

Department of Philosophy

University of Toronto

215 Huron Street 9th Floor Toronto Ontario Canada M5S 1A1

November 11, 2004

Dr. T.E. Foster
Department of Pure Mathematics and Mathematical Statistics
Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge
ENGLAND
CB3 0WB

Dear Thomas:

Here's a copy of Firestone's thesis. The original is quite a remarkable document, a carbon copy with hand-written symbols. I'm surprised once more by how formal set theory was in those days. I think the free-wheeling style of the present day only came in later, in the 1960s. I was interested by Firestone's scepticism about Gödel's claims (p. 5).

I've included a copy of the signature sheet at the beginning of the thesis. The first two signatures are those of Steven Orey and George E. Collins – the latter became famous later for his work on quantifier elimination and cylindric algebraic decomposition.

With best regards,

Alasdair Urquhart

urquhart@cs.toronto.edu

	•	· ·
		and the second s
		The control of the co
		Secretaria de la constanta de
		The second secon
		Sometimen of the state of the s
		boursement of the control of the con
		incommunity (
		transported to the second seco
		Section of the sectio
		Incommunication of the control of th
		lagoration de la constitución de
		errin namen de la companya de la com
		personalization of the control of th
		international of the control of the

PLEASE SEE THAT IND COLL

SIGNS THE SHEET IN THE FRONT OF THIS THESIS

Math...
Thesis
Cyt
IC
IC
IC
IC

CORNELL University Library

FROM

CORNELL UNIVERSITY

This volume is the property of the University, but the literary rights of the author must be respected. Passages must not be copied or closely paraphrased without the previous written consent of the author. If the reader obtains any assistance from this volume, he must give proper credit in his own work.

This thesis has been used by the following persons, whose signatures attest their acceptance of the above restrictions.

A library which borrows this thesis for use by its patrons is expected to secure the signature of each user.

NAME AND ADDRESS

DATI

steven oven

res L. Bailey

Univ. of Calif. aug

78,1968

SUFFICIENT CONDITIONS FOR THE MODELLING
OF AXIOMATIC SET THEORY

A Thesis

Presented to the Faculty of the Graduate School of Cornell
University for the degree of
DOCTOR OF PHILOSOPHY

By
Clifford Dixon Firestone
September, 1947

報告

CAN MEL EN HIER BLOCK BOY SHE WAS CHISTEN

13.1

en in Coloran i **na se**n e gin en masa.

The state of the s

BIOGRAPHY

C. D. Firestone was born May 27, 1921, in El Paso, Texas. He received the degree of Bachelor of Science from the University of New Mexico in 1941. In 1941 he began graduate work in mathematics at Cornell University. Since 1942, except for an interruption from 1944 to 1946, he has been a graduate student and assistant in the Department of Mathematics at Cornell University.

ACKNOWLEDGMENT

The author wishes to express his appreciation to Professor J. Barkley Rosser for his generous assistance and encouragement throughout the preparation of this thesis.

Introduction logic (formal lo

We say that a logic (formal logic, formal language) L_1 is consistent relative to a logic L_2 , provided that if a contradiction can be derived in L_1 then a contradiction can be derived in L_2 . We say that a logic L_1 is modelled in a logic L_2 if there has been defined a one-to-one correspondence between the propositions of L_1 and a subclass of the propositions of L_2 such that:

- 1) The correspondence is effectively defined; i.e., given a proposition of L_1 , explicit directions are available which enable one to construct, in a finite number of steps, the unique correspondent in L_2 of the given proposition.
- 2) The correspondence preserves demonstrability; i.e., given a demonstration, according to the rules of L_1 , of a proposition p of L_1 , explicit directions are available which enable one to construct, in a finite number of steps, a demonstration, according to the rules of L_2 , of the correspondent in L_2 of p.
- 3) The correspondence preserves contradictions; i.e., if a proposition p of L_1 is a contradiction in L_1 , then the correspondent in L_2 of p is a contradiction in L_2 .

If a logic L_1 is modelled in a logic L_2 , we shall call the class of correspondents in L_2 of the propositions of L_1 a model of L_1 in L_2 . Obviously if there is a model of L_1 in L_2 , then L_1 is consistent relative to L_2 .

In [5], Godel took L₂ to be the system of axiomatic set theory (with an axiom of infinity but not an axiom of choice) and L₁ to be L₂ plus an axiom from which he derived the axiom of choice, the generalized continuum hypothesis, and other theorems. The proof that L₁ is consistent relative to L₂ was then effected by setting up a model of L₁ in L₂. In constructing the model of L₁, Godel made extensive use of the resources of L₂, and in particular of theorems of L₂ which depend on the distinction between sets and classes.

We shall show that a model of axiomatic set theory can be set up in any logic which contains the lower functional calculus plus a certain minimum of the theory of classes and relations, and of transfinite ordinal theory. This implies that set theory is consistent relative to any system having these minimum resources (which will be specified in Part I, \$2). Further, it will be seen that set theory itself has these minimum resources, so that while our model differs considerably from that of [5], it can nevertheless be set up within axiomatic set theory.

Part I of this paper will be devoted to specifying the necessary properties of L_2 , and to the construction of the model.

In Part II we shall be concerned with the problem of

^{1.} Numbers in brackets refer to the bibliography.

determining whether the simple theory of types, or a suitable modification thereof, is adequate for the construction of the model of Part I. To this end a considerable development of certain parts of ordinal theory is given.

In this development it is assumed that the reader is familiar with the basic properties of ordinals as defined in the theory of types. Furthermore, the ordinal theory developed is specifically directed toward the theorems which are needed in Part I, so that while it is of interest in itself, it does not constitute a systematic or complete development of ordinal theory.

We are unable to come to a definite conclusion in Part II as to whether the simple theory of types is adequate for the construction of the model of Part I. It appears, however, that in order to set up this model, one will have to add to the theory of types axioms from which two rather special results about ordinals can be derived. While one could add these special results themselves as axioms, they completely lack that character of "intuitive self-evidence" (whatever this means) which seems to be considered desirable in the axioms of systems of logic.

We proceed to show, therefore, that the two results needed can be derived from two well known propositions of classical ordinal theory, and we consider the addition to the theory of types of these propositions as axioms. Un-

fortunately, while one of these propositions is a weak form of the axiom of choice, the other contradicts strong forms of the axiom of choice. This is a convincing demonstration of the confusion which exists in classical ordinal theory, but it is hardly satisfying as far as the question of relative consistency of set theory with the theory of types is concerned.

Thus, we are unable to show that set theory is consistent relative to the simple theory of types. There remain then three possibilities:

- l) A different method of modelling might require less ordinal theory, so that a model of set theory could be set up in the theory of types, augmented perhaps by one or more "acceptable" axioms.
- 2) It may be possible to prove the two results we need in the theory of types, using perhaps additional axioms which are in some sense "acceptable", and which do not contradict the axiom of choice. This seems rather unlikely.
- and the special theorems which we need are actually necessary if set theory is to be modelled in the theory of types. There seems to be no reason to believe that this is true.

In any case, it should be pointed out that there is as much evidence that the axioms which we suggest adding to the

theory of types are consistent with the other axioms of that system, as there is that the axiom of choice is consistent with the axioms of that system—namely, no evidence in either case. Gödel has stated (but has not published a proof) that the axiom of choice is consistent with the ramified theory of types, but there has apparently been no corresponding investigation of the simple theory of types. In view of the results obtained in this paper, it is difficult to see how a proof can be carried out for either system along the lines used by Gödel in [5]. Some clarification of this matter by Gödel would be most welcome.

Part I

S1. The Logic L_1 . (Axiomatic Set Theory.) In this section we state the primitive symbols, basic definitions, and axioms of the logic commonly known as axiomatic set theory. The system here defined is an attempt at a formalization of the system Σ described intuitively by Gödel in [5]. Since we are interested only in reproducing formally as close an approximation to the system Σ as possible, we neglect various opportunities for removal of redundancies which exist both in Σ and the system we define.

The primitive symbols of L_1 are the following constants: $\{1, (1, 1), 1, 1\}$.

Variables: x', x", x"', ... (in <u>alphabetical order</u>).

Definition of <u>noun</u> and <u>proposition</u>.

^{2.} See [3] and [4].

- 1) If x is a variable, then x is a noun.
- 2) If x and y are nouns, then (xey) is a proposition, and {xy} is a noun.
- 3) If p and q are propositions and x is a variable, then (p|q) and ((x)p) are propositions.

x, y, z, u, v, w are used as syntactical variables whose values are variables, and p and q as syntactical variables whose values are propositions.

We define "free occurrence of a variable", "bound occurrence of a variable", and "x bound part of a formula" as in [1]. The rules of inference of L_1 are the usual finitist rules (e.g., those of the system F^1 of [1]). The syntactical notation " \int_1 " is defined as in [1]. The symbol "=df" between two formulas means that the formula on the left is an abbreviation of the formula on the right. The symbols \sim , \vee , \supset , \equiv are defined in the usual manner. Parentheses will be omitted or replaced by dots as in Principla Mathematica.

Definitions of L₁.

DS2. $(Ex)p = df \sim (x) \sim p$.

DS3. M(x) = df(Ey).xsy. And the second

DS4. $(x)_{g}p = df(x).M(x) \supset p$.

- DS5. (Ex) $_{S}p = df \sim (x)_{S} \sim p$.
- DS6. $x \le y = df(z)$ zexo zey.
- DS7. $x=y = df(z)_s$. zex=zey.
- DS8. $x\neq y = df \sim (x=y)$.
- DS9. $Un(x) = df(u, v, w)_s:\langle uv\rangle \in x.\langle wv\rangle \in x. \supset .u=w.$

Axioms of L1.

 P_1, P_2, \cdots, P_n . Axioms for the propositional calculus and the lower functional calculus (e.g., the axioms of the system F^1 of [1]).

- Al. (x,y,z):x=y.D.xszDysz.
- A2. $(x,y,z)_s$: zs $\{xy\}$. $\equiv .z=x \lor z=y$.
- A3. $(x,y)_s(Ez)_s(u)_s:usz.\equiv.u=x \vee u=y.$
- B1. (Ez)(x,y)_S. $\langle xy \rangle \epsilon z \equiv x \epsilon y$.
- B2. $(x,y)(Ez)(u)_s: usz. \equiv .usx.usy.$
- B3. (x)(Ey)(u) s.usy=u~ ex.
- B4. (x) $(Ey(u)_s:uey.=.(Ez)_s.\langle zu\rangle ex.$
- B5. (x)(Ey)(u,v)s. <vu>symusx.
- B6. (x)(Ey)(u,v) s. <uv>ey=<vu>ex.
- B7. (x)(Ey)(u,v,w)s. <uvw>ey=<vwu>ex.
- B8. (x)(Ey)(u,v,w)s. <uvw>sy=<uwv>sx.
- C1. (Eu)_S: (Ez)_S. zeu.(x)_S: xeu. \supset (Ey)_S. yeu. $x \subseteq y$. $x \neq y$.
- C2. (x) (Ey) (u,v); :usv.vex.) .usy.
- C3. $(x)_{s}(z):.Un(z):\supset :(Ey)_{s}(u)_{s}:usy.\equiv .(Ev)_{s}.vex.\langle uv\rangle \epsilon z.$
- C4. (x) $_{S}$ (Ey) $_{S}$ (u) $_{S}$, $u \le x \supset u \le y$.

Dl. (x):.(Ey) s.yex: >:(Eu) s:uex. ~ (Ez) s.zeu.zex.

From the above axioms one can prove, by methods similar to those used in [5], the following theorem:

If

- 1) p is a proposition;
- 2) all the bound variables of p occur only in parts of the form (z) sq;
- 5) all the free variables of p are contained in the set $y_1, y_2, \dots, y_m, x_1, x_2, \dots, x_n$;
 - 4) u does not occur in this set: then

$$+_1(y_1,y_2,\dots,y_n)$$
 (Eu) $(x_1,x_2,\dots,x_n)_s (x_1x_2\dots x_n)$ sump.

Weak forms of the above theorem are stated in [5] on p. 8 and p. 14.

Al does not appear in [5], but has been shown by A Robinsohn to be necessary. A2 is stated in [5] as a definition. (It is not clear, however, what is meant by the word "definition" in [5].) In [5], (x)_s.Cls(x) (every set is a class) appears as an axiom, but is superfluous. DS3 appears in [5] as an axiom.

We note, for future reference, that L_1 has essentially two universes: first, the class of all <u>sets</u> (i.e., the class of all x such that M(x)); second, the "class" of all <u>classes</u>, whether sets or not. This latter "class" is not, strictly

^{3. [9].}

speaking, a class in L_1 , since the definition of M(x) is such that any member of a class is automatically a set. Thus, while we may define a class for the universe of sets, the universe of classes can be defined only by means of a statement.

It may be of interest that Gödel's proof of the consistency of the axiom of choice with L₁ can be carried out if Cl is replaced by (Ex).M(x), but not if Cl is omitted without replacement by some axiom asserting the existence of at least one set. Also, Gödel's proof is easily carried out without use of Dl, and Dl can then be proved for the model defined in [5], thus giving a simple consistency proof for this axiom.

with complete precision, since this would be possible only if we restricted L_2 to be a particular system of logic, and we wish our results to be valid at least for a modification of the simple theory of types and for L_1 . We shall, instead, state for L_2 certain general requirements which are satisfied by most systems of logic, list expressions assumed to be definable in L_2 , and list theorems assumed to be provable in L_2 . It will follow from results obtained in [5] that L_2 can be taken to be L_1 , and it will be shown in Part II that L_2 can be taken to be the simple theory of types plus appropriate additional axioms (p. 64).

We assume that among the symbols, primitive or

defined, of $L_{\rm S}$ are the constants (,), ϵ , and an infinite set of variables, possibly arranged in types. We assume that any formula constructed from these symbols and variable which is a proposition of type theory is a proposition of $L_{\rm S}$.

We assume that the expressions (x)p, (Ex)p, (E₁x)p, \sim p, pvq, p·q, p⊃q, p≡q have been defined in the usual manner, and that L₂ contains the propositional calculus and the lower functional calculus, together with the usual finitist rules of inference. We define the notation "|-" analogously to the notation "|-" of L₁.

We define free and bound variables as in L_1 , and the notation $\{Sxp\}$ (y) and the phrase "confusion of bound variables in $\{Sxp\}$ (y)" as in [10]. However, if p(x) denotes a proposition, we shall write p(y) for $\{Sxp\}$ (y) when convenient. Syntactical variables are defined for L_2 as for L_1 , but we also use $P,Q,R,\cdots,\alpha,\beta,Y,\cdots$ as syntactical variables whose values are variables.

We assume that a symbol ,=, has been defined in L2 such that

T1. $\vdash (x,y):x=y.\equiv (z).zex\equiv zey.$

T2. If there is no confusion of bound variables in $\{Sx p(x)\}$ (y), then $\{(x,y):p(x).x=y.\supset p(y).$

We assume that L_2 contains <u>abstractions</u>, $\hat{x}p$, and <u>descriptions</u>, ℓxp , such that whenever p is a proposition of the theory of types then T5, T4, and T5 are provable.

T3. If there is no confusion of bound variables in $\{S \times p\}$ (y), then

+ (y):.(Ez).yzz:⊃:yzxp.≡. {Sxp}(y).

T3 is valid in both the theory of types and L_1 . It will be noted that in every case (in Part I) where we assert $y \in \mathbb{A}_{p \in \mathbb{Z}} \cdot p(y)$, p is a proposition of type theory, and one can prove (Ez). yez in L_1 .

T4. If neither z nor v occurs free in p and there is no confusion of bound variables in $\{Syp\}$ (ι xp) or $\{Syp\}$ (v), then \vdash (Ez)(v):v=z. \equiv . $\{Syp\}$ (v):. \supset :. $\{Syp\}$ (ι xp).

T5. If there is no confusion of bound variables in $\{Sxp\}$ ($\hat{y}q$), then

+(x)p.⊃. [Sxp] (ŷq).

F(x)p.⊃. [Sxp] (,yq).

The second part of T5 is frequently stated as $\vdash (x)p.(E_1y)q.\supset. \{Sxp\}$ (lyq). However, from this one can obtain the theorem in T5 by taking lyq to be anything convenient (for example, 0) in those cases where $\sim (E_1y)q$. See [8], \$27.

We assume that the ordered pair of x and y, $\langle x,y \rangle$, has been defined in such a way that the type (if this is meaningful) of $\langle x,y \rangle$ is the same as the type of x and y,⁴ and such that:

(x,y,u,v):<x,y>=<u,v>.=.x=u,y=v.

The comma in <x,y> will be omitted whenever this

^{4.} See [7].

omission causes no ambiguity.

The following are definitions of L_2 :

- Dl. <xyz>=df <<xy>z>.
- D2. rel=df $\hat{R}((x):xxR.\supset.(Eu,v).x=\langle uv\rangle).$
- D3. Sy=df $\hat{R}((u,v,w);\langle uv\rangle \in R,\langle uw\rangle \in R, \supset, v=w)$.
- D4. Muy=df 2(zemvzey).
- D5. x ^ y=df 2(zex.zey).
- D6. \overline{x} =df $z(z \sim \epsilon x)$. x-y=df $x \wedge \overline{y}$.
- D7. Fnc=df rel o Sv.
- D8. $Arg(R)=df \hat{z}((Ey).\langle zy\rangle \epsilon R)$.
- D9. Val(R)=df &((Ey).<yz>sR).
- Dlo. C(R)=df Arg(R), U Val(R).
- Dll, $U(x)=df(\hat{z}(z=x))$.
- Dl3. $Can(x)=df \hat{z}((Ey),yax,z=U(y))$. $Can^{2}(x)=df Can(Can(x))$.
- D14. r Can(R)=df $\hat{\mathbf{u}}$ $\hat{\mathbf{v}}$ ((Ez,w).<zw>eR.u=U(z).v=U(w)) r Can²(R)=df r Can(r Can(R)).
- D15. $R^{-1}=df \hat{u} \hat{v} (\langle vu\rangle \epsilon R)$ $\tilde{R} = df R^{-1}$.
- D16. $\bigwedge = df \hat{x}(x\neq x)$.
- D17. $V = df \hat{x}(x=x)$.
- D18. R'x=df $lz((E_1y).\langle xy\rangle \epsilon R.\langle xz\rangle \epsilon R: v:z=v.\sim(E_1y).\langle xy\rangle \epsilon R).$
- Dig. 1-1-df R(ReFnc.R-1eFnc).
 - D20. xRy=df <xy>sR.

D21. x smRy=df Ral-1.Arg(R)=x.Val(R)=y.

D22. x sm y=df (ER).xsm_Ry.

D23. trans=df $\hat{R}((x,y,z):xRy.yRz.\supset .xRz)$.

D24. antisym=df $\hat{R}((x,y):xRy.yRx.\supset .x=y)$.

D25. connex=df $\hat{R}((x,y):x,y\in C(R). \supset xRyvyRx)$.

D26. ref=df $\hat{R}((x).xeC(R) \supset xRx)$.

D27. ser=df trans o antisym o connex o ref o rel.

D28. $\min_{\mathbb{R}} u = \mathrm{df} \ \ell z((x)) : x \in u \cap C(\mathbb{R}) . (y) . y \in u \cap C(\mathbb{R}) \supset x \in u \cap C(\mathbb{R}) . (y) . y \in u \cap C(\mathbb{R}) \supset x \in u \cap C(\mathbb{R}) . (y) . y \in u \cap C(\mathbb{R}) \supset x \in u \cap C(\mathbb{R}) . (y) . (y)$

D29. bord=df $\hat{R}(u): u \neq \bigwedge u \subseteq C(R) \cdot \supset (Ey) \cdot y \in u \cdot y = \min_{R} u$.

D30. Ω =df bord α ser.

D30.1. PsmorRQ=df Rsl-1.Arg(R)=C(P).Val(R)=C(Q).
(x,y).xPy >R 'xQR'y.xQy > K'xPK'y.

D31. Psmor Q=df (ER). PsmorRQ.

D32. $\max_{\mathbb{R}} u = \text{df} \ \ell z(zsu \cap C(\mathbb{R}).(x).xsu \cap C(\mathbb{R}) \supset x\mathbb{R}z).$

D33. x1 P=df 2((Eu,v).z=<uv>.usx.zsP).

Most of the above symbols are more or less standard notation in logic. For those that are not we give the following intuitive explanation.

rel is the class of relations, Sv the class of single valued classes, Fnc the class of functions (single valued relations). Arg(R) and Val(R) are the classes of arguments and values respectively of R. Note that the arguments of R occur as the first element of ordered pairs in R, and the values as the second element. (Just the

reverse holds in L₁.)

Can(x) is the "Cantorian" of x, the class of unit classes of members of x. r Can(R) is the relational Cantorian of R, with an analogous interpretation.

R x, the value of R at x, is defined so as to be V if x is not an argument of R or R is not single valued at x. This becomes convenient following T37. $\min_{R} u$ is similarly defined for the same reason. We do not define $\max_{R} u$ in this way, as it turns out we are never interested in $\max_{R} u$ except when we have already proved that there is a last element in u according to R.

Most of the assumed theorems which follow are standard theorems of type theory, set theory, and other systems, and will not be proved in this paper. Those which are not so well known are marked with an asterisk (*) and will be proved in Part II. T27 depends on a weak form of the axiom of choice (Axiom A, p. 64), and T27 and all theorems which depend on T27 are marked with a dagger (†). T84 (p. 42) depends on an axiom (Axiom B, p. 64) which apparently can not be proved in the theory of types, and T84 and theorems which depend on it will be marked with two daggers (††).

We assume that a relation, \leq , has been defined in L₂ such that:

r6. - ≤€,Ω.

17. + V~ &C(().

T7 could be replaced by \vdash (Ex).x~ ϵ C(\leq), but since in all known treatments of ordinal number theory one can prove \vdash V~ ϵ C(\leq), we assume this theorem for convenience.

D34. NO=df C(<).

D35. $\zeta = \text{df } \alpha \beta (\alpha \leq \beta \cdot \alpha \neq \beta)$.

We assume that expressions 0, 1, 2, 3, 4, 5, 6, 7, 8 have been defined in L_2 such that:

T8. | 0,1,...,8ENO.

T9. | 0=min NO.

T10. ├ ~ (Ea).0<a<1 ├~ (Ea).1<a<2

T11. - O<1.1<2.2<3...7<8.

We assume that an expression, ω_o , and an operation, +, have been defined in L_2 such that:

TIR. + WOENO.

T13. + 8<ω₀.

T14. - (α,β).α,βεΝΟ ⊃ α+βεΝΟ.

T15. $\vdash (\alpha,\beta).\alpha,\beta < \omega_0 \supset \alpha + \beta < \omega_0$.

We assume that a relation, $\leq_{\mathbf{t}}$, has been defined in L₂ such that:

*T16. + < & ...

*T17. $\vdash C(\leq_t) = \hat{z}((E\alpha,\beta,\gamma): \alpha \leq 8.\beta, \gamma \in NO.z = \langle \alpha\beta\gamma \rangle).$

ΨP18. + (a,β, γ, μ,ν,ξ)::a, μ≤8.β, γ, ν,ξ εΝο:. つ:.<aβ と>となるととはいる >:=: max (U(B) U U(Y)) < $\max_{\langle U(v) \cup U(\xi) \rangle} \vee \max_{\langle U(\beta) \cup U(Y) \rangle} =$ max(U(U)) U(を)): がくる、V. が=る、おくび、V. が=る、B=び、CKル、 *T19. - St smor S. We assume that the following are provable in Lot TRO. | (P,Q,R,S):P,Q& M.PsmorRQ.PsmorSQ. > .R=S. T21. | (P).Ps 1] TCan(P) & 1. T22. | (P).C(r Can(P))=Can(C(P)) T23. - (x,y,z):x smy.y smz.⊃.x smz. *+T27. | (x):x ⊆ NO. ~ (x sm NO). ¬. (Ea). as NO. (β). β ex $\supset \beta$ <a. #T28. $-(x): x \subseteq NO.(Eq).qsNO.(\beta).\betasx \supset \beta < q$: □: ~ (x sm NO). From T19 and T20 we obtain at once: T29. \vdash (E₂P). \leq t smor_p \leq . Hence we can define: D34. J=df l $P(\leq_k smor_p \leq)$. D35. $J_0=df \hat{x}\hat{y}((E\alpha,\beta),\alpha,\beta\in\mathbb{N}0.x=\langle\alpha\beta\rangle,y=J^{\langle0\alpha\beta\rangle})$ $J_1=df \hat{x}\hat{y}((Ea,\beta),a,\beta\in\mathbb{N}0.x=\langle\alpha\beta\rangle.y=J^{\langle}\{L\alpha\beta\rangle)$ J_g=df ŵγ((Eα,β).α,βεΝΟ.x=<αβ>.y=J '<8αβ>).

M=8. Z=J8).

D36. $K_1 = df \hat{\gamma} \hat{\alpha}(\gamma, \alpha \epsilon \text{NO.}(E_{\mathcal{U},\beta}).\beta \epsilon \text{NO.}(\mathcal{S}. \forall = J^{<}, \alpha \beta))$ $K_2 = df \hat{\gamma} \hat{\beta}(\gamma, \beta \epsilon \text{NO.}((E_{\mathcal{U},\alpha}).\alpha \epsilon \text{NO.}(\mathcal{S}. \forall = J^{<}, \alpha \beta)).$

We assume that the following theorems are provable in \mathbf{L}_2 :

T30. $\vdash \text{Val}(J_0) \cup \text{Val}(J_1) \cup \cdots \cup \text{Val}(J_8) = \text{NO}$.

T31. $\vdash (\mu, \nu): \mu, \nu \leq 8. \mu \neq \nu. \supset . Val(J_{\mu}) \cap Val(J_{\nu}) = \Lambda.$

*T32. $\vdash (\alpha, \beta, \mu): \alpha, \beta \in \mathbb{N}0$. $\mu \leq 8$. \supset . $\max_{\zeta} (\mathbb{U}(\alpha) \cup \mathbb{U}(\beta)) \leq J^{\zeta} \zeta \mu \alpha \beta \rangle$.

*T33. + (,β,μ):a,βεΝΟ.Ο<μ≤8. ⊃ .max<(U(a) υ U(β)) <J < μαβ>.

*T34. \vdash (a):asNO. \supseteq . $K_1^c \alpha \leq \alpha$. $K_2^c \alpha \leq \alpha$.

*T35. \vdash (a):aeN0.a~ eVal(J₀). \supset . K_1 a<a. K_2 a<a.

*T36. $\vdash \omega_{o}$ *Val (J_0) .

We assume further that T37 (p. 25) is provable in L_2 . This amounts to assuming that a certain type of definition by induction, of which T37 is an instance, can be carried out in L_2 . Theorem 7.5 of [5] is easily generalized to obtain a theorem from which T37 follows, and a theorem guaranteeing the possibility of such a definition by induction in the theory of types will be proved in Part II.

We assume finally that T84 (p. 42) is provable in L_2 . T84 will be proved in Part II, from the axioms mentioned in the introduction.

S3. Construction of the Model. We motivate the method which will be used to model L_1 in L_2 by an intuitive discussion of the method used by Gödel to model a logic Δ (obtained by adding to L_1 an axiom from which the axiom of

choice and the generalized continuum hypothesis are provable) in L_1 .

Gödel defines \leq_t , J, J₀, \cdots , J₈, K₁, and K₂ as in §2. It follows from these definitions that if α $\text{EVal}(J_i)$ then α +leVal (J_{i+1}) if i+l<9, and α +leVal (J_0) if i+l=9. Thus the $\text{Val}(J_i)$ function, in a sense, as congruence classes mod 9; any sequence of ordinals, α , α +l, \cdots , α +8 will be respectively in a cyclic permutation of $\text{Val}(J_0)$, \cdots , $\text{Val}(J_8)$.

A function F is then defined by transfinite induction such that

 $\alpha \text{eval}(J_0) \cdot \neg \cdot \text{F}' \alpha = \text{Val}(\alpha \land F)$ $\alpha \text{eval}(J_1) \cdot \neg \cdot \text{F}' \alpha = \text{U}(F'K_1'\alpha) \cup \text{U}(F'K_2'\alpha)$ $\alpha \text{eval}(J_2) \cdot \neg \cdot \text{F}' \alpha = \text{E} \cap (F'K_1'\alpha)$ $\alpha \text{eval}(J_3) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \cap (F'K_2'\alpha)$ $\alpha \text{eval}(J_4) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \wedge (F'K_2'\alpha)$ $\alpha \text{eval}(J_5) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \cap \text{Val}(F'K_2'\alpha)$ $\alpha \text{eval}(J_6) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \cap (F'K_2'\alpha)^{-1}$ $\alpha \text{eval}(J_7) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \cap \text{Cnv}_2(F'K_2'\alpha)$ $\alpha \text{eval}(J_8) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \cap \text{Cnv}_2(F'K_2'\alpha)$ $\alpha \text{eval}(J_8) \cdot \neg \cdot \text{F}' \alpha = (F'K_1'\alpha) \cap \text{Cnv}_2(F'K_2'\alpha)$

where

 $\operatorname{Cnv}_{\mathfrak{L}}(\mathbf{x}) = \operatorname{df} \ \hat{\mathbf{u}} \ \hat{\mathbf{v}} \ \hat{\mathbf{w}}(\langle \mathbf{v} \mathbf{w} \mathbf{u} \rangle \in \mathbf{x})$ $\operatorname{Cnv}_{3}(\mathbf{x}) = \operatorname{df} \ \hat{\mathbf{u}} \ \hat{\mathbf{v}} \ \hat{\mathbf{w}}(\langle \mathbf{u} \mathbf{w} \mathbf{v} \rangle \in \mathbf{x})$ $E = \operatorname{df} \ \hat{\mathbf{x}} \hat{\mathbf{y}}(\mathbf{x} \in \mathbf{y}).$

(Note that E is not definable in a system based on the theory of types. However, in L₁ the existence of E follows from Axiom Bl.)

The universe of sets is then defined to be L=Val(F). To define the universe of classes we consider the following:

- 1). The members of a class should be sets; hence, if x is a class we should have xcL.
- 2). One of the essential properties of sets in L₁ is that if y is a set and x_Cy, then x is a set (see 5.12 in [5]). Since a subclass of a set can be obtained by intersecting the set with an appropriate class, this can be stated as a property of classes; if x is a set and y is a class, then x_{\(\text{Y}\)} y is a set.

The above considerations suggest that the universe of classes be defined by the statement $\mathcal{L}(x)=df$ xcl. (2).zelozo xel.

If Δ is to be modelled in the universes defined above, then L_1 itself must be modelled in these universes; this will be accomplished if the axioms of L_1 , when set and class quantification are restricted to the appropriate universes, remain provable in L_1 ; i.e., if in the axioms every expression of the form $(x)_s p$ is replaced by $(x)_*x \le D p$, and every expression of the form $(x)_p$ is replaced by $(x)_*\mathcal{L}(x) \supset p$, then the resulting propositions should remain provable in L_1 . (We might also in this process of "relativization" use some other relation in place of ϵ , but ϵ is defined in such a way that this is unnecessary.) To indicate how this happens, we consider two examples.

I) Consider Axiom A3. This says that for any sets x and y, there is a set z such that for every set u, $uzz. \equiv .u = \overset{\checkmark}{z} \lor u = y$. We first note the fact, easily proved by induction and intuitively obvious from the definition of F, that $(x,z):xzL.zzx. \supset .zzL$. From this it follows that the relation = between sets is the same for the model as for L_1 . Thus, what we need to show is that for any x,yzL there is a zzL such that for all u, $uzz. \equiv .u = x \lor u = y$; i.e., $u(x) \cup u(y)zL$.

So suppose x,yeL. Then x=F'a,y=F' β . Now consider the triple $\langle L\alpha\beta \rangle$ and let J' $\langle L\alpha\beta \rangle = \gamma$; i.e., J' $\langle \alpha\beta \rangle = \gamma$. Obviously $\gamma \in Val(J_1)$, and $K'_1 \vee =\alpha$, $K'_2 \vee =\beta$. So by the definition of F, F' $\gamma = U(F'\alpha) \cup U(F'\beta)$. Hence, F' $\gamma = U(x) \cup U(y)$. Thus, $U(x) \cup U(y) \in L$.

2) Consider Axiom Bl. As in the first example, it is shown that any ordered pair, $\langle x,y \rangle$, of sets is the same in the model as in L₁. So to prove Bl for the model we must show that there is a class z such that $\mathcal{L}(z)$ and (x,y): $x,y \in L : \supset .\langle x,y \rangle \in z \equiv x \in y$.

It is first shown that \mathcal{L} (EnL). Obviously EnLSL. Suppose wel. Then as pointed out in the first example, (w). we sud wel; i.e., uSL. Hence, unEnL=unE=Enu. Since wel, let w=F'a, and let J'(200>= Y. So Y =J'(400>. Then F'Y =En(F'K'_1Y)=En(F'a)=Enu. Thus Enwel. We have now shown that \mathcal{L} (EnL).

Since it is obvious that (x,y):x,ysL. > . <xy>sE L=xey,

we can take the desired z to be E L, and we have proved Bl for the model.

It is not too surprising that with quantification restricted to the appropriate universes, Axioms Bl-B8 remain provable. It is clear that F is defined in such a way that starting with Λ a sequence of sets is produced such that for any set in the sequence there appears later in the sequence each of the classes whose existence is asserted by Bl-B8. It is perhaps less obvious that this holds also for classes of sets in the sequence, which satisfy the condition \mathcal{L} ; however, comparison of the definitions of F and \mathcal{L} indicates that both are designed for this purpose (among others), and one can at least hope that everything will work out all right (as it does for L_1).

It is certainly not obvious that Axioms Cl-C4 will remain provable for the model; in fact, as will be seen when we model L_1 in L_2 , the proofs of C3 and C4 for the model depend essentially on certain highly non-trivial properties of ordinals, properties that unfortunately seem not to be provable in the theory of types. In L_1 , however, such disturbing difficulties do not arise, and all the axioms of L_1 , plus the additional axiom of Δ , are provable for the model.

Now let us consider how we might modify the procedure described above so that we can model L_1 in L_2 . We do not wish to define the specific function F in L_2 , since the class E occurs in the definition of F, and this class is

not definable in the theory of types. Thus we wish to define a function, G, by means available in the theory of types, which will have approximately the same properties as F. To see how to do this, we reason heuristically as follows.

For every ordinal, a, there is a correspondent in L, namely F'a. However, different ordinals may have the same correspondent in L; e.g., F'0=F'2= / . Thus the correspondence between the ordinals and L is not one-to-one. However, we can define the index of u, usL, as the least ordinal, a, such that F'g=u, This establishes a one-to-one correspondence between L and a subclass of the ordinals. Hence, for any statement about members of L we should be able to define a corresponding statement about the indices of these members, which is, in a sense, a translation of the given statement. This suggests the possibility of constructing a model of L1 in the ordinals and classes of ordinals, by means of a function, G, obtained from F by using as values of G the classes of ordinals defined by the translations of the statements which defined the various values of F. More precisely, it is suggested that we define a function, G, such that for any x, if xsl (and hence, as pointed out previously, x SL) there will be a class of ordinals, A, AsVal(G), such that the members of A are the indices of the members of X. This will, of course, have to be done without explicit reference to F, since we are not assuming that F is definable in Lo.

Now if we expect to model L₁ by using Val(G) as the universe of sets, we must define a relation, ϵ_g , to function as the membership relation for the model. Further, if we are to prove Axiom Bl for the model, ϵ_g must be defined in such a way that if $x\epsilon_g y$ then x and y are of the same type. Also, if $x\epsilon_g y$, then x should be a set; i.e., $x\epsilon Val(G)$. It should now be clear how this can be accomplished. We shall take $x\epsilon_g y$ to mean that the index of x is a member of y. Then $x\epsilon_g y$ will be meaningful when x and y are of the same type, and will in addition be defined by a statement which contains parts of the form $u\epsilon w$ only when u is one type lower than w.

Just described, the values of G will have to be classes of ordinals. Since in the theory of types the arguments and values of a function must be of the same type, this means that G will have to be defined over a well-ordered class whose elements are classes of ordinals, rather than ordinals. Hence we shall define G over Can(NO) rather than NO, and in the preceding discussion we should have written G'U(a) rather than G'a.

A function having the above properties will be defined

in To7.⁵ Before defining this function G, we first introduce some definitions which will shorten the formulas occurring in the definition of G, and will perhaps also make clearer the way in which G is obtained from F.

D37. Ind $(x) = df \min_{x \in \mathcal{X}} \hat{y} (x) = df \min_{x \in \mathcal{X}} \hat{y} (x) = x)$.

D38. $\{Y \delta\}$ (w)=df min_ β (β ϵ NO. w'U(β)= $U(Ind_{w}(w^{c}U(Y))) \cup U(Ind_{w}(w^{c}U(\delta))).$

D39. [8] (w)=df [88] (w).

D41. $\langle \alpha \beta^{\vee} \rangle \langle w \rangle = \text{df } \langle \alpha, \langle \beta^{\vee} \rangle \langle w \rangle \rangle \langle w \rangle$.

D42. $\hat{a}_{w}(p)=df \hat{a}(asN0.a=Ind_{w}(w^{s}U(a)).p).$

D43. (a) $_{w}p=df$ (a) (asNO.a=Ind $_{w}(w^{\prime}U(a)).>.p)$.

We make use of the following temporary abbreviations, for T37 only:

w=df(Can(μ(μ<β)))1 G

 $Z(\langle Y \delta \rangle (w)) = df Y, \delta, \{Y\}(w), \{Y \delta\}(w), \langle Y \delta \rangle (w) \langle \beta \rangle$

 $Z(\langle Y \delta_{7} \rangle \langle w \rangle) = \text{df} \ Y, \{ \forall \} (w), \{ Y, \langle \delta_{7} \rangle \langle w \rangle \} \ (w), \langle Y \delta_{7} \rangle (w) < \beta.$

Z(<87 >(w)).

^{5.} Actually 737 is not a definition but a theorem which asserts the existence of a function having certain recursive properties. However, it is customary to call such theorems "definitions by induction".

T37. \vdash (EG): GsFnc.Arg(G)=Can(NO).G'U(O)= \bigwedge . (β):βεNO.β≠0.⊃.G 'U(β)= $\ell z[\beta \in Val(J_0).z=\hat{a}_w(\alpha < \beta).V.$ $\beta \text{sVal}(J_1).z=\text{U}(\text{Ind}_{\text{w}}(\text{w}^c\text{U}(\text{K}_1^c\beta))) \cup \text{U}(\text{Ind}_{\text{w}}(\text{w}^c\text{U}(\text{K}_2^c\beta))). \lor.$ $\beta = Val(J_p) \cdot Z = w'U(K_1^2\beta) \cap \hat{a}_w((E Y, \delta)_w \cdot Z(\langle Y \delta \rangle(w)).$ α=< γδ>(₩). γεψ (U(δ)). ν. βεVal(J3).z=w'U(K'β) n w'U(K'β).V. $\beta \text{sVal}(J_4) \cdot z = \text{w}(U(K_1^2\beta) \cap \hat{\alpha}_{\text{w}}((E \times \delta)_{\text{w}}, Z(\langle Y \delta \rangle (\text{w})).$ G=<Υδ>(w).δεω (U(K2β)). V. $\beta \text{sVal}(J_5) \cdot \text{Z=w} \text{`}U(\text{K}_1^{\zeta}\beta) \wedge \hat{a}_{\text{w}}((\text{E}\delta)_{\text{w}} \cdot \text{Z}(\langle \delta \alpha \rangle (\text{w})).$ <δα>(w)εw'U(Κ'β)). V. βεVal(J₆).z=w'U(K₁β) \ a ((E Y, δ) , Z(< Y δ>(w)).

βεVal(Jn). Z=w 'U(K'β) Λ α ((E Y, δ, γ) ... Z(< Y δ γ>(w)). 2(⟨δηΥ⟩(w)).a=⟨Υδη>(w).⟨δηΥ⟩(w)εw(U(Kcβ).ν. βεVal(J₈).z=w'U(K'β) \ α ((E & ,δ, γ) .Z(< &δ γ>(w).

Z(<γηδ>(w).α=<γδη>(w).<γδ>(w)εw (U(Kgβ))].

Throughout the rest of this paper we let G be a function satisfying the proposition in T37.

D44. Ind(x)=df Ind_G(x).

G=(γδ>(W). (δγ>(W)εW'U(K'ρβ)). ν.

 $(\alpha,\beta):\beta\in\mathbb{N}0.\alpha\in G^{\mathfrak{C}}(\beta).\supset \alpha<\beta.\alpha=\mathrm{Ind}(G^{\mathfrak{C}}(\alpha)).$

Proof by induction on β . If $\beta=0$, then $G'U(\beta)=\bigwedge$ and the theorem is vacuously true. Assume the theorem for all ordinals less than 8.

Case 1. $\beta \in Val(J_0)$. Then $G^cU(\beta) = \widehat{a}_w(\alpha < \beta)$, where $w=(Can(\hat{\mu}(\mu \leqslant \beta))) \mid G$. Hence, $G'U(\beta) = \hat{\alpha}_G(\alpha \leqslant \beta)$.

But (a): $asa_G(a \le \beta)$. \supseteq . $a \le \beta$. $a = Ind(G^{\circ}U(a))$.

Case 2. $\beta \in Val(J_1)$. Then $\beta = J_1 < \gamma > 0$. Hence $G^c U(\beta) = U(Ind_W(w^c U(\gamma))) \vee U(Ind_W(w^c U(\delta)))$, where $W = (Can(A(M < \beta))) \land G$. But by T35, $Y < \beta$, $\delta < \beta$, so $G^c U(\beta) = U(Ind(G^c U(\gamma))) \vee U(Ind(G^c U(\delta)))$. Hence, $Cae^c U(\beta) = U(Ind(G^c U(\gamma)) \vee Cae^c U(\delta))$. Obviously, $Cae^c U(\beta) = U(\beta) =$

Case 3. β aVal(J_M), M =2,3,...,8. Then $G'U(\beta)=w'U(K_1'\beta) \cap \widehat{a}_w(...)$, where $w=(Can(\widehat{\mu}(M < \beta))) \cap G$. By T35, $K_1'\beta < \beta$, so $G'U(\beta)=G'U(K_1'\beta) \cap \widehat{a}_w(...)$. Hence, $G'U(\beta) = G'U(K_1'\beta)$. So by hypothesis of induction, $G'U(\beta) = G'U(\beta) = G'U(G')$.

D45. $E_g=df \stackrel{\wedge}{\alpha_G}((EY,\delta)_{G},\alpha=\langle Y\delta \rangle(G),Y \in G'U(\delta)).$

D48. $\{x,y\}_{g}=df G^{C}U(\{Ind(x),Ind(y)\}\}$ (G)).

D47. $\langle xy \rangle_g = df \left\{ \left\{ x, x \right\}_g, \left\{ x, y \right\}_g \right\}_g$.

D48. $\langle xyz \rangle_g = df \langle x, \langle yz \rangle_g \rangle_g$.

D49. $(V \times y)_g = \text{df } \hat{a}_G((E \vee , \delta)_{G \cdot \alpha} = \langle \vee \delta \rangle (G) \cdot \delta E y)$.

D50. $D_g(y) = df \hat{\alpha}_G((E\delta)_{G^*} < \delta \alpha > (G)$ sy).

D51. $\operatorname{Cnv}_{1g}(y) = \operatorname{df} \widehat{a}_{G}((EY, \delta)_{G \cdot \alpha} = \langle Y \delta \rangle (G) \cdot \langle \delta Y \rangle (G) \operatorname{sy}).$

D52. $\operatorname{Cnv}_{\geq g}(y) = \operatorname{df} \widehat{\alpha}_{G}((E \vee, \delta, \nu)_{G \cdot G} = \langle Y \delta \nu \rangle \langle G) \cdot \langle \delta \nu V \rangle \langle G)$ sy).

D53. $\operatorname{Cnv}_{\operatorname{Sg}}(y) = \operatorname{df} \widehat{\operatorname{d}}_{\operatorname{G}}((EY, \delta, \nu)_{\operatorname{G}}, \alpha = \langle Y \delta \nu \rangle (G), \langle Y \nu \delta \rangle (G) \varepsilon y).$

T39. $\vdash (\alpha,\beta)_G(EY)_{G^*}G^*U(Y)=U(\alpha)\cup U(\beta)$.

Proof. By T37, $% = Ind(G^{\circ}U(J_{1}<\alpha\beta>))$ is such an ordinal.

From T39 and D46 we get

T40.1. \vdash $(\alpha,\beta)_{G}$. $\{G^{\prime}U(\alpha),G^{\prime}U(\beta)\}_{g}=G^{\prime}U(\{\alpha,\beta\})(G)=U(\alpha)\cup U(\beta)$ By similar methods we have

T40.2. \vdash $(\alpha,\beta)_G.\langle G^c U(\alpha),G^c U(\beta)\rangle_g=G^c U(\langle \alpha\beta\rangle\langle G\rangle)$ = $U(\{\alpha\}\langle G\rangle) \cup U(\{\alpha,\beta\}\langle G\rangle).$

The above theorems indicate how $\{x,y\}_g$ and $\langle xy\rangle_g$ will function as the unordered pair and ordered pair respectively in the model.

T40.5. \vdash $(a,\beta)_{G}.\alpha < \{\alpha\beta\} (G).\beta < \{\alpha\beta\} (G).$

Proof. By T40.1, $G^{C}U(\{\alpha\beta\}(G))=U(\alpha)\cup U(\beta)$,

so $\alpha,\beta \in G^{\zeta}U(\{\alpha\beta\}(G))$. Hence by T38, $\alpha,\beta \in \{\alpha\beta\}(G)$.

T40.4. $\vdash (\alpha,\beta)_{G}.\alpha << \alpha\beta > (G).\beta << \alpha\beta > (G).$

Proof. Use T40.3.

The following table of certain selected values of G shows the manner in which G produces the indices of the sets of L_1 .

Ordi- nals (c)	Corre- spond- ing triples by J	Members of G ^ζ U(α)	Index of G'U(a)	Remarks
0	<000>	none	0	
1 1	<100>	0	1	$G'U(1)=U(0)=\{G'U(0)\}_{g};$
	<200>	none	0	i.e., l= {0} (G)
3	<300>			
4	<400> <500>			
5 6	<600>			
7	<700>			
88	<800>	none	Ö	
9	<010>	0,1	9	$G^{C}U(9)=U(0)\cup U(1)$
10	<110>	0,1	9	= $\{G'U(0), G'U(1)\}$ g;
11	<210>	none	0	i.e., 9= {0,1} (G)
12	<310>	0	1	
13	<410>	none	0	
14	<510>			
15	<610>			
16	<710>			
17	<810>	none	<u> </u>	
18	<001>	0,1,9	18	
19	<101>	0,1	9	
20	(201)	none	0	

	مست کری کے جم	eginalis e esperajor a gran			
	21	<501>			The state of the s
	22	⟨401⟩		1	- Character of the Char
	23	<501>			
	24	<601>			
	25	<701>			
	28	<801>	none	0	
	27	<011>	0, 1, 9, 18	27	
,	28	any	1	28	G'U(28)=U(1)=
	29	(211)	none	O	$\{G_U(1)\}_g = \{\{G_U(0)\}_g\}_g$
	3 0	<211>		ŢŴ.	= <g'u(0),g'u(0)>g;</g'u(0),g'u(0)>
	71.	<411>		,	i.e., 28=<0,0>(G)
	32	<511>	2 2		
	వేదే	<611>			tus ti
	34	<711>			
	35	(811>	none	0	
	36	<020>	0,1,9,18,27,28	36	
	37	<120>	0 '	1	
,	58	(220)	··· none	. Oa	So we where the control of the contr
	5 9	<320>			
,	40	<420>			
	41	<520>) <u>\$</u> (-).		
	42	<620>	1		
	43	<720>			
	44	<820>	none		
		entant v Mily Deserve			
		22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	22 <401> 23 <501> 24 <601> 25 <701> 26 <801> 27 <011> 28 <111> 29 <211> 30 <311> 31 <411> 32 <511> 33 <611> 34 <711> 35 <811> 36 <020> 37 <120> 38 <220> 40 <420> 41 <520> 42 <620> 43 <720> 44 <820>	22	22

45	(021)	0,1,,28,36	45	
46	<121>			
47	<221>	none		
48	<321>			
49	<421>	Tronsaction and the second	(personal personal pe	
50	<521>			
51.	<621>	T-t-enclared in the Control of the C		Control of the Contro
52	<721>	**************************************		
<u>53</u>	<u> </u>	none	0	
54	<002>	0,1,,36,45	54	
55	<202>	4	1	
56	<202>	none	0	
57	<302>			The control of the co
58	<402>			
59	<502>			7.7
60	<60ଥ>			
61	<702>			
62	<802>	none	0	en e
63	<012>	0,1,,45,54	63	
64	<112>	0,1	9	
65	<212>	none	0	
66	<312>	0	1	
67	<412>	none	0	
68	<512>	The state of the s		
69	<61 ₂ >	Transport and the second and the sec		
	46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	46	46	46

70	<712>			
71	<u> </u>	none	0	
72	< 022>	0,1,,54,63	72	
73	<158>	0	1	
74	<2882 >	none	0	
75	<322>		v 5	
76	<422 >	***		
77	₹522>	reduction of the control of the cont		
78	<622>		and the same of th	
43	<722>	deligner of the second of the		
80	<822>	none	0	
	/003.\	0 790 720	738	
738	<091>	0,,729,730	4	G °U(739)=U(1) ∪ U(9)
739	<191>	1,9	739	
•		turn e		$= \{G'U(1), G'U(9)\}_{g}$
		Property of the state of the st		$= \left\{ \left\{ G'U(0) \right\}_{g} \left\{ G'U(0), G'U(1) \right\}_{g} \right\}_{g}$
	erection and the second			= <g<sup>cU(0),G^cU(1)>g;</g<sup>
	era de de la companya			i.e., 739=<0,1>(G)
42.19		0.7	BOER	
7056	(0,28,0>	0,1,***	7058	a feel man and and and and and
7057	<1,28,0>	28,0	7057	G'U(7057)=U(28) ∪ U(0)
Sur!				= {G'U(28),G'U(0)} g; 1.e., 7057= {28,0} (G)
				Tanks , and
ur (f	in the second section of			

7058	<2,28,0>	1,739	7058	G (T) (T) 58) =
•				U(1) U U(739) = {G'U(1),G'U(739)} 1.e., 7058= {1,739} (G)
7309	<1,28,28>	28	7308	G'U(7309)=U(28) = {G'U(28)}g = {{G'U(1)}g}g = <g'u(1),g'u(1)>g; i.e., 7309=<1,1>(G)</g'u(1),g'u(1)>

T41. I. $\vdash (\mu, \gamma): \mu, \gamma \in \mathbb{N}_0. \supset G'U(J_X^{\prime} \mu \gamma >)$ $= \widehat{a}_G(\alpha < J_0^{\prime} < \mu \gamma >).$

II. $+(u, \gamma): u, \gamma \in \mathbb{N}_0$. $\supset G'U(J_1' \langle u \gamma \rangle)$ $= \{G'U(u), G'U(\gamma)\}_{g'}$

III. $\vdash (u, \gamma): u, \gamma \in \mathbb{N}0. \supset G U(J_2 < u \gamma >)$

=G'U(u) n Eg.

 $= G^{C}U(u) \wedge \overline{G^{C}U(\gamma)}.$

 $V. + (\mu, \gamma): \mu, \gamma \in \mathbb{N}0. \supset G'U(J_{4} < \mu \gamma)$ $= G'U(\mu) \cap (V \times G'U(\gamma))_{g}.$

 $VI. + (\mu, \gamma): \mu, \gamma \in NO. \supset G'U(J_5' \langle \mu, \gamma \rangle)$ $= G'U(\mu) \cap D_g(G'U(\gamma)).$

=G'U(µ) ∩ Cnv₁₉(G'U(γ)).

VIII. $+(N,7):N,7\in\mathbb{N}$ 0. \supset . $G'U(J_7(N7))$

=G'U(u) n Cnvgg(G'U(7)).

IX. $\vdash (u, \gamma): u, \gamma \in \mathbb{N}0. \supset G' U(J_8 < u \gamma))$

 $=G'U(u)\cap \operatorname{Cnv}_{3g}(G'U(\gamma)).$

Proof. Use T37 and T40.1-T40.4.

D54. L=df Val(G).

D55. $100_{\rm C}$ =df $\hat{a}_{\rm G}$ (asNO).

D56. $\mathcal{L}(x)=df x \le NO_{G^*}(z).zel \supset x \cap zel.$

D57. Z (x,y)=df Z (x).Z(y).

T42. $+(x,y):x,y\in L.\supset \{x,y\}_g\in L.x\cap E_g\in L.$

 $x \cap \overline{y} \in L_* x \cap (V \times y)_g \in L_* x \cap D_g(y) \in L_*$

 $x \cap Cnv_{g}(y)$ $sL.x \cap Cnv_{g}(y)$ $sL.x \cap Cnv_{g}(y)$ sL.

Proof. Suppose x,yEL. Let Ind(x)=q,Ind(y)=3. The theorem follows from T41.

T43. + (x).xsloxsnog.

Use T38.

T44. - Vost.

Proof. Use T38.

T45. + (x,y).x,ysloxnysl.

Proof. Suppose x,ysL. Then by T42, $x \wedge y$ sL. So by T42 again, $x \wedge x \wedge y$ sL. But $x \wedge y = x \wedge x \wedge y$. Hence $x \wedge y$ sL.

T46.1. $-(x,y).x,y\in L = \{x,y\}_{g}\in L$.

Proof. By T42, x,ysl $\supset \{x,y\}_g$ sl. Suppose $\{x,y\}_g$ sl; i.e., G'U($\{Ind(x),Ind(y)\}$ (G))sl. Suppose $x \sim$ sl. Then by T44, Ind(x)=V, so G'U(Ind(x)=V. Hence

{Ind(x),Ind(y)} (G)=min $a(G^CU(a)=U(V) \cup U(G^CU(Ind(y))))=V$ by T38 and T7. So $G^CU(\{Ind(x),Ind(y)\}\}$ (G))=V={x,y}g, contradicting T44 and the assumption that {xy}geL.

Hence xsL, and by a similar proof, ysL.

T46.2. | (x,y).x,ysL=<xy>gsL.

Proof. Use T46.1.

T47. | (x,y). <xy>gsL=<yx>gsL.

Proof. Use T48.2.

T48. $\vdash (\alpha,\beta,\gamma,\delta):.\alpha,\beta,\gamma,\delta\in NO_G: \supset:<\alpha\beta>(G)=<\gamma\delta>(G).$ =.\a=\gamma.\beta=\delta.

Proof. Suppose $\langle \alpha\beta \rangle (G) = \langle \forall \delta \rangle (G)$. Then $G'U(\langle \alpha\beta \rangle (G)) = G'U(\langle \forall \delta \rangle (G))$. Hence,

(1) $U(\{a\}(G)) \cup U(\{a\beta\}(G)) = U(\{Y\}(G)) \cup U(\{Y\delta\}(G)).$ Case 1. $\alpha = \beta$. Then $U(\{a\}(G)) = U(\{Y\}(G)) \cup U(\{Y\delta\}(G)),$ so $\{\alpha\}(G) = \{Y\delta\}(G)$. Hence, $U(\alpha) = U(Y)$ $U(\delta)$, so $\alpha = Y = \delta = \beta$.

Case 2. afs.

Subcase 1. $Y = \delta$. Then by Case 1, $\alpha = \beta$, a contradiction. Subcase 2. $Y \neq \delta$. If $\{Y\delta\}$ (G) ϵ U($\{\alpha\}$ (G)), then $Y = \delta$, a contradiction. So by (1), $\{Y\delta\}$ (G) ϵ U($\{\alpha\beta\}$ (G)). Hence,

(2) $U(Y) \cup U(\delta) = U(\alpha) \cup U(\beta).$

If $\{\forall\}$ (G) \in U($\{\alpha\beta\}$ (G)), then $\alpha=\beta$, a contradiction. So by (1), $\{\forall\}$ (G) \in $\{\alpha\}$ (G). Hence,

 $a = \forall.$

Then by (2), (3), and the hypothesis $\alpha \neq \beta$,

 $\beta = \delta_{\bullet}$

T49. \vdash (x):.x \subseteq NO_G.(Ea).asNO.(β). β sx> β <a:>:(Ey).ysL.x \subseteq y.

Proof. Assume $x \le NO_{G} \cdot as NO_{G} \cdot (\beta) \cdot \beta s x \supset \beta < a$. Let

 \forall \mathbf{z} \mathbf{v} \mathbf{z} \mathbf{v} $\mathbf{v$

T50. + (x): L(x). (Ea). αεΝΟ. (β), βεχ > β<α; > ; χελ.

Proof. By T49, (Ey).yeL.x sy. Then since L(x),

xoysL. But xoy=x. So xsL.

T51. - / sL.

T52. - L(NOG).

Proof. Obviously, $NO_G \subseteq NO_G$. Suppose xeL. Then by T43, $x \subseteq NO_G$. So $NO_G \cap x=x$. Hence, $NO_G \cap x$ xeL. T53. $\vdash \mathcal{L}(\mathbb{E}_g)$.

Proof. By D45, $E_g \subseteq NO_G$. Suppose zsL. Then $z \cap E_g sL$ by T41.

T54. | (x,y). L (x,y) > L (xny).

Proof. Suppose $\mathcal{L}(x,y)$. $x \cap \overline{y} \subseteq x$, so since $\mathcal{L}(x)$, $x \cap \overline{y} \subseteq NO_{\overline{Q}}$. Suppose zet. Then since $\mathcal{L}(x,y)$, $z \cap x \in L$ and $z \cap y \in L$. Hence, by T42, $(z \cap x) \cap (\overline{z} \cap y) \in L$. But $(z \cap x) \cap (\overline{z} \cap y) = z \cap (x \cap \overline{y})$. So $z \cap (x \cap \overline{y}) \in L$.

T55. + (x,y). L(x,y) o L(xny).

Proof. xoy=xoxoy. Use T54.

I56. + (y). L(y) > L((V x y)).

Proof. By D49, $(V \times y)_g \subseteq NO_G$. Suppose zeL. We wish to show that $z \cap (V \times y)_g$ eL.

Let $u=\widehat{\mathcal{V}}_G((\mathbb{E}_{\gamma},\mathcal{U})_{G},\gamma \epsilon_2,\gamma = \langle \mathcal{U} \rangle (G), \mathcal{V} \epsilon_y)$, so that $u \subseteq y$.

Let $\forall \epsilon NO_G.z=G^{\prime}U(\forall)$. Then by T38, $(\beta).\beta\epsilon z\supset\beta\langle \forall.$ Suppose $\forall \epsilon u$. Then $\forall \epsilon z$. $\forall =\langle u v\rangle(G)$. By T40.4, $\forall \langle \forall, \epsilon \rangle$, so $\forall \langle \forall$. Hence $(E\forall).\forall \epsilon NO.(\beta).\beta\epsilon u\supset\beta\langle \forall$. So by T49, $(Ew).w\epsilon L.u\subseteq w$. $\mathcal{L}(y)$, so by D56, $w\cap y\epsilon L$. Obviously $u\subseteq w\cap y\subseteq y$, so $(Ew_O).w_O\epsilon L.u\subseteq w_O\subseteq y$.

Since $w_0 \subseteq y$, $z \cap (V \times w_0)_g \subseteq z \cap (V \times y)_g$. Now suppose $asz \cap (V \times y)_g$. Then $asz \cdot (EY, \delta)_{G \cdot G} = \langle Y \delta \rangle (G) \cdot \delta sy$. Hence, $asz \cdot (EY, \delta)_{G \cdot G} = \langle Y \delta \rangle (G) \cdot \langle EY, \mu \rangle \cdot \gamma sz \cdot \gamma = \langle \mu \delta \rangle (G) \cdot \delta sy$. That is, $asz \cap (V \times u)_g$. But $u \subseteq w_0$, so $asz \cap (V \times w_0)_g$. Hence, $z \cap (V \times y)_G \subseteq z \cap (V \times w_0)_g$.

Thus $z \cap (V \times y)_g = z \cap (V \times w_o)_g$. By T42, $z \cap (V \times w_o)_g \in L$. Hence $z \cap (V \times y)_g \in L$,

† T57. + (y). L(y) > L(Dg(y)).

Proof. Assume zeL, and let $u=\widehat{\nu_G}((EY,\delta).\forall \texttt{sz}.\delta=\texttt{min}_{\widehat{b}_G}(\langle\delta Y\rangle(G)\texttt{sy}).\mathcal{J}=\langle\delta Y\rangle(G)). \text{ Then } (Eu_o).u_o \subseteq z.u \text{ sm } u_o.$

Let $\forall s NO_G. z = G^C U(\forall)$. Then by T38, $(\beta) \cdot \beta s z \supseteq \beta < \forall$, so by T28, \sim (z sm NO). But z \subseteq NO, hence \sim (u₀ sm NO). So since u sm u₀, \sim (u sm NO). Then by T27, $(E \vee) \cdot \forall s NO \cdot (\beta)$. $\beta s u \supseteq \beta < \forall$, so by T49, $(E w_0) \cdot w_0 s L \cdot u \subseteq w_0$. From $\mathcal{L}(y)$ we have $w_0 \cap y s L$, and obviously $u \subseteq w_0 \cap y \subseteq y$. Thus $(E w) \cdot w s L \cdot u \subseteq w \subseteq y$.

Since $w \subseteq y$, $z \cap D_g(w) \subseteq z \cap D_g(y)$. Suppose $asz \cap D_g(y)$. Then asz. (Eò)_G. $\langle \delta a \rangle$ (G)sy. Hence, asz. (Eò)_G. $\delta = min_{\leq} \delta_{G}(\langle \delta a \rangle)$ (G)sy), so $(E\delta,Y)_G$, $Y \in Z$, $\hat{a}=\min_{\hat{D}_G}(\langle \delta Y \rangle \langle G \rangle \in y)$, $\langle \delta \alpha \rangle \langle G \rangle = \langle \delta Y \rangle \langle G \rangle$. So $(E\mu)_G(E\delta,Y)_G$, $Y \in Z$, $\delta=\min_{\hat{D}_G}(\langle \delta Y \rangle \langle G \rangle \in y)$, $\langle \mu \alpha \rangle \langle G \rangle = \langle \delta Y \rangle \langle G \rangle$. That is, $\alpha \in Z \cap D_g(u)$. So $\alpha \in D_g(w)$. Hence $Z \cap D_g(y) \subseteq Z \cap D_g(w)$. Thus $Z \cap D_g(y) = Z \cap D_g(w)$. But $Z \cap D_g(w) \in L$. So $Z \cap D_g(y) \in L$.

158. |- (y). L(y) \(\mathcal{Z}\) (cnv_{lg}(y)).

Proof. Let $u = \hat{v}_G(\nabla \epsilon_Y, (E_Y, \delta)_G, V = \langle Y \delta \rangle(G), \langle \delta_Y \rangle(G) \epsilon_Z)$. Then proceed as in T56.

T59. ⊢ (y). ∠(y)⊃∠(Cnv_{2g}(y)).

Proof, Similar to that of T58.

T60. + (y). L(y) > L (Cnv_{og}(y)).

Proof similar to that of T58.

T61. $\vdash (x,y): \mathcal{L}(x,y), \supset \widehat{a}_{G}((EY)_{G}, \forall xx. \langle \alpha Y \rangle (G) = D_{g}(Cnv_{lg}(y \cap (V \times x)_{g})).$

Proof. Use D49, D50, D51, and T48.

T62. $\vdash (x,y) \cdot \mathcal{L}(x,y) \supset \mathcal{L}(\widehat{\alpha}_{G}((E^{\vee})_{G}, \forall ex, \langle \alpha \rangle > (G)ey)$.

Proof. Use T56, T55, T58, T57, and T61.

763. | (a).asVal(Jo) > asNOG.

Proof. The theorem is obvious when $\alpha=0$. Assume the theorem for all $\beta \geq \alpha$, and suppose $\alpha \in Val(J_0)$, $\alpha \sim \in NO_G$. Then $G'U(\alpha)=G'U(\gamma)$, $\gamma < \alpha$. So by hypothesis, $\gamma \in NO_G$. Then by T41, $\gamma \in G'U(\alpha)$. Hence $\gamma \in G'U(\gamma)$, contradicting T38.

T64. \vdash (a, β): as $\text{HO}_{\mathbb{G}}$, β such $\text{LO}_{\mathbb{G}}$, β such $\text{LO}_{\mathbb{G}}$, β such $\text{LO}_{\mathbb{G}}$, β such $\text{LO}_{\mathbb{G}}$, β such β such

Proof. By T38 and T41, $G'U(\alpha) \subseteq G'U(\beta)$. By T41, $GcU(\beta)$, so by T38, $G'U(\alpha) \neq G^cU(\beta)$.

T65. \vdash (a): $a<\omega_0$. \supset . (EB). β eVal(J_0). $a<\beta<\omega_0$.

Proof. Use T18, T15.

We are now in a position to construct a model of L_1 in L_2 . We have already defined $\{x,y\}_g$ (D46). We now define:

D58. xsgy=df xsL.Ind(x)sy.

D59. $(x)_g p=df(x) \cdot \mathcal{L}(x) \supset p$.

D46, D58, and D59, respectively, furnish us with correspondents for the expressions $\{x,y\}$, xzy, and (x)p of L_1 . We now define by induction a unique correspondent in L_2 for each noun and proposition of L_1 .

Definition of $L_{2}\mbox{-}\mbox{correspondents}$ of nouns and propositions of $L_{1}\mbox{.}$

- 1) If x is the n^{th} variable of L_1 , the L_2 -correspondent of x, x_g , is the n^{th} variable [of type 6] of L_2 .
- 2) If x and y are nouns of L_1 , then the L_2 -correspondent of (xxy) is $(x_g x_g y_g)$, and the L_2 -correspondent of $\{x,y\}$ is $\{x_g,y_g\}_g$.
- 3) If p and q are propositions of L_1 , p_g and q_g are the L_2 -correspondents of p and q respectively, and x is a variable of L_1 , then the L_2 -correspondent of (p|q) is $(p_g|q_g)$, and the L_2 -correspondent of ((x)p) is $((x_g)_g p_g)$.

The bracketed expression in 1) above is relevant only if L_2 is a theory of types, and should otherwise be omitted. The restriction to type 6 is not essential, and any higher type would do as well (see p. 46).

If p is a proposition of L_1 , p_g is the L_2 -correspondent of p, and x_1, x_2, \cdots, x_n are the L_2 -correspondents of the free variables of p, then we call $\mathcal{L}(x_1, x_2, \cdots, x_n) \supset p_g$ the L_2 -image of p. If a proposition of L_1 contains no free variables, then the L_2 -correspondent and the L_2 -image of the proposition are the same. We shall show that the L_2 -images of the propositions of L_1 constitute a model of L_1 in L_2 .

D60. (Ex)_gp=df \sim (x)_g \sim p.

D61. $M_g(x)=df(Ey)_g.xe_gy$.

D62. $(x)_{\sigma}$ p=df (x). $\mathbb{H}_{g}(x) \supset p$.

D63. (Ex) $_{\sigma}$.p=df \sim (x) $_{\sigma}\sim$ p.

D64. $x \subseteq gy = df(z)_{\sigma} . z \in gx \supset z \in gy$.

D65. $x=gy=df(z)_{\sigma}$. $ze_gx=ze_gy$.

D66. $x\neq_g y=df \sim (x=_g y)$.

D67. $Un_g(x)=df(u,v,w)_{0}:\langle uv\rangle_g\epsilon_gx,\langle wv\rangle_g\epsilon_gx.\supset_*u=_gw.$

Note that (assuming the variables involved to be the appropriate variables of type 6, if L_2 is the theory of types), the definiens of D46, D60-D67 are the L_2 -correspondents of the definiens of DS1-DS9. This is important in that in constructing the L_2 -correspondent of a proposition of L_1 which contains non-primitive expressions (e.g., $\langle xy \rangle_p = q$, etc.), we want actually to obtain the L_2 -correspondent of that formula as expressed in primitive notation.

Since, except from the standpoint of having the L_2 -correspondents of propositions of L_1 be unique, it is irrelevant which variable [of type 6] corresponds to a

variable of L_1 , we shall denote the L_2 -correspondent of a variable x simply by x, it being assumed that the appropriate variable has been chosen.

The following two theorems follow immediately from T43.

T67. | (x,y): Z(x,y). D. x=y=x=gy.

T68. $\vdash (x,y): \mathcal{I}(x,y). \supset x \subseteq y \equiv x \subseteq_g y$.

T69. | (x). Mg(x) =xel.

Proof. Use T52.

We now prove the L2-images of the axioms of groups A, B, C, and D of L1.

T70. (L₂-image of Al). $\vdash (x,y,z)_g : x=gy. \supset .xe_gz \supset ye_gz$. Proof. Use T67.

T71. (L₂-image of A2). $\vdash (x,y,u)_{\sigma}: ue_{g} \{x,y\}_{g}$. $\equiv u=_{g} v =_{g} v$.

Proof. Start with x=G'U(a),y=G'U(b),u=G'U(b), a, β , $\gamma \in NO_G$. Then us $\{x,y\}_{g} \in \mathcal{X} \in U(a) \cup U(\beta) \in \mathcal{Y} = \alpha \vee \mathcal{Y} = \beta$. $\exists \cdot u = x \vee u = y \cdot \exists \cdot u = g \times \mathcal{Y} = g y$.

T72. (L₂-image of A3). \vdash (x,y) $_{\sigma}$ (Ez) $_{\sigma}$ (u) usz. $\equiv u = x \vee u = y$.

Proof. Take z to be {x,y} g and use T71 and T42.

173. (L₂-image of Bl). \vdash (Ez)_g(x,y)_o . (xy)_g ϵ_g z=x ϵ_g y.

Proof. Take z to be E_g . Then $\mathcal{L}(z)$ by T55, and $\langle xy \rangle_{g} e_{g} z \equiv x e_{g} y$ by D45, T40.4.

T74. (Lg-image of B2). | (x,y)g(Ez)g(u), susgz.

-41-Proof. Take z to be $x \cap y$, and use T55. T75. (L₂-image of B3). $\vdash (x)_g(Ey)_g(u)_{\sim} \cdot us_gy \equiv u \sim s_gx$. Proof. Take y to be NOG ox, and use T52 and T54. T76. (L₂-image of B4). $f(x)_g(Ey)_g(u)_{\sigma}: us_g y$. =. (Ez) . <zu>gegx. Proof. Take y to be $D_g(x)$, and use T57. T77. (L₂-image of B5). \vdash (x)_g(Ey)_g(u,v)_{σ}. <vu>gegy≡uegx. Proof. Take y to be (V x x)g, and use T56. T78. (Lg-image of B6). $\vdash (x)_g(Ey)_g(u,v)_{\sigma}$. <uv>gegy=<vu>gegx. Proof. Take y to be $Cnv_{lg}(x)$, and use T58. T79. (L₂-image of B7). $+(x)_g(Ey)_g(u,v,w)_{\sigma}$. <uvw>gegy≡<vwu>gegx. Proof. Take y to be $Cnv_{2g}(x)$, and use T59. T80. (L₂-image of B8). $+(x)_g(Ey)_g(u,v,w)_{\sigma}$. <uvw>gegy=<uwv>gegx. Proof. Take y to be $Cnv_{3g}(x)$, and use T60. T81. (Lg-image of C1). | (Eu) -: (Ez) -. $z \epsilon_g u.(x) \sim : x \epsilon_g u. \supset .(Ey) \sim .y \epsilon_g u. x \leq_g y. x \neq_g y.$

Proof. Take u to be G'U(w). Then by T36 and T41, $u=\hat{a}_G(\alpha<\omega_*)$. By T51, $G^cU(0)\epsilon_{gu}$. Now suppose $x=G^cU(\alpha)$, $\alpha\in NO_G$, and asu. Then $\alpha < \omega_o$. Using T65, let $\beta = \min_{\alpha \in G} \beta(\beta \in Val(J_0), \alpha < \beta < \omega_o)$. By T41, $G^{\prime}U(\beta)\epsilon_{g}u$, and by T64, $G^{\prime}U(\alpha) \subseteq G^{\prime}U(\beta) \cdot G^{\prime}U(\alpha) \neq G^{\prime}U(\beta)$. Hence by T63, (Ey), $y \varepsilon_g u.x \subseteq_g y.x \neq_g y$.

T82. (L₂-image of C2). \vdash (x) $_{\sigma}$ (Ey) $_{\sigma}$ (u,v) $_{\sigma}$: us $_{g}$ v .v $_{g}$ x. \supset .us $_{g}$ y.

Proof. Suppose $x=G'U(\alpha)$, $\alpha \in NO_G$. Let $\delta=\min_{\hat{\delta}}(\delta \in Val(J_0), \alpha < \delta)$, and take y to be $G'U(\delta)$. Now suppose $u=G'U(\mathcal{U})$, $\mu \in NO_G$, $v=G'U(\mathcal{V})$, $\nu \in NO_G$, and $\mu \in G'U(\mathcal{V})$. $\nu \in G'U(\alpha)$. Then by T38, $\mu < \alpha$, so by T41, $\mu \in V$. That is, $u \in V$.

†T83. (L₂-image of C3). \vdash (x) $_{\sigma}$ (z) $_{g}$:.Ung(z): \supset :(Ey) $_{\sigma}$ (u) $_{\sigma}$:ue $_{g}$ y. \equiv .(Ev) $_{\sigma}$.ve $_{g}$ x.<uv $>_{g}$ e $_{g}$ z.

Proof. Suppose x=G'U(Y), $Y \in NO_G$, $\mathcal{L}(z)$, and $Un_g(z)$. Then $(\mu, \nu, \xi)_G: \langle \mu \nu \rangle (G) \in z.\langle \xi \nu \rangle (G) \in z. \supset \mu = \xi$, by D67. Now let $y=\widehat{\alpha}_G((E\delta)_G.\delta \in x.\langle \alpha \delta \rangle (G) \in z)$. Then (Ew).y sm $w.w \subseteq x$. By T38 and T28, $\sim (x$ sm NO). Hence $\sim (y$ sm NO). So by T62 and T50, $y \in L$. But $(\alpha)_G: \alpha \in y$. $\equiv .(E\delta)_G.\delta \in x.\langle \alpha \delta \rangle (G) \in z$. Hence, $(u)_\sigma: u \in y \cdot \equiv .(Ev)_\sigma.v \in g x.\langle uv \rangle_g \in g z$.

In order to prove the L_2 -image of C4 we must now make the additional assumption mentioned previously. We assume then that the following theorem is provable in L_2 :

Intuitively this says that the class of indices of the subclasses of a class in L is bounded. The theorem is easily proved in L₁ as follows (numerical references are to theorems in [5]):

It is easily shown (in L1) that

 $\hat{\mathbf{c}}_{\mathbf{G}}(\mathbf{G}'\mathbf{U}(\mathbf{c}) \leq \mathbf{G}'\mathbf{U}(Y))$ sm $\hat{\mathbf{x}}(\mathbf{x} \in \mathbf{L}.\mathbf{x} \leq \mathbf{G}'\mathbf{U}(Y))$. Also, $\hat{\mathbf{x}}(\mathbf{x} \in \mathbf{G}'\mathbf{U}(Y)) \leq \hat{\mathbf{x}}(\mathbf{x} \leq \mathbf{G}'\mathbf{U}(Y))$. $\mathbf{G}'\mathbf{U}(Y)$ is a set, so by 5.121, $\hat{\mathbf{x}}(\mathbf{x} \leq \mathbf{G}'\mathbf{U}(Y))$ is a set. Hence by 5.12 and 5.1, $\hat{\mathbf{c}}_{\mathbf{G}}(\mathbf{G}'\mathbf{U}(\mathbf{c}) \leq \mathbf{G}'\mathbf{U}(Y))$ is a set. The theorem follows by 7.451.

ttT85. (Lg-image of C4.) | (x) (Ey) (u) .
u Sgx >usgy.

Proof. Suppose $\forall \in \mathbb{N}0$, x=G'U(Y). Using T38 and T84, let $\beta=\min_{\beta}(\beta\in \mathbb{V}al(J_0).(\delta).\delta\in \alpha_G(G'U(\alpha)\subseteq G'U(Y))\supset \delta\langle\beta\rangle$. Take y to be $G'U(\beta)$, so that yel. Now suppose $u=G'U(\mu)$, $\mu\in \mathbb{N}0_G$ and $u\subseteq_{g}x$. By T38, $G'U(\mu)\subseteq G'U(Y)$. Hence $\mu(\beta)$, so $\mu\in G'U(\beta)$. That is, $\mu\in_{g}y$.

T86. (Lg-image of Dl). ├ (x)g:.(Ey) yegx:

⊃:(Eu) _:uegx.~ (Ez) _.zegu.zegx.

Proof. Let $x=G'U(\alpha)$, αsNO_G , and suppose (EB). $\beta sG'U(\alpha)$. Let $y=\min_{\delta}(\delta sG'U(\alpha))$.

Now suppose $\varphi \in G'U(V).\varphi \in G'U(\alpha)$. Then by T38, $\varphi \in G'U(\alpha).\varphi \in V$, contradicting $V = \min_{\alpha \in V} \delta(\delta \in G'U(\alpha))$.

Thus we can take G'U(8) to be the required u.

There remain now only the axioms P₁,P₂,···,P_n.

Since the L₂-correspondent of a proposition of L₁ is a proposition of L₂, the L₂-correspondents of the axioms of the propositional calculus for L₁ are obviously provable in L₂.

Consider the following typical axioms for the lower functional calculus for L_1 :

 P_1 . (x).p \supset q: \supset :p \supset (x)q, where x is a variable which does not occur free in p.

 P_2 . $(x)p(x).\supset p(y)$, where x and y are variables, and x does not occur free in a y-bound part of p.

In L2 the following are easily proved:

T87. $\vdash (x)_{g}, p \supset q: \supset : p \supset (x)_{g}q$, where

T88. $\vdash (x)_{g}p(x). \supset \mathcal{L}(y) \supset p(y)$, where ...

That T88 is not the L_2 -correspondent of P_2 is unimportant, since it is in any case adequate for the proof of the following theorem:

T89. If p is any proposition of L_1 , x_1 , ..., x_h are the L_2 -correspondents of the free variables of p, p_g is the L_2 -correspondent of p, and $\vdash_1 p$, then $\vdash \mathcal{L}(x_1, \dots, x_h) \supset p_g$.

Proof. Let q_1, q_2, \cdots, q_n , where q_n is p, be a demonstration in L_1 of p, and let y_1, y_2, \cdots, y_s be the L_2 -correspondents of all the free variables occurring in q_1, q_2, \cdots, q_n . We first prove by induction on i that $\vdash \mathcal{L} (y_1, y_2, \cdots, y_s) \supset (q_i)_g$ for $l \leq i \leq n$, where $(q_i)_g$ is the L_2 -correspondent of q_i .

Suppose i=1. Then q is an axiom of L1. We have two cases.

Case 1. q_i is not P_2 . Then we have already shown that $\vdash (q_i)_g$. Hence, $\vdash \mathcal{L}(y_1, y_2, \cdots, y_s) \supset (q_i)_g$.

Case 2. q_i is P_2 , i.e., q_i is $(x)r(x)\supset r(y_j)$. By T88, $\vdash (x)_g(r(x))_g . \supset . \mathcal{L}(y_j) \supset (r(y_j))_g$. Hence, $\vdash \mathcal{L}(y_1,y_2,...,y_s) \supset (q_i)_g$.

Now suppose $+\mathcal{L}(y_1,y_2,\dots,y_s)\supset (q_1)_g$ for $1\leq i\leq t$. Case 1. q_t is an axiom of L_1 . Then as above, $+\mathcal{L}(y_1,y_2,\dots,y_s)\supset (q_t)_g$.

Case 2. There are j and k, $1 \le j \le t$, $1 \le k \le t$, such that q_k is $q_j \supset q_t$. Then by hypothesis, $\vdash \mathcal{L}(y_1, y_2, \dots, y_s)$. $\supset \cdot (q_j)_g \supset (q_t)_g$ and $\vdash \mathcal{L}(y_1, y_2, \dots, y_s) \supset (q_j)_g$. Hence, $\vdash \mathcal{L}(y_1, y_2, \dots, y_s) \supset (q_t)_g$.

Case 3. There is a j, $1 \le j < t$, such that q_t is $(z)q_j$. By hypothesis, $f : \mathcal{L}(y_1, y_2, \dots, y_s) \supset (q_j)_g$. Hence, $f : \mathcal{L}(y_1, y_2, \dots, y_s) \supset \mathcal{L}(z) \supset (q_j)_g$. If z is not one of y_1, y_2, \dots, y_s we obtain at once $f : \mathcal{L}(y_1, y_2, \dots, y_s)$. $f : \mathcal{L}(y_1, y_2, \dots, y_s)$. $f : \mathcal{L}(y_1, y_2, \dots, y_s) \supset \mathcal{L}(z) \supset (q_j)_g$, so $f : \mathcal{L}(y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_s) \supset \mathcal{L}(z) \supset (q_j)_g$, hence, $f : \mathcal{L}(y_1, y_2, \dots, y_s) \supset (z)_g (q_j)_g$.

This completes the induction. Thus $+ \mathcal{L}(y_1, y_2, \dots, y_s) \supset p_g. \quad \text{Hence, } + \mathcal{L}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}).$ $\supset \mathcal{L}(x_1, x_2, \dots, x_h) \supset p_g \text{ where } y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k} \text{ are the }$ $\text{variables of the set } y_1, y_2, \dots, y_s \text{ which do not occur free in p. Then } + (\text{E}y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}) \mathcal{L}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}).$ $\supset \mathcal{L}(x_1, \dots, x_h) \supset p_g. \quad \text{But } + (\text{E}y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}) \mathcal{L}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}) \mathcal{L}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}).$ $\mathcal{L}(x_1, \dots, x_h) \supset p_g. \quad \text{But } + (\text{E}y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}) \mathcal{L}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}) \mathcal{L}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}).$

It follows from T89 and the definition of L2-images that the L2-images of the propositions of L1 form a model

of L_1 in L_2 . So if L_1 is inconsistent, then L_2 is inconsistent; i.e., if L_2 is consistent, then L_1 is consistent.

Part II

§1. The Use of the Theory of Types for L_2 . In this section we show that a logic obtained by adding two axioms (Axioms A and B, p. 64) to the simple theory of types is adequate for L_2 ; i.e., that in such a logic Tl to T88 are provable.

As an example of the simple theory of types we can take the system P of [6], supplemented by \(\ell\) -axioms from which T3, T4, and T5 are provable. (That such supplementation does not introduce a contradiction may be shown by methods similar to those used in [10] and [8].)

For convenience we assume that non-negative integers have been defined of type 1 and type 3, and that the axiom of infinity is provable for individuals of type 1 (and hence of each type). Using Quine's device, 6 the ordered pair <xy> can then be defined so as to have the same type as x and y if x and y are of type 3. Relations can then be defined so that they are of type 4, and ordinals can be defined so that they are of type 5. Then since there are integers of type 3, ordered pairs of ordinals can be defined so as to be of the same type as the ordinals.

Classes of ordinals and relations between ordinals or pairs of ordinals will be of type 6.

We shall denote the class of all ordinals by NO and the ordering relation for ordinals by \leq , and it is assumed that all occurrences of NO and \leq are of type 6. Unless an explicit statement concerning types is made, it is assumed that all variables and constants other than NO and \leq are of appropriate types to make the formulas in which they occur meaningful. It is assumed that l xp is of the same type as x, and that the x appearing explicitly in l xp is of the same type as the free occurrences of x in p (of which there will always be at least one). Similarly, \hat{x} p is one type higher than x, and the x appearing explicitly in \hat{x} p is of the same type as the free occurrences of x in p (of which there will always be at least one).

We make use of the definitions of \$2 plus the following:

Dlol. seg_R=df ŷz(yRz.zRx.z/x).

DIOS. LE=df $\hat{R}\hat{S}((x):xeC(R).\supset.(Ey).yeC(S).$ (seg_R) smor(seg_S)).

D103. Nr(P) for R(P smor R).

D104. NO=df a((EP).Ps A.a=Nr(P)).

D105. $\leq -\text{dr } \hat{a}\hat{\beta}((\mathbb{R}^p,\mathbb{Q}).P,\mathbb{Q} \text{s.} \alpha = \text{Nr}(P).\beta = \text{Nr}(\mathbb{Q}).P(\text{LE})\mathbb{Q}).$

Dl06. Prod(x)=df $\hat{z}((y).yex \supset zey)$.

D107. Sum(x)=df 2((Ey).yex.2ey).

Dlos. R"x=df Val(x1R).

D109. $u \times w = df \hat{z}((Ex,y).xeu.yew.z = \langle xy \rangle)$.

D110. $Cn(\alpha) = df \hat{x}((ER).Rs \Omega.\alpha = Nr(R).x sm C(R)).$

Dill. Nc(x)=df \hat{y} (y sm x).

D112. \leq_{c} =df $\hat{u}\hat{w}((x,y):xsu.ysw.\supset.(Ez).z \le y.x sm z).$

D113. < =df ûw(u< w.u/w).

DI14. $SC(x)=df \hat{z}(z \subseteq x)$.

Dll5. Nc(u) \times_{c} Nc(w)=df Nc(u \times w).

Dil6. y Closed(R) 2=df R"y Sy.

D117. y Closed(S) $g=df R''(y \times y) \subseteq y$.

Dil8. Closure(y,(R)₂,(S)₃)=df Prod(\hat{z} (y $\leq z$. R"z $\leq z$. R"(z \times z) \leq z)).

Closure $(y,(R)_2,(S)_3)$ is the smallest class containing y which is closed with respect to the dyadic relation R and the triadic relation S.

We assume without proof all theorems of \$2 which are not marked with asterisks, and also †801- †835 of [11] (with obvious modifications so that they will be applicable to the theory of types). Of †801- †835, the following are used frequently:

+812. \vdash (R,S,x):Re \triangle .S \subseteq seg_R.xeC(R). \supset . \sim (S smor R).

†818. + (R,S):R,SeA.(R)LE(S).(S)LE(R).⊃.R smor S.

†821. + (R,S):R,SeA.⊃.(R)LE(S) v (S)LE(R).

†822. † (R,S):.R,Se Ω :): \sim (S)LE(R).=.(Ey).yeC(S). R smor (seg_vS).

†835. - ≤€Ω.

Well known theorems concerning classes, ordinals, relations, and functions will be used without proof or statement.

The following theorems are easily proved:

T101. + (P): Parl. D. rCan(P) & a.

T102. + (P):Pel-1. O.rGan(P)el-1.

1103. + (P): Arg(rCan(P)) = Can(Arg(P)).

T104. | (P): Val(rCan(P)) = Can(Val(P)).

T105. | (P,Q):P smor Q.E.(rCan(P)) smor(rCan(Q)).

Tlos. $\vdash (x,y):x \text{ sm } y=\text{Can}(x) \text{ sm Can}(y)$.

Our first concern is with the problem of definition by induction. It is no more difficult to prove the theorems which follow than it is to prove the weaker theorems which we actually need. And the theorems which follow are, with respect to restrictions on free and bound variables, somewhat weaker than could be proved if we wanted.

T107. If

1) the following variables are distinct and are of the types indicated beneath them, where m and n are arbitrary positive integers:

a, z, R, u, y, v, w

m, m, m+1, n, n, n+1;

2) \(\xi_0\) is a variable or noun of type n, and none of the above variables occurs free in \(\xi_0\);

5) q is a proposition which contains no bound occurrences of α, ν, w, or R and no free or bound occurrences of u, y, or z;

We shall abbreviate by {Swq } (t) by 9(t).

Suppose n+1=m+j, and let k>|j|. Assume $Rs\Omega$, and let $\mathcal{M} = Lz(z=\min_{\mathbb{R}}C(\mathbb{R}))$. Let $\beta, \gamma, \delta, \xi$, x be new variables of types m, k+n+2, k+n+2, n, k+n+1 respectively. Let $Pres_{\gamma}(\alpha)=\hat{\gamma}((Ez).zRa.z\neq\alpha.\langle U^{k+j}(z),U^{k+1}(y)\rangle e\gamma)$ and $A=\hat{x}((\gamma)::\langle U^{k+j}(\mathcal{M}),U^{k+1}(\xi)\rangle e\gamma:.(\alpha,\delta):.asc(\mathbb{R}).$ $A\neq \mathcal{M}.(\beta):\beta Ra.\beta \neq a. \supset .(Ey).\langle U^{k+j}(\beta),U^{k+1}(y)\rangle e\gamma \cap \delta:$ $D:\langle U^{k+j}(\alpha),U^{k+1}(\theta),U^{k+1}(\theta)\rangle e\gamma:.\supset:.xe\gamma).$

From the hypotheses 1), 2), 3) and the choice of new variables above, it can be seen that the formulas occurring in Pres $_{N \circ \delta}(\alpha)$ and A are propositions and that there is no confusion of bound variables in $(V\{Swq\} (Pres_{N \circ \delta}(\alpha)), Also, Pres_{N \circ \delta}(\alpha))$ is of type n+1, the same type as that of w.

We now give a sequence of lemmas from which the theorem follows.

Lemma 1. $(v, \xi):\langle u^{k+1}(u), u^{k+1}(v)\rangle \in A. \equiv v = \xi.$

Proof. Suppose $\langle U^{k+j}(\mu), U^{k+l}(v) \rangle$ s A and $v \neq \xi$. Take \forall to be $V-U(\langle U^{k+j}(\mu), U^{k+l}(v) \rangle)$. This leads to a contradiction.

Lemma 2. (ξ,α) :. $\alpha \in C(R)$. $\alpha \neq \mathcal{N}$. (β) : $\beta R \alpha$. $\beta \neq \alpha$. $\supset .(Ey).\langle U^{k+j}(\beta), U^{k+l}(y) \rangle \in A$: $\supset .\langle U^{k+j}(\alpha), U^{k+l}(\theta(\operatorname{Pres}_A(\alpha))) \rangle \in A$. Lemma 3. (α, ξ) : $\alpha \in C(R)$. $\alpha \neq \mathcal{N}$. $\supset .\langle U^{k+j}(\alpha), U^{k+l}(\theta(\operatorname{Pres}_A(\alpha))) \rangle \in A$.

Proof by induction on α , using Lemma 1 and Lemma 2. Lemma 4. (α, ξ) :. $\alpha \in C(R)$. $\alpha \neq \mu$: \supset :(y): $\langle U^{k+j}(\alpha)$, $U^{k+1}(y) > \epsilon A$. $\equiv \cdot y = 0$ ($Pres_A(\alpha)$).

Proof. By Lemma 3, we have $(a, \S): asC(R)$. $a \neq \mu: \supset: (y): y = \theta(Pres_A(a)) . \supset . \langle U^{k+1}(a), U^{k+1}(y) \rangle sA$.

To prove the implication from right to left, suppose a is the least member of C(R) for which the theorem is false; so suppose

- (1) asc(R).a+M.
- (2) (ソ):. VRa. V ≠a. V ≠ ル:つ:(y): ⟨Uk+j(ソ), Uk+l(y)>εA.
 .y=0(Pres_A(ソ)).
 - (3) <Uk+j(c),Uk+l(y)>sA.
 - (4) y#0(PresA(a)).

From (3) we get

 $(5) \quad (\forall) :: \langle \mathbf{U}^{k+j}(\mu), \mathbf{U}^{k+l}(\xi) \rangle \epsilon \forall :. (\varphi, \delta) :. \varphi \epsilon C(\mathbb{R}).$ $\varphi \neq \mu. (\beta) : \beta \mathbb{R} \varphi. \beta \neq \varphi. \supset . (\exists y). \langle \mathbf{U}^{k+j}(\beta), \mathbf{U}^{k+l}(y) \rangle \epsilon \forall \gamma \delta ;$ $\supset : \langle \mathbf{U}^{k+j}(\varphi), \mathbf{U}^{k+l}(\varphi(\operatorname{Pres}_{\gamma \cap \delta}(\varphi))) \rangle \epsilon \forall :. \supset :. \langle \mathbf{U}^{k+j}(\alpha), \mathbf{U}^{k+l}(y) \rangle \epsilon \forall s.$

Now let $\mathcal{Y}_{\circ} = (\mathbb{V} - \hat{\lambda}((\mathbb{E}_{7}, \rho)) \cdot \gamma \mathbb{R} \alpha \cdot \lambda = \langle \mathbb{U}^{k+1}(\gamma), \mathbb{U}^{k+1}(\rho) \rangle) \cup \hat{\lambda}((\mathbb{E}_{7}, \rho)) \cdot \gamma \mathbb{R} \alpha \cdot \gamma \neq \alpha \cdot \lambda = \langle \mathbb{U}^{k+1}(\gamma), \mathbb{U}^{k+1}(\rho) \rangle \cdot \lambda \cdot \lambda \cup \mathbb{U}(\langle \mathbb{U}^{k+1}(\alpha), \mathbb{U}^{k+1}(\Theta(\operatorname{Pres}_{A}(\alpha))) \rangle).$

By (1), we have

(6) $\langle v^{k+j}(\mu), v^{k+1}(\xi) \rangle \varepsilon \gamma_0$.

Suppose

(7) $\varphi \in C(\mathbb{R}).\varphi \neq \mathcal{N}.(\beta):\beta \mathbb{R}\varphi.\beta \neq \varphi. \supset .(\mathbb{E}y).\langle \mathbb{U}^{k+1}(\beta), \mathbb{U}^{k+1}(y)\rangle = \gamma_0 \cap \delta.$

We then have three cases:

Case I. ~ oRa.

Case II. oRa. ofa.

Case III. q=a.

In each case it is found that

(8) $\langle u^{k+j}(\varphi), u^{k+1}(\varphi(\operatorname{Pres}_{\delta \cap \delta}(\varphi))) \rangle \approx \delta_{\delta}$.

From (8), (6), (7), (5) we get

(9) $\langle U^{k+j}(\alpha), U^{k+1}(y) \rangle \epsilon \gamma_{0}$

By (9) and (4) we have a contradiction.

Lemma 5. $(a, \xi): a \in C(\mathbb{R}), \supset (\mathbb{E}_1 u), \langle v^{k+j}(a), v^{k+1}(u) \rangle \in A$.

Proof. Use Lemma 1, 3, 4,

Now define $p = \{S \xi(\langle U^{k+j}(a), U^{k+l}(u) \rangle \epsilon A)\}$ (ξ_0). The theorem now follows from replacing ξ by ξ_0 in Lemmas 1, 5, 5.

Tlos. If

l) R, a, z are distinct variables of types m+l, m, m respectively;

- 2) j and k are non-negative integers, and w is a variable of type n, distinct from R, a, z, where n=m+j+l and n>k+l;
- 5) F is a variable of type n, and v is a variable of type n-k-l;
- 4) ξ is a variable or noun of type m+j, and none of the above variables occurs free in ξ ;
- 5) q is a proposition such that there is no confusion of bound variables in ℓ v $\{Swq\}$ ((Canj(C(seg_qR))) 1F);

then

Proof. Start with Rs.(). By T107, there is a Θ such that $\Theta(\ \angle z(z=\min_{\mathbb{R}}C(\mathbb{R})))=\langle U^{j}(\ \angle z(z=\min_{\mathbb{R}}C(\mathbb{R}))),\ \geqslant :(\alpha):\alpha s C(\mathbb{R}).$ $\alpha \neq \angle z(z=\min_{\mathbb{R}}C(\mathbb{R})),\ \supset :\Theta(\alpha)=\langle U^{j}(\alpha),U^{k}(\ \angle v\ \text{Swq}\ \text{K}((\mathbb{E}\beta).$ $\beta \neq \alpha.x=\Theta(\beta))))>.$

Let $F=\hat{x}((EY).Y \in C(R).x=0(Y))$. It is easily seen that $F\in F$ nc, $Arg(F)=Can^{j}(C(R))$, and $F^{c}U^{j}(\iota z(z=min_{R}C(R)))=\xi$. Suppose $a\in C(R)$ and $a\neq \iota z(z=min_{R}C(R))$. Then $F^{c}U^{j}(a)=U^{k}(\iota v\{Swq\}(\hat{x}((E\beta).\beta Ra.\beta \neq a.x=0(\beta))))$. But $\hat{x}((E\beta).\beta Ra.\beta \neq a.x=0(\beta))=(Can^{j}(C(seg_{a}R))) \uparrow F$. Hence $F^{c}U^{j}(a)=U^{k}(\iota v\{Swq\}((Can^{j}(C(seg_{a}R))))\}$.

T37 of \$5 now follows from T108.
T109. | (R):Re. (L. ⊃. Cn(Nr(R))=Nc(C(R)).

T110. $\vdash (x,y): Nc(x) \leq_{c} Nc(y) \cdot Nc(y) \leq_{c} Nc(x) \cdot \supset \cdot Nc(x) = Nc(y)$.

T111. $\vdash (\alpha,\beta): \alpha,\beta \in NO \cdot Cn(\alpha) \leq_{c} Cn(\beta) \cdot Cn(\beta) \leq_{c} Cn(\alpha)$. $\supseteq \cdot Cn(\alpha) = Cn(\beta)$.

Till: $\vdash (\alpha,\beta):\alpha,\beta \in \mathbb{N}0.\supset Cn(\alpha) <_{\mathbb{C}}Cn(\beta).\lor$. $Cn(\alpha)=Cn(\beta).\lor .Cn(\beta) < Cn(\alpha).$

Til0, Till, and Til2 follow from Dil0-Dil3 by means of the Schröder-Bernstein theorem. A proof of the Schröder-Bernstein theorem may be found in Principia Mathematica, *73.88.

We assume that a well-ordering relation, $\leq n$, for the non-negative integers has been defined; since there are integers of type 3, $\leq n$ can be of type 4. We define

D119.
$$\omega_0 = Nr(\leq n)$$

and assume the following theorems:

Tills. | Wasno.

T114, - (a):a<0, -> a+1<0.

T115. \vdash (a):0<a< ω_0 . \supset . (E₁ β). β < ω_0 . $\alpha=\beta+1$.

Tll5-Tll5 may be proved by methods similar to those used in Principia Mathematica, *262, *263.

Till6. There is a noun, $\Theta(\beta)$, such that

 $\vdash (\beta):\beta \in \mathbb{N}0.\beta \neq 0. \supset .\Theta(\beta) = \min_{\widehat{\alpha}} (\alpha \in \mathbb{N}0.(\forall): \forall \langle \beta. \rangle) = \min_{\widehat{\alpha}} (\alpha \in \mathbb{N}0.(\forall): \forall \langle \beta. \rangle)$

Proof. Use T107.

Note that $\Theta(\beta)$ is of the same type as β .

D120. Denote the $\Theta(\beta)$ of T116 by ω_8 .

Note that if \sim (Ea).csNO.(\checkmark): \checkmark < β .

 $\supset .Cn(\omega_{\gamma}) <_{c}Cn(\alpha)$, then $\omega_{\beta} = V$. It is easily seen that $\vdash (\alpha,\beta) : \alpha < \beta . \omega_{\alpha} = V . \supset .\omega_{\beta} = V$.

Diel. 8_{β} =df No(a(a< ω_{β})).

Dl22. \mathcal{N}_{β} =df $\operatorname{Cn}(\omega_{\beta})$.

T117, $\vdash (\alpha,\beta):\alpha \leq \beta$. \supset . $Cn(\alpha) \leq_{c} Cn(\beta)$.

T118. $\vdash (\alpha,\beta): \alpha < \beta . \omega_{\beta} \neq V. \supset .\omega_{\alpha} < \omega_{\beta}.$

Proof. Use D120.

T119. $\vdash (\alpha,\beta): \alpha \langle \beta, \omega_{\beta} \neq v. \supset . \omega_{\alpha} \langle \omega_{\beta}.$

Proof, Use D122, D120.

One of the most useful theorems of classical ordinal theory? is $"-(P):P \in \mathbb{N}_{+} \supset P$ smor($seg_{Nr}(P) \leq)$ ". Unfortunately, this theorem leads at once to the Burali-Forti paradox. The theorem which follows can frequently be used for the purposes for which the above incorrect theorem is used in the classical theory.

Tigi. $\vdash (P,a): Ps \cap .c=Nr(P): \supset .(rCan^2(P)) smor(seg_{c}).$

Proof by induction on a. If a=0 the theorem is obvious. Assume $(\beta):\beta<\alpha.\beta=Nr(R).\supset.(rCan^2(R))$ smor($seg_{\beta}\leq$), and suppose $xeC(rCan^2(P))$. Then $x=U^2(y)$, yeC(P), so that $Nr(seg_yP)<\alpha$. Hence, by hypothesis, $(rCan^2(seg_yP))$ smor($seg_{Nr}(seg_yP)\leq$). But $rCan^2(seg_yP)=seg_yrCan^2(P)$,

^{7.} See [2], p. 187; [12], p. 171.

and $(seg_{Nr}(seg_{y}P)^{\leq})=(seg_{Nr}(seg_{y}P)(seg_{\leq}))$. Hence $(seg_{x}(rCan^{2}(P)))$ smor $(seg_{Nr}(seg_{y}P)(seg_{\leq}))$. So

(1) (rCan²(P))LE(seg_C).

Now suppose $\beta \epsilon C(seg_{\alpha} \le)$. Then $\beta < \alpha$, so $(Ey) \cdot \beta = Nr(seg_{\gamma}P)$. By hypothesis, $(rCan^{2}(seg_{\gamma}P)) smor(seg_{\beta} \le)$. But $rCan^{2}(seg_{\gamma}P) = seg_{U^{2}(\gamma)}(rCan^{2}(P))$, and $(seg_{\beta} \le) = (seg_{\beta}(seg_{\alpha} \le))$. Hence $(seg_{\beta}(seg_{\alpha} \le)) smor(seg_{U^{2}(\gamma)}(rCan^{2}(P)))$. So

(2) (seg_S)LE(rCan2(P)).

From (1) and (2) we have $(rCan^2(P)) \operatorname{smor}(\operatorname{seg}_{o} \le)$. T122. \vdash (c):ceNO. \supset . \sim ($\hat{\beta}(\beta < \alpha) \operatorname{sm}$ NO).

Proof. Suppose cano and $\hat{\beta}(\beta < \alpha) \operatorname{sm}_R NO$. Let c=Nr(P). Then by T121, rCan²(P) smor_S(seg_QS).

Let $Q=\hat{x}y(x,y\in C(P), R'S'U^{2}(x)\leq R'S'U^{2}(y))$. Then $Q\in \Omega$, C(Q)=C(P), and $rCan^{2}(Q)$ smor $_{S|R}\leq$. But $rCan^{2}(Q)$ smor $_{S}(Q)\leq R$. Hence $(seg_{N}(Q)\leq R)$ smor $_{S}(Q)\leq R$ contradiction. Then $R(Q)\leq R(Q)\leq R(Q)$

Proof. Use T122.

T124. $\vdash (\alpha,\beta)$ * α,β * NO. $\omega_{\beta} \leq \alpha < \omega_{\beta+1}$. $Cn(\alpha) = \mathcal{N}_{\beta}$.

Proof. Use D120.

T125. $\vdash (\alpha,\beta):\alpha,\beta\in\mathbb{N}0, \omega_{\beta+1}=V, \omega_{\beta}\leq\alpha, \supset .Cn(\alpha)=\mathcal{N}_{\beta}$.

Proof. If ω_{β} =a the theorem is obvious, so suppose ω_{β} <a. Let ω_{β} =Nr(P), a=Nr(Q). If $\operatorname{Cn}(\omega_{\beta})$ =Cn(a) the theorem is proved, so suppose $\operatorname{Cn}(\omega_{\beta})$ <a. Let

Y=min α (Cn(ω_{β})< α Cn(α)). Then by D120, α = $\omega_{\beta+1}$ contradicting the hypothesis of the theorem.

TIRE. \vdash (a):: $\omega_{o} \leq a$:. \supset :. $(E_1\beta)$:. $\beta \in NO$. $\omega_{\beta} \leq a$. (Y): $\beta < Y$. \supset . $a < \omega_Y$. V. $\omega_Y = V$.

Proof by induction on a: Let a be the least ordinal such that

(1) $\omega_{0} \leq \alpha_{0}(\beta)$: $\omega_{\beta} \leq \alpha_{0}$. (E7). $\beta < \gamma$. $\omega_{\gamma} \leq \alpha_{0}$ and let $A = \delta(\omega_{\delta} \neq \gamma_{0}, \omega_{\gamma} \leq \alpha_{0})$.

Case 1. A=NO. We have $(\delta).\delta\epsilon\delta(\omega_{\delta}\neq V.\omega_{\delta}\leq \alpha)\supset\delta<\alpha$. Hence by T125, \sim (A sm NO), a contradiction.

Case 2. A=NO. Let $\mathcal{M} = \min_{\widetilde{A}} \widetilde{A}$, and suppose $\beta < \mathcal{M}$. Then $\omega_{\beta} \neq V$ and $\omega_{\beta} \leq \alpha$, so that $\operatorname{Cn}(\omega_{\beta}) \leq \operatorname{Cn}(\alpha)$. But by (1), $(E_{\delta}) \cdot \beta < \gamma_{0} \cdot \omega_{\gamma} \leq \alpha$. So by Tl19, $\operatorname{Cn}(\omega_{\beta}) < \operatorname{Cn}(\omega_{\gamma}) \leq \operatorname{Cn}(\alpha)$.

Thus $(\beta) \cdot \beta < \mu \supset Cn(\omega_{\beta}) < Cn(\alpha)$. Then $\omega_{\mu} = \min_{\alpha} (\alpha \in \mathbb{N}) \cdot (\beta)$. $\beta < \mu \supset Cn(\omega_{\beta}) < Cn(\alpha)$, so $\omega_{\mu} \neq V \cdot \omega_{\mu} \leq \alpha$ contradicting $\mu = \min_{\alpha} \overline{A}$.

Thus (1) leads to a contradiction, so (E β):. β =NO. ω_{β} $\leq a$. (\forall): β < \forall . \supset . α < ω_{γ} . \forall . ω_{γ} =V. The uniqueness of β is obvious.

T127. \vdash (a): ω_{α} . \supset . (EB). β ENO. ω_{β} \neq V. $\operatorname{Cn}(\alpha) = \mathcal{N}_{\beta}$.

Proof. Using T126, let $\beta=\max_{\alpha}\beta(\omega_{\beta}\leq\alpha)$. Then by T124 or T125, $Cn(\alpha)=\mathcal{N}_{\alpha}$.

T129. $\vdash (\alpha, \beta): .\alpha, \beta \in \mathbb{N}0. \omega_{\beta} \neq V: \supset : \operatorname{Cn}(\alpha) = \mathcal{N}_{\beta}.$ $\equiv .\operatorname{Nc}(\mathcal{S}(\mathcal{S}(\alpha)) = \mathcal{S}_{\beta}.$ Proof. Assume $\alpha,\beta\in\mathbb{N}0$, $\omega_{\beta}\neq\mathbb{V}$, and let $\alpha=\mathbb{N}r(\mathbb{P})$, $\omega_{\beta}=\mathbb{N}r(\mathbb{Q})$. Then by Tl2l, $r\operatorname{Can}^{2}(\mathbb{P})\operatorname{smor}(\operatorname{seg}_{\alpha}\mathcal{L})$ and $r\operatorname{Can}^{2}(\mathbb{Q})\operatorname{smor}(\operatorname{seg}\omega_{\beta}\mathcal{L})$. Suppose $\operatorname{Cn}(\alpha)=\mathcal{N}_{\beta}=\operatorname{Cn}(\omega_{\beta})$. Then $\operatorname{Nc}(\operatorname{C}(\mathbb{P}))=\operatorname{Nc}(\operatorname{C}(\mathbb{Q}))$, so $\operatorname{Nc}(\operatorname{C}(\operatorname{rCan}^{2}(\mathbb{P})))=\operatorname{Nc}(\operatorname{C}(\operatorname{rCan}^{2}(\mathbb{Q})))$. Hence $\operatorname{Nc}(\widehat{Y}(Y<\alpha))=\partial_{\beta}$. Suppose $\operatorname{Nc}(\widehat{Y}(Y<\alpha))=\partial_{\beta}=\operatorname{Nc}(\widehat{Y}(Y<\omega_{\beta}))$. Then $\operatorname{Nc}(\operatorname{C}(\operatorname{rCan}^{2}(\mathbb{P})))=\operatorname{Nc}(\operatorname{C}(\operatorname{rCan}^{2}(\mathbb{Q})))$, so $\operatorname{Nc}(\operatorname{C}(\mathbb{P}))=\operatorname{Nc}(\operatorname{C}(\mathbb{Q}))$. Hence, $\operatorname{Cn}(\alpha)=\mathcal{N}_{\alpha}$.

T130. $\vdash (\alpha,\beta;\alpha,\beta \in \mathbb{N})$. $\omega_{\beta} \leq \alpha < \omega_{\beta+1}$. $\supset \mathbb{N}c(\widehat{Y}(X < \alpha)) = \emptyset_{\beta}$.

T131. $\vdash (\alpha,\beta):\alpha,\beta \in \mathbb{N}$ 0. $\omega_{\beta+1} = V$. $\omega_{\beta} \leq \alpha$. $\supset \mathbb{N}c(\widehat{Y}(X < \alpha)) = \emptyset_{\beta}$.

Proofs of T130 and T131. Under either hypothesis we have, by T124, T125, $\operatorname{Cn}(\alpha) = \chi_{\beta}$. So by T129, $\operatorname{Nc}(\widehat{Y}(X < \alpha)) = \emptyset_{\alpha}$.

TIBL.1. $\vdash (\alpha): \omega_{0} \leq \alpha. \supset .(E\beta).\beta \in NO. \omega_{\beta} \neq v.Nc(\widehat{Y}(Y < \alpha)) = \partial_{\beta}.$ Proof. From T126, it follows that there is a β such that the hypothesis of either T130 or T131 is satisfied.

T132. $\vdash (x,y): Nc(x) <_{0}Nc(y). \equiv .Nc(Can^{2}(x)) <_{0}Nc(Can^{2}(y)).$ Proof. Obvious.

T133. + (a,β):α<β.ω_β≠7.⊃. 8α<_α8β.

Proof. Let $\omega_{a}=\operatorname{Nr}(P)$, $\omega_{\beta}=\operatorname{Nr}(Q)$. Then $\operatorname{rCan}^{2}(P)\operatorname{smor}(\operatorname{seg}\omega_{a} \le)$, so $\operatorname{d}_{a}=\operatorname{Nc}(\operatorname{Can}^{2}(\operatorname{C}(P)))$. Similarly, $\operatorname{d}_{\beta}=\operatorname{Nc}(\operatorname{Can}^{2}(\operatorname{C}(Q)))$. By Tlo9, $\operatorname{Nc}(\operatorname{C}(P))<_{c}\operatorname{Nc}(\operatorname{C}(Q))$. Hence by Tl32, $\operatorname{d}_{a}<_{c}\operatorname{d}_{\beta}$.

In order to prove T16-T19, which concern an ordering relation, \leq_t , for ordered triples of ordinals, $<\mu\alpha\beta>$, with $\mu\leq 8$, we first define ordering relations \leq_p , \leq_d for ordered pairs of ordinals. \leq_p will be seen to well-order ordered

pairs of ordinals, $\langle \alpha\beta \rangle$, first according to the maximum of a and β , then according to β , and then according to α . $\leq_{\rm d}$ well-ordersordered pairs of ordinals, $\langle M\alpha \rangle$, with $M \leq 8$, first according to α and then according to M. $\leq_{\rm t}$ is then defined so as to well-order ordered triples, $\langle M\alpha\beta \rangle$, $M \leq 8$, first according to the ordering by $\leq_{\rm p}$ of $\langle \alpha\beta \rangle$, and then according to the ordering by $\leq_{\rm p}$ of $\langle \alpha\beta \rangle$, and then according to the ordering by $\leq_{\rm p}$ of $\langle \alpha\beta \rangle$, and then according to the ordering by $\leq_{\rm p}$ of $\langle \alpha\beta \rangle$, and then according to the ordering by $\leq_{\rm p}$ of $\langle \alpha\beta \rangle$, and it then follows that $\leq_{\rm p} \epsilon \Omega$, and $\leq_{\rm d} \epsilon \Omega$, and it then follows that $\leq_{\rm p} \epsilon \Omega$.

DISL. $\leq_p = \text{df } \widehat{uw}((\text{Ed},\beta, \checkmark,\delta); .d,\beta, \checkmark,\delta \text{eNO.} u = \langle \alpha\beta \rangle.$ $w = \langle \checkmark \delta \rangle; .(\max_{\underline{\zeta}}(U(\alpha) \cup U(\beta))) < (\max_{\underline{\zeta}}(U(\Upsilon) \cup U(\delta)));$ $\forall : (\max_{\underline{\zeta}}(U(\alpha) \cup U(\beta))) = (\max_{\underline{\zeta}}(U(\Upsilon) \cup U(\delta))) : \beta < \delta, \lor .\beta = \delta . \alpha \leq \Upsilon).$ DISE. $\leq_p = \text{df } \widehat{uw}(\underline{u} \leq_p w . \underline{u} \neq w).$

D123. $\leq_{\mathbf{d}} = \mathrm{df} \ \widehat{\mathbf{u}} ((\mathbf{E}\alpha, \beta, \mu, \nu)) : \alpha, \beta \in \mathbb{N}_0, \mu, \nu \leq 8.$ $\mathbf{u} = \langle \mu \alpha \rangle, \psi = \langle \nu \beta \rangle : \alpha < \beta, \nu, \alpha = \beta, \mu \leq \nu \rangle.$

D184. $\leq_t = \text{df } \widehat{\text{uw}}((\text{Ea},\beta,\chi,\delta,\mu,\nu);\alpha,\beta,\chi,\delta = \text{NO}.$ $\mu,\nu \leq 8. \text{u} = \langle \mu\alpha\beta \rangle. \text{w} = \langle \nu\chi\delta\rangle : \langle \alpha\beta\rangle <_p \langle \gamma\delta\rangle. \nu. \langle \alpha\beta\rangle = \langle \gamma\delta\rangle. \mu \leq \nu\rangle.$ $D185. \quad \langle_t = \text{df } \widehat{\text{uw}}(\text{u} \leq_t \text{w}. \text{u} \neq \text{w}).$

T134. $+ \leq_p \in \Omega \cdot \leq_d \in \Omega \cdot \leq_k \in \Omega$.

Proof. It is easily proved (by cases) that $\leq_p \epsilon \Omega$ and $\leq_d \epsilon \Omega$. A similar proof then shows that $\leq_t \epsilon \Omega$.

T16-T18 now follow from D134 and T134.

In order to prove T19 we first prove some muxiliary theorems.

T135. + (a):aENO.J.(seg_S)LE(seg_aO>S).

T135,1. \vdash (a):csN0. \supset . (seg_a) LE(seg_{Oa} \leq _d).

Proof of T135, by induction: T135 is obvious when g=0. Suppose (3): $\beta < \alpha$. \supset . (seg_{β}) LE($seg_{\beta} > 0$), and

T135.1 is proved similarly.

T136. $\vdash (seg \omega_0) smor(seg_{\langle \omega_0, 0 \rangle \leq p})$.

T186.1. \vdash (seg $\omega_o \leq$) smor(seg $\langle 0, \omega_o \rangle \leq_d \rangle$.

Proof of T136. By T135, (seg_{ω_0}) LE $(seg_{\omega_0}, 0 > \leq_p)$.

Suppose $\text{xec}(\zeta_p)$ and $(\text{seg}\omega_q\zeta) \text{smor}_p \text{seg}_x(\text{seg}(\omega_q,0) \zeta_p)$.

Then $x=\langle \alpha\beta\rangle$, $\alpha<\omega_0$, $\beta<\omega_0$, and $(seg_{\omega_0}\leq)smor_F(seg_{\langle\alpha\beta\rangle}\leq_p)$.

Obviously, $\sim (\alpha=0.\beta=0)$.

Let β -l=df ℓ a(asN0.a+l= β), and let $y = \ell z(\beta \langle \alpha.\beta \neq 0.z = \langle \alpha,\beta-1 \rangle, \vee .\beta = 0.z = \langle \alpha-1,\alpha-1 \rangle. \vee .a \leq \beta.a \neq 0.z = \langle \alpha-1,\beta \rangle. \vee .a = 0.z = \langle \beta,\beta-1 \rangle).$

Then $y=\max_{\leq p} \hat{z}(z <_p < \alpha \beta)$. Let $F'y=m < \omega_0$. Then $y <_p F'm+1$, so $F'm+1 \sim \varepsilon C(seg_{\langle \alpha \beta \rangle} \leq_p)$, which contradicts $m+1 \varepsilon C(seg_{\omega_0} \leq)$.

Thus $(seg_{\langle \omega_0, 0 \rangle} \leq_p)$ LE($seg_{\omega_0} \leq$). So $(seg_{\omega_0} \leq) smor(seg_{\langle \omega_0, 0 \rangle} \leq_p)$.

Thus 186.1 is proved similarly.

T137. \vdash (a):azmo, $\omega_a \neq V$, \supset , (seg $\omega_a \leq$) smor(seg $\langle \omega_a, 0 \rangle \leq p$). T137.1. + (a): asNo. $\omega_a \neq V$. \supset . (seg $\omega_a \leq$) smor(seg $\omega_a > \leq_d$). Proof of \$157, by induction. When a=0 the theorem follows from T136. Assume (β): $\beta < \alpha$. $\alpha \neq V$. $\supset (\text{seg }\omega_{\beta} \leq) \text{smor}(\text{seg}_{\langle\omega_{\beta},0\rangle} \leq_{p}).$ By T135,

(1) $(seg_{\omega_a} \le) LE(seg_{\omega_a}, 0 > \le_p)$.

Suppose $x < \omega_a, 0 >$, and (seg $\omega_a \le$) smor(seg x < p). Then $x=\langle Y\delta \rangle$, $\forall \langle \omega_{\alpha}, \delta \langle \omega_{\alpha}$. Let $\xi = \max_{\langle U(Y) \cup U(\delta) \rangle + 1}$. Then $z < \omega_{\alpha}$. Since z < z, z < z, we have

(2) $\operatorname{Ne}(\hat{x}(x < y < y > \delta)) \leq \operatorname{Ne}(\hat{x}(x < y < z > \delta))$.

Using T126, let o=max(o(osNo. a, < 3). Then by T118, $\varphi(a, so by hypothesis of induction, (seg <math>\omega \leq smor(seg(\omega_0, 0) \leq p)$. Hence,

- (3) $8 = Nc(\hat{x}(x <_p < \omega_{\varphi}, 0>))$. By T124,
- (4) $\operatorname{Nc}(\hat{\beta}(\beta \langle \mathcal{F} \rangle) = \partial_{\alpha}$.

So from (3) and (4),

- (5) $\operatorname{Ne}(\hat{x}(x < \xi, 0)) = \operatorname{Ne}(\hat{x}(x < \omega_0, 0)) = \theta_0$. But since $(seg_{\omega_{\alpha}} \leq smor(seg_{\langle Y \delta \rangle} \leq_p)$, we have
 - (6) $\operatorname{Nc}(\hat{x}(x <_{p} < \delta >)) = A_{\alpha}$.

Then from (2), (5), and (6) we get $\exists_{\alpha} \leq_{c} \exists_{\varphi}$, contradicting φ<α.

T137.1 is proved similarly.

T138. \downarrow (\leq_{p}) smor (\leq) .

T138.1. | (Sa) smor(s).

Proof of T138. By T135, (ζ)LE(ζ_p). Suppose x= $\langle \alpha\beta \rangle$, and (ζ) smor(seg $_{\langle \alpha\beta \rangle} \zeta_p$).

Let $\delta = \max_{\hat{x}} (U(\alpha) \cup U(\beta)) + 1$, so that $\langle \alpha \beta \rangle \langle_p \langle \gamma \rangle \rangle$. Let $\phi = \max_{\hat{x}} (\phi \in NO. \omega_{\phi} \leq \gamma)$. Then by T124 or T125, $Nc(\hat{\delta}(\delta < \omega_{\phi})) = Nc(\hat{\delta}(\delta < \gamma))$. Hence, $Nc(\hat{x}(x <_p < \omega_{\phi}, 0 >))$ = $Nc(\hat{x} <_p < \gamma \rangle)$. But by T137, $d_{\phi} = Nc(\hat{x}(x <_p < \omega_{\phi}, 0 >))$, and by hypothesis, $Nc(NO) = Nc(\hat{x}(x <_p < \alpha \beta >)) \leq_{\hat{x}} Nc(\hat{x}(x <_p < \gamma >))$. Hence $Nc(NO) \leq_{\hat{x}} d_{\phi}$, contradicting T123.

T138.1 is proved similarly.

7139. - (4) smor(4).

T139.1. \vdash (a):asNo. $\omega_a \neq v$. \supset . (seg $\omega_a \leq$) smor(seg $\langle o, \omega_a, o \rangle \leq \varepsilon$).

Proof of T139 and T139.1. Suppose (ζ_p) smor $_R(\zeta)$ and (ζ_d) smor $_S(\zeta)$. Let

H= \hat{u} w((Εμ,α,β): μ≤8.α,βεΝΟ.u=<μαβ>.w=<μ,R'<αβ>>). Schematically, when μ≤8, α,βεΝΟ, and $\stackrel{P}{\longrightarrow}$ means is carried into by P', we have

 $\langle \mu \alpha \beta \rangle \stackrel{E}{\longleftrightarrow} \langle \mu, R' \langle \alpha \beta \rangle \rangle \stackrel{S}{\longleftrightarrow} S' \langle \mu, R' \langle \alpha \beta \rangle \rangle$. Thus it is clear that from Tl38 and Tl38.1 one can derive (C_t) smor $_{H|S}(C)$. Tl39.1 follows from Tl37 and Tl37.1.

T140. ├ (a):asNO. ⊃. (seg_4)LE(seg_{0a0} 4).

Proof. Use T135, T135.1.

We now proceed to the proofs of T32 through T36. For the definitions of J, J_0 , ..., J_8 , K_1 , K_2 see p. 16.

T141. | (a):asNO. > .a<J'<0a0>.

Proof. By Tl40, $(seg_{\underline{\zeta}})$ LE $(seg_{\underline{\zeta}})$; 1.e., $(seg_{\underline{\zeta}})$ LE $(seg_{\underline{\zeta}})$.

T142. (T32) $\vdash (\alpha,\beta,\mu):\alpha,\beta\in\mathbb{N}0.\mu\leq 8.\supset \max_{\leq}(\mathbb{U}(\alpha)\cup\mathbb{U}(\beta))$ $\leq J'<\mu\alpha\beta>$.

Proof. Let $Y = \max_{\underline{\zeta}}(U(a) \cup U(\beta))$. Then $\langle 0 \rangle \rangle_{\underline{\zeta}}$ $\langle \mu a \beta \rangle$. Use T141.

1143. (133) $\vdash (\alpha,\beta,\mu):\alpha,\beta\in NO.05\mu \le 8.$

 $\supset \max_{\leq} (U(\alpha) \cup U(\beta)) \langle J ' \langle m \alpha \beta \rangle.$

T144. (T34) \vdash (a): $\alpha \in \mathbb{N}$ 0. $\supset \mathbb{K}_{1}^{c} \alpha \leq \alpha \cdot \mathbb{K}_{2}^{c} \alpha \leq \alpha$.

Proof. Let $\alpha=J^{<}(\mu\beta\gamma)$. Then $K_{1}^{\prime}\alpha=\beta$, $K_{2}^{\prime}\alpha=\gamma$. Use T142.

T145. (T35) \vdash (a):asNo.a~sVal(J₀). \supset .K₁a<a.K₂a<a. T146. \vdash (a):asNo. $\omega_{\alpha} \neq v.\supset$. $\omega_{\alpha} = val(J_0)$.

Proof. By T139.1, $\omega_a=J'(0,\omega_a,0)$.

T36 is a special case of T146.

We have now proved all the propositions of \$2 which are marked with an asterisk except T27 and T84. It appears unlikely that either of these propositions is provable in the system of type theory so far described. Thus, from the point of view of using as weak a system for L2 as possible, the best thing we can do is to add T27 and T84 themselves to L2 as axioms. While this procedure has certain advantages (in particular, it reduces the length and number of necessary proofs to a minimum), it is perhaps of interest to show that T27 and T84 can be derived from more well

known propositions of classical ordinal theory.

We therefore add the following axioms to L_2 :

Axiom A. (x):.x \(\sigma\).(Ea).aeNO. $\omega_a \neq V$.Nc(x)= ∂_a :\(\tau\):

(Ey)(\beta):\(\beta\).\(\text{E}_1P\).\(\text{P}\).\(\beta\).\(\beta\).

Axiom B. (a): α ENO. \square . (EB). β ENO. α < ω $_{\beta}$

Axiom A is a weak form of the axiom of choice, and Axiom B is a trivial consequence of the classical theorem of ordinal theory which asserts that $\omega_{\rm d}$ exists for every ordinal ${\bf d}$. In fact, both Axiom A and Axiom B are provable in classical ordinal theory without use of the axiom of choice. The standard proofs of both, however, depend on a theorem from which the Burali-Forti paradox is an immediate consequence. Thus the classical proofs of Axioms A and B are not valid in type theory, and we are forced to assume these propositions as axioms.

As pointed out previously, Axiom B contradicts strong forms of the axiom of choice; namely, any axiom from which the well-ordering theorem for arbitrary classes is provable. For let P be a well-ordering of V (V of type 3), and let $\alpha=Nr(P)$. Then obviously $(\beta).\beta \le NO \supset Cn(\beta) \le Cn(\alpha)$, so if we let $\gamma=\min_{\alpha}\beta(Cn(\beta)=Cn(\alpha))$, then γ will be the largest omega, contradicting Axiom B.

In spite of the above, one can add reasonably strong forms of the axiom of choice to the logic consisting of the theory of types plus Axioms A and B without (apparently)

^{8.} See [2], p. 193; [12], pp. 214, 215.

introducing a contradiction. An example of such an axiom of choice is

 $(x):.(u).u = x \supset u \neq \wedge : (u,v,w):u,v = x.w = u \wedge v.\supset$. $u = v:(E\alpha).a = x \bigcirc v. N \cap (x) = x \bigcirc (Ey)(u):u = x. \supset .(E_1z).z = u \cap y.$ Since the hypothesis of this axiom implies that x is already well-ordered, it appears unlikely that any very significant well-ordering theorems can be proved from this axiom; in particular, it appears most unlikely that one can well-order by means of this axiom, the continuum, the universe, and various other classes about whose well-ordering there is considerable dispute. Nevertheless, such an axiom would probably be adequate for most of the uses made of the axiom of choice in classical mathematics, except for uses for the explicit purpose of well-ordering.

In any case, T27 now follows from Axiom A. T147. (T27.) \vdash (x):x \subseteq NO. \sim (x sm NO). \supset . (Ea).aeNO.(β). β ex \supset β <a.

Proof. Let $S=\widehat{\alpha}\widehat{\beta}(\alpha,\beta\epsilon x.\alpha\leq\beta)$. Then from $(\underline{\zeta})$ LE(S) we get (x sm NO), so $\sim ((\underline{\zeta})$ LE(S)). Hence S smor(seg $\underline{\zeta}$).

If $\forall < \omega_0$, then the theorem is obvious. So suppose $\omega_0 \leq \forall$. Then by T131.1, (E\delta).\delta \text{NO.} \omega_\delta \delta \text{.Nc}(\beta(\beta < \gamma)) = \delta_\delta.\text{But x=C(S) sm }\beta(\beta < \gamma), so (E\delta).\delta \text{NO.} \omega_\delta \delta \text{.Nc(x)} = \delta_\delta.\text{ Thus the hypothesis of Axiom A is satisfied.}

Now suppose Rs \forall . Then $rCan^2(R) smor(seg_{\forall} \leq)$ by T121. Hence $Can^2(C(R)) sm_{P} x$.

Using Axiom A, let y be such that (β): β ex. \supset .(E_1 P).Pe β .Pey, and let P_{β} = ℓ P(Pe β . β ey).

Now let

 $A=\hat{z}((Eu, w).z=\langle uw \rangle.ueC(R).weC(P_{F}(u^2(u)))$

W=xŷ((Eu,w,u₁,w₁):x=<uw>.y=<u₁w₁>.

 $x,y \in A: F'U^{2}(u) < F'U^{2}(u_{1}) \cdot v \cdot F'U^{2}(u) = F'U^{2}(u_{1}) \cdot W_{F'U^{2}(u)} W_{1}$.

Then We Ω , and C(W)=A.

Let $\alpha=\operatorname{Nr}(W)$. Suppose β ex, so that $\beta=\operatorname{Nr}(P_{\beta})$. Let $T=2\gamma((Eu,v,w).v,w$ ec $(P_{\beta}).U^{2}(u)=F^{2}\beta.x$ = $\langle uv\rangle.y$ = $\langle uw\rangle.x$ Wy).

Then P8 smor T.

If \sim (Eò). $\delta \epsilon x \cdot \beta < \delta$, then the theorem is trivial.

So assume (Eb). $\delta \epsilon x. \beta < \delta$. Then $T \subseteq (seg_g w)$. Hence

 \sim (T smor W), so \sim (P $_{\beta}$ smor W). Similarly,

 \sim (W smor(seg_uP_{β})). So P_{β} smor seg_vW.

Thus $\beta < \alpha$. Hence, (Ea). $\alpha \in \mathbb{N}$ 0. $(\beta) \cdot \beta \in \mathbb{K} \supset \beta < \alpha$.

In order to prove T84, we need some auxiliary theorems.

T148. $\vdash (a): a \in \mathbb{N}_0$. $\omega_a \neq V$. $\supset \cdot \theta_a \times_c \theta_a = \theta_a$.

Proof. By T137, $(seg_{\langle \omega_q, 0 \rangle} \leq_p) smor(seg_{\omega_q} \leq)$.

Hence $\partial_{\alpha} = Nc(\hat{\gamma}(\gamma < \omega_{\alpha})) = Nc(\hat{\chi}((E\beta, \gamma), \beta, \gamma < \omega_{\alpha}))$

 $x=\langle\beta\,\forall\,\rangle))=\mathrm{Nc}((\hat{Y}(\forall\langle\omega_{\alpha}\rangle)\times(\hat{Y}(\forall\langle\omega_{\alpha}\rangle)))$

=Nc($\hat{\mathbf{y}}$ ($\mathbf{y} < \omega_{\alpha}$)) \mathbf{x}_{e} Nc($\hat{\mathbf{y}}$ ($\mathbf{y} < \omega_{\alpha}$)) = $\mathbf{d}_{\alpha} \mathbf{x}_{e} \mathbf{d}_{\alpha}$.

T148.1. \vdash (a):asNo. $\omega_a \neq v$. \supset . $\lambda_a \times_c \lambda_a = \lambda_a$.

Proof. Obviously $\chi \propto_{e} \chi_{a} \times_{e} \chi_{a}$. Let $\omega_{a} = Nr(P)$

so that $\mathcal{N}_{\alpha}=\operatorname{Nc}(C(P))$, and suppose $\mathcal{N}_{\alpha}<_{c}\mathcal{N}_{\alpha}$ $\times_{c}\mathcal{N}_{\alpha}$. Then

 $Ne(C(P)) <_{e}Ne(C(P)) \times_{e}Ne(C(P)) = Ne((C(P)) \times (C(P)))$. Hence

by T152, Ne(Can²(C(P)))< $_{c}$ Ne(Can²((C(P)) x (C(P))))

=Ne(Can²(C(P))) $\times_{\mathbf{C}}$ Ne(Can²(C(P))). But Ne(Can²(C(P)))=

 $\operatorname{Cn}(\operatorname{Nr}(\operatorname{rCan}^{\mathbb{Z}}(P))) = \operatorname{Cn}(\operatorname{Nr}(\operatorname{seg}\omega_{\mathcal{L}})) = \operatorname{Nc}(\widehat{\mathcal{S}}(\mathcal{S}(\mathcal{S}(\omega_{\mathcal{L}})))) = \partial_{\mathcal{S}}.$

Hence & a & a x a da, contradicting T148. Thus, -Na xc Na Sc Na xc Na = Na. T149. $\vdash (a,\beta): a \leq \beta \cdot \omega_{\beta} \neq V \cdot \supset \cdot \theta_{\alpha} \times_{\alpha} \theta_{\beta} = \theta_{\beta}$. Proof. $d_{\beta} \leq_e d_{\alpha} \times_e d_{\beta} \leq_e d_{\beta} \times_e d_{\beta} = d_{\beta}$. 8 a x e 8 = 8. TISO. $\vdash (\alpha,\beta,x,y): \alpha \leq \beta \cdot \omega_{\beta} \neq v \cdot Nc(x) = \mathcal{A}_{\alpha} \cdot Nc(y) = \mathcal{A}_{\beta}$. \supset .Ne(xxy)= θ_{g} .Ne(xvy)= θ_{g} , Proof. $d_{\beta} = Nc(y) \leq_c Nc(x \times y) \leq_c Nc(x) \times_c Nc(y)$ = $\theta_{\alpha} \times_{\alpha} \theta_{\beta} = \theta_{\beta}$. So Ne(xxy)= θ_{β} . $\theta_{\beta} = \text{Nc}(y) \leq \text{Nc}(x \cup y) \leq \text{Nc}(x \times y) = \theta_{\beta}$, so $\text{Nc}(x \cup y) = \theta_{\beta}$. T151. \vdash (R,x,a):aeNo. $\omega_a \neq V$.ReSv.Nc(x) = ∂_a . $\supset Nc(R^{\alpha}x) \leq Nc(x)$. Proof. Suppose $\hat{Y}(Y < \omega_a)_{\text{Sm}_p X}$. Let $y=\hat{z}((Eu).usVal(x1R).z=F^{c}(min_{\beta}(\beta < \omega_{\alpha}.R^{c}F^{c}\beta = u))).$ Then $y \subseteq x$ and $y \le m_y \le R^{R'}x$. So $Nc(R''x) \le Nc(x)$. The following theorem is analogous to *8.73 of [5]. However, the proof given here does not depend on the axiom of choice.

T152. $\vdash (x,a,R,S): x \subseteq N0.asN0. \omega_{a} \neq V.Nc(x) = \partial_{a}.$ R, SeFnc.Arg(R)=N0.Val(R) $\subseteq N0.Arg(S)=N0 \times N0.Val(S) \subseteq N0.$ D.Nc(Closure(x,(R)₂,(S)₃))= $\partial_{a}.$

The hypothesis " $x \le NO.Arg(R)=NO.Val(R) \le NO.$ Arg(S)=NO × NO.Val(S) $\le NO$ " is not actually necessary for this theorem, but it avoids certain awkward circumlocutions which would be necessary without it because of D18.

Proof. Let

$$H=\widehat{u}\widehat{w}(w=u \cup R"u \cup S"(u \times u)).$$

Using T108, let f be a function such that $\text{Arg}(f) = \text{Can}(\hat{\beta}(\beta < \omega_0)), \text{ and }$

f'U(0)=x

(n):0
$$<$$
n $< \omega_0$. \supset .f' $U(n+1)=H'$ f' $U(n)$.

Then we have

I'U(0)=x

 $f'U(1)=x \cup R''x \cup S''(x*x)$

$$f'U(2)=f'U(1)\cup R''(f'U(1))\cup S''((f'U(1))\times (f'U(1)))$$

etc.

It is easily shown that

Sum(f"Can(
$$\hat{\beta}(\beta < \omega_0)$$
))=Closure(x,(R)₂,(S)₃).

It is not so easily shown that Nc(Closure(x,(R),

(s) $_{3}$)= θ_{a} . To do this we start over and proceed as follows.

We define ordinal multiplication, $\alpha \times_0 \beta$, and ordinal

subtraction, $\alpha_{-0}\beta$, as follows:

$$P \times_{\mathbb{T}} Q = df \hat{x} \hat{y} ((E\alpha, \beta, Y, \delta) \cdot x = \langle \alpha \beta \rangle, y = \langle \delta \delta \rangle.$$

a, γεC(P).β, δεC(Q):βQδ.β≠δ. ν.β=δ.αPγ).

$$\alpha \times_{0}^{\beta=df} \hat{\mathbb{R}}((\mathbb{H}^{p},\mathbb{Q}),\mathbb{P},\mathbb{Q} \in \Omega,\alpha=\operatorname{Nr}(\mathbb{P}),\mathbb{B}=\operatorname{Nr}(\mathbb{Q}),\mathbb{R} \operatorname{smor}(\mathbb{P} \times_{\mathbb{R}}^{\mathbb{Q}})).$$

z_{Q,P}=df \(\langle z(Q\)\ smor(seg_P))

 $\alpha - \alpha \beta = \text{df } lY(\alpha \le \beta, Y = 0. \lor .\beta < \alpha. (P,Q): \alpha = \text{Nr}(P).$ $\beta = \text{Nr}(Q). \supset .Y = \text{Nr}(P - rQ)).$

One can then prove:

- 1) + (a,m,n): aeno. Watv.m,n<wo.m<n.). Wa xom< wa xon.
- 2) $\vdash (\alpha, \gamma, n) : \alpha, \gamma \in \mathbb{N}_0 \cdot (\omega_{\alpha} \neq V, n < \omega_{\alpha}, (\omega_{\alpha} \times_{\alpha} n) \leq \gamma < (\omega_{\alpha} \times_{\alpha} (n+1)) \cdot \mathcal{D} \cdot (\gamma (\omega_{\alpha} \times_{\alpha} n)) < \omega_{\alpha}.$
 - 5) + (a): ae NO, $\omega_a \neq V$, \supset No ($\beta(\beta < \omega_a \times \omega_b)$) = a_a .
- 1) and 2) above may be proved by using theorems similar to those in Principla Mathematica, *160, *166, *180, *184, *255. (Note, however, that P X and a X are defined by ordering by first differences in P.M., rather than by second differences as above. Thus the order of some of the products in the theorems in *255 must be reversed.)

To prove 3) we first prove two lemmas.

Lemma 1. $\vdash (\alpha, \beta) : \alpha, \beta \in \mathbb{N}0. \supset Cn(\alpha \times_{o} \beta) = Cn(\alpha) \times_{o} Cn(\beta)$.

Proof. Let q=Nr(P), $\beta=Nr(Q)$. Then

 $\operatorname{Cn}(a \times_{\mathcal{O}} \beta) = \operatorname{Nc}(\operatorname{C}(P \times_{\mathcal{P}} Q)) = \operatorname{Nc}(\operatorname{C}(P)) \times (\operatorname{C}(Q))$

=Nc(C(P)) \times_{c} Nc(C(Q))=Gn(a) \times_{c} Cn(β).

Lemma 2. $\vdash (\alpha): \alpha \in \mathbb{N}0$. $\omega_{\alpha} \neq V$. $\supset .Cn(\omega_{\alpha} \times_{\alpha} \omega_{\alpha}) = \mathcal{N}_{\alpha}$.

Proof. By Lemma 1, $\operatorname{Cn}(\omega_{a} \times_{o} \omega_{a}) = \operatorname{Cn}(\omega_{a}) \times_{c} \operatorname{Cn}(\omega_{a})$

= $\mathcal{N}_{\alpha} \times_{\alpha} \mathcal{N}_{\alpha}$. So by T148.1, $\operatorname{Cn}(\omega_{\alpha} \times_{\alpha} \omega_{\alpha}) = \mathcal{N}_{\alpha}$.

Proof of 3): $A_{\alpha}=\operatorname{Ne}(\hat{\beta}(\beta < \omega_{\alpha})) \leq \operatorname{Ne}(\hat{\beta}(\beta < \omega_{\alpha} \times_{\alpha} \omega_{\alpha}))$

 $\leq_{c} \operatorname{Hc}(\beta(\beta < \omega_{\alpha} \times_{o} \omega_{\alpha})) = \partial_{\alpha}$ by Tl29 and Lemma 2.

Using T137, one can define a function F such that $\hat{\chi}(\chi < \omega_{\rm q}) \sin \hat{\chi}((E\delta,\beta).\delta,\beta < \omega_{\rm q}.z=<\delta\beta>)$,

and by proving a more general theorem similar to T137.1, one can define a function F_n such that $(n): 0 < n < \omega_0, \supset . \hat{Y}(Y < \omega_0) \operatorname{sm}_{F_n} \hat{z}((Em,\beta).m < n.\beta < \omega_0.z = < m\beta >).$

We then define

 $Q_1=df \hat{x} \hat{y} ((E\alpha,\beta).x=\langle \alpha\beta\rangle. Y=\alpha)$

 $Q_g = df \hat{x} \hat{\gamma}((Ea,\beta).x = \langle a\beta \rangle, \gamma = \beta).$

By hypothesis, there is a function K such that $\widehat{\mathcal{S}}(Y < \omega_{\mathbf{G}})_{\mathrm{SM}_{K}} \mathbf{x}$.

We now wish to define a function W which is a many-one mapping of $\widehat{Y}(Y < \omega_{\alpha} \times_{o} \omega_{o})$ onto Closure(x,(R)₂,(S)₃). We shall do this approximately as follows (where "----)" means "is mapped by W onto"):

$$\hat{\gamma}(x < \omega_{\alpha}) \longrightarrow x = f'U(0)$$

$$\hat{\gamma}(x < \omega_{\alpha} \times_{0} 5) \longrightarrow H'f'(U(0) = x \cup R'' x \cup S'(x \times x) = f'U(1)$$

$$\hat{\gamma}(x < \omega_{\alpha} \times_{0} 5) \longrightarrow H'f'(U(1) = f'U(1) \cup R''(f'U(1)) \cup S''((f'U(1)) \times (f'U(1)))$$

$$= f'U(2)$$

 $\widehat{Y}(Y < (\omega_{\alpha} \times_{0}(xn+1))) = H'f'U(n-1) = f'U(n-1) \cup R''(f'U(n-1))$ $\cup S''((f'U(n-1)) \times (f'U(n-1))) = f'U(n)$

\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

It is clear, however, that rather than map $\hat{Y}(Y < \omega_{\alpha} \times_{o} 3) \text{ onto } x \cup R^{\alpha} \times_{o} S^{\alpha}(x \times x) \text{ in the second step,}$ we could as well map $\hat{Y}(\omega_{\alpha} \leq Y < \omega_{\alpha} \times_{o} 2) \text{ onto } R^{\alpha} x, \text{ and }$ $\hat{Y}(\omega_{\alpha} \times_{o} 2 \leq Y < \omega_{\alpha} \times_{o} 3) \text{ onto } S^{\alpha}(x \times x), \text{ since } \hat{Y}(Y < \omega_{\alpha})$ has previously been mapped onto x. We can accomplish this

by mapping $\widehat{Y}(\omega_{\mathbf{q}} \leq Y < \omega_{\mathbf{q}} \times_{\mathbf{q}} z)$ back onto $\widehat{Y}(Y < \omega_{\mathbf{q}})$ by subtraction, mapping $\widehat{Y}(Y < \omega_{\mathbf{q}})$ onto x by K, and mapping x onto R"x. We then map $\widehat{Y}(\omega_{\mathbf{q}} \times_{\mathbf{q}} z \leq Y < \omega_{\mathbf{q}} \times_{\mathbf{q}} z)$ onto $\widehat{Y}(Y < \omega_{\mathbf{q}})$ by subtraction, map $\widehat{Y}(Y < \omega_{\mathbf{q}})$ onto $\widehat{Z}((E\delta,\beta).\delta,\beta < \omega_{\mathbf{q}}.z = \langle \delta\beta \rangle)$ by F, map this onto x xx, and map $x \times x$ onto $\widehat{S}''(x \times x)$.

We then continue in the same manner, although in succeeding steps it will be convenient at each stage to take R and S of all elements so far obtained, thus introducing some harmless duplication.

The above considerations suggest that we define a W which behaves as follows:

For $0 \le Y < \omega_{\alpha}$: W'Y = K'Y.

For $\omega_{\alpha} \le Y < \omega_{\alpha} \times_{\alpha} \ge : W'Y = R'K'(Y - \omega_{\alpha})$ $\omega_{\alpha} \times_{\alpha} \ge Y < \omega_{\alpha} \times_{\alpha} \ge : \text{Let } F'(Y - \omega_{\alpha}^{*} \ge) = <\mu\nu >; \mu, \nu < \omega_{\alpha}.$ $\text{Then } W'Y = S' < K'\mu, K'\nu >.$ For $\omega_{\alpha} \times_{\alpha} \le Y < \omega_{\alpha} \times_{\alpha} \le : \text{Let } F'_{3}(Y - \omega_{\alpha} \times_{\alpha} \ge) = <\mu\beta >; m < 3, \beta < \omega_{\alpha}.$ $\text{Then } W'Y = R'W'((\omega_{\alpha} \times_{\alpha} m) + \beta).$ $\omega_{\alpha} \times_{\alpha} \le Y < \omega_{\alpha} \times_{\alpha} \le : \text{Let } F'(Y - \omega_{\alpha} \times_{\alpha} 4) = <\mu\nu >; \mu, \nu < \omega_{\alpha}.$ $\text{Let } F'_{3}(\mu = <\mu, \mu') >; m < 3, \mu' < \omega_{\alpha}.$ $\text{Let } F'_{3}(\nu = <\mu, \mu') >; m < 3, \mu' < \omega_{\alpha}.$ $\text{Then } W'Y = S' < W'((\omega_{\alpha} \times_{\alpha} m) + \mu'),$ $W'((\omega_{\alpha} \times_{\alpha} 1) + \nu') >$

For $\omega_{\alpha} \times_{0}(2n+1) \le \gamma < \omega_{\alpha} \times_{0}(2n+2)$: Let $F_{2n+1} (\gamma - \omega_{\alpha} \times_{0}(2n+1))$ $= < m\beta > ; m < 2n+1, \beta < \omega_{\alpha}.$

Then $W'Y = R'W'((\omega_{\alpha} \times_{on}) + \beta)$.

 $\omega_{\alpha} \times_{\alpha} (2n+2) \le Y < \omega_{\alpha} \times_{\alpha} (2n+3)$:

Let $F'(Y-\omega_{\alpha} \times_{o}(2n+2))=\langle \mu, \nu \rangle$;

u,v < w.

Let $F_{2n+1}\mu = \langle m, \mu^* \rangle_{m} \langle 2n+1, \mu^* \langle \omega_{\alpha} \rangle_{m}$ and $F_{2n+1}^{\ \ \ \ } v = \langle j, v^i \rangle, j \langle 2n+1, v^i \rangle \omega_{\alpha}$.

Then $W'V = S' < W'((\omega_{\alpha} \times_{om}) + \mu!),$

((ω × oj)+v1)>.

Using T108, there is a W such that

WsFnc, Arg(W)= $\hat{\beta}(\beta < \omega_a \times_o \omega_o)$, W'O=K'O, and when

 $0 < Y < \omega_a \times_o \omega_o$

1 Y = 1 2 [0< Y < W, 2= X < Y : V : (En):0 \leq n $<\omega_0$: ($\omega_a \times_o$ (2n+1)) \leq Y<($\omega_a \times_o$ (2n+2)). $z=R^{\prime}P^{\prime}((\omega_{\alpha} \times_{o}(Q_{1}^{\prime}F_{2n+1}(Y_{-o}(\omega_{\alpha} \times_{o}(2n+1)))))+$ $Q_{2}^{C_{p}} = (Y_{-o}(\omega_{\alpha} \times_{o}(2n+1))) \times (\omega_{\alpha} \times_{o}(2n+2)) \le \forall < (\omega_{\alpha} \times_{o}(2n+3)).$ z=s' $\mathcal{Q}'((\omega_{\alpha} \times_{0}(\mathbb{Q}_{1}^{c}F_{2n+1}\mathbb{Q}_{1}^{c}F'(Y_{-0}(\omega_{\alpha} \times_{0}(2n+2)))))$ $+Q_{2}^{c}F_{2n+1}Q_{1}^{c}F'(Y_{-o}(\omega_{\alpha}x_{o}(2n+2)))),$ $P^{c}((\omega_{a} \times_{o}(Q_{1}^{c}F_{2n+1}Q_{2}^{c}F(Y_{-o}(\omega_{a} \times_{o}(2n+2)))))$ +Q2F2n+1Q2F((8-0(Wa X0(2n+2))))>]

where P stands for $\beta(\beta(x))1W$.

It can be shown that the function defined above has the desired properties.

It follows that

 $\mathcal{A}_{a}=Nc(x)\leq_{a}Nc(Closure(x,(R)_{2},(S)_{3}))\leq_{c}$ $Nc(\hat{\beta}(\beta < \omega_{\alpha} \times_{\alpha} \omega_{\alpha})) = \partial_{\alpha}$ Hence, $\operatorname{Hc}(\operatorname{Closure}(x,(R)_2,(S)_3)) = \partial_{\alpha}$.

T152 and its proof can be generalized to obtain an analogous theorem for any finite number of dyadic relations, R, and any finite number of triadic relations, S. The complications are mainly notational, so we omit the proof.

The two theorems which follow could have been proved in \$2, but at the time were irrelevant.

1153. + (a, b, 8, u):a, b, Y, u sno. W +v. US8.0, B< Wy. J. Jú <08>< Wy. Proof. < Kap><t<0, Wy,0>, so J' < () = J' < / ab> < J' < 0, W, 0> = W.

Ind(y)< ω_a . \supset . Ind(x)< ω_a .

Proof. Let $x=G'U(\beta)$, $\beta \in NO_G$, $\beta < \omega_\alpha$, and y=G'U(Y), $\forall \in NO_G$. $Y < \omega_\alpha$. Then by T41 and T153, $x \cap \overline{y}=G'U(\delta)$, $\delta \in NO_G$, $\delta < \omega_\alpha$. So by T41 and T153 again, $x \cap y=x \cap \overline{x} \cap \overline{y}=G'U(V)$, $V \in NO_G$, $V < \omega_\alpha$; i.e., $Ind(x \cap y) < \omega_\alpha$.

The two theorems which follow are translations of Theorems 12.4 and 12.51 of [5] into our notation. The only modifications which must be made in the proofs given in [5] are those caused by the differences between the ordinals of set theory and the ordinals of the theory of types. The proofs will be omitted.

T155. $\vdash (x,P,\gamma): . \gamma \in NO. x \subseteq NO. x Closed(K_1,K_2)_2.$ $x \ Closed(J_0, ..., J_8)_3. \hat{\alpha} \hat{\beta} (\alpha,\beta \in x.\alpha \leq \beta) \operatorname{smor}_p(\operatorname{seg}_{\gamma} \leq):$ $\supseteq : \hat{\beta} (\beta < \gamma) \operatorname{Closed}(J_0, ..., J_8)_3: (\alpha,\beta,M): \alpha,\beta \in x.M \leq 8. \supseteq.$ $J_{\mu} \langle P^{\mu} \alpha, P^{\mu} \rangle = P^{\mu} J_{\mu} \langle \alpha \beta \rangle.$

T156. $\vdash (x,P,V): V \in NO.x \subseteq NO.x Closed(K_1,K_2)$. $x Closed(J_0,\cdots,J_8)_3. \hat{\alpha}\hat{\beta}(\alpha,\beta \in x.\alpha \leq B) \operatorname{smor}_{p}(\operatorname{seg}_{V} \leq):$ $\supset :(\alpha,\mu): \operatorname{asx}. \mu \leq 8. \supset .\operatorname{aeVal}(J_{\mu}) \supset P^{\operatorname{caeVal}}(J_{\mu}).$

We now define a function, Ch, which in the theorem that follows serves the same purposes for us as the function, C, serves in the proof of Theorem 12.6 of [5].

D126. $Ch=\alpha\beta(\beta=\min_{\alpha}G^{\alpha}U(\alpha))$.

The following theorem can now be proved:

Tl57. $\vdash (x,P,^{\vee}):: ^{\vee} \in \mathbb{N}0.x \subseteq \mathbb{N}0.x \text{ Closed } (K_1,K_2,Ch)_{2^{\circ}}$ $\times \text{ Closed}(J_0,\cdots,J_{8^{\circ}})_{3^{\circ}} \stackrel{\triangle}{\alpha} (\alpha,\beta \in x.\alpha \leq \beta) \text{ smor}_{p} (\text{seg}_{\gamma} \leq):.$ $\supset :.(\alpha,\beta):.\alpha,\beta \in x: \supset : G^{\circ}U(\alpha) \in g^{\circ}U(\beta).\equiv.$ $G^{\circ}U(P^{\circ}\alpha) \in g^{\circ}U(P^{\circ}\beta): G^{\circ}U(\alpha) = G^{\circ}U(\beta).\equiv. G^{\circ}U(P^{\circ}\alpha) = G^{\circ}U(P^{\circ}\beta).$

The proof can be obtained from the proof of 12.6 in [5] by replacing G by P, F by G, and, at appropriate places, s by sg. The manner in which this is done can be determined by comparing the statement of T157 with that of 12.6 of [5]. With respect to Gödel's proof we note the following:

- 1) The use in [5] of 12.5 to prove 12.6 is not essential, and may be avoided in proving T157.
- 2) The following typographical errors occur in the proof of 12.6 in [5]:

p. 56, line 33, replace "8" " by " 7" ".

pp. 59, 60, interchange all occurrences of "I" and "II".

p. 60, lines 35, 36, should read " $\gamma = J_5 \langle \beta c \rangle$ and $\gamma' = J_5 \langle \beta' \gamma' \rangle$; that is, $F' \gamma' = F' \beta \cdot P_2'' (F' \gamma')$ and $F' \gamma' = F' \beta' \cdot P_2'' (F' \gamma') \cdot \cdot \cdot \cdot \cdot \cdot$.

Having proved T152 and T157, we can now prove the following theorem, which is the relativization to the model in \$2 of 12,2 of [5]; the proof is essentially the same as that given in [5].

T158. $\vdash (y,\alpha,Y): \alpha \in \mathbb{N} 0. \omega_{\alpha+1} \neq V. y \in SC(\hat{\beta}_{\mathbb{G}}(\beta < \omega_{\alpha})).$ $Y \in \mathbb{N} 0_{\mathbb{G}}. y = \mathbb{G}^{C} U(Y). \supset . Y < \omega_{\alpha+1}.$ Proof. Assume the hypothesis, and let x=Closure($(\hat{\beta}(\beta < \omega_{\alpha}) \cup U(Y))$,(K₁,K₂,Ch)₂,(J₀,···,J₈)₃). Then by T152, Nc(x)= A_{α} .

Let $Q=\widehat{d\beta}(\alpha,\beta\in\mathbb{Z},\alpha\leq\beta)$. Then $Q\in\Omega_{s}$ so there are three possibilities:

- 1) Suppose $(x) = \operatorname{Nc}(x) \cdot \operatorname{Suppose}(x)$. Then $\operatorname{Nc}(C(x)) = \operatorname{Nc}(x) \cdot \operatorname{Nc}(x) \cdot$
- 2) Suppose Q smor \leq . Then C(Q) sm NO, so Nc(x)=Nc(NO). However, Nc(x)< $g_{\alpha+1}\leq_c$ Nc(NO), a contradiction.
- 3) Suppose Q smorp(seg, ζ). Since YeC(Q), we have P'YeC(seg, ζ). Hence, P'Y $\zeta\beta$.
- C(Q) sm $C(seg_{\beta}S)$, so $Nc(\delta(\delta S)) = d_{\alpha}$. Hence $\beta < \omega_{\alpha+1}$, so $P'Y < \omega_{\alpha+1}$.

The hypothesis of TL57 is satisfied, and Yex, so (3): δx . $\supset G^{C}U(\delta) e_{g}G^{C}U(Y) \equiv G^{C}U(P^{C}\delta) e_{g}G^{C}U(P^{C}\delta)$.

Obviously seg ω_{α} Q=seg ω_{α} \leq , so (5):5< ω_{α} . \supset .P'5=5. Hence,

- (8): $\delta < \omega_{G^*} \supset G^{c}(U(\delta) \epsilon_{g^{G^{c}}} U(\delta)) = G^{c}U(\delta) \epsilon_{g^{G^{c}}} U(P^{c})$. This may be written
- (8): $\delta < \omega_{\alpha}$. \supset . Ind(G'U(\delta)) ϵ G'U(\delta) = Ind(G'U(\delta)) ϵ G'U(\text{P'}); i.e., $\hat{\beta}_{G}(\beta < \omega_{\alpha}) \land G'U(\delta) = \hat{\beta}_{G}(\beta < \omega_{\alpha}) \land G'U(\text{P'})$.

By hypothesis, y=G'U(\forall) $\leq \hat{\beta}_G(\beta < \omega_G)$, and By T148 and T41, $\hat{\beta}(\beta < \omega_G)$ =G'U(ω_G). So we have

 $G'U(Y)=G'U(\omega_{\alpha}) \wedge G'U(P'Y).$

It follows from T154 and the fact that P'Y $<\omega_{\text{G+1}}$, that $Y<\omega_{\text{G+1}}$

It should be pointed out that while 12.2 is used in [5] after the model has been constructed to prove the generalized continuum hypothesis in the model, we are using T158 in order to construct the model of L1, and it has only an intuitive connection with the continuum hypothesis.

We can now prove T84.

Proof. Using Axiom B, let $\forall < \omega_v$. It follows also from Axiom B, that $\omega_v < \omega_{v+1} \neq v$.

Suppose $\delta \varepsilon \widehat{a}_{G}(G'U(\alpha) \subseteq G'U(Y))$. Then by T38, $\delta \varepsilon NO_{G}$, and $G^{C}U(\delta) \subseteq G^{C}U(Y)$. But by T38 and T146, $G^{C}U(Y) \subseteq G'U(\omega_{V})$, so $G^{C}U(\delta) \subseteq G^{C}U(\omega_{V})$. Hence $G^{C}U(\delta) \varepsilon SC(\widehat{\beta}_{G}(\beta < \omega_{V}))$. So by T158, $\delta < \omega_{V+1}$.

Thus ω_{V+1} can be used for the desired β_*

BIBLIOGRAPHY

- 1. Church, A., <u>Introduction to Mathematical Logic</u>,
 Princeton, 1944.
- 2. Fraenkel, A., <u>Einleitung in die Mengenlehre</u>, New York, 1944.
- 3. Gödel, K., The Consistency of the Axiom of Choice

 and the Generalized Continuum Hypothesis,

 Proc. N. A. S., Vol. 24, 1938, pp. 556-7.
- 4. <u>Consistency Proof for the Generalized</u>

 <u>Continuum Hypothesis</u>, Proc. N. A. S.,

 Vol. 25, 1939, pp. 220-224.
- 7. The Consistency of the Continuum Hypothesis,
 Princeton, 1940.
- 6. ______, Über formal unentscheidbare Sätze der

 Principia Mathematica und verwandter

 Systeme I, Mon. für Math. und Phys.,

 Vol. 38, 1931, pp. 173-198.
- 7. Quine, W. V., On Ordered Pairs, J. Sym. Log., Vol. 10, 1945, pp. 95-6.
- 8. <u>Mathematical Logic</u>, New York, 1940.
- 9. Robinsohn, A., On the Independence of the Axioms of Definiteness (Axiome der Bestimmtheit),
 J. Sym. Log., Vol. 4, 1959, pp. 69-72.
- 10. Rosser, J. Barkley., On the Consistency of Quine's

 New Foundations for Mathematical Logic,

 J. Sym. Log., Vol. 3, 1939, pp. 15-24.

- 11. The Burali-Forti Paradox, J. Sym. Log., Vol. 7, 1942, pp. 1-17.
- 12. Sierpinski, W., Lecons sur les Nombres Transfinis, Paris, 1928.
- 13. Whitehead and Russell, <u>Principia Mathematica</u>,
 2nd Ed., Vols. I, III, Cambridge,
 1925, 1927.

	•	
	·	
	,	- 0
		Company of the control of the contro
·		
- i		
		Review Control
		•
		in the second se
		ea accompanies en la companie de la
		Control of the contro
•		64.17
	/	
4		1111
		•
		And the second s
		The state of the s
	•	97700
		entropoliti
4		3-**
		RECOVERED TO THE PARTY OF THE P
		in the second se