ‘K{a) v U(F‘K5a)

agVal(Jg) . D sF‘a=En (F‘K{a)

aeVel{Jz}. D JFa=(FKja}n (FKza)

aeVal(F )« O oF “a=(F Ko} M (F'Kja)

weVal(Jg)« D .F ‘q=(7 ‘Kiez) n Val (F‘nga)

agVal(Js) « D F a=(F Ka) a (F ‘Kyo) -1

aeVal(Js) .2 QF‘G&‘(E“KZQG) n Covg(FEga)

as¥al(Tg) s D oF ‘a=(F Kja) o Covy(F Kia)
where

A A A

Snvy(x)=df u v F(<vmex)

Cnvz(x)=df o ¥ #<uwvrex)

E =dar Zy(zey).

(Hote that E is not definable in a system based on

the theory of types. However, in L; the existence of B
follows from Axiom Bl.)




nould be sebtsy hence, if

£}. Ono of the essential properties of seds in L, is

that if v is & set and xey, then x is & sed {sae 5418 2’.2:1
[8]), Sincs a sub

secting She get wilh an appropriaste class, this can be
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clasp, then XNy is a seb

®

The above considerations suggest that tue universe of
classes be defined by the stabement £ (xp=df xch.
{z¥.28LD zn 3L, ’

If & is to be modelled in the ummiverses defined above,
then Ly Itself must be modelled in these universess this
will be aceomplished 1{ the sxloms | of Ly, vhen set and cless
quantificatlon are restricied to the appropriats universes,
remaln prevable in}}lg l.e,, 1 4:13 the axioms evsry

xpression of the form (x) p is replaced by (x).mmLO p, and
every sxupression of the form (x)p is replaced by
(2} oL (x) Dp, then the resulting propositions should remain
provable io Ly, {%e might slso in this praéess of
Prelavivization® use some other relation in place of g, but
F is defined in such & way that this is unnecessary.; To

indicate how this nappens, we consider two exampless
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i) Congilder Axlom A3, This says that Lor any sots
z and y, there is & sel 2 such that for every sev u,
TEZE WPV U5 We first note the fact, easlly proved by

%

induction and invuitively obvious Trom the definition of F,

‘

f

2% {ga,wzi‘&u,zaz.ibwsi. From this it follows that the
relutlon = Dbebween geig s the sume for the modsl 28 lor
Ly Thus, zz:a*? fﬁ.ﬁ need to show is thait for amy x,yel there
ig o zel such thut for oll U, UBR.EUSEV UFYE 18,
v{ziv ‘53‘;;}@}3, |

Ho suppose :a:,yai; , Then ;f::?‘a,‘g%?%ﬁ How c¢ongider
the triple g <laBr und let §(Q@§>$Y§ i,es; éﬁ&ﬁ?«
{}af:i@zgﬁiy Ys?a&{al}, and B %lb/rag ‘b’xs o by the
definition of F, B¢Y =u(F<a)u U(F 5},,, E:Ezema,

PO =00 Uly). ?hu:ss ﬁ{}i} v b(f}sb ’
2} Consider Axiom Bl. L4s in the rizst sxzmple, 1t

el

is shown that any ovdsred palr, <x,¥», of seis is the sane

1..!«
fa ]
o
oy
6]
5
S
foed
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o prove Bl for the model we must
Show thet thers is = class 2 such that X (2) and
(7)1, y8L. D oL, yrezswsy,

It is first ghown that Z (Eal}, Obviously Ba LS L,
Suppose L, Them as polnted oub in ‘E’i’iﬁ first example,
{(w}. weud welj d.e., usL, Hence, unEnL=unE=Enu.
Bince wl, let w¥Fa, and let J<Ra0r=¥, 8o Y ﬁé<&§>.
Then FY =B (FESY J=En (F'a)=Bau. Thus ?nm We
have now shown thet {s:m L}

 Binee it 1z obvious that (x,y}sxﬁghﬁ,iw}sﬁ LEXBY,




]
we can bake the desived 2z to be E L, and we have proved Bl
for the model.

It is pot too surprising thai with vuantlfication
restricted to %he'apprsgriéte universes, Axiloms Bl-B8
remain provable. It is clesy that F is defined in such &
way that sterting with /\ & seyuence of sets 1s produced
such that for any set in the secusnce ithere appesrs laber
in the seguence sach of the classeé,%hase existence is
asserted by Bl~B8&. It is perhaps less obvious that this
holds slso for glusses of sets in the seguencs, which
satisfy the condition & § however, comparison of the
definitions of F and Z indicates that both are designed
for this purpose (among others), and one can &t least hope
that everything will work oubt sll right {as it does for L.

It is ecerteinly not obvious thet Axioms Cl-C4 will
vemain provable for the modelj in fact, as will be seen
when we model Ly in Lg, the proofs of G and C4 for the
model depend essentlially on certain highly non-trivial
properties of ordinals, propertles that unforbunaiely seosn -
no% to be provable in the theory of types. In L., however,
such disturbing difficulties do not erise, end all the
axioms of Lj, plus the additionsl sxiom of &, are proveble
for the model,

How let us consider how we might modify the procedurs
desceribed above so thet we can model Ly in Lg. Ve do not
wish to dGefine the specific funciion F in L, since the

cluss B occurs in the definition of ¥, and this class is
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not definable in the theory of iypes. Thus we wish to define
a funciion, G, by means available in the theory of types,
which will have approximately the same propsrties as F. To
sse how to do this, we reason heuristically as follows.

For every ordinsl, o, there is a correspondent In L,
namely Fa. However, different ordinals may savgvtha same
correspondent in Lj 2.8.; F‘GzF‘2=a/\a Thus the correspond-
ence beltween the ordlnuls énﬁ'& is not Gﬁé~?s;ﬂﬁﬁy Eowever,
we can define the index of m, wsk, as the least ordinal, o,
such that Féog=u, Thls establishes = ope-io-one correspond-
ence bebween L and s subelass of the ordinuls, Hence, for
eny sbtatement about members of L we should be able to deline
a c§??83§03§ing stutement zboub the indices of these menbers,
whilch is, in & sense, a translation of the glven statement.
This suggests the possibility of construching & modsl of Ly
in the ordinals and classes of ordinals, by means of a
-function, G, obitained from F by using as values of G the
classes of ordinals defined by the translations of the
statements which definsd the various valuss of F.. Hore pre-

cisely, i% is suggested that we define & function, G, such
that for amy x, 1f zel (and hence, as pointed out previously,
x<cL} there will be a class of ordinals, 4, AzVal(G)}, such
that the members of & are the indices of the members of X,
This will, of course, have to be done without explicit
reference to F, since we are not assuming that F is deflnable

in 3«12:
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Assuming that we can define such & G, we ¢can, just
as with F, defipe the index of x, for zeVal(C}, as the

least aréiﬁal,a, such that G ‘a=x.

How if we expect to model Ly by using Val(G)} as the

universe of sets, we must deline a pelation, &,, to func-

g’
tion zs the membershlp relatlon for tne model. Further, if

we are Lo prove Axiom BL for the model, &g

in sueh a way that if xe y then x snd y are of the same type.

must be defined

Also, if ®egy, then x should be a sety i.e., #=Val(G}. It
should now be e¢lesr how this cen be accomplished, We shall
take ﬁggy ﬁa,ﬁgaﬁ %hét the index of % is 2 member of ¥
Zhen zsgy‘%ill‘be meaningful when x and y ere of the same
type, snd will in addition be deflined by a statement which
contains parts of the fsréﬁﬁsw only when u is one type lower
than w.

I G is %Yo be defined so as Lo have the properties
Just described, the values of G will have to be classes of
ordinals. 8incee in the theory of types the arguments and
velues of a funeblon must be of the szme fype, this means
that G will have bo be defined over @ wellwordered class
whnose slem@nts are classes of srdiﬁgls, rathey than ordinals.
Hence we shall define G over ﬁan(ﬁ@} rather than N0, snd in
»hs @§e¢eﬁing éiscuﬁsiéa we Shculé h&ve %ri%ﬁan G E(ﬁ} rather
%han G‘Q,,' S "

A Tunection having the above yraperties will be defined



=
in T37.° Before defining this functlon G, we first intro-
duee soums definitlons which will shorten the formulas
pecurring in the definition of &, and will perhaps . slso
meke ciearer the way in which G is obtained from F. -
037, Ind (x)=df min ¥ (¥ eHO.wT(Y )=x).
p38. 1Y 5§ (w)=af min 8(peN0.w'U(R)=
(T, (rU0Y )Y v TTad, (r BB«
P38, LYJ (wi=ar I¥¥S (). :
D0, <Y,br(w=ac [ IYI(®, IV s (.
DAL, <aB Y >{wW=af <o, BV W (.
D4z, a,{p)=af G(esN0.e=Ind (v U(a)).0).
pa3,  {a) p=af {a}(acH0.a=Ind (wU{a}} = «D}

Ve make use of the falis%iag temporary sbbreviations,

fgr 237 onlys
w=af(Can( A (u<p))) 16
2y s (@))=ar ¥, b, 1Y (), (W8] (w,<Ys>(w)<p
2(<vaqrm=as ¥, I3 (), 17,7 > (9] kv('ﬁ%},{)/é% > () <.

Z2{<ay >(w)

5. Actuzily 257 is not & definition bubt o theorvem
which asszerits the existence of a function having certain
recursive properties. However, it is customery %to call
such theorems Ydefinitions by induction®, :




oD P
T57. F‘{%§)§,Gsﬁﬁsaﬁrg(§}:€an(ﬁ§}‘écﬁés}ﬁ/\ .
(B} 152H0B#0.D.C “U(B)=
L 2{BeVal(Igl.z=a, (adB) .V 4
 pevai(d,).z=U{Ind (w UK B) ) IuU U(Indy(w T(KB))). V.
paval(J ). z=w UK B} n B _((EY,3) .&(»f:%}(g}).
a= Y3 Y ew U(3}) Ve |
88VaL(T ) . 2=w UKSB) A WeU(KB) o Ve
BaVal(d . 2= U{K @nauEYﬁ.AG%M@}
a=<Y 3> {w}, Esﬁcﬁ(ﬁaﬁ}h
BeVall{dy) . z=w V(K] 8y N3, {(Ea} ,a(asa>(@§}
<har{wew ‘UK ﬁ}} V.,
Beval(d g, 2w B(ESEY N3 (B Y,0) . 2(< Y5> (w)).
a={Y 3>}, <sw’>(w}awﬂﬁc§25}}. .
53‘3&3(5?)‘2*’%*“8&{15}(\@ ((BY,5,70), ,¢(<Ys?(>(%)},
(B2 Y > (W)} a=< k/évpi*ﬁ} BznY )(w}sw‘ﬁiﬁgﬁ) Vo

z{é.:Y”»( &?f%@}}.aﬁ\/ %4(:*(%%} <‘/’7 '5}(;3)&%;%(3 5}}]

Trhroughout the rest of this igaper we zlst G l‘;}a a function
satisfying the ??ﬁ?{)%iﬁicﬁ in 37,

Das. Ira(xy=ar Indg(x). |

738, (a,;} Safé‘a.asﬁ 13(5} 3.a<g.a—1m§(u<v(a}},

Proof by ;izu@si:ion on 3. iz gﬁzﬁ th%n 8‘%“{5} /\ and
the th@oreza ig ?acuously i;raa, assume the thes?* ew for all
ordinals less *i:hwn B | o o J

Case 1. BaVal{Jg} ,’ T}mh ‘VGC‘Q(ﬁ};g%(mlﬁ}, %%hefe’
ﬁz(gaﬁ{,/a{/u@}}}'l G, Hence, G‘E(ﬁ}QQ(aég}.



Buk (a};«;&saﬂ(s D L adB a=Ind(C ‘T‘(a}} |
Case 2, 53;:‘%’&1(5 }. Then awzl«;\/%h Eeme

G B(p)=U(Znd, (+° T(YINv ?(&B%('ﬁ? ‘0(5))), whers

W{Can(/u g,uié}})'] G. But by T35, ¥ <8, 3B, so

Geu(8)=0(Tua(G U(Y ) }u U(Ind{CU(3))), Hencs,

ast U(g). D ;*;z«inw(f" ¥y v a*im(tfﬁ(&}), Obviously,

10a(C°U(Y)IS Y, Ina(C U(3))<5, so asCU(F).D .. Now

suppose aﬁ%&é(&‘ﬁ(é’}}:ﬁiﬁé v (G O(v }=G ’J(Y}} and that

(E7) 7 <2 6°0(% 326 V(e) . Then & v(%}-—&%(zmig oY )= (¥,

contradicting m:m(a ﬁgY })s Thus, a»lnﬁ(& I}’(B’ }}.
=Ind(¢U(a}}. Sizg.lcgr;.j, a=Ina (G u(d)). D @wlné(f} U(a}}.
5:.: @G‘S(ﬁ} D .a#ﬁzﬁ(écﬁ(ﬁ}) .

Case &, ﬁa%l(.}’/« }y M =£,8,%0+,8, Then
Gu(s)=v* %(Klg}n a {‘,.), where %’“(Can{/u (/“48}})1 G. By
255, KPR, so G U(R)=C C{:{ﬁlﬁ)na (asads Eence,
asl U(B}.O ,{zs.fic%(}iia} So by hygogzsesis of 1zzﬁuc’§:mn,
aeG U(B) . D.adpa= an((‘: “Glay},

Dd5. Eg=df aﬁ({gw/géj@axvm(&},Ya@‘ﬁ(%})e

D48,  1x,vl g=af a“u( {Ina(x),Ind(f (&)): -

D47, <xy> =df REMSS g? 3%,7§ g} a

Dag, ﬁcsra} =af <x,yer >ge

D49, (v« y} g=af ag((g ¥y} gaa=K ¥ 02 (G} . Dey).

D50. Dg(y)=af Gu((B3)g.<da>(Cey),

D5L.  Covy (¥} =af G((BY;5)gea=<¥ 5>(0) <3 Y>(a)ey)

D52, Covg (y}=df A ((BY,5,7 }g.a=<Y 5Y >(8) o<3v¥ >(C)ey)
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D
D58.. gnygg(3}=éffgg((EYY;§,1/}gaazé)’émly(g}‘<)/vz5>(§}ay}. ji
739, | (Gsﬁ}g(ﬁ bS] qo (Ul‘;b/}:{}({s} SRi(:) 8
Proof. By T87, ¥ =Ind(G'U(J;<ap>}) is such an
ordinal,. ,

e

£ 2

From T38 and D48 we get | ;

T40.1. I CH P Ja‘U(a),o ()l g‘::GCU( Ta,85 (6))=U(a)uus

By similar meihods we have

T40.2. F (a,ﬁ}ﬁ,éﬁ<ﬁ(a},,{3(13(;3})52{‘:('5({&3}(6}}
=0(7 el (G))v u( {a,8% (0)).

The above theorems indicate how (%71, end <xy>, will
fnnstisﬁ as the wnordered pair and ordered palr respectively
in the model.

740.5. b (a,8)g.a<{ap3 (6).8< {ap] (0.

Proof. By T40.1, ¢U( e § (@)=0(a) vU(p),
so ,pecU( {ad{ (G)). Hence by 738, q,8< 7aBf (G).

T40.4. | (a,B)g.ad<ap>(G).B<ap> (G},

Proof, Use T40.3,

The following table of certain sselected values of
G shows the manner in which G produces the indices of

the sets of Ll&
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Ofdi~VCorré; Members of Index Remarks
nals |spond- GU(a) - of :
(a) |ing G <O(a)
- jtriples ,
by J
0 <§Q§} none 0
il <;0§} 0 1 ¢g(1)=u(0)= {G‘a(o)f o3
2 <é§§} H none 0 ,iQé., 1= {ei (c) -
5 | <s00
4 | <eo0>
5 | <w00>
s | <so0>
7 | <0
_8 <390$ none 0
o | <ow0» 0,1 9 |a“(9)=0(0) v U(1)
o | <o 0,1 o |=lew@,6 v ;5
11 <§i03“ nome o liee., 9=§0,23 (@
12; <310> 0 1
15 | <40 none 0
14 <§i§> | |
15 610>
16 | <7iez
a7 | @ none 0
ls <001> 0,1,9 18
19 | <0 0,1 9
"25 '42515 hbne 0 |




200
21| <
22 £401>
23 <B01L>
24 <80L>
25 | <D
28 <801> nons g
27 <011 0, 1, 8, 18 27
28 <111 1 28 {GU(28)=U(1)=
L | <an | o {leuw] &~ e uof,f,
20 <B1L> 2§§<§{GE,GCE(Q}>g§ '
L <411 is0e, 26=<0,0-(C}
32 <B11>
33 <811>
34 <71
B <811> nons 0 -
2 | <o20> |0,1,9,18,27,28 | 35
BY <120 0 1
38 <ER0> nong g
29 <320>
40 420>
4 <5205
4z <820>
43 <7205
44 none

<820>



i

gy

OR1> [Oyi,e++,26,56 45
<{1e3» 0,1

821> none 0
<321> |

<4gL>

<BEL>

<BEL>

781>

<823z none 4]
002> {0,1,e%4,58,45 54
<102> o 3
<g0g> norie 0
<502> |
<402>

{B02>

<80&>

<HO2>

L808> none 4]
01> [0,1,eee,45,54 83
i | o1 8
<21§,:Z:> none 8]
<Bley 0 i
{4185 nong 0
<BLE>




70| <iiE \\
71 (812> none 0
7 | <022>  |0,1,%%%,54,88 | 78
75 | <ig9> 0 1
74 LB8E> none K
75 | <EEe>
78 | <42e>
77 | <sge>
78 | <62Ey
79 | <7ae>
__Bo <BED> none 5
758 | 081>  |Dye.+,728,720 | 788 |
730 | <lew 1,9 739 |G U(739)=0(1) v U(9)
= {c‘v(2),c v
= {16 0(0) i ‘00,6001
=au(0},6°T(1)7 3
Leg., 789=<0,1>(6)
7056 | €0,28,0% | 0,1, 7058
7057 | <1,28,05 | Inos7  |ecutro57)y=u(28) L U(0)

28,0

= zﬁ(g(gs:*;ﬁcg(g}f 5

| i.e., 7057= 328,03 %ﬁ)



7058 |<2,28,0% 1,758 7058 |GU(T058) =
{o(1) v (739} =
{eeu(1y,c0(r2)} 3
.., 7058= (1,738) (C}

| 7308 <1,H8,88> 28 7208 |G u{7e09)=U(a8)

= [a‘v(za) §

e 1 ¢ -

- 2{‘3 ﬁi*}} gi g
=¢G U(1) ,e‘a(;x.)}g; d L

Pai, I, F (/u,a(},/g?szémj.a U(ak 1 >)

»«csﬁ(aﬁéf:/w( -3 ’

15 b (o)t 0,7 800, 0.6 0 w7
= { e 0(x),600 )] o

1T b Cup )t o, 78000 D8 T(I 5 47 2)
z{%‘i}(/x)n Bg-

W b Quyzdsugg e80.2.8 BTz >)
=6 udn 6U(7 ).

v. F {/«,1(}:/(,«(&14{3, o VIS 7 2)
=G0 n (V2 6U(7d) e

vi. b (/,4(}:/(,7 810, 2.6 TI < w?)
=6“U( «} nD,(6U(2(}) .

VIL b (a7 Y,y 880.2.6°0(Fg4 wz 2y
=G T( )} NCav Qf;s w7




=
VIIL. | (0,7 )80, 680, D.0 0E sy 5)
=G T(ce} n Cave (6U(7 ).
| ix., | Cots7 33 p57 880, DG TS wugr>)
=g¢ I}{/c(}r\ sm'ﬁﬂ(ﬁ (73}, |
Proof, Use T37 and T40,1-740,.4,.
D54, L=af Val{G}.
D55, HO=df Gglasi0}.
D56, L (x)=df xSHg.{2).28L0 xN zeL,
D57, L (x,7¥=de Z (.7 (v).
P42, i" (z,7)sz,y8L.D, Ex,g} eL.xn Byel.
2nFelax A {Vx yfigs:&,x nD (;{'}&a
xN leg(y}aigx n ﬁm}'gg{y}&L,x n Cmggiy}&‘{:,
Proof. Buppose x,yel. Let Ind{x}=a,Ind(y}=3, The
theoren follows from P41, ’
}~ {x}.x=L Dx SN,
Use 7238,
744, | Veel,
Proof, Use 738,
745, | {x,7}.x,y8LDxNnyalL,
Proof, Suppose z,?s?.;{. Then by T42, xnFel. So by
T42 again, x'nmlu But xNy=xnxn7vy. Hencs xn vel,
5.1, }—éa,y)w{,pya&- {51, &SDs
Proof. By T4z, x,yel D { ,».,y:{ aL ‘Buppose
{x,y} g5l L.e., G ‘u( {Im{x} Iné(y}} {G)}eL, Buppose
x~osk. Then by T44, Ind(x0)=V, so GU(Ind(x)})=V. Honce




Bl
{ Ina(x),Ina(s)§ (G)=min, 2(6°U(a)=0(¥) VU(C U(Tnaly))))=V
by 258 and T7. 8o G°U( { Ina(x) sInd(y3} (@)=r=tx,7] .
conbradicting T4¢ and the sssumptlon that { xy ] o

Hence xshL, and by & similsr proof, yel.

£48.2. | (x,7) ox,yelEday? £l

Proof, Use 148,11, ,

247, | (x,9) o<y sty el

Proaf, Use T48.2, |

748, | (a,8, ¥ ,5)3.a,8, ,0eM0,8 D s <ap> (B} =< ¥ 8>(C).
Ze0= Y Jf=d, |

Proof, Buppose <epr{G)=<¥ 5>(G}. Then
G U(Kapr(6))=¢U(<Yd>(G}}, BEHence,
W s {at@yvu({aaf @)=u( {¥I oo {Ys] (&)).

Case 1, o=, Tnen U{{el (ch)=0( {¥{ (&) vu(, [¥s] (a)),
80 {ﬁ} {(Gi= i%’é% (G). Hence, U{a}=0(Y} U(d}, ﬁe
a=Y =3=8,

Case 2. ofB. ,

- Bubcase 1. Y =b. Then by Case 1, a=B, = contradiction.

Subease 2. ¥ #b. If {V5] (6)eU({ a] (€)), then
Y =b, & conbradictlon. Bo by (1), {¥3{ (0)evu{ {eB] (&)).
Hence,
1€ I U ¥} vu(oy=ula) v U(B).
ir v} (6)et{ {ap { (6)), then u=8, a contradiciion. 8o
vy (1}, {¥1(0e {a} (G). Hence,
&) a=Y,
Then by (8}, (8), snd the hypothesis aofB,




228, | (%) 1.3 SHOG. (Ba).aelio. (B) Jpexd B<as> 1 (By) ayelox 7.
Proof. Assume xSHNOpn.ueNO.{B).BexDg<a, Let
¥aVal(J,).ad Y. Then by T4l, xSCT{Y}. So let y=6U(¥}.
150, F (2)38(x) . (Bay.0e0, (3) BexD B<as D sxel,
Proof, By 749, (Ey).yel.xsy. Then since & (=},
xnyeL, Bus zoy=x. 8o 2L,
251, F /\ en.
282, | (5000,
Procf, Obviously, 80, SHO5, SBuppose zelL, Then by
243, = SN0z, 8o MO, Nx=x. Hence, N0yN xsL,
253, | Z (g
Proofs By D45, Eggi’%%, Suppose zeh., Then
2N Egalz by T4l,
154, | (5,90, L 4,y L (20
Proof. Suppose L (x,5). =0FEx, so since L (=),
XNy SHOZ. Buppose zeL. Then since Zz {x,¥), zazx=L and

znyeL, EHence, by T42, (zn x)n (znyjel, But
{znxin mﬁzn (xn¥}. 8o zn(xnTieL,
55, | (9. (5,70 Z (xny).
Proof, xnyzxnm._ Use 754,
8. F XGNP L ((vxn).
Proof, By D49, (V« g}g§§@§; Suppose zel., We wish
to show that zn {Vxy) g&fm




Let B/aﬁséaﬁzwﬁc’&{)/}; Then by T8, (B).pezDpL ¥,
‘ 5&?}?%3&? v &, ‘Efﬁez; ? &€z 7 ~</4(7/ »>(G}. By T40.4,
VY, O V<Y, Hence (7). Ve, (3).8aud p<y . 8o ‘i;;y
749, (W}, mL.uSw, Z {y}, so by D55, wnyzL. Obviously
uswny Sy, so (Bigdwelh.uSw Sy, | o

Bince woSy, 20 (7 x%}g € zan{Vx y}g, low suppose
aszn{‘f&y)g, Then 0824 (BY, 0} goa=X Y 5> (0}, 02y, Henee,
wsz, (BY,0) a0 ¥ 0>(6} . (B 7, b 8207 = UbX (0} 38T

Thet is, aszn{¥x u}gg; But usw

or S0 a8z N {V¥w),, Hence,

an {(VeyigSanlVxwd,.

Thus z (¥ x ;f}gx:&r\ (v« ‘@:0}35 By T42, zn (Vx %*a}gsz.
Hence zn (Vx y} &L,

st )L @0X 000,

Proof. Assume zel, aﬁzﬁﬁ“_‘léi
us Vg((BY,8) ¥ 62, bmingdg (< V> (Bey) o7 = 7>()) . Then
{5%},%5 ZeU S Yge ;

Let  YeHOg,z=CU(¥). Then by 758, (B).Bez28<Yy,
86 by T88, ~ (z sm B0}, But z SHO, hence ~ (u, sm HO}. So
since u sm w,, ~ (u su N0}, Then by 727, (BY).YeN0.(p}.
peud LY, so by 748, (Bw ) W el uSw,. From ! 55‘7 {y} we nave
Wy ek, and obviocusly uSw,nySy. Thus (Bw).wel.uSwey.

Since wSy, 20 Sg(%) Sz n‘ﬂg(y}f . Buppose as:z nt{y}.
Then %z;(z’éé}%gﬁé@ (gley. Hznce, cez. (E%}G,ézzﬁinégé(<%§>(ﬁ}sy} s




D F o » % FA ok P - w £
so (85,7 ). Vez.bomin D (<8 ¥ {G}ey) # %202 (O3=0Y2{C),  So
* 3 2 D, iy A j ., - N - e o P = My
{EM}G{E%Y}@J/&&; G—ﬁz.niég{isifx(&}ay} WS e {Gr=B Y {5,
That is, Gaznsg{u}; So aeDg{wj. Hemece z0D (§}§. zZn g{%;f}‘
Thus znzﬁg{,},*}aanﬁg{%E; Bub zni}g{%}aza 8o

758. |- 5 Z (v32 Z (Cuvyo(v}) .
Proof. Lei u= vﬂww, (BY,83g. VsV 800} <0 Y > (G)ez).

fox Sl

Then proceed as in 158,
v59. b (). f(vafisw ssWIe
Proof, Similar to that of T58,
180. F TP T (g ().
?ro&ﬁ' similer to bthet of ""58..
Tele | Gyl (x5, ,QG({EJX}g;YszfzﬂiaY)(G)ay}
"33 (Cnvyplyn (V=x) gl ’
?m f. Use D48, D50, D51, and .s.ésﬁ
m62. f (5,30, L0 Z (@027 Ygu Yemaia¥ >(0)ey)
Proof. Use 158, T55, T58, T57, wnd T51,
262, | (0).0eVal{I)Dasliog.
Pz‘mi’; Ihe theorem is z:)’;:vi-’auq ??3’2821 =0, assme *'238

<

theoren for sll 2&, and suppose aa%i{e?{}} $Gr a§§g. Then

6°U(ap=e 0(¥}, ¥ <4, So by hypothesis, ¥ eWdg.  Then by
22l, YeGT{a), Hence b/a{}‘ {?QB’}, Ca}ntfdﬁi{’:u}.nn P28, |

| fgéa? }- {y ;3} ae g, fa?gli{fﬂ},g ' (E«{:Q}Cﬁcgcs},

,i?r’%z:,, By 58 wnd 741, CU)SCU(). By Tar,




58w

765, | (a)s0<w,. D, () .peVal(d,) acBico

Proofs Use %18, Tib,

We are now in & position %a construct 2 modsel of L;
in Ly. We have already defined {:z;y} (D48), We now
definet ‘

D58, xey=df xelL,Ind(x)ey,

D58, () p=af (x).ZL(x)Dp.

D48, D58, and D59, respectively, furnish us with
correspondents for the expressions {x,y} s &y, and
(x}p of'LE; We now defin@;%y induction 2 unijue correspond-
ent in L2 for each noun and proposition of Ll*

Definition of Lo~gorre : its of nouns and proposi-

3“5
tiong sf'&la

1} If x is the nth varizble of Ll’ tha 22-09%255§0ﬁﬁent
of x, Xy, 15 the ™ yoriaple [of type 8] of Loe

2} If x and y are nouns of Ly, then the Lo-correspond-
enb of (xey) is (z &y, }, and the Lgneofrasyaﬁﬁen? of
{X;yj is {nging | | - o

3} If p and ¢ are propositions of Bl,'pV’

g
the Lg-correspondents of p and ¢ respectively, and x is a

and qgiare

?ariahlé'af'ﬁl; then the Lgécarf83§snﬁeﬁﬁ of (pla) is

(§ jq }, and the Lo-correspondent of {{x)p} is ((x. )gﬁg}.
?he bracketed expression in 1) above is relevant only

if Ly is 2 theory of types, and should otherwise be omitted.

The restriction to type 8 iz not essential anﬁ any higher
type would do as well (see p. 29,




P

GG

If 5 is 2 propositlon of Ly, gg“is the L ~correspond-
ent of p, and X3,%gy***,Xy are the Lo-correspondents of the
frée variables of p, then we call <2f(z§}xg,'»»,gﬁ}:>gg the
Lo-imuge of Do if a2 proposition of Ll conbains no irse
variables, then the Lg-correspondent and the Lo-image ol ihe
proposition are the szme. We shall show that ﬁhe‘L£~i§ag%s
of the propositions of Li constitute & model of Ly in Lg.

Deo. (Ex)p=af ~{(x) /> p.

psil, Hy{x)=ar (EBy) g XB gy

D82, {(x}~ p=df (x}ggg{33:3§a

D83, {(Bx) e op=af ~ (2™ Pe

D84, x € y=df 63 P ,zagxﬁz&g}f.

D85,  x= y=af {z)w » 58 gXEZE oY «

D88, xfgy=af ~ {x=gy). |

D&7. ﬁag(z}cﬁf {u,?,§}@_:<a??gagx,<%v>gzgz;:3,azgﬁ,

Hote that (assuming the veriables invelved o be the
appropriate variubles of itype 8, if Lg is the theory of
types), the definiens of D48, DE0-D87 are the Lgéeqrgéspcnd*
- enbs of the definiens of DB1-DEY, ?his is imporiznt in that
in constructing the Lg-correspondent of & proposition of Ly
which contains non-primitive axgrésﬁigas (eege, §x;>,§§§, etC.},
we wand actually to obbaln the L2~ca?reapen§enthf tﬁgﬁ |
formula as expressed in primitive notatlon, |

Bince, except from the sitsondpoint of having the
Lg=correspondents of ropagitians_éfwﬁl be uﬁiqué, it is

irrelevant waich variusble [of type 8] corresponds to a




il
variable of Ly, we shall denote the L§~{:GZ§=2’@§§§3{3E§£§3§3§ of a
veriable x simply by x, 1%t being assumed that the appropriste
veriable has besn chosen,
The following two theorems follow irﬁzzfaﬁiﬁ:@}.;f from T43,
F (72 (2,900 S XSYER=SY
F (x,y0s (2,7} DaxSyex < Vs
89, | (=} 5, (=) =xen,
Proof., Use 152,

We now prove the Lo-imuges of the sxioms of EPOuDS
70, (La—-i}a&ga of 41} 1~— {}:,y_,:'i} §x= {,y;:i XS z:Djezwa

T7is (Lg-image of a2). | (o,y,w) 1w g {jﬁ,";’y’j g°
XV U=y, '

Proof. Sturt with x=0<U(a),y=0U(B) ,u=cCu( Y),
@,B,Yel0,. Then ue, {x,yf gj,?:* YeU({a)u U(B) ez, Y=av V=3,
FoUSK V URY L ZauS X V U,y

72, (Lo-image of 48). [ (x,3) . (B2} (u), suez.

Etuﬁg v &?i

= %ng

Proof, Take z to be {xy] g 2nd use T71 snd T4g,
773, {Lo~image of Bl), }" {8z} (X,j')¢ &mff}g o 25 g,,n
Proof, Take z to be Bys Then X (2} by T55, and
<xy>g3gz:za ¥ by D45, T40,4, R
P4, {Lw-izaaga of B2, f-' (x,y}g(ﬁs}g(@ ;ﬁégz;f o
Zoue ::e:.*fiagy
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Proof. Take z to be xNy, and use T55,
I75. (Lgvi:gage of B3), }'{x)g(ﬁy)g(n}o..usgyguw €%,
Proof, Take y to be HOg aX, and use T52 and T54.

276, (Lg-image of 34). | (x) 5(Ey) y(wom tue,y.
=, (Ez) . o 20> g8 X A

Proof. Take y to be D, (x), and use T57,

i"??, (Lo-image of B5), F (X}g(Ey}g(n,v)a— .
<vu>gegy.=.usgx.

Proof. Take y to be (V= x)g, and use 758,

78, (Lp-image of BS). | (x), () (u, ")
<uv> g8 g7V 8 ge '

Proof. Take y to be Cavlg(xL and use T58,

79, (Lg-image of BY), {-—(x}g(ﬁy)g(a,v,w}w,
{u?%@'gegy <m1>gegz.

Proof, Take v to be Cav,, (x}, and use 758,

780, (Lg~image of B8). {-—(x)g(Ey}g(u,v,w)e_
{uvw}gsgyg{m}gsgx.

- Proof. Take v to be Cm'gg(x), and use T60,

781, {ngimage of C1), }"J(Eu)a._:.(Ez}!a. '
ze;gn.(x) ~3XB U D, (Ey) ~ ,yegzi.zs- gy.x;égy.

Proof. Take u to be G'UM). Then by 186 and T41,
WQ&(%'{C‘%)Q By I51, G°U(0)egu. HNow suppose x=G ‘U(a);ael0g,
and cgu. Then a<W,. TUsing 765, let B=min %(ﬁwaz(a@).af.g@)
By T41, &‘U(ﬁ)s u, and by 764, 6U(a) SCU(p).G ‘(a)#c‘u(p).
Hence by 763, (Ey). Ve U X _gy,x;égy



—d S

Taa, (L2~image of C2). f‘(x}a-(Ey)¢,(u,v)a—=
UBy V.7 £,X.D .ueyY. |

Proof. Suppose xzﬁtﬁ(s},a3§065 Let
a=min£%{5sVal(Jg}.a<§}, and take y o be G°U(S). How sup-
pose ;ze‘ﬁ(/u) 5, ME8H0g, v =G U(Y },7 eN0g, and
MeG‘T(V), Vet U(a}. Then by 738, A <a, so by T4l, ey,
That is, ue.y.

1785, (Lo-image of €3). | (x) - (2)g1.Un(2)s
Z):(Ey}a,(uic.:usgy.a;(ﬁwja;.V'sgx,<uv>gegz.

Proof, Suppose x=GU(¥),¥sNog, &L (2}, and

Hng(z} + Then (u,v,E)giqu? >(G)sz.€}"f >(G)ez. D A= z,
by D67, HNow let y:aé((E&)G.%sxf<aﬁ>(§)ez). Then
(Ew)oy sm wowSx. By 738 and 728, ~ (x sm NO). Hence
~(y sm B0y, 8o by T62 and 50, yeL. But {a)}sicey.’
= (Bd) . dex.<ad>(G)ez, Eeﬁbe,'{ﬁ}g—:usgyis.(ﬁv)ﬂ—,?égx.<uv>gsgz.

In order to prove the Lgéimageyef C4 we must now maks
the additional assumption mentioned previously. We assume
then that the following theorem is p?oyablefih Lot

Ttred. | (¥):.yeno: Dz(Eﬁ):aéﬁe.(é},§s§3(6<5(a)
S6T(Y))Dbes. TE e s :

Intuitively this says that the class of indices of
the subclasses of a class in L is bounded. The theorem is
esslly proved in Ly as follows (mumerical references are to

theorems in [5])¢
It is easily shown (in Ll}'that




(6 U@ S6U(Y)) sm 2oLz S W(Y)). Also,
Bl B YY) sz s o(Y)), ¢U(Y) is a set, so by
5,181, ®{=S6C(Y)) is a set, Henece by 5.12 and 5.1,
‘§§($°ﬁ(a}SiG‘S{X/}} is a set. The theorsm follows by
7551,
Ttzes. (Lo-image of C4.) }‘ (o (B (u )
u S—.g}i D%g}’a ,
Proof, OSuppose Y eNo, x=G‘G(Y }. Using 738
and T84, let Pamingd (BeVal(Tp).(b).beby (e ‘Tla} S ¢ B(¥))D 8<B).
Take v 5o be G‘ﬁigg, 80 that yeL. How suppose
w=G U u), A eH0g nnd u Sgx. By 138, ¢ u(u}=au(Y),
Hence (B, so «eGU(B}. That is, &y,
788, (Lg=image of D). (2} 3.(By),. yegxt
:33{53}0_385g3q“’(EZZT_pZSgﬁ;ﬁﬁgK;
| Proof, Let x=G‘U(a),asN0y, znd suppose (E8) .BeG U(a).
Let Y :miné{as{ﬁﬁ{a}}.
How suppose ¢sGU(Y ).9eG‘U{a). = Then by 738,
98l U(a) .04 ¥, contradicting ¥ = ;gingé(éaﬁ(ﬁﬁﬁ}} .
Thus we can take °U(Y) to %e the reguired 1.
Phere remein now only the axloms Pq,Pgyese;Ppe
Bince the Lg-correspondent of a propositlon of %iig & proposi-
tion of Ly, the Lyecorrespondents of the axloms of the

propositlonal caleulus for L

-

1 2ze obviously provable in Lg.

Consider the following typlical axloms for the

lower functional caleulus for Ly:




oo (x)pD4iD1pD(x}g, vwhere x 15 2 variable which
does mot oceur free in p

Py (X};ﬂ{z),?).g(y}, where x and y are varlables,

In.&g the following ave ezsily proved:
287, | () ,.pD6t D> (3,8, were .. .
783, F (x}g§>(:{}.3‘f{y)3§{y}, THETE ass »
That T83 is not the Eg;corr@sgonﬁenz of Py is
unimportant, since it 1s in ony case adeguate for the proof
of the followinz theorems

P32, If p is any proposition of Ly :cz,v;a;:xh are
- the Lo-correspondents of the free varisbles of p, Pg is
the L2~e§fﬁe$§andeni of p, snd | ;p, then f‘&f(xi,v**,zh}:Dgg.

Proof, WLet qy,4p,**+,q,, whers 4, is p, bea -
demonstration in Ly of p, and let ¥i,v,, re,¥g be the
Lg~correspondents of all the free variables occurring in
G15855°°*;0,e We first prove by induction on i that
L2 (?l‘,}’;g:”'?%)j(qi}g for 1isn, where ({‘ii}g is the
Lg~correspondent of g, o

Suppose i=l, Then 95 1s en axiom of Iy, We have two
pages.
- Cage 1, Gy ig noi ng Thaa'éa have alreaéy sba*a
that F(Qi)g, Hence, l"‘ Z (yisvus® ¥ 7o) :)(ql}

Case 2, 43 1s Py, i;e.i ug is (x}r(x)ZDr(ys}’ By
788, | (2} ({3} g 2, fs.f']}i)(f(;sfa Jbge  Hemece,
F Ei(zrl,sfa,«u,ys} (a3), /‘




~25-
How suppose {-,f(yl,yg,.u,ys) j(qi}g for 1Li<Lt.
Case 1, e, is an axiom of Ll’ Then as above,
}" z (ylgffgy’ * ’y}rs) D(Qt)gé
Cage 2. There ere J and k, 1£j<t, 1&k<t, such that
g, 1is 1526y, Then by hypothesis, |- Qf(yl,y2,~",ys),
Dulap2ap)g and F L (y1,¥g,00+,7) D (ag)g.  Hence,
E"i (Ylng; *e ‘;Ys} D(Qt}g? ,
Case 3, There is a j, 1£J<t, such that qy is (z)qj.
By hypothesis, F & (7157050 0575) D(qé)g. Hence,

Y R . 3 I1F + ¢ V
l“f(yl,,fg, ,,ys).ﬁﬁ:f(z} (qj)g, If z is not one of
Vs¥gs*"s¥, We obtaln 2t once £ (71579502570
yjﬁ(z)g(qj)gi If z is y,, we have
i— i (3’1}' * "y}{-l’yk+l" * ’;ys)o:)- f(g} D(Qé)g; 380
I— f ('}’l":,ib n’y}:i“}:,yk+l’on -’yS)D(Z)g(Qj)g; ﬁeﬂca, '

F oi. (7157050 ,72(2) (g ).
This completes the induction. Thus

F Z(riyoyeees7 )00, Hence, F L 3y 470 3o tsvq )
= i = x
D, ;({2{1,}:2, e yp) Op, where TagsVays "t sVa, 8I° the
.variables of the set S T "5V which do not occur fres
in p. Then [~ (Ey-c,.:L ot ,y%} < (y@l Wagr " ,y@}:) .
2 .f(xl, RRPe W Jo Pg But | (Eyal,yaz, <o ’y@k}gf {ygl,

T

é,n*,ygk). Hence ’-;Zf(xl,us,xh)Dyg,

It follows Trom T89 and the definition of Lo-images

that the Lg-im&ges of the propositions of Ly f‘oriz: & model




A

=L G
of Ly in Lps 8o i1 Ly is Inconsistent, then Ly is in-
sonsistenty I.es, 1T Ly 1s consistent, then Iy 1s con-

33. %..33% s

Pari I1

£l. &.ﬁg@&ﬁémm mmzé, In this
S%@%iﬁﬁ %@ ghé% that a logle obtulned by adding two axloms
{éxisms A and B, p. 64} to ths simple theory of types is
adequate for Lot l.e., that in such & legle T1 to 188 are
provable. |

| 4y an exemple of the simple theory of bypes we csn
t&kg‘%he 3$Sﬁﬁﬁf? of [8], supplemented by { -axioms from
which T8, 24, and I5 aré proveble. {(Thaeit such supplenenta-
tion does noi introduce o contradicilon may be shaﬁnf§y
methods similar %o those used im [10] and [8l.)

?ef convenionce we sssume thal non-negative inbtegers
have boen Cdelinsd of type 1 and type 3, and thal the axlon
of infinity is proveble for individuals of type 1 (and
hence of sach typs). Using Guinels device,® the ordered
palr <xy» can then be defined so as to have the same type
as x and y.if'zAané y are of typs 3, Helellons can then
be defined so that they ave of type 4, and ordinals can be
gﬁfiﬁﬁ& 50 tha@ t&@;narg f 2;;% 5; §2§§1§%ﬁ§§ ﬁa%?% are
integers Qf %yya a, ﬁfaaraﬁ §girs of ordinmuls can be

ﬁéfiﬁﬁéqsgﬁﬁﬁ 0 be of the same Lype as the ordinsls,

[7i,




L "
Oizsses of ordinsls and relotlions bebween opdinals or palrs

of ordinsis will be of Type S

B

ge shzl

&

%,.mf

denote the elass of 2ll ordinsls by HO and

the ordering relution for ordinmsls by £, and 1% is assumed

-~

that all sceurrences of HO and § sre of iyps 6. Unless an

explicit siabement concerming types is made, 1 Is assumsd

that all variables apd constenbts other than HO and £ are of

By i ot
approprint

(]

te types to meke the formulas in whilch they ocour
meaningful. It is assumed thet (xp 1l ol The sime type a3

®, awd that the x appsaring expliciily in ( =p is of the

=)

x in p {of whieh

43

same type as the frse oceurrences o
there will slways be 2t leust one). BSimilsrly, Ep is one
type higher than x, and the x appesring gxpileitly iﬂ‘%@
is of the same type as the free oceurrences of x in p (of
waich there will always be st lesst one}.
| We muke use of the definidions of 82 plus the follow-

ings

D101, seg R=df Ya(yRz.zRx.z#%)s

D102, LE=af RS((x)1xeC(R) .+ D« (By) o7eC(S) .
(3eggﬁ}§§$?§$$g?§}}g

D103, Hz{P) fﬁxlgi? smor R}

D104, Ho=af a((2P) Pell sa=uz(P)).

D105, <=df aB((EP,u) «P,uekl sa=tir(P) B=lz(a) P (LE}Q)

D106, Proda(x)=af 2((y).yexD z8y).

D107, Sus(x}=ar 2{(Ey).yez.287).

D108. R “x=af ¥ai(x11}.



48
D109, uxw=df 2((Ex,y).xsu.yew.z=<zy>).
D110, Cn{a)=af R((ER}.RelV a=Nr(R).x sm C(R)).
D1il,  Eelod=ar F{y sm .
Diig, L.=af o (x,7)izeu.yew.D ;(E’z);.%s FeX 52 2},
DLIB.  <,=af H(ug v.ute) . |
Dild. sc(x)y=ar 2(zcx). ‘ ,
D115, He(w x He(w)=df He(uxw).
Di16. ¥ Closed(R),=df R“y <y.
Dil7e ¥ Closed(8)z=af R“(y »y) sy.
D118,  Closure(y,(R},,(8) )=df Proda(2(y <z.
Rz sz;%“(z x z} € z).

Closure (y,(8),(8);) is the smallest class contain-
ing y which is closed with respect to the dyadic relation
R and the triadie relstion 8, R

i?%’a assume without proof zll theorems of g2 which are
not marked with asterisks, and alse  1801- 1835 of [11]
{(with obvious modificstions so that they will be applicable
to the theory of types). Of 1801- 1835, the following
are used freguently: R

ts12. b (8,5,x):Re .5 < seg RuxeC(R). D o~ (B smor B).

ts18, b (®,8):R,8e{l, (WLE(S).(8)LE(R) . D.R smor S,

t821s b (R,8):R,8edl , 2, (RILE(S} v (S)LE(R}.

tezz. b (R,8):.R,828 1D 1o (8)LE(R) .2. (By) wyeC(8) .
‘R smox (éeg?ﬁ). ' h
t825, | <.




-

-

Yell known theorems concerning clagses, ordin:le,
relations, apd funcilons will be used without gréafyar
statements

?&e following theorems are easily proveds

7101, F(P)spedl, D.rcan(p)el,

T102, F{?};?al»i,:DQfﬁgaQ?}glwag_~
108, l‘(?}gé?g{rS%ﬂﬁ?}}:aaﬁiﬁrgi?}}.
P104, ¥{?}:?&i{f@&n{?}}zﬁani§ai(?}}s
7105, | (P,4)sP smor §.z.(2Can(P))smor(rCan(u)).

i

4

T108. Fixﬁg};x s& ?,ng&gix}sx Gaaﬁy};

Our fizst concern is with the problem of definiition

by induction. It is no more dAifficult Lo prove Lhe

theorens which Tollow than 1t is %o prove the weaker

theorenms which we achually nesd.  And the ‘theorems which
follow zre, with vespset te restrictions on free snd bound

verisbles, somewhat wesker than could be proved if we

CTig7. If
1) the following varizbles are distinet and are of

the typss indicsated bensath them, where m and n sre arbitrary

g, 2, B, v, ¥, ¥, W

B, m, w¥l, n, n, n, nig
2} ‘Eavis a variable or noun of type n, and none of

the sbove verisbles oceurs free in "503“




AR
e

B0
2} ¢ is o propositlon which contains mo bound

sgcurrences of o, v, W, or E znd no free or bound occurrences

then there is a proposition p such thas
b ®yesrelli o «{a) 322G(1) « D+ (Byu) ps.
iu {iﬁzp? { Lz{ﬁ%@ﬁ(ﬁ}}}mgcz.—éa}:azsﬁ(a};
af ¢ 2{z=mingC(R}) . D, ¢ up= 4 v  Swy T (F( (82} + 2Ba. 2.
7=t {Saps (). :

We shall abbrevizis L’?‘{Sﬁq:{ {t} by 8(1}.

Suppose mil=wm+}, and Lot k>|j], Assume Bell, and
let m= Lz{z=min,C(H}}. Let B,Y 43,3 ,x be new verisbles
of types m, k+nt2, kimte, n, kin+l respectively. Let
Pres. {a) =§{ {(Ez)szRa. g}éa;'iﬁ%:ﬂ (z} ,Eki}*(g}}a‘() end
a‘—::./%{{b/):mﬁkﬁga)}ﬁkﬁ(? eXs.(a,b)t.a2C(R}s #

& # 4o () 1BRa.BAa. D o (By) T (R), T o o s
D50 0) ;0 (o (Bres (@))% V1.0 1Y)

From the hypotheses 1}, 2}, 3) znd the choice of new
varisbles above, 1t can be seen thait the formulus occurring
in Pres YA g}(é} epd & are propositlons and that there is no
confusion of gm yapizbles in ¢ViSwq | {F?%Yn é(ﬁ}}e
Also, Presy, ;(a) is of type u¥l, the same type as that of
We |

- ¥We pow give a sequence of iemas from which the
theoren follows.

Lemma 1. (v, %):s’;ﬁkﬁ{ /u},UkﬂV(%baé,aﬁ;?,
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Proof. ﬁu;sg}sﬂe 43}&3( )y et (v}zaé @m vf “g ‘i“‘axs
¥ o be ‘?«ﬁ(ﬁ?ﬁg (/u} Ukﬂ‘(?}?z} This leads to a con-
« trﬁa:i.c*'i
Lemms ;‘:. ('? ,3¥2,a8C(R) caf e, (B} :BRa.BFa.
. (8 <FH(8) , T L (phrehs D1 <0 (0) , T (6(Pres, (a)) )6
Lemma 3. (a,F)108C(R) .af k. D.<0F3(a),
335’?1 (6(Pres, (a)))rsh,
o ?rczzﬁ”‘by induction on ¢, using Lemms 1 and Lemma Z,
Lemma 4, {a,?}:.,asﬁ,(ﬁ}.agﬁ/a 233(3;}:{{};‘:%3{3},
Z}k%l{y}%a,:‘-:‘yzé(?resé (ad).
Proof, By Lemma &, we heve (a,F)i.aeC(R).
afu 1 D3 (yrsy=6(Pres,(a}). D.(Ukﬁ(a},ﬁkﬂ(j}%m
To prove the .z.mpl:.eaticn from right %:o left, suppose
@ is the least member of G(ﬁ} for which the theorem 1s |
falsej 20 sUpPpose
(1) esC(R) .o,
(2) W}:.-daa,v/;éa,w/a o;(y):wﬁ‘*é(u} =1 (yyres.
~y=8(Pres (V)).
() <o¥*i(e), v (y)ven,
(4) yséé{?resg(a))a
From (3} we get o
(8) (W25 () 0B )06 Wa (0,00 1.08C(R)
o o (B) 1BBO.BFe. D4 (By) T I(p) ,UF  (y)oe v 33
=k <+ {@}‘;ﬁkﬂ(é(i’resyna(tﬁ}} PeY s, D1.<0 () ,;i”iﬁ'%l{y} >,




i

How let ¥ _=(V~ :\\{{ET,F )37 Ra, ,\:{,33"1‘?3{7}’

W) A (B, £)1 758 aupfas A=z ), 084 p)>,
A esyy B{<Fri(a) %i"ﬂigﬁé‘f‘rﬁsg{&}}}}}

By (1}, we have
(&) <000, 05 (F e V.
Suppose

() oeC(R).0fu, (ﬁ}m%ﬁﬁaa 573, &*‘ (s},

T (yIve v 0 b,

We theu hnave thres gusess
Case I, v ¢ha.

Cage 1L, oRa.ofc.

Case 11X, o=q.

In each case it iz found that

(& e, ’k’l(é‘(?mwy n a(%‘})}.‘?&Y;

Feom (8), (8), (1), (5) we get

(o) <UFI(a) U (e .

theoren

S5 D

By (9) =nad (4} we have a contradiction.

Lemsa 5, {ag).aac(zs}, ,cﬁlu},,qug} T () >en,

Pr@a.. Use ise%g 1, 3; 4,

Now define p= {8 g(fwk‘*é (a) Ukﬁ‘(a}}s,fx)} (3. e
now follows from :*eg cing % by % in Lemmas 1,

Tios. If

1} R, @, z ave di.:tine%& %rﬁ.&’i}lés ::r? types mil, B, ®

respes z.i?el,;*




DB =

2} 3 and k¥ are noa-negabive integers, and w is a
variable of type n, distincy frezzz“s,;a;zﬁ where wept Yl
and wkily -

8) F is = veriuble of type n, sud v i3 & vuriable
of Lype n~X-1} ‘ |

43 ‘% is a veriable or nmoun of type m¥j, and none of
the sbove variables occurs free in § §

5} g is a propositlon such thet there is no confuslon
of bound veriables in ( v 38w {{‘Can;f{é(sa}ggs}}} 173

whens o R ST S P S V

F {(8)3.Radl s Dz (EF) tFeFne, trg(F)=Cand (C(R}},
PUI( ¢ 2{z=mingC(8)))=F 1{c) sasC(R) so# ¢ s(z=mingC(R)).
O JF ()= ¢ v { 8w § ({Cand (G{aega‘ﬁ}}}" F)a

Proof., 8btart with Relk, By 7107, thers is a 6 such that

- 8 ¢ 2(z=ningC{R))) =<U3( £ z(z=mingC(R})), T >2 (e} sa2C(R).
o | a(z=mingC(R)) o Dedla)=<u (e} ,0%( (v Jowa { (x((z8).
BRa.BFa.x=8(B)}}) 7, o

Liet ?%{ﬁﬁY};Ysé(ﬁ} .x:é(\/}}. it is easily seen
that FeFne,Arg(F)=Cand(C(8)}, wna FOUI( ¢ 2{z=nmingc(R)))=3F.
Suppose wel{R) and aof Lz(s:&in%&(&});  Then
7l {a)=t8{ (v Jow T (R((88) BRa.BAa.2=0(B))))» - But
2((Ep) +BRa.pa. x=0(p)})=(Cand{C(seg,R))) 1 ¥,  Hence
FOd(a)=t5{ L v {Bwu ] ({Cand(C(seg,®))) 1 7)),

237 of B mow follows Ifrom T108.

7109, | (R)smedl, O .on(r(R)y=He(C(R)),



M,,s:.
- "lf'if ‘

-

110, }' (xgy}*fés{x}g; He(y) Jelyig ﬁa{x}. Je{x)=Nely).

Till. | (a,s>§a,sa§§,ﬁn(a}< Saiﬁkgﬁniﬁig,ﬂa(a}.

aﬁﬁéa}-—&i{ﬁ}a

12, | {agﬁ)za;ﬁaﬁQ‘ZDQﬁn(a}<g€a{§},v’

Cal{a}=Cn{B) .V +Cn{p)<cnlc).

%110, T111, and T112 follow from DLIO-D11% by mesns of
the Senrfder-Bernstein theorem. A proof of the Schrdder—
Bernstein theorem may be found in P rincipis Bathematiesn,
F75.88,

We assume that a %elz.wwéeﬂa.z{; relation, <n, for the
i’mﬁ-"ﬁ@f&.’ti?é integers has been definedy since there are
integers of %type 3, £n can be of type 4. ‘z?s'dsfim .

Dire., 0 =He(n}
and assume the following theoremss

7118, | eHo,

T4, | (@)recd 0D aricd,,

7115, b (@)30<a<0 0D o (By8) <D, samp L,

I113-T11l5 may be proved by mebthods similar to thosge
used in Principis Hathemotica, #2862, #2683,

T1i8, There is a noun, 6(8), such that

Fe=w,

F (8)speno.gro. D ;g(ﬁ}‘méﬁiasﬁae(\(}*ﬂ’{ﬁ, 5

;sz(ﬁ( X'})< Culal),
- Proof, Use T107,
Hote thai éiﬁ} is of the same type as B.

Di£0. Denote the 8(B) of T118 by 605.




~55-
 Hote that if ~ (Ba).esN0.(Y):Y<E,
D «Cn{ 4y }< Cnla}, then Weg=¥, It is easlly seen that
F{a,B)1ap. 0 VDo 005:?;

pigi, 8 g=af z;e(a(@«;wg}} .

D12z, N g=af Cnf a{gﬁg

1117, | {e,8)1a38.D,0n(a)g _Cn(e) .

T8 b (o,B)1adB. WYL D0 <@y
- Proof, Use DiZ0, ,

1119, b (0,8) 1048, WAV, DL 0 <, .

Proof, Use DL2R, D1g0, '

One of the most useful theovems of classical ovdinsl
theory! is 5 F(P):Pell s D.P sﬁsr(segE?(P}g}ﬁi T
fortunstely, this thsorem leads at once to the Burali-
Forsi parsdoz. The theorem whith follows can f:e@uaaziy
be used for the purposes for which the above ig@sréect
theorem is used in the classzicel theory,

T8, | {?,3}:?adl,a=§r(?};;:;{rﬁan?(?)}5m3?(seg@;}a
Prool by imduction on 9. If =0 the theorsm is
obvious., Assume {5):§<g,aa§réﬁ),23,(rcang(ﬁ))sagr(seggg),
and suppose xC{rCan®(P)}., Then x=U%(y},yeC(P), so that

ﬂr(sggy?}(s; Hence, by hypaznésis,

2 . 2 - 2
{rﬂanﬁ(segy?}}s&g?(seggr(s Buz_rsaa;(sagy?}~segyr0an (P},

égyﬂi} .

7. bee [2], p., 1873 [12], p. 171,




nﬁ%u

and (g@ég,q{ oz ?},} (ﬁaaﬁf{ SQ%;,} (seg,$3). Hence
(seg,(2Can®(P})) smor( 5°25r(s0g,P) (seg,0l). B0

(1} {rcan®(P})Li(ses Q) .
How suppese peC{sez . Then B<a, so (Ey) *;ﬁnﬁr(ségy}”} .
By hypothesis, {rﬁmg(ﬁegf}} sr(s@g?;’;} . Bus
rﬁaﬁgiaegf}%sggﬁ () (zCan®(P}}, and isegﬁﬁ} =( ﬁegg(seg EOF
Hence (segs(seg,Q)) smor{seg s (v) (rCan®(P}). 5o
{2) (seg QLE(rCan®(P)).
Prop (1) snd (2} we have {“’S&ﬁg(?}} saor{=zeg, <,

2122, F (@) 1eei0, D, (B(p<a)sm
Proof, Buppose weHO ¢ 5’%{3{%}&@?%{}; Let a=Hr(P}.

Then by Tigl, rCan™(P }amra{se:; »

Let Q ,&yixﬁsﬁ@} R 8‘3’3(3{}{{ 8U%(y)). Theh |
Gedb, C(g)=c(P}, =nd r@&ag(g}smrsl ﬁgﬁ But rﬁaﬁg{ }9&31’
iﬁ’@ﬁ%gr(g}—)» Hence (»Sﬁggf(f;) $smors, = contradiction.

r123, {(TeE. }}-{x}:mﬁiﬁ {ilﬁ)éai%{} (o) saexD a<ps |

Di~(x sm WO,
Proof. Use T122.
7124 b (0,8 ia,peH0.WoLad Wy . Cnla) =N,

Proof. Uss D1Z0.

71825, | {a,Bysa,8eN0,0 4 =V, Wysets son(a)=A5.

Proofs I wgr«*a the theorem i1s obvious, 80 suppose
Wga. Lot Wg=Hr(?}, g=Nr(Q). If on(Wg}=Cn(a} the

theorem is proved, so Suppose »;,Qu)g}i@f}ﬁ{a}, Lot




bl 3

Y emin @(Cn(@ )< Onle)). Then by Dizo, ¥ =)

841 contradict-
ing the hypothesis of the theoren.

1328, b (a)2r @ <ar, D (E8) 1 .pel0, Wyaka (Y )18< Y
Deag Dy, vV, Dyp=y, |

Proof by induction on ai Let ¢ be the ieast ordinal
such thai

(1) 5003@{5}:&)533,.3 ABY).BY . Wy La, ond Lot

=307, @ 50}

Cage 1. 4=HO., We ha?@'{§}g§é${603#§.60§53}23%<a.
Hence by T1835, ~o (& sm ¥O), & contradiction.

Cage 2. 2#0. Let A =min/k, and suppose B< A,
Then Wgi#¥ «nd «g<a, so that e;(wg,}gen{a}g But by (1},
(EY).B< )@.w%g& So by T112, Cnfw 3}'(8{3:3{60>/§)53633(§),

Thus {B}.B< u>D sn(édﬁ}{eﬁn{s}, Then Wu zzai%ﬁ(csﬁa,(s),
BuD on(Ws3< Cn(a)), so Wu #7.0Wu La contradicting
/‘(’{ "“"E‘{iﬁ{g‘;

Thus (1) leads to a contradiction, so (EB):.BelD,
édggg,{\’}iééb’QZDgaéClgzgwfﬁéQyﬁ¥. The uniqusness of 8
is obvious,

2127, | (0200 <2.D. (58} .5eH0. WV, Cn(a) =g,

Proof, Using 7126, let B=uax8((,<a}. Then by
T124 or Tig, ﬁn{a}-@?\(ﬁa h o
Tize. | (2,8) 3 03,8800, W7 D s Cn(a)=Np.

":"»gg(?{y{@}}"ﬁaga
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Proof, Assume @,BsH0, 60§%¥} and let e=Br(P}, @ «ﬁ?(g};
Then by Tigl, rﬁgngg ysmor{seg,) and ?Q%ﬁé{@}ﬁﬁﬁ?aﬁagcd 5}
Suppose ea{a}ijézﬁn(a)ﬁ}; ?heﬁ.ﬁe(@ﬁ?}} a(%aQ;},
30 §¢{S{§Gwnf(§}}}~&»{8{f§“ G331}, Henee éﬁ(k’{¥’<ﬁ}} 6%3
Supsoze E%Q{X{Y‘i@}}mﬂ éﬁ{)’{‘f{w}} Phen
2%3{6(%832&2{?}}}%ﬁﬁ{ﬁ{rﬁaﬁ’zg{%}}}, 50 3%{:{%3{?}} 5e(c{Q)). Hence,
G?{a}‘jVé
120, | (e, 91a,pe0, O <add, ) D Ne(F (¥ o)) 8.
T121. }-{a,p}m BsX0, wmﬁ-«‘%’;&@ﬁ; ,és{Y{Y%}}»S
Proofs of 1130 and 2131, Under either hypothesls
we huve, by TL8¢, Tig3, ﬁa{@}f}Y' So by 129,
He{ P (¥ <a))= d,-
21511, }-{a} g3 Do (88) 18280, DTN ¥ (¥ <a))=,
Proof., TFrom T128, i% follows that Ehﬂfv is a2 B auch
that ﬁhw hypothesis of aither D180 or T1Z1 is satisfisd,
TLEE, F’(5§y)§ﬁc(y} c{y?g§g§e(ﬁaﬁg{x}}{an{éaﬁéiyf)a
Froofs, Obvious.
b (a,p)2a8.904#7.0. 8¢, 8,
Proof. Let Logzﬁyé?}, Q);3§§§§}, Then |
rﬁa&g{?}$§§?iﬂggooaﬂ}g so & ”?L{Shﬁfiﬁis}}} Similarly,
d $w§~e§§&§2(€§i§}}}» By T109, He(c(P))< %ﬁ:(*?{iz}}g Hence
byV ’2132 | 8,3«‘,.,8;3,
In ordsy b0 prove §?§~§19 ghich ~$ng@rﬁ.¢a or égmzng
relatlion, L., for ordered triples of ordinsls, 3/uﬁ3>, with
USB, we Tirst define ordering ?%l&ﬁiﬁﬁﬁls?, ga for ordeved

puairs of ordinals, £, will be seen to wolleorder ordersd
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palrs of ordinals, <af>, first secording to the meximus
of « and 3, then sgeording %o B, znd then according 1o 4.
£g well-ordersordered pairs of ordinals, {ua>, with
M LB, Tirst according to o and then according to A .
Sy 18 then defined so ag o gelleorder ordered triples,
<aupr, M8, first according to the ordering by £ of
<gf>, znd then sccording to the ord ring by £ of 41,
It ig easily shown thet _g?sﬂ and _gg;ﬁ,, 2nd it then fole
D151, j»;g«m GR{(Ba,B, Y, 5} 8.2,8, ¥, 5840 ,u=<aB>.
w={¥ Bry, {zz%x<£§{@}u 8(;3)}%{::&: (U)o u(d)iis
Vot {max (Waju U 3},*}'*{2@((?553’}&1 U(B) )3 eBLdLV LB=b,alY ),
pige, < =af w(%@,m}.
DiEd, & =af W((Ee,B, 4,V ia,Bel0. 4, VS,
= U sw=d VU Briadp. v B A KU
Dlgd,  &,=af é%{{zag;g;zgéwiv}m, , X, BEHO,
My VEB S Hap> =l Y B>8<aB>< <Y B2 V oapr= VB2, L)
D1gB, <, =af %%(u%%;#%) .
7154, F sedlgellgell,
Proof. It is ;%333.1:; proved {by cases) that %}ﬁﬂ
end {g8dl. A similor proof then shows thet L ell .
T16-T1E now follow from DLE4 snd T154,
In order to prove T19 we Firsh prove some muxillary
theorems,

}-(a};&aﬁ%.D {s sog, O LE(seg gﬂ{P).




e 4

B
an g ) L = i g - )
fg&i}%?:&x t" é{ii 3&31%{3 2D a § Q{%%@S;}iégigﬁg,{@&} £ §} @
Proof of T135, by industion: T135 is obvious when

4=0, Suppese (B)ig<a, D.( se;gsf}&%i seg 436%}, and

A {seg O Li(seg <aopSphie Then (seg, aorsy) smor{seg L),
where Y<a. Bub by hypothesis, (segy, S}Lg(seg{a,@}ip},
Henca {seg ¢ gﬁkﬁpﬁﬁgiseg{ﬂ}gi 8o ulY, a conbradiction,

T155.1 iz proved similavly.

T158, \' (segwgﬁs&sz*{é&ggww@}%}g

21683, | (somy 9 smov(segyy @y S

Froof of 2138, By 7133, {sezp OLE(se $oFe
A0 F HA00, ( gwg:) ( %{a)azg} .._?}

Buppose xs.él(;%} and {zegeo C{é}mergsagx{seg{wé}g} ,ﬂ?}g
Then x=<ap>, a<, <, and (segy Qg}s*gzsryiseg{éé;, %}a

Obvionsly, ~ {u=0,8=0},

Det B-i=af ¢a(eeMO.a*1=p), and let
7= (2(BLa.BA0. 254,15, V 1820, zodam1,am1, V
GSB 1 0A0  5am B s V 40, 248, Bl

- Then yEmaxy ?%(zf{p{ai%}}‘ Let §‘m{q.79. Then
7 ‘wily so F‘mﬁN%ﬁ{sag(ﬁg} g?} » Which contradicts
mtl & ﬂ{sfegwéﬁ};

Zhus (seg %}I&i{sag W, s 8o

(segy_9smoz(ser,, 0> $p 0

Thus 156.1 is proved similarly,




[

w3 ] ow

2137, F (a}.%ai),é&aﬁf O,{ssg w@_}&ﬁ&{ﬁ%< (gs0% %},

T157.1.F (a):aazéa,&)(&?‘f’?;j ;ﬁ(s-ég AR smor(seg¢q o) > S3)+

Proof of T157, by induetion. : Waean =0 the ~theorsnm
follows from T136. Assume (B}:B<a, 9#3,
Dufsez wgg)sg%or(sag{wg’g}.g‘p) . ,

By T135,

{3) {qegan~}L§§5@&{ﬁd 0}.5%}‘

S’@@Qse %< &y 40>, and ,(s-egwag} smor(ssg :a:ip}’ Then
=¥ Er, ¥y, B<W,.  Let B =max (U(¥) 0 U(8))+1,
Then ¥ <4 . Slmee ¥ <F, < ‘;’, we hove
(2} ﬁa(x{z& (Y?}>}}< He{x{x a? G>}}
Using T128, let @:ﬁmaxsga(g;ﬁ%{},w oS ; 3. Thon by 7118,
"{cﬁz so by ko sf‘nouhwis 0o induction, (sezw Llsmor(seg <J.
% ~3 P : ‘:AC&J@,Q} -p
H.ﬁ:mﬁ@ 3 ,
() 8 gzﬁe{Q(z{?{st»}. By Ti24,
A
9 Be(B(<EN=4d,.
Sa from (8) anmad (4),
{5} mel{x(x {?,0333’-&{3{%(?& <ed,07))= %; Bub
since (segw __)sgm(cegﬁx 5 - ?}, e }w.‘?t.-
(8} ﬁc(x(ﬁ?w&))-a
Then from (2}, (5), and () we gt g £, 8 o2 CORPTEdicting
@(ﬁ& |
T127.1 is proved siaaiiaﬁy,

T138. } (gp) smor($).




wes
T1i38,1, l" &é}mf(,ga
Proof of ¥188. By T135, (5}143&9}3 Suppose x=<as>,

and Qsmr(sag{;gg} -za)

Det b/r«ﬁaxgﬁ{a} VI(B))+L, so that <aBr<(,<¥ 0>,
Liet @%gég{@f@, w e?gv}u Then by 7124 or T125,
Ho(S(5¢w ‘;}%ez{%i%ff 3. Henee, Fe{X(x< PSP ei07))
=He(2,<¥0>)). But by T137, 8«-’@@@{3& p<Wgs02)), and by
hypothesis, Fe(E0)=Re(R(x<., iiag}}}ge%e{xix{ <Y,023).
He(uo)g & gs contradicting T193,

213841 s proved similarlys

133, }'(ﬁb}sm@{_).

Henes

T129.1. | {e}%%ﬁﬂaw AT ‘{segwd_)smz*isﬁg@ W, 50> =4

Proof of Ti39 and ?3.8%’3.1,. 311};3;}%& (,%3} smz*g(_} and

(£ smxs(g, Let

B (B 1,80 8 4 $840,BEH0 . =g A aB> =l o4y R KaB>) o

Schematically, when <8, u,Bel0, @&(%)ﬁ eans * is earried

into by P', we have | |

sy el <u, BNy <l 890 R’ {aﬁ}}i

*’*zms :%:*“ is elear that from T138 and T138.1 one can derive

(;:,,g aﬁmg 8{5} T139.1 follows from T137 and %3.3?,13 ,'

~ Ti40. F (@) 2aem0.D ‘(3%&5}3&{3%{3@@} sk) |
Proof. Use i’laﬁ T135.1,

We now zg%seeﬁ to the ;mafﬁ of ?%’m g%areugh ?96, %’az’

i;ha definitions of J E‘Qsau,ga, 1955 see }3& 18,

£

)
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2141, | (a)20810,D 0T <0005,
Proof. By 7140, (seg OLE(seg ., . £33 .o,
(se8,OLE(s0g5c a0y T o
T148, 222) | {a,8 g M} 10,800 U 8. Jumax (U(a)y U(8))
5&"-4/« ag>. v
- Proof. Lat Xxmgxg(ﬁ(fz} o U8)), Then %Yﬁ:zzg
SHuap>. Bo JROY 02T Suap>, Use Ti4l,
7143, (238) | (a,,4)1a,8800.054 <8,
D Lmaz (U(a) vT(B) Y €T ‘Guta>.
144, (734) f-{a)m&f%&'D%ﬁaﬁmﬁésﬁa;
Proof. Det o=7°CuBY'>. Then Kyo=B, Kzu=7, Use
T142, | o |
1145, (258) | (a)s0sM0.a~ eVal(Tp) s D Kfoka.K aca,
146, | (e)iaeho. W #7,D, W eva1(s,).
Proof. By T188.1, W =740, w05,
138 i3 a speclal case of T14s,
We haye now proved zll the propositlons of 82 which
are marked with an asterisk excepd 7 =nd T84, It appesars
mlikely that either of these propositions is provable in
the system of ityps theory so far described, Thus, from the
point of view of using as weak & system for Ly a5 possible,
the best *i;%zing we can do 13 to add TLY and T84 themselves
to Lip a5 a:{iazas; ¥hile this gfeceﬁ&e has eeétaiﬂ
advantages (in particulsr, 1t reduces the length and number
of necessary Qracfé to 2 minimum}, it is;ﬁaz*ha;;ﬁ of interest

to show that T27 and T84 can be derived from more well
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known propositlons of classieal ordinal theory,
%eV%hé% efors add the following axloms to &2
Axiom £, (x}3.x SHO, {‘.53)-‘@35%33 waﬁ.ﬁc{x} 8 gt Ot
(gy){é}sﬁaz,ﬁ {Eﬁ};?&&%;, |
Axiom B. (a)iqslO, :3.(W§E,§s§$¢a<60«
Axiom A& is = weak form of the axlom of cholc e,vaﬁé
Axiom B is 2 trivial conss:iuencs of the cla ssieal theore
of ordinal theory which asseris that ), sxists for é?@ry
‘ordinal @, In fact, both Axlom A and Axiom B zre proveble
1n elepsiesl ordinsl theory withous use of the axion of
choice. The standard proofs of both, however, depend on
s theorem from which the Burali;?Oféi'ya?aéaz'iS'aﬁ
immediste consequence.© Thus the claseical proofs of
Axioms A and B are not valid in type theory, and we are
foreed to sssume these propositions as‘aXiams*
 As ysia%@é out previously, Axiom B contradicts
strong forms of the axiom of choicej mamely, zny exiom
from which the %aimusvéering theoren for arbitr&ry sl 18568

is proveble, For let P be 2 %911~aréeriﬁg of 7 {V of type

3}, and let o=Hr(P), Then obviously iﬁ}gﬁsﬁéflﬁﬁ(ﬁiﬁgﬁﬁ(S},

s0 1if we let %’xginéé(ﬂaiﬁ}&ﬂn{a)}} thsn *x;‘éiil”be
the largest omega, contradicting zxzem‘B* -

In spite of the zbove, one can a&é feaaanably strang
forms of the axiom of choice to the lcgie eaﬁsisting of the

theory of types plus Axioms A and B without (apparently)

8. See [2], p. 1833 [18], pp. 214, 215,
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introduecing & contradiection. ézﬁ gxapple of such sn axiom
of cholee is :

(=) 1. (vsz 20N 1 (u, v, ) tu, vex.7eun 7.0 o
u=vs (Ea) asli0s W AT, Ho(x) =N, 1 D1 (By) (W uex. D. (B, 2) zeun y.
‘Siﬁae the hype‘shssis of this axiom implies that x is already
?fa;.lacz*dereé it appears unlikely that any very signifieani;
?zell-e*‘dering theorems can be proved from this axiomi in
particular, 3.;*: appears most unlikely that one ean well-order
by means of this axlom, the continwum, the universe, and
various other classes about whose *afe}.l«;aféering there iz
considerable dispute. Hevertheless, such an axionm would
probably be adsgquate for most of the uses made of the aziém
of cholee in classical mathematics, except for uses for
the expliecit '}Swgase of well~ordering.

In any cese, 27 now follows from Axiom A,

7147, (727.) }- (x}excHO.~ (z sm K0},.D,
(Ba) .aeH0.(B),BexDp<a,

Proof, Let S»»{sﬁ{a,ﬁsz.a,_ﬁ) %I*hsn from @LE(S}
we get (x sm 2?5), 50 Ao ((S}LE(S}} ﬁencﬁ 8 smcr(se v s

Ir v <wa, 1:}.1@33 the ta@srem is eavious, 8o suppose
@ oSY. Then by 2151,1, {s&} BeN0, 5#: zqc(’*{sw »=4;.
But z*ﬂ(s)mm §{§<Y), so (E%} éaﬁagwgﬁ?aﬁe(x) 85. Thus
the hy;co‘shssis ez ,é.xiom Ais satlsfied,

How szm?cse R Y. fhsn reazz“(ﬁ} smoz‘(segb, __} by
T12l, Hence Canz({}(ﬁ}) smFxg

Using Axion é. leﬁ v be sueb i:hat (8}33&1. “
D. (El?} .Pep ,Fa,{, wr;si 1@*& Pﬁ y ?(Psﬁ;ﬁay}



How let _
A=2{( (Bu,w} .z=<uw> . ue C{R} ,weC (P

Féﬁéﬁiu}} }

W=y ({Bu,w, Wy 5y ) x=Cuw> ;?miulﬁl,‘? R

x,yeAsF U (W) F 0w, v oF U () =r 3 (uy) o GE(w) ¥
Then Vel and C(W)=a,
La a=Nr(W). Suppose Bex, so that 5-‘21*%2’(?5}, Liet
’2—”39{5/’\{{31},,? SW) oV, wel {Pg} LB =k L x=UY> , y=uwy 15y ) .
Then P§ smor T, |
If ~ (Eb).5ex.8<d, then the theorem is trivial,

So assume (Ed),dex.8<b. Then T E(segg%’),. Hence

~{T smor W, so ~ (Pg smor W}, ’Sm;larly,

~ (7 smo?{éegg?ﬁ}), So Py smor seg?%;
Thus B<a. Hence, (Ba).aeH0,(B).Bex dp<a,
in ordsr Lo i:;m*;é 184, we need some auxiliary theorems.
1148, | (a)1eeM0.4 #7.0.48, x, 4,= 4,.
Proof, By T137, {sagé W0 i> s,p) smor{seg wﬁs},

Bence  {=e( ¥ (¥ <w))=He(R((58,¥) .5, Y < 0.
x=<B ¥ )} =He((¥ (¥ <@ ) x (¥ (¥<w)))
=He(¥ (¥<dy)) xHe(¥(vew =4, x, 8,

T148,1, }—(s}magm,cogﬁ,a.ﬂg Xo Ny= 0,

Proof., Obviously al N x A Lot W =Hr(P)
so that -?‘( o=Ne(C(P}}, =nd suppose N ,3{0% Xe ’}Yq‘ Then
He{c(P)) < Be(C(P)) X Fe(C(P))=He((C(P)) x (C(P})). Hence
by T132, ﬁe(cang(c(y)}}«(cﬁc(‘&’aﬁg((C(P}} X (C(P))))
=Ne(Carf (C(P))) X, He(Carf(C(P))). But Ne(Car(C(P)))=
Cn(§r(r0ang(?}})%n(ﬁr(seg w_ £))=He( :?{ YW Y= 8,.,,.




Hence @“4383 X, aa’ contradieting 7148, Thus,
-3(@ X Mele s S0 N, XeNg= Ny
?l"‘&% PS ‘_ {@’ﬁ} :55;.8 s wgi‘é?ﬁ D & a&, ’xs 853 83 -
Proof, asée 83 X, 833:‘3 85 Xq 8§=8§.. Hence
a a Xa 83“ 83 *

?1%& ;y }- (Cﬁ,ﬁ,k’.x}?} 5@'{? » w§%1;;§3<3’,}m ga&%c(y}‘: 8§ #*
DL Helxx vi= 85.‘2‘?6(3:{) yi= 8?3 ,
Proof, agségc{?}ﬁeﬁié(xk ﬁéﬁ;gﬁc(i} X ;Ec(y}

58@ X, 83*‘-' 83, Bo Nefxx F}“'Sg*

d y=te(y)< Helxo VL Jelzxy)=d,, 8o Ne(zvy)= d,.

B”
7151, | (R,%,0) 10eM0, W T BBy, ie(x)= 4.
D He(Rx)< Helx).
¢ A
Proof. Buppose Y (¥<()smex. Let o
A
y=2((Eu) susVal (= 18)  2=F¢ (minB (8< WL EFE=))).
- thenycxoendy smogpRixz. So Ne(Rx)g Ne(s). |
ihe followlng theorem iz analogous to *B.73 of [5],
However, the proof given hers does not depend on the sxiom
of choice, ‘ , V ey L
.~ TLBR. ]— {3{53‘;335}332 g{}ta&ﬁ{}c “Jffggﬁe(x)‘é a&a
R,8eFnc.4rg(R)=H0,Val(R) S Ho «Arg(8)=N0 x H0.Val(S) SHO.
= «He(Closure(x, (B}, (8),))= &,




55—
The hypotheszis "x SHO.4Arg{R}=H0,Val{R) SHO.
Arg(8)=HD « NO,Val(8) SHO" is not sctually necessary for
this theorem, but it svolds certain awkward cireumlocutions
which would be necessary without it because ef DiB.
| Proof. Let
BE=t{w=u v B“avs“(uxu}).
Using T108, let £ be a function such that
srg(£)=Can(B(B< W), a
£U(0)=x
(0)80<n< W, D o1 “U(n+1)=H £ ‘T(n) .
Then we have
£ u(0)=x ,
£YU(1)=x v Bz 0 (2=} |
£°0(2)y =2 “B(1) 0 RU(£U(1N) 0 £ ((£°0(D)) * (£'U(L)))
_ ete.
It is easily shown that
sum(£“0an(B (8< D)) ) =CLosure(x, (B) 5, (5} 1) .
It is mot 50 easily shown that ﬁe(Glasure(x,(R}g,
{8}5})‘48 s To do this we start over and proceed 28 follows,
We define ordinal multiplication, a X ofy axd ordinal
subtraction, a-oﬁ s 88 follows: |
P x_g=af 3((Ba,B, Y ,5) sx=<as>.y=¢ %f&}a |
g,yac(?}ss;éac{@} POb.BAb. v JB=b, AP ),
¢ X _B=df x({}:@,a} P06l ja=r(P) . B=Hx(g) .R szam*{? X ug})
2, P—»s:if‘ Liz(& smor{seg ?}} |

- g




w530
 amgpmae LY (6B, Y 0.V oB<a, (P, Q) stz (P)
B=fiz(9) D Y=tz (Pm )} -
- One cun then proved o
i} }'{{.%’ﬁ,n}%ﬁgﬁsgw ;ﬁ*%gm,zz*{&) 2T D ‘?),,3 xémé a)% X 1l
2) Fla, vy s, YeH0. QAT 0 ( Uy X)L Y €
(0, x{aii}} e Dl ¥ = (W ¥ ) YO
53 b (@) 2esmo, W 7.0 He(B B W, X, Wiy=8y.

1} =nd 2 above moy be proved by using theorams

similsr o those in Principis Hathematiea, #1680, #1686, ¥180,
*184, B35, {Hote, howsver, that P Xri%i and o X B are
dofined by ovdering by first differences in E;éé;ﬁ rather
than by second differences as above. Thus the ovder of
soma of the products in the Theoreas in ¥E55 must be
reverseda.) |

To prove 3) we first prove bwo lemmas.

Lemsz 1. F {a,p)sa,Bel0,. D Cnla x é}——{}zz{a} A Cﬁiﬁ}

Proof, Let o=lpr(P}, p=Hr{¢}., Then
cnfa xB)=He(C(P X &))=Ne({C(P}) * (c(u}})
zi%c(*fl(?}} x gie{c{2))=cafa) A On(e).

Lemez 2. | {a}3asli0. W #7.D .Cu(, », U 3=N,.

Proof, By Lemme 1, Ca(W, X o W3 =Gl R ggﬁ{wg}

=N, x N . 8o by T148.3, On{W, x W=y
 Prool of 2)3 4 ﬁﬁe(ﬁiéx I 4 }%e(\(ﬁéa)g xou))}

gcﬁc(g{&::co; x, W.y={, by 7129 =nd Lemwe 2.

Using $157, ons can define a function g such uﬁa‘é
y{z’{ wﬁ} sg';?z{ {@%,6}’5,5&6«)&,5%{55})5
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and by proving 8 more general theorem similar o ?13’?;3. »
one cun define 2 funetlon F, such that
(W $0<a< @0 D, V(¥ <Wy) sty 2((E,8) s < @0 z=<up2) o

We then define

§y=df Y ((Ba,B)x=<af> . ¥'=a)

Qg=df 25 ((Ea,B) sx=<af>, Y=},

By hypothesis, there is & functlon X such thai

YV <Wamn,

We now wish Yo define 2 function W which is 2
many-one mapping of ?(Y*f. Wy Ko Wy} onto Closure(x, (B}, (8)z).
We shall do this approximately as follows {(where #e—s?
means Pis mapped by W onto")s
YUY <@ ) —sx=r U(0)

T (¥ < g % gB) > 2 LU{0) =x v Bx o 8lx x )= T(1)
F{wew, x 8 —Ee ULy =2 u(1) v RU(ET(I)) u 8 ({£ V(L) Ix(2°T(1)))
=2 U{2}
% ® & % B O w ¥ £t & % ¥ B e T & T £ 8 " B P & B B .0 B B
FYUW y x (amL)) )= 2 Un-1) =£ B(n-2) U R(£°T(n-1))
08 ((£°U(n-1)) * (£0(n~1)))=£U(n)
F % ® % 5 & % ¥ 3 8 8 # ¥ |

lﬁ is ¢lesy, however, that rather than map
14¢% {Wy %43} onto xuR“zuB"(xx %} in the second step,
we could ss well map ¥ (W sk w, x B} onto Bx, and
¢ Wy X PLY <D, XGS} onto 8 (xxx}, ‘since ¢ (Yéa)&}

has previously been meppsd onto x, We can accomplish this




o7l
by mepping 4\/(&0@3 Y< W, x ,8) back onto \f)( Y< 6*7&)
by subbtraction, mapping Y{Yiwa) onto x by K, aézé
mapping x onto Rz, We then map ?( C()Ca X 2L YK Wa XGS}
onto ?(Y{a)) by subtraction, map $( Y< @) onto
z((%,s) 5,B<W,.2=<BB>} by F, map this onto x Xx, and map
xxx onto 8%(xxx).
Ve then contirue in the same manner, although in
succeading sfteps it will be convenient ai each stage %o
take R and & of z2ll elements so far obtained, thus intro-
duecing soms hermless duplicaiion, |
The above conslderailons suggest that we define a
W which behaves as followst
For 0Y<W 1 WY =Y,
For WL¥<W, X 28 WY =2k (Y- ;)
Dg XBLYS Wy B8 Let F (Y - 042) = uv >3 s <00,
Then W =8 ‘K'u XK'V >,
For a) XBEUC W, % 4t Let FL(Y -0, X 8)=<up>3m<s,B<d .
| Then “?ica/*?f%?‘({@ X s.:i}-?@}
Wy A 4<% < @), X588 Let F {?f Wy X é}—%}ar/};/a,-c/( 5‘]
Let ?g/w*{g,/w};mﬁ,/u'{dg
and Fgv/ =<}, v *>3J<3, V1< L.
Then WY =5 (@, x g)+ u1),
(W, X gyt
For Wy %,(2n+1}EY< W, %o(20#8) s Let Fypy, (v- w), % (2n+1))
=<mB> ym<2n+1,BLLO .




- D
i?h%f; ?f‘y*xgc?fi‘{([@& X RmIFBY .
W, X (En+R)L YL W, X {20+3)s
Let F (V= @) A (ame))=<u,v >
% < =Ly H tew

Let Fg n /( <, /4 rymiBntl, ui<d,
and Fy oo v/ =<3, VIr3I<amL, w1< A,
Then WY =8 ((dy xgm}+ ut),

R, X,

2 # # ® ¥ & B B F @

Using Y108, there is a ¥ such that

WaFne,srg(W)=B(8< ), A w,},W0=X0, and when

a@f W, X, s




R
WY = 4 alely .z Y s v
(En)s0gnd W 3{ %, X {mﬁ}){m{ L, X lEntB)).
2R P (L W0, X (@ Faptag (Y=gl Wy X (20511
%g?ﬂwé{?@ (W, K (2at1))) oV (U R (ane))L ¥ Wy x o(ant3)) e
28 P ({ Wy X (875 mﬁéﬁ‘(ﬂ (@, x {2%2?;‘})}
T ORI R C
P, X (077, gﬂamw{ acwg}}}}}
7 Sl (¥ {0y X (o2 001 :

where P stands for §(§<B’ } 1 Ye |
It can be shown that the fum%:s.sz; defined above has
the depired properiles.
It follows that
4 “ﬁe(x}i %33(6149833.?6(:{,{3}2,(3}3)){
He(B(pew, xqWopd=lge
Hence, He{Closure(x,(B)g,(8)))= =8
P152 and its proof can be gensralized ©o mmin
analogous theorem for any finite mamber of dyag?,.ie z*salatism ’
&, snd any finite number of teiadic i’é;.ﬁtii}igs;ﬁ; The
complications are malmly m@aﬁém& s 80 %é ag’it the proof.
The two theorenms which follow could have ’baéﬁ Q:*éved
in 82, but at the time were lrrelevani.
7155, | (68,0 (1) 10,85 pu 850, L AT
ULBaa, By g <apr<
Proofs <AHaPr<yK0,00, 07, 50
3o <aB>=3 S puaprd <0, W, ,00=




e

T154, | (x,7,0) 1aeli0, WfT .3, yeL, Ind(x)< W,
Ind(y)< Wy 2.Ind{xn y}(w

Pz?aaf. Lot z=G‘U(B), BeNOy, B, , and
y=G'T(Y'}, ¥eH0a. Y< cdg. Then by T4l and T153,
zrf?=6‘5{&);5e§53}5<60a. 8o by T4l and T153 sgain,

X0 y=x A?:::y:(}({?(‘t/), Ve, v <6f)a§ iee., Ind(x r\y){oda.

The two theorems which follow zrs translations of
Theoremg 12,4 and 12,51 of [5] into our notation., The
only moéific&%ions wnich must be made in the proofs given
in [5] are those caused by the differences between the
ordinals of set theory and the ordinals of the theory of
types. The proofs will be omitied,

7155, | (x,P,)t.Y elo, x SH0.xClosed (K, ,Ko) o0
p Closed(JO,**e 38)3‘a5(a,68x,35§}smcrp(sag.Y.~)=
3:6(5{7)8109%(%,'“ sTg) 58 (a,B M Y 2a Bex. u 8.,

I <PCa,P Br=P Ii<ap>.

T158. F‘(xx?;é’)..?’aﬁbngiﬁQ.x Closed(Xq,Ko) .

x Clsseé(ag,"-,38)g{gg(a,ﬁsz.gﬁ&}smch(seg\( £rs
Do, u)sasx, ULB.D agVal(J u )2 PCaeVal(Ju ),

We now define a function, Ch, which in the theorem
that follows serves the sape purpozes for us as the function,
C, serves in the proof of Theorem 12.8 of {53.

D126, Ch=08 (B=min CU(a)).

‘The following theorem can now be proved:




f

~75m
157, | (%,2,Y )51 Vel0.x SHO.x Closed (K, ,K,,Ch) s
x 51&5%&{563*** Sg}g,aw(a,ﬁsa.a<§}ssa rp{se gy Dt
Di.(a,8)t.a,8ex1 DscC U(a)e & “U(8) oz,
CU(Paye & U(Pp)s {%‘5{3}"’“?3{5}sw,ﬁcﬁi?‘%}:@‘ wEp).
Tha g?sﬁ? gzn be obbained from ahe proof of &wﬁa in
[5] by rer msiﬁg GCby P, F by G, and, at approprizte places,

g by e $he pamer in which this is done can be de te?mineé

.
by ee&%ariﬁg the stotement of T157 with that of lzgg'sf {53,
8 proof wa note ithe following:

1} The use in [5] of 12.5 to prove 12.8 iz not
éSs@xﬁialﬁ snd may be avolded in ;ye?iﬁg ?ié?a |

2) The following typographical errors occwr in
the proof of 12,8 in [5]:

Ta §::: line 23, »epl scs WY ® by ’3’&(? B,

pp. 59, 80, interchange all occurrences of "IV and
mgu,

p. 80, lines 85, %6, should fﬂwdﬁ’? gg}@{w and
7I=TgBY ¥1>5 that is, FOy =FlpD! 2FY) =
g%zigg‘gfg?g{gff)ﬁnma

Having proved TA5Z and T157, we con now rrove the

fszls%ing “ggrsm, which iz the relativization to the

Qame us thet given in {5]

7158, “(Y,Q,Y}:aas’é{}, {Eﬂ;é?.«asc(‘ (B« W,
Ygza’a ‘3{9/};3 Y{&) e

ﬁm
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Proof. Assume the hypothesis, and let
%Eammeiiﬁgﬁﬂiw }U U(Y}} (&l,ﬁg,gh)g;igg,”’ Jg}g}

Then by T1 Helx)= 8
Let sgzaﬁ(a,ﬁs::,a.ﬁfg Then ¢el), so there are three
possiblilitiess

3.} Suppose ($)smor(seg,}. Then Ee(0(Q)
=He(H0) < Je(el@)=te(x) . But He(ad<, agﬂ__eﬁe{%%ﬁ}’
contradictions

£} Buppose § smor . Then C(Q)sm 0, so

He{xj=Hc{H0). However, Helx)< R 8 gﬂiege{%%i?} , & gonbra-

diction.

B} Bupposs ¢ SﬁQ??(.%%ggj;}s Bince  VeC(g}, we
have ?‘Y&S{gsgﬁjg}. Hence, PY <8.

C{Q) s Q’(s%ggs}& so He(b{b<p))= 8@. HEence
BCWyyr, 50 PV LD 00

Ihe hypothwesis of T157 is satisfled, and Yex, so
(3) 3022 2.6 U(B)egl V(¥ ) =0 T(RP b)a G U(r ),

Obviously seg w R¥5e8 w S, 50 {(B}3b< W . D B¢ é«%.

Henece,
(838840 D6 “{U(b)e 0 Uyt CU(b)e, b CU(RY ),
Tnis moy be writien
(B)sudw .Inﬁ{ﬂ‘?ﬁ{,;}}}sﬁc U{Y J=Llna(c* f}{s}}ag‘z}(?‘Y }3 i.ea,
Bolpew, }nﬁ UV B(B< Wedn cu(e ),
By hypothesis, y=00(¥)<Bg(p<al), end By T148
and 741, 5{@416«)3} =3U{wWy}. So we have




o
GU(Y 3=C Ul ) n eulpY ),
it follows from T154 snd the fact that PY <) 4,
that < (fc)g 41
It should be poinbed out that while 12,% is used
in [8] after the model has been construched to wrove ithe
generelized contimwm hypobthesis in the modsl, we are
using 1168 in order lo construct the model of I, snd it
hes only an Intuitive connecblon with the continuusm
hypotuesis,
Ve can noy prove 184,
Teise. (28443 b (V). Yen0:Ds(83) 18250, (5}
5ea(C°U(a) S B U(YIID <. o
Proof. Using Axiom B, iet Y {,. It rollows
also from Axiom B, that Wy < Wy, #V. o |
Buppose %zggiﬁ ‘Ula)S GU(Y)). Then by 738,
beli0g, ond GCU(R) SCU(YD}, But by T38 and T14s;
B U(Y I Se U Wy l, so GU(BYS U Wy ¥, Henee
GC(8)85C(Ba(p< 0y )) e So by TI58, B<Wyyq.

Thus Wy 3 ¢sn be used for the desirad B.
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