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EXTENSIONAL QUOTIENTS OF STRUCTURES AND APPLICATIONS
TO THE STUDY OF THE AXIOM OF EXTENSIONALITY

Introduction :

be a structure of the following kind :Let M is
some relation on A(E C A ZF

set theory ; cf [1] Appendix A), though we will take(=Zermelo-Fraenkel

later weaker systems.
is an equivalence relation on M:%CAxA;VaeASuppose

% b =*b 'v a ; V a,b,c G A a'V'bAb'vc=>arV'C.
Define the equivalence classes of

induces in a naturalE Aon

3 x1,y* G Aiff (by definition) y A x* E y’x’

To simplify our notations, we will write "E" too for this relation E’ on A/a>.
<AA,E> .By definition, M/% will be the structure :

We are interested now by untrivial equivalences
M/<v |= EXT, where EXT is the well-known axiom of extensionality :

t G y)] => x = y.

is a well-founded structure

Vb* G B 1 b’E b ;is nonempty then is the
f

Roland HINNION
Universite Libre de Bruxelles

a, by :

EXT = [ Vt(t G x *»

a# x A y' a.

(xU

3 b e B 
negation symbol). For such structures M, Mostowski defined a function

x A). Our metatheory will be

E’ (yk

a a, a ; V a,b GA a

= (y G A | x A/ y}. Then the relation 
way a relation E’ on A/a^= {[ x],J x G a} :

In fact, such equivalences are known when M

a* on M, having the property :

a set and E

(V B C A : if B

M =<A,E> , where A
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inductively by :

f(a) = {f(b)|b E a} (a GA)

B - {f(a)|a e A} is a transitive set (Vx,yIt is well-known that
N = <B,G >(xGyGB^xGB)), and so is a model of EXT. Now, if we define

by :

it

f

Ely]
"f f

as models for set theory, this has the following

equivalence classes of the "elements” of the "set”y. Equivalences having this

property will be called "final". In a precise way :

Definition :

an equivalence % on M is final

there
2) M/-V EXT/exists an equivalence

This leads us to the following definition :

I

1

So M4vf

iff
Vy e |M| : {[ x]^ I lx]%E [y]^} = {[x]% |xEy }

(if M « <A,E > , |M| is the universe of M : |M| = A).

having the properties : 1) is final

.I

(

Thinking about M and MA
f 

sense : the "elements" of the equivalence class of a "set" y are exactly the

|(x] 
f

x y

M/^f.

«» f(x) = f(y), it is easy to see that

is a model of EXT. Now, the property ”f(a) « £f(b)|bEay* which 

defines completely f can be written : "{f(b) | f(b)£ f(a)^ = |f(b)[bEa^ 

or, using the isomorphism N= M4

Moskowski’s construction shows that for each well-founded structure M

N is isomorphic to

„ I = {[x] |xEy}" . 
f f
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is a contractionDefinition : an equivalence on M
iff

is final and M/% ^EXT.'V

The main result of chapter 1 is a generalization of Mostowski’s theorem ("each
well-founded structure has a contraction (in the sense just defined)") : we

structure has a contraction. This notion of contraction

obtained by M. Boffa, D.Scott and R.O. Gandy (see chapters 5 and 6). Further, it
gives new informations about EXT in set theory (see chapters 4 and 7). The
important fact about contractions is that they change any structure

MA of EXT, but in a way which preserves some important properties ofa model
M. This preservation is essentially due to the "finality1

CHAPTER 1.

Before proving that each structure
mentary results and some new definitions :

Propos11120-1•

iff a).

Proof :
aEb A b b' ; aEb implies [a] E [ b] , so

{[x] | xEb’} ; so for some

prove in fact that each
is useful to give simple proofs of results about the axiom of extensionality

1) Suppose <v final and
[a] £ {[ x] | F x] E [ b] } ; as [ bl = [ b' ] , [al ^ {[ xl | [ xl E [ b ’ 1 } =

•" condition.

Let be an equivalence on M =^A,E>.

Va,b,b‘6 A (a E b A b b’ ■> =]a’Eb’a’

M admits a contraction, we need some ele-

x we have : x E b' A [xl = [ al ; this

Then is final

M into
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a).

Definitions :

an equivalence on M and

is defined on M by : x

5) ”+” is defined by : is 'v/v (*v on M ; on M/%)EXT

6) "<"

The following propositions are easy to prove :

Propositions :

g C(M)6)
7) 2

I

then for some
[ x) G {( z] | [ z] G [ y] }.

j

I

is a final equivalence on M} 
is a contraction on M}

is defined on F(M) by :

< iff V x,y G lMl (x v ^x y)

a’ E b' a1 a) ; if

3 x"E y x” x' ;

zEy},

** tEy

"1

%EXT

proofs : 3 a’ (a' E b' A a'

x A y’ 'v y) ; so

; conversely, if [ x] G {[ zl | 

x' E y A x’ x ; so [x] E [y] and

2) < is a partial ordering on F(M).

3) x ^+y ** I (VtEx ^t’Ey A (Vt’Ey ^tExt /vt’)]

~
■^2 6 F(M) 

CCM/'vp =>^/^2 
g FCMAp

^2
C^/^y iff lx]

x ^+y

4) ,^2 6 F(M)

5) G F(M) A G FfM/'vp

G F(M) A 6

e F(M) A

1) F(M) = bd'v
2) C(M) =

3) x y iff (by definition) Vt G |M| t Ex

4) If 'v.j is an equivalence on M and 311 equivalence on , then

is defined on M by : x iff ^2

2)Suppose V a,b,b’ GA(aEbAb^b' => 3

[x] E [y] , then 3 x’»y‘ (x’Ey’ A x‘ 

this shows that [x] G {[z] | z E y}

x’ we have
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8)
V'v G F(M)9)

10) W G F(M) ('v G C(M) ** *v
is isomorphic to M/ID

We are now able to prove our main theorem :

Theorem 1 : Each structure has a contraction.

Proof : We give two proofs of this theorem.

Proof 1: this proof uses ordinals and cannot be reproduced in too weak systems ;
here we give the proof in ZF (cf [ 6]). The kind of constructions done here
are used too (independently) in [7] (p.17-18).

M = <A,E>Take by :

limit ordinal
ZF

first prove by induction onLet us are final.a

is trivially final ; if so
Va < ysuppose

we have xEy A ya < ysome
3x’ E y'x'v

Y 
(in

%0

y*, and so

that all the a

and define % a

» x.Y

%t+1

^1/v

= ,v/zv”)

is = (on M)
is (-/ 

is u %
a<Y a

we define a relation as being a set of ordered pairs).

VS'v’ G F(M) (% < 'V* <> G F(MA) 
(%+ G F(M) A < %+)

= ^+)

(m/-i)Az

G F(M), then (^)+ G F(M) ;

(Y limit ordinal) G F(M) and xEy A y 'v y‘
3 x’Ey’ x'/v^x ; this proves :

~ F(M) ’ a+1 )
: then for

for y
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I

X. So foris a well-ordering onso
some ordinal

is a contraction by proposition
I 10. So M/M k EXT.

We will call ‘'unextensionality degree" of a structure

(cf. [6]).

is the unextensionality degree of M. Then6We can prove morenow : suppose

is the smallest contraction of M. Indeed

(for any

is trivial, if a
a < yso

XV> x y.so

Notation : the least element of C(M) (whose existence was just proved) will
be written

Proof 2 : this proof can be reproduced in very weak systems and will be used
later (see Scott’s result).

as
that maximum element is a contraction.V e F(M)

Vv £ C(M) < 'v. In other words, 
it is easy to prove by induction on

%ct

I

■

1

In fact we show here that there is a maximum element in <F(M),<> ; 
% < 'xf t

< % then (by proposition 4),
< 'v for each a < y (limit ordinal) : if

define the following set : X = {^a G P (AxA) | a is an ordinal} 

( PB = {z | z C B}) .

'v E C(M)).

Vi -
x ^yy, then < Y

i

= ; suppose

% < 'ba -

Proof : < 'vo -
<b+ =

6 such that

** \ - ^B ’ 
6 we must have :

order type bigger than any ordinal a) ; this
(otherwise <X,<> would have an

It is clear that a < B

a that Va (ordinal)

In ZF, we can

M the smallest ordinal
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We need the following lemma :

Lemma : Suppose B C F(M), B non empty. Then there is some element
such that (this property will be written simply :W G B 'V’ <

B < a,) .

Proof of the lenma :

z C A = |M|, iffIf B C F (M) , and
a? G BVt e z Vt’G

Define the equivalence relation

is defined precisely by : x a* y

for eachIt is easy to see that a/ G B. (this results form the
C[X]J.aJ

is not final : thenWe have still to prove that
y* A V x1 “!(x x’ A x’ E y’).for some x,y,y' G A we have x E y A y

D of [ y]Then the following subset is not empty :
x” A x” Ey")}

Then there must be y" G D and such that y" a? y
would be closed under B, contradicting the fact that\ D

and closed under B.

by its equivalence classes :(x] ' = 
is closed under B).

D = {y"|y"

[yk

y A V x" “1(X a>

for otherwise ly]^

/b’ <

A V

=[yk-

H {z|x £ z A z

Then

of F(M)

fact that for each a? G b : [x]

z will be said to be closed under B

a, is final. Suppose

is the smallest set containing y

y'"$D and a* G B

(t A>» t’-> t’ G z) .
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£ D,$ D, e b such thatSo take
. As y” y’such that x’ E ywe deduce :

3 x" E y" x" we deduce :A x x A. Fromx
x" x.

3 x” E y”So we proved : x” 'v x.
This contradicts the fact that y” £ D.

I
Now the proof 2 of theorem 1 goes as follows : take B = F(M) and define

{z | x £ z A z= n is closed under B}.

V 'v’ € F(M) *vf < This implies 0/
i

is always true, we have and is a contration.% =as %
This contraction will be written %1ax(M) ’I 

ri

i
J

i

y” G D, y’”
”, we have

y t II

3 x1
X” 'v* x'"

By the lemna, we have :
< A/+

< 'v ; so,

” X A X

' by = [x]^

y" : from y
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CHAPTER 2 :

Theorem 2 : <F(M), < > and <C(M), < > are complete lattices.

Before giving the proof of this theorem, it will be useful to give some
definitions :

< be a partial ordering on a setDefinitions : Let K.

1) if B C K, and means that Vy £ B y < x

iff is the smallest element of K havingz X

B < x.

ofiff is the greatest element x K having thez

is a complete lattice iff VB C K (B non empty)
z2 = infj^B)

Proof of the theorem 2 :

1) <F(M), < >:
by :B C F(M) (B not empty) and constructTake

is closed under B}.

,z2 (z^ = sup^B A

Cl {z| x E z A z

[xi
1

3) infv B = z 
lx

property x < B.

4) <K,< >

x G K, then B < x

2) supKB = z 

the property

The structures <F(M),< > and <C(M), < >
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By definition of[x] * closed under B.is1
. This implies, we have

(B non empty).B C F(M)Take
B = {%’ G F(M) | < B} = inf.and B . ThenDefine

< B : if E B, then [ x]Let us show first that
is closed under

implies [ x]is closed under B) So we have < 'v.z

Now as
So

By theorem 1 (chapter 1), C(M) is non empty. Let us prove first that C(M)
has a least element (without using proof 1 of theorem 1 ; we want to be

C(M), we
have :
Conclusion :
structure has a minimum contraction.

■

2) <C(M),< >

!

r
'V* e F(M)A B < 'v*,

We know that 
(%*) + < =v

%2 = suPF(MJB A \ 

= inf B.%2

O < B +

^2

* = in£F(M)

'v E c(M), then, as

is infF(M)

c [xl .
’2

= suPF(M) -2

1

We have proved (proof of the lemma of chapter 1) that B < '

To prove that % = supnfknB it suffices to prove that if 

%*. Indeed, suppose

able to prove this result in very weak systems). By point 1 of this proof, 
C(M). Let us show that ,'v* G C(M) .

[x] w □[x]^
0/ 1

we know the existence of

< (*v ) . Suppose
. This shows that (^*)+ < C(M). As

('v )+ < 'v , and so = (^*) + .

EC(M). This proofs (without using ordinals) that each

>2 e B, we have trivially :

< %, we have

’n . 11 v D, U11C11 IAJ„ —2 -
A {z |x G z A z is closed under B} and the fact that (z

'Vj - supp^B it suffices

• B < ^ . Then



183

Let us show now that <C(M), <
B C C(M) (B non empty). Define is anTake = sup, 1

element of

*b* =

is B.

has the propertySuppose
B, we haveAs < So by proposition 8 (chapter 1),
*b'

so
= inf. is inf.Take

Indeed : the only thing to prove is that
We have trivially : .
If 'V e B, then % < . So = 'b’ . SO is
we deduce :
Conclusion : *b = rb

Remarks : 1) The proof of theorem 2 shows for Be C(M)(B non empty) :
B
B

2) simple examples (with finite M) show that generally <C(M), < > is
not a boolean algebra.

Define

<v*

'b <(^’)

6 COT .

lnfFOT ’

C(M)B’

'1 ’ SupF(M)
3 e F(M/'b1)

SupF(M)

infF(M)

^7^2* Then

*b < B. As

^1

B < . We have to show that *b* < *b‘.

*1
F(M) but not necessarily of COT

F(M)B ;

V%2 “

1
= 'b^//bu. This implies trivially

So we showed that is sup^^B.

2 SUPF(M) b =

= the minimum contraction of M/'b^, and

> is a complete lattice.

B - SUPC(M)
B = infC(M)

F(M)B- Then '

SupC(M)
Indeed : if 'b G B, then

-j/^ 5 V]/'''" and
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• 3) if M is a well-founded structure, then C(M) has only one
element. The proof is "by induction" on E.

. J

!

i
i

3I

!
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CHAPTER 3 : Properties of contractions

M = <A,E> (E C ADefinitions : If <B,E> will be the
B.to

N = <B,E> will be called an i ni t i a1 subs true ture of

to be an end extension of N (notation : N « M) .

COTProperty 1 : If = sup.

%1ax(M)

C(M) = inf.Property 2. If = inf. COT
Then

is the restriction of % toProperty 3. Suppose N « M and N.
Then D v e fot g f(N)

v -V e f(N) 32)

y' A x,y,y' G |N|.Proof : 1)

3 x-Then G

3x- e |n|we haveBy N « M

2) Take *v G F(N) and define
x 'v’y

F(M)
G FOT

F(M) 
x y

COT
(Proof trivial)

Suppose xEy A y

|M| (x’Ey’ A x'

N
'b’G

x A) and B C A, then

(x,y 6 |N| A x a,

Then a>' 6 F(M) A a, =

(x'Ey' A x'^fN x).

^fax(M) 
y 3^,

F(M) -v'fN

ffiy«Vt£ |M| (tEx — tEy)).

-■rN

%rN

F(M) = supc(M)

x y (Proof : trivial)

EXTy) V (x,y $ |N| A xrv

ru’ by :

x %1in(M)

substructure of M obtained by restricting E

%tin(M)
y «-► V'v G C(M)

V x,y G A (x Ey a y G B =* x G B) . In that case M will be said

Then x

x)

(Remember that x<v

M iff
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C(M).M

Proof : N

we have x3

= Tn- By Pr°Perty
i

C(N))= sup

x,yG |n| with N« M, then by property 4 :Proof : 1) if andx X

N « M... is trivial2) the implication V N « M... ->

M (x,y G |N| A x y), by property 4, we have«

N « H containingto some and y. This fact will be useful in chapter 5.x

f : < B,E> -> M/
is an embedding (= injective morphism).

-

I

i

= /VN’

^'rN =

Property 5 is very important for the following reason : to know whether 

is true or false, we do not have to look to the whole structure

Property 5. = supc(^ C(M) ; %N
y +->• VN « M (x,y G |N|

M (x,y 6 |N| A x -vN y)J N «

C(N) and

!

x^y-

is SUPC(M)

My

C(N)
+ y)

3) if 3 N
So

Property 4. Suppose N « M and
Then

Ny'

Property 6 : Suppose Be A and M = <A,E>. If <B,E> |= EXT 
minimum contraction on M, then the map 
such that f(b) = [bl^

'v' y

x%ty

M but only

is SUPC(N)

and is the

^y, then, by property 3, 3

X,VMy-

2) if x,y e |N| and x^ y, then by property 

for i\r By property 1 : x y

1) if x,y G [N| and x
and so : x y. By property 1, this implies
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as in proof of theorem 1 : is =Proof : Define 1

for limit ordinal.Y

Then for some Y ,

that Vot (xa

a = 0 it is trivial ; suppose is = : if y, thenFor
(Vt Ex 3 Ey t x

Vt t E x
tEy), and by <B,E> k EXT, we haveV t G B (tEx x = y. Suppose

then ct < y xa < y (limit ordinal) ; ifis = for all -ay.a
so x = y

such that f(b) = [ b]<B,E> M/'vThe function f : is injective :%
[ b]£(b) = f(b’) b' b = b'.

Ely]It is an embedding : if x E y, then
, then for some we have x' x A x* E y. But asx'

x E y.

The following property gives information about how to construct untrivial final
equivalences :

Property 7 : Suppose a is an automorphism of N « M (<->- a : N -*■ N is
o(x) E a(y)). Define1-1 and xEy

(x,y G |N| A
V (x,y | N| A x = y). Then

Proof : elementary

U 
a<Y a

% a

a
(a natural number) such that 

G F(M).

%

x y,Y 7’

%ct
3 of chapter 1. So we have

= (^ )+ ;k aj »’ %t+1

t E y(in M). This implies

ak(x))

X A;a+1
t’)> by proposition

b o

e (yk

Y *s minimum contraction 
prove by induction on a that Vot (x y x = y) (if x,y G B)

t’) A (Vt’ E y 3 t E

if

x,y,x* G B, this implies

= lb'k

'v of M. Let us

on M by : x y *-*• 
kx = a (y) V y =

x’ = x and
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Call a structureProperty 8.

(= is the equality restricted to M). Then if M

Proof : Suppose N « M and a is an automorphism of M. By property 7,

is a final equivalence on M. Let

on M. Then As M
.) = (=.,)• So isM'

isa
N.

I

'v a
be the maximum contraction

M "uncontractable" iff C(M) = {=.,}

is uncontractable

- %!ax*

(=M) 5 5 %ax:

of we havea
trivial on

%Max(M)
is uncontractable, we have :

i

i

v M
and N « M, N has no (untrivial) automorphism.

is Ify=a(x), by definition 

x = y. This shows thatx y, so
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CHAPTER 4 : Preservated formulas. More about EXT

and define

Fin(^*) *\»*=
y’ x’

Contr (^*)
31 G x t 'v* t’)

(X)) is a formula of X

Definitions : Let

1) * (X)

3

2) *(X) is

V x [/(x)

x)

i

t t ’) A (Vt*

is a final equivalence
= Eq(^ )A Vx,y,y’ (x €y A y

x) A Vx,y,z Cx y A y

x2

3 x- e

* 3 y * yfy)!
A y2 «v* x2 A.. .A yn

(the language of ZF) the following symbol :(£t) : 
'b

If w (XpX2» •. • jXjP (sometimes 
<P* (X) (in the language X 

£ by in 
x1 e y’

y ’

xa> y ■* y

T be a theory in Zp (T is a set of closed formulas). Then : 
is T-preserved (under contractions)
T + Contr(^ ) h Vx [ v? (x) =* v (x)]

ZF
the following formulas in this enriched language

Eq(%*)
★ * z -► x z)

= 'v* is an equivalence

= (Vx x x) A (Vx,y

T-copreserved (under contractions) 
iff

T + Contr (*v*) I-

(where y x - xn)

= 'v* is a contraction (of the universe) 
= Fin(^*) A. [ (Vt G x 3 t1 G y

=* X y]

Add to X

means y^ x^

written v’ (X)) is a formula of define

) as being the result of replacing = by and 
v>(X), where is defined by : x y iff 3 x’ % x 3/' Y
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<*) is 0-preserved (0 being theis preserved iff * (x)3)

empty set)

is 0 -copreserved.*(x)4)

and
ZF

Proof : T + Contr(*v*) is a theory in X The models for that language

and are relations on

(if Tis a model of Tand M = < A,E>

be a contraction of M.

M F a.

So we prove that VM (M k T =» M V g) . This shows T o .

Proposition 2. Let ZF’ /(?))).
Proof : By induction on the lenght of

£ be a consistantZF’

Then s? VM |= T V ~ e C(M)
*(ar..an) ^M/'v ^([a^ ,...,[ aj)).

N
is a model. So

of

Then N =

ZF’
is T-preserved iff

A.

<^($) is copreserved iff

Proposition 3. Let v’(X1 ,X2,... be a formula in 
theory in £

X 
ZF 

-T k a

V a e |m|

<P (X) be a formula in X 

Then Eq(%*) F V £,?(t a,* Y =» (/(5t)

Proposition _1 : Suppose T is a theory in 
Then T + Contr(^*) f- a -

byif we interpret 'v

a does not contain the symbol

Let T

is inconsistent, the proof is trivial). Let

(M *

Proof : 1) Suppose <p is T-preserved and M V= v’(a). Let be a contraction on 

Then T + Contr(^) F VX l<£) =>/$)] . So N = <A,E,%*>

(1) and N k Z (?) • 11 is easy to see that N f= ^* (?) is 

equivalent to M/^* F= ([ ,...( aR]). (by induction on

is a model of T+Contr^ )

, this implies that

are of the form N = <A,E,*v> where E 

Suppose T + Contr(*v*) F a

a is a sentence in

<A,E,/v>

Soblb a.As



191

we

will have N

The set of all T-preserved formulas (Pres(T))

exactly. But we give here some simpleare not knownformulas (Copres (T))
properties of these sets, which will be useful in chapter 6.

zr
G Copres(T)G Pres(T)D

2) if ’’o' is a sentence (-closed formula), then ”o” G Copres (T) *» ,r"b" G Pres(T)

3) the atomic formulas "X G y ”,”X^ X", " X = Y”,”X = X” are 0-preserved.

4) the atomic formulas ”X £ y", X = Y" are 0-copreserved

5) if ’V” , ’T’ G Pres (T)

3x </>" ”Vx G y'V A V, ’V v V”,”Vx n

where 0

then the following

Using these properties, it is easy to prove results as : ”X is empty'
preserved, ”Y = a U b” is preserved, "X is not empty” is preserved, ,rY = {a,b}
is preserved,...

then the following formulas are T-preserved : 

”3xGy^", Vx (0(x) =» vd

6) if
W','W where 'V” and ,nF” have no common free variable, ”3* ?*’

Preservation properties : Let ... be formulas in

and M/'v |= ”1 s? (( a^l ,[ a2l ...[ anl ) .

=>

” is

does contain no other free variables then x and is T-copreserved. 
formulas are T-copreserved :

and the set of all T-copreserved

2) Suppose T + ContrO*) h/ V X[ sp (1) / (1) ] .

Then for some model N = < A,E,^*> k= T + Contr^v ) + <p(aj 

k ”l</>*(a) (for some a G |M|). But then we have

M = <A,E> ¥>(a)

G Copres(T)
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is a theory inSuppose TTheorem 1 :
h 0Take a sentence 6

is a model of Th 9 ; if MProof : Suppose T + EXT

M : M/^ |= "I 9 (as is T-copreserved,9for any contraction on

“19 is T-preserved).. An all the axioms ofa

M/^ V 9-M/'v p T + EXT, implying :have :

“I 9.This contradicts M/'v

such

T+ EXT are equiconsistent becausethen T and

each of them can be interpreted in the other.

x A/ y

9(x,y) we have :instead of

and

That there is an interpretation of in T + EXT is trivial.T

This theorem will be useful in chapter 6 to prove that Z (Zermelo’s set theroy)

and Z’ = Z without EXT are equivalent (from the point of view of relative

interpretability).

I

T is obtained by interpreting = by 

T l- (T + EXT)*.

** T f- 9

Proof : We suppose that there is a formula 9(x,y) such that, if we write 
T v ContrC^*). Our interpretation of T + EXT into

. We have indeed :

Theorem 2 : Suppose V is a definable relation in T 
------- if V o 6 T, T |- a*

Ah
which is T-copreserved. Then T+ EXT

and Vo £ T o is T-preserved.

£ by

that T Contr(*v ) ;

such that M V “I 0, then

T are T-preserved, we
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CHAPTER 5 : Amalgamation property for extensional structures

In [ 2], M. Boffa proved the following result :

; M « H

N,

such that :N

2)

3)

4)

Proof by contractions :

Let us take the following notations :

Va = E2*A

N’ - < A’,E* > , where :Contruct first
GO

if X,Y e A ; XE’Y
(i = 1,2)if
(i = 1,2)if

Clearly M by the isomorphism

o XE,Y XE7Y

: M,

M1

: Ml

A' = A UtCA^A)*{1 }] U [ (A2\A)x{2}J 

and E’ is defined by :

11 ^2
X,Y G A^A : <X,i>E’<Y,i> <» XE£Y

X G A,Y G A^A : XE'<Y,i> ~ XE^Y

h2

1)

= <ApE^> , M2 = <A2»E2> , M = <A,E^> =< A,E2> , A = Aj n

Theorem : Suppose M « Mj ; M « M2 ; M,MpM2 ^EXT.

Then there exists a structure N and embeddings h1

l1 is isomorphic to M^ = <A U [ (Al\A)x{1}] , E’> 

Mj defined by :

: M2

Vx G |M| h^(x) = h2(x) 

h.j (Mp « N 

h2(M2) « N

N>EXT
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if

if

x G A ( i = 1,2).

N’A.we search isN

Indeed : NkEXT is trivial ; take M’ , E’> and
Ci = 1,2).i-i

is an isomorphism (i = 1,2)J

<x , 1 > ’,C::) We may suppose that A does not contain elements of the kind :
<x,l> ; in fact A’ is wanted to be the disjoint union of A, A^\A and A£\A.

fi = 1,2) : this last fact
: M.

giCx) = x if
N'. The structure

1
hi : Mi * N by : hiW = I giCx)] 
is an embedding

x 6 Aj\A.
x 6 A

M*2
Then h.CMp =
results from property 6 (chapter 3) and the fact that 
that h^(x) = h2(x) if x G |M|= A is trivial.

=<{[xj^| xG (M^E^. Define

« N and h. i

gfCx) = x

g^x) = < X,1 >

x G |m| = A

in the same way, define M2 and g7;
Remark that « N’, M2 « N' and 

be the minimum contraction onLet 'v
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CHAPTER 6. Proofs by contractions of results of Scott and Gandy

1) Scott’s result

Scott proved that the two versions of Zermelo’s set theory Z areIn [3]
he

in which he gives anproved somwhat more then this : the system
is in fact weaker than simplyinterpretation of Z

be noted that our interpretation works too for Z and the system defined
by Scott : it is only to give a clear idea of our construction that we prefer
here to work with Z and Z’, as those systems are probably more familiar to the
reader.

Before giving the proof, it is necessary to remark that there are some difficulties
when one works in a theory which drops the axiom of extensionality. In such theories,

is a formula) does not represent a unique object,a term as
so its use is ambiguous. Therefore, we will take the following convention : we will
only use such terms in formulas, and never alone as representing objects. For

y = {X|sp(x) } has to be understood as meaning : Vt (t G y*->^(t));example, the formula
in’ the Vt(t G y <-► t C x) ; t G z means VUG

Px G y will be
we can

go on using terms to clarify the sense of our formulas.

Theorem (D.Scott) : Z and Z* = Z without EXT are equivalent for relative interpre­
tability.

Z without EXT ; it should 
if

(cf. [ 1] appendix A) equivalent for relative interpretability. In fact, 
if

same way : y = Px means
Vt (t Gy <->y = Ux means Vt (t G y *-»• Jz GxtGz); and so on. Formulas as 

understood in the evident way : 3Z Cz = A z G y)- With this convention,

{Xlv’(x)} (where

t U G z
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Proof by contractions :

CL where is a transitive”t= Vx
Z* is equivalentset” means : Va,b (a Eb G t a G t). It is easy to see that

to Z" = Z’ +CL • Indeed, if H = {x | transitive A x G t)} then
Z" in Z’.is an interpretation of<H,G,=>

We want to prove now that Z" is equivalent to Z. It suffices to apply theorem 2

2) for each axiom  a of z" V” Contr
Z :

x Vt t £ xA x 1 (empty set axiom)
{a,b}A x 2 (pairing axiom)x X =

(union axiom)A x 3 Uzx X =

A x 4 (power set axiom)x = P zx
A x 5

[ Vt (Vt(Vz z £ t •* t G x)A Va G x a G x]x
Scott’s proof (and ours too) works still if we take a more classical form, as for
example :

2 x (Vt(Vz z £ t {a} G x].t G x) A Va G x

A x 6 : for any formula free, we have the axiom :

A x 7 : EXT = Vt(t G X <-* t G Y) X = Y

1) it is possible to define in Z" a relation
★ a .

(chapter 4) in the case T = Z”. We have in fact to show two things :
such that Z" V Contr (*v*).

Let us first give here the list of axioms of

3
3
3
3

axiom of infinit y : there are many (non equivalent) versions of this axiom.

In [ 3] Scott takes the following:

3

x = {t G a | }

not containing x 

3 x

First, define CL ("closure axiom") by :
^t (x G t A t is a transitive set)
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Point 1 : define (in Z" = Z without EXT + CL) ; iff

here is the maximum contraction on the structure

on t to define what we mean by a contraction. In this way, it is possible to

and 3, applied to structures of the kind : a transitive set .
Using this fact, it will be easy to prove that of the

<v,e> (where V is the universe); in a precise way :“structure"

: by axiom C L , we have 31 (x G t A t is transitive). So clearly :D x
x.

: trivial

t (transitive) such that and t’ such thatz. Take
z. Take some t" such that t" = t u t’.y

,y aid y^x y
x \ x % z.t’ t’

4) J is final : suppose X € y A y
; this shows 3X’ G Y' x’3 x’ G y' x’So x

is a contraction :5) a.
3 Z G x Z 'V*(Vz g x 3 z’ G y z’) A (Vz’ e y z’). Take a set a suchsuppose

a set b such that b = P a. By axiom C L , there is athat a = xU y and
such that b G t ; so x £ t and y 6 t. By property 5, wetransitive t

have then : (Vz G x 3 z'
is a contraction,As y-

x € y A y % y’. Then for some transitive t : 
★ > x.

X*v z. 
y A y

•t.,y A y

x\y

G y z \ 
this implies

'v* by : x 'v* y

t
it is necessary to work here with partitions of t instead of equivalence relations

By property 5 (chapter 3)

Indeed
x

z') A (Vz' G y 3Z e x z \ z) • 
x y and so x

»t, z «-»■ y^t„z. So from

X A,t

2) x % y -*• y <x
3) x*y A y 'v* 

Suppose x %

<t,&> with t
J

•ty
,z we deduce : x ,,z, and so

rewrite in Z" the proofs of most of the results obtained in chapters 1,2

3t(x£tAyGtA tis transitive A x y).

<t,&> ; to avoid problems

is a"contraction"
Z" Contr (*v*).
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easy to show for axioms 1,2,3, simply using the preservation properties
(chapter 4).
Let us look now to the other axioms :

our definable contraction
Z" V [ (y =P x) =* (y =Px) ] .

y, thenIf
z’ G t’ z’ a.t. As z ; as

G x ;
x. If z G t, then z

z)%

Z' G t' Z’

is a contraction, we may conclude : t'. Then, as t’ c x, we have t’ Gy

From t t' A t* G y, we conclude : t y-

tex) A V a 6 x ? a 6 x]
(for

1) t, then

2)
= fx is preserved, as we proved for A * 4.

so

t

Point 2 : we have to show that each axiom o of Z" : Z” p a . This is very

Suppose y = P x.
Then (y x)
3 t* G y t’ A/ 
t’ G y x, Z*

y = f x, we have : 
z £

z' z’ G t.

x.
t z G*

z z £

Conversely, suppose Vz ' 
implies 3 z’ € x z’

is Vt(t G*y «-> Vz ^t z <^x).
z G* t -► 3

A x 4 : let us show that the formula "Y =p X" is Z" - preserved, for
- . By this, we mean :

z 6 t
Such 
and (Vz Gt 3 z G z’ z) an<^ (Vz 3

A x 5 : It is now easy to prove that
3* [Vt (t is not empty ->tGx)AVaGxPaGx] is Z"-preserved

A/*) Simply use the preserving properties and the following facts : 

"t is not empty" is 0-copreserved : indeed : if 3 

for some z' a,*"z z' Gt and so 3

x. This
z a,* z’}.

"7 a G x" is preserved : it is in fact the formula 
3Z (z =P x A z G x) ; z

t, and so z
z. Take a t’ such that t’ - (z* | z' GxA 3 

a t’ exists by A x 6. As we clearly have (Vz’ Gt' 3 z e * z’
A/* z), and as
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Z"-preservedare

A x 6 : take a formula «p(t,...)
We have to prove in Z" :

t e a A (t,...))]*[ 3 X Vt(t e x

such thatTake some X X
and by A x 6is definable inAs

We conclude :

(t ’,...) by
proposition 2 (chapter 4) ; this implies t' € X, and so X.

: (EXT)* results trivially form Contr (/v*).A x 7

Axiom "CL” is Z’'-preserved too : in fact, by the preserving properties (chapter 4)
3t (x € t A Vb G tit is even 0-preserved : CL = Vx Va e b a e t).

2) Gaqdy's result :

set theory (ID, Appendix A)Let ZF be the Zermelo-Fraenkel whose axioms are :

the axioms and the following axiom scheme :A x 1

as a free variable.A x 8 : not containing C
y = z))

*’(x,y,a)}=» Vb

Z".
t. So t'G a A / (t',...).

for ea (h formula <p(X,Y,a)
V X X (HX,Y,a) A Vz(?(X,z,a)

3 C C = {y | 3* G b

If t
t a A (t,...), by proposition 2 (chapter 4).
Conversely, if t a A <^>* (t,...), then 3 t* G a t’ t ; so 

t^

= {t G a|<Z (t,...)}

Z", «p*(t,...) is a formula in Zp

to A x 7 of Z

In the same way it is easy to prove that other forms of A x 5 
(for ♦v*).

such a set X has to exist in
X, then 3 G x
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(abstractX
operator) which means in fact : (Xt) v>(t,...) is a set such thaty

and such terms. The new language is
5A x 1called ZFX x

A x 6 are genralized to at

Vt(t e (Xt) ¥(t...) — Y(t...)).

"x = {114*(t...)}" hasRemark

to be understood as being Vt (t e x T(t...)) (as for Scott’s result).

Ga^dy's result [ 4] shows are equivalent for relative inter-ZFX

pretability. W e give now a proof by contractions :

Proof : As ZFX can be interpreted trivially in ZF (take X defined by :
(Xt)^> = {t|s?} ; {t|sp} is uniquely determined), it suffices to give

interpretation of ZF
by”chosen by X” :

Definition : is chosen by X iffx

The set (Xt) (t / t) will be ’’the” empty set (0). A transitive set

andX
is chosen by X).

Using these definitions, ordinals having the usual
properties :

ZF
. In a precise way, the axioms of are :

ZFX ’
"X” : A x 9 :

x will be called "hereditarily chosen” iff (x is chosen by

x = (Xt) (t/t) V (^t t^x Ax = (Xt)(tGx))

y = {t |«p(t...)}. This new symbol allows to form terms of the kind : (Xt)</> (t...) 
The formulas are built up using £

as in ZF ; the shemes
last, there is an axiom scheme defining the behaviour of 

( 3* X={t I T (t...)})

and A x 8

is not an axiom of ZFX, the formula

that ZF and

we can construct in ZFX

to A

Vt e x t

ZFX is the following version of ZF : first introduce a new symbol

: as EXT

in ZFX. First define in ZFX what we mean
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is an ordinal iff (1)Definition : a is a transitive seta
(2) a is a hereditarily chosen
(3) is a (strict) well-ordering onG a

Using the operator and the ordinals so constructed, we can define : theX
pair ; the couple ; the power set ; relations ; functions; the usual sets

(y limit ordinal)., R =Y

ZFX + Vx 3Our second step will be to show that (ordinal)ZFX and a

(this axiom can be written : R ) are equivalent.or

Indeed, ZFX R . Conversely, take
in ZFX the class H = ; then <H,€, =>a a
is an interpretation of

Now it suffices to give an interpretation of ZF in
Our inter pretation will be defined as in part 1 of this chapter :

iff 3 * (xGtAyGtAtX 'v y

(where is the maximum contraction on <t,£ >).

has the property :

x e r a

are well interpreted.
vx 3yt* (x,y,...)

x e R . a

U a<y R a

Ra

v = u 
a

ZFX + V = U R . a a

{x| 3a

ebyG* (x€*y3X,/V x 3y'%*yx,Gy')

a
R a

“ Ra+1

ZFX + V x 3“

is transitive A x y)

Ro = prL a

Suppose (in ZFX + V = U R^)
A Vy’(v> (x,y’,...) “=> y’ % y)] . We have to show :

that

The interpretation is obtained by replacing
and = by 'v . The proof of Scott’s result shows that this gives an interpretation
of Z. So we have just to verifiy that the axioms A x 8

is trivially interpretable in ZFX + V = U 
(ordinal) x £ R } = U
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a

[ ya = the smallest ordinal a such that] .

is the set of all y satisfyingA X“x

This achieves our proof.

a (x,y)] .

The problem now is that if we take some 
unique y such that 
). So, for each

1) if y € Uq, then 3 Y*
So 3 x G a

3 x 6 a (x,y,... So

y* e r
ax’

y’ GU . From ' o

= U 
xGa..

Vy [ y £ U -w3 u

e UQ y' J y.
•f (x,y',...). By proposition 2 (chapter 4) we have : 

^x G*a 9*(x,y,

u . o

u we search ;

x such that x G*a, there is not

'P (x,y;...) but a class of such y (all equivalent for 
x e a, take a* = (pa) ( 3 Y e Ra * (x,y,...)).

Define : A = (Xy) (y G R (x,y,A,
* x

•P (x,y,...) such that their rank is minimal.
Take U = u A. Then U is the set 0 X 0

2) if 3x a <Z(x,y,...), then 3X’ Ga (x' x A v* (x,y,.. .))(by 

proposition 2 (chapter 4)). As we have v (x',y,...) there must be some
with ^*(x* ,y',.(by definition of ax). So y’ G Ay, and

(x',y',...) A (x',y,...) we deduce : y’
x'

y. So y

3 xe*
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CHAPTER 7 : Application to NF.

(=”New Foundations” of Quine ; cf [ 5]) are :The axioms

1) EXT : Vt (t G x

2) Vt (tex not containing
"x" free.

(Remember that a stratified formula is one which can be written in the language
of the simple theory of types).

Theorem 1 : Let the theory T be some extension of NF' = NF without EXT.
Suppose there is a stratified formula and "y"”x”

0(x,y), we have : there is
an interpretation of NF in T.

Proof :
from

Let

h [ 3x Vt (t e XT

Jensen's result [8] implies that if NFRemark that is consistent, the
theory T of theorem 1 has to be a proper extension of NF, for if we had
an interpretation of NF in NF', then the consistency of NF would be provable
in NF. So if we want to construct a contraction of the universe in NF' (definable

0(x,y) with same type for '
T H Contr(^*). Then

Vt (t G x **

** *)]*.

~ t G y) => X = Y

take some
Vt(t x

y OG? (defined by x 
T (EXT)* : this results

x such that Vt (t G x ** (t,...)) . Then we have :
(t,...)) (same proof as in chapter 6) and so :

Interpret = by and G by
3 x* x 3 y' y x' e y*)• We have
T F Contr(*v*) and F Contrfv ) =* (EXT)*. Let y be a stratified formula. Then 

too is a stratified formula (proof by induction on the lengh of ?)•

** ^) for each stratified formula

such that, if x^ y means

In T,

of NF
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by a stratified formula 0 (x,y)), it will be necessary to add some axioms

to NF’.

First, let us look how to define final equivalences and contractions in NF’.
As we avoid EXT, we will define contractions as being partitions.

In a precise way :
P is a partition of V (the universe)

iff

(Vx 3Z G p x G z) A (Vz,z* P(3teZtGz,c>G

€ P (x G z A y G z) .Define by : x

A partition P is a contraction iff Cont(^ ). A partition P is final

iff are

F = {P| P is a final partition} is not a set but a class.
Through F is a class, we can define as in chapter 1 :

y

It is easy to verify that tt4.1t

is a chain for P’ < P] .

In a more precise way :

Vy [((V P Gy

(P is

I

I

^P

Z’))

% 
P

not stratified. So

P < P’<-> Vx,y(x 
x(*Vp) y x %

a final partition A VP’ G y p* < P)] .
Gy

Gy

P is a final partition) A (VPpP2 P1

' P
is final.. The formulas ”P is a contraction” and ”P is final

yP 7

”<” on F
'y ^x'bpty). The operation ”+” can be defined too by :

y (Vt x 3 t’ G y t %pt’) A (Vt'G y 3t G X t %p t’).

z ^EXT

has the properties described in chapter 1.

In fact <F,< > is an inductive ordering : by this we mean that

Vy [ (y C F A y is a chain for < A y is a set) => 3P G P VP'

< P2 V p2 < pp)=> J P
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It is clear now that P for + , then
P is a contraction.

be the following axiom :
admits a fixed point forcr = "<F,<>

In fact is a kind of axiom of choice : it is similar to a consequence of Zorn's 1<a
lemma, saying that "each inductive ordering admits a maximal element" ; as +
is increasing, each maximal element has to be a fixed point.
So we have :

Theorem 2 :

a fixed point for +")

NF F a ; indeed : P = USC(V) = {{X} | X e V}Proof : 1) Remark that is a
has a fixed point. So NF* + acontraction in NF. So <F,< > is

trivially interpretable in NF.

2) In NF’ + a, take some P such that P is a fixed point in <F,< >
is a definable contraction :for +. Then

3 z(xGzAyGAzGP) isx

Tliis theorem shows, as in the case of Gandy’s result, that there is some connexion
between EXT and some forms of choice ; in Gandy’s result, the choice is done
by the abstract operator X who picks exactly one element in each class
[EXT’

stratified. So by theorem 1, NF can be interpreted in NF’ + a.

There is a kind of axiom of choice a such that NF and NF + a
are equivalent for relative interpretability (o = ”<F,< > has

if <F,< > admits a fixed point

and 0

Let a

%P 
y ** e (x,yj =
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