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EXTENSIONAL QUOTIENTS OF STRUCTURES AND APPLICATIONS
TO THE STUDY OF THE AXIOM OF EXTENSIONALITY

Roland HINNION
Université Libre de Bruxelles

Introduction :

Let M be a structure of the following kind : M <XA,P , where A
a set and E some relation on A(E € A x A). Our metatheory will be ZF
(=Zermelo-Fraenkel set theory ; cf [1] Appendix A), though we will take
later weaker systems.
Suppose "+ is an equivalence relationon M : VCA X A ; Va€A
an~a;Vab€A avb=b~ra;Vab,cEA anvnbAbrc=anrnc.
Define the equivalence classes of ~ by :
(x],={yea | x v y}. Then the relation E on A induces in a natural

way a relation E' on A/v= {[x], | x €A} :

[x], E' [y), iff (by definition) J x',y' €A x'~vxAy'~yAx' Ey'

is

To simplify our notations, we will write '"E" too for this relation E' on A/~.

By définition, M/~ will be the structure : (A/\,P .

We are interested now by untrivial equivalences ~ on M, having the property :

M/~ E EXT, where EXT is the well-known axiom of extensionality :

EXT =[ Vt(tEx®tEy)] =x =Y.

In fact, such equivalences are known when M is a well-founded structure

(¢#BCA: if B is nonempty then J b€B ¥b' €BTb'E b; "1 is the

negation symbol). For such structures M, Mostowski defined a function F
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inductively by

f(a) = {f(b)|b E a} (a €A

It is well-known that B = {f(a)|a € A} is a transitive set (V¥x,y
(xEy€EB=x€EB)), and so N=(B,E) is a model of EXT. Now, if we define

“e by @ x e Y « f(x) = f(y), it is easy to see that N is isomorphic to

So M/ng is a model of EXT. Now, the property 'f(a) = {f(b)\bEak" which
defines completely f can be written : "{f(b)|£ME £(a)} = {£(b)|bER"

or, using the isomorphism N= M/,‘,f

"x, 11X, By, Y= (i, ey

Thinking about M and M/. as models for set theory, this has the following
£

sense : the "elements" of the equivalence class of a "set" y are exactly the

equivalence classes of the "elements" of the "set"y. Equivalences having this

property will be called "finai". In a precise way :

Definition :
an equivalence n on M is final
iff
vy € M| : {ix], | [x],E [y]} = Ux], |xEy}

(if M=(AE), |M| is the universe of M : |M| = A).

Moskowski's construction shows that for each well-founded structure M there

exists an equivalence " having the properties : 1) ~ is final 2) M/~ l.— EXT/

This leads us to the following definition :
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Definition : an equivalence ~» on M is a contraction
iff
~ is final and MM EXT.

The main result of chapter 1 is a generalization of Mostowski's theorem ("‘each
well-founded structure has a contraction (in the sense just defined)') : we
prove in fact that each structure has a contraction. This notion of contraction
is useful to give simple proofs of results about the axiom of extensionality
obtained by M. Boffa, D.Scott and R.Q. Gandy (see chapters 5 and 6). Further, it
gives new informations about EXT in set theory (see chapters 4 and 7). The
important fact about contractions is that they change any structure M into

a model M/ of EXT, but in a way which preserves some important properties of

M. This preservation is essentially due to the "finality' condition.

CHAPTER 1.

Before proving that each structure M admits & contraction, we need some ele-

mentary results and some new definitions :

Let ~ be an equivalence on M =< A,EM
Then ~ is final iff V¥a,b,b'€ A (@aEbAbab'= Ja'Eb'a' ~a).
Proof :
1) Suppose o final and aEb A b v b' ; aEb implies [a] E [b], so
lal € {[x] | [x] E[b]} ; as [b]l =[b'], [al € {[x] | [x] E[b']} =

{Ix] | xEb'} ; so for some x we have : x E-b" A [x] = [a] ; this
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proofs : 3 a' (a' Eb' Aa' ~va).

2)Suppose V¥V a,b,b' EA(@aEbAbab =] a' Eb' a' va) ; if
{x] EIyl , then J x',y' (x'Ey' Ax' vxAy' ' ~y) ;s0 JXEyx"vx';
this shows that [x] € {{z] | z Ey) ; conversely, if [x] € {[z] | z Ey},
then for some x' we have x' Ey Ax'" v x ; so [x] E [yl and

[x] €{lz] | [dE [y]}.

Definitions :

1) FM) = {v]v is a final equivalence on M}~

2) CM) = {v|v is a contraction on M}

3) X “gyp ¥ iff (by definition) ¥t € M| t Ex < tEy
4) If is an equivalence on M and vy o an equivalence on W'hv then

'\.1f'\-2 is defined on M by : x ('\:1/'\'2))' iff IX]-\,] Ny [:;v'l,h1

§) "+ is defined by : A' is Vagn (v onM; ey 00 M)
6) "<" is defined on F(M) by :

M <y, Aff ¥xy €M (xy=xn,y)

The following prepositions are easy to prove :

Propositions :

2) < is a partial ordering on F(M).

3) x~'y e[ (vtEx Jt'By tat') A (Vt'Ey JtExt at')]
4) Vup,vy EFOD (v €0 =0y € 1)

5) v € F(M) A v, € F(W~,) = /vy € FOM)

6) ~ € F(M) A %) € C(W)) =n/n, € CM

7) mI € F(M) A mz € F(M/'\‘]) .y ¥ r\.lfn.z
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8) ¥u,n' € FIM) (v < &' = J" € F(M/R) ' = A/
9) vmeFM (EFEMAr <)
10) WEFM (v €CM *n~ =1

11) (M/~]) is isomorphic to M/
1 /'bz ('\.1/'\‘2)

We are now able to prove our main theorem :
Theorem 1 : Each structure has a contraction.
Proof : We give two proofs of this theorem.

Proof 1: this proof uses ordinals and cannot be reproduced in too weak systems ;
here we give the proof in ZF (cf [6]). The kind of constructions done here

are used too (independently) in [7] (p-17-18).

Take M= (AP and define o by :

A is = (on M)

o
) +

Yarr 18 (’\'rx)

~ is U ~  for y limit ordinal

Y a<y

(in ZF we define a relation as being a set of ordered pairs).

Let us first prove by induction on a that all the ~, are final.

N, s trivially fipal ; if e € F(M), then ('\aa) € F(M) ; so '\:[“_IE F(M) 5
suppose Va <y (y limit ordinal) ae € F(M) and xEy Ay '\-Ty‘ : then for
some a <y we have xEy Ay " y', and so E] x'Ey’ x'a,"x ; this proves :

Ix' E y’xv_ x-
¥y



178

In ZF, we can define the following set : X = {'\:m €P (AxA) | a is an ordinal}l
(PR = {z{z € B}).

It is clear that a < B =" <%y, SO < is a well-ordering on X. So for
some ordinal 6 we must have : Ve = e (otherwise <X,<> would have an
order type bigger than any ordinal a) ; this '\»6 is a contraction by nrcposition
10. So M/~8 & EXT.

We will call "unextensionality degree' of a structure M the smallest ordinal
§ such that g = e, (cf. [6]).

We can prove morenow : suppose & 1is the unextensionzlity degree of M. Then
¥ € C(M) vg < In other words, g is the smallest contraction of M. Indeed
it is easy to prove by induction on a that Va (ordinal) v S

(for any ~ € C(M)).

Proof : B < is trivial, if vy S then (mu)+ < ' (by proposition 4),

s0 <t =n ; suppose v <N for each a <y (limit ordinal) : if

n
a+l -

Xy, then Ja <y XV, S0 X nvy.

Notation : the least element of C(M) (whose existence was just proved) will

be written

“Min(M)

Proof 2 : this proof can be reproduced in very weak systems and will be used

later (see Scott's result).

In fact we show here that there is a maximm element in <F(M),<> ; as

+ N . z
¥ v €E€FM n~ <~ that maximm element is a contraction.
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We need the following lemma :
Lemma : Suppose B C F(M), B non empty. Then there is some element ~ of F(M)
such that ¥»' € B a' < (this property will be written simply

B <n).

Proof of the lemma :

If BCFM), and z CA = |M|, z will be said to be closed under B iff

VEEZVL'E A V ~"EB (ta' t'> t'E2).

Define the equivalence relation ~ by tts equivalence classes :[x], =

N {2|x €z A 2z is closed under B}.
Then <~ is defined precisely by : x~y ++ [x], =ly] .

It is easy to see that ~' <~ for each ~' € B. (this results form the

fact that for each n' €B : [ CIx1.).

x]'\,'
We have still to prove that -~ is final. Suppose » is not final : then
for some x,y,y' €EA we have xEyAyay' AV x' I(xvx' Ax'"Ey').
Then the following subset D of [y], is not empty :

D = {ylllyll "y AV X" j(x AN X" AX" E yn)}

Then there must be y" €D and y"¢€D and A€ B such that y" A' y'",
for otherwise {yl, \ D would be closed under B, contradicting the fact that

[y]m is the smallest set containing y and closed under B.
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So take y' €D, y'" €D, »' €B such that y" ' y'' : from y'" €D,
we deduce : J x''' such that x"™~x Ax'"'Ey'". As y" ~' y'", we have
3 X" Ey" x"ar x'". From x" o' x'"MAX" v xAN < we deduce :

X" W X.

S we proved :  J x" Ey" x"w x.

This contradicts the fact that y" €D.

Now the proof 2 of theorem 1 goes as follows : take B = F(M] and define

v by : [xl, =N{z|x€zAz is closed under B}.

By the lemma, we have : ¥ ~' € F(M) ~! < n, This implies At <y so,
+ . + . -
as ~ <~ is always true, we have & = ~ and ~ is a contration.

This contraction will be written M Ok
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CHAPTER 2 : The structures <F(M),< > and <C(M), < >

Theorem 2 : <F(M), < > and <C(M), < > are complete lattices.

Before giving the proof of this theorem, it will be useful to give some

definitions :
Definitions : Let < be a partial ordering on a set K.

1) if BCK, and x €K, then B < x means that VyE€B y < x

2) supKB= z 1iff 2z is the smallest element x of K having

the property B < Xx.

3) ian B=12z iff 2z is the greatest element x of K having the

property x < B.

4) <K,< > is a complete lattice iff VB CK (B non empty)

Elz.l,zz (z1 = SupKB A z, = ian.B]

Proof of the theorem 2 :

1) <FMM, < >
Take B C F(M) (B not empty) and constnict "~ by : I:d,‘h1 =
N{z| x €z Az is closed under B}. :
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We have proved (proof of the lemma of chapter 1) that B < e

*
To prove that ~, = sume)B it suffices to prove that if e F(MA B <,
. Indeed, suppose B <~'. Then [x] , is closed under B. By définition of

Ay
*
[x], , we have [x] , D[x],U]. This implies Ny S
1

&

Take B C F(M) (B non empty).

Define B = {v' € F(M) | ~' < B} and ~, = suppy B . Then «v, = inf;,nB.

Let us show first that ~, <B : if ~€B, then [x], kK =
2
N{z |[x€2z Az is closed under B} and the fact that (z is closed under
~ + z is closed under B) implies [x]q C [xlm. So we have '\«2 <
2
Now as v, = SUPF(M)B A~y €B, we have trivially : Vv (v<B-+" < mzj.
S0 v, = inf B.

2) <C(M),< >

By theorem 1 (chapter 1), C(M) is non empty. Let us prove first that C(M)
has a least element (without using proof 1 of theorem 1 ; we want to be
able to prove this result in very weak systems). By point 1 of this proof,
we know the existence of ~ = inf C(M). Let us show that e C(M).

F(M)

We know that < (m'f. Suppose ~ € C(M), then, as A < ~, we have

(m"]+ < A’ =\, This shows that (m"'J+ < C{M. As s ian(M)C(M). we
have : (V)" <', and so " = ().
Conclusion : ~' € C(M). This proofs (without using ordinals) that each

structure has a minimm contraction.
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Let us show now that <C(M), € > is a complete lattice.
Take B CC(M) (B non empty). Define v = supF(M)B ) ~ 4 is an

element of F(M) but not necessarily of C(M)

Define '\az = the minimm contraction of M/'u], and % = "'1/'\'2' Then

*

v is SUPC(M)B'
Indeed : if ~ € B, then % < SUPE )y B= v < '\'1/'\'2 =

Suppose ' has the property B < a'. We have to show that B <t

As vy = SUPF(M)B' we have e T So by proposition 8 (chapter 1),

J e EM/n)  A' =~y /2. This implies trivially =~ I/'\.2 < '\,l/r\." and
*

so : v < ', So we showed that W is SUPC(M)B'
Take ~ = MfF(M')B‘ Then ~ is me(M')B'

Indeed : the only thing to prove is that ~ € C(M).

+

We have trivially : ~ <.

If ~' €B, then ~ <Aa', So At 5(m')+ =a'., 8o a' < B. As v is ianCM)’
we deduce : W ea i

Conclusion : ~ = ot

Remarks : 1) The proof of theorem 2 shows fur B¢ C(M)(B non empty)

l supF(M) B < SUPC(M') B

l_ian(M.) B = infeqp B

2) simple examples (with finite M) show that generally <C(M}, < > is

not a boolean algebra.
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-3) if M is a well-founded structure, then C(M) has only one

element. The proof is "by induction" on E.
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CHAPTER 3 : Properties of contractions

Definitions : If M = <A,E> (ECA x A) and B C A, then <B,E> will be the
substructure of M obtained by restricting E to B.

N = <B,E> will be called an initial substructure of M iff

VX,y€A (XEyAyYyE€B=x€B) . In that case M will be said

to be an end extension of N (notation : N << M),

Property 1 : If '\'Max(M) = supF(.M)F(h-f) = SUPC(M’) C(™M)
Then x “Maxpp Y T Jv €FM) xny (Praof : trivial)

Property 2. If ~yg ap = infpag CD = infrqn COD
Then x r\'Min(M) y>V¥.eECM xvy (Proof trivial)

Property 3. Suppose N << M and “y is the restriction of ~ to N.
Then 1) ¥ ~E€FM) ~fy € F(N)
2) ¥VEFN) 9 vEFM '\,er =n

Proof : 1) Suppose XEy Ay ~ y' A Xx,y,y' € IN|.
Then 3 x' € M| (x'Ey' A x' ~ x)

By N<<M we have Jx' € |N| (Xx'Ey' A X'ty X}

2) Take ~ € F(N) and define ~' by :

X 'y + (x,¥y € [N| Axvy) V (x,y € IN] A XV pyr Y)
(Remember that xa pyoy +«> ¥t € M| (t E x «+ t E y)).
Then ~' € F(M) A~ = f\.'rN '
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Property 4. Suppose N << M and “N is SUPC Ny C(N) and "~ M is SUPG () c™).
Then (M [y =™y-

Proof : 1) if x,y € IN| and x n~y, then, by property 3, 3 ~'€ F(M) Py = vy

and so ! x 't-'y. By property 1, this implies x ~ MY

2) if x,y € IN| and xy, ¥, then by property 3 we have x ~'y
for A' = ('\'M) |~N. By property 1 : x Y

Property 5. {'I-M = SUPC(M) ci W = Sup CN) C(N))
XV Y WM (x,y € [N] »x vy y)
o JN<<M Oy € IN[ A xnyy)

Proof : 1) if x~,y and x,y€ [N| with N<< M, then by property 4 : X %y Y-

2) the implication V N <<M...» JN << M... is trivial

3)if J N<«<M(x,y€ [N Ax “y ¥), by property 4, we have Ny = (91,
So x Ny Y-

Property 5 is very important for the following reason : to know whether x Y
is true or false, we do not have to look to the whole structure M but only

to some N << M containing x and y. This fact will be useful in chapter 5.

Property 6 : Suppose BC A and M= <A,E>. If <B,E> f= EXT and ~ is the

minimm contraction on M, then the map £ : < B,E> » M/ ~

such that £(b) = [bl, is an embedding (= injective morphism).
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Proof : Define ", 3s in proof 1 of theorem 1 : & is = 3 Vel S (ma)

no= U v for ¥y 1imit ordinal.
acy
Then for some vy , "‘Y is the minimum contraction ~ of M. Let us
prove by induction on a that Vo (x WYX= y) (if x,y € B)
For a =0 it is trivial ; suppose o is = : if x et Vo then
(Vt Ex 4 t' By t N tYA(Wt"Ey JtEx t v, t'), by proposition
3 of chapter 1. So we have Vvt t E x + t E y(in M). This implies
¥ t € B (tEx ++ tBy), and by <B,E> [ EXT, we have x = y. Suppose
. is = for all a <y (limit ordinal) ; if x '\JY y, then J a <yx oY

sox =y

The function f : <B,E> + M/~ such that £(b) = [b]m is injective :

£(b) = £(b') = [bl, = [b'], + brgb' +b=b".

It is an embedding : if x E'y, then [x] Elyl, ;
if [xl, E [yl , then for some x' we have x'~ x A x' E y. But as

X,y,x' € B, this implies x' = x and x E y.

The following property gives information about how to construct untrivial final

equivalences :

Property 7 : Suppose o is an automorphism of N << M (++ o : N+ N is
1-1 and xBy +> o(x) E o(y)). Define ~ on Mby : x v y <«
(x,y € IN| A Jk (a natural mmber) such that x = ck(y) Vy-= ck(x))
V (x,y € [N| A x=1y). Then . € F(M).

Proof : elementary
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Property 8. Call a structure M "uncontractable™ iff C(M) = {=M}

_Proof :

(=M is the equality restricted to M). Then if M is uncontractable

and N << M, N has no (untrivial) automorphism.

Suppose N << M and ¢ is an automorphism of M. By property 7, S

is a final equivalence on M. lLet NMax(M) be the maximum contraction
on M. Then 2 Mvax- As M is uncontractable, we have :

(5 $ () S () = (5P- S0 g is = Tfy=o(x), by definition
of Ny We have x ~; ¥» 50 x =y. This shows that ¢ is

trivial on N.
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CHAPTER 4 : Preservated formulas. More about EXT

Add to gf 7E (the language of ZF) the following symbol : ~* and define

the following formulas in this enriched language (:f )
~

Eq(m*) =" is an equivalence
Evxx VX)) A (Ky xV y sy AT Avgy,z (x y Ay Atz e xat g
.k * . . .
Fin(n') = n is a final equivalence

Eq(~ )A ¥x,y,y' (x€EyAyn y'+ Jx'€ y' x' a* x)

* * . .
Contr (v ) v is a contraction (of the universe)

Fin(x') AT (¥t € x Jt €y ta" t') A (Vt' Ey atExtm’ t')
*
= x % yl

If w(X1,X2,...,Xn) (sometimes written ¢ (i)) is a formula of i define

ZF’
qa* (Sf) (in the language 4) as being the result of replacing = by ~" and

N
€ by € in o(X), where € is definedby : x € y iff J x' a'x Jy' ' y

xl Eyl

Definitions : Let T be a theory in fZF (T is a set of closed formulas). Then :
1) v (X) is T-preserved (under contractions)
it

T+ Contr(v) FV¥x v (X) = €3)!

2) ¢(X) is T-copreserved (under contractions)
iff
T+ Contr (W) + VX [so*(x) + 3 ;mt x eI

-+ & & * * *
(where y ~ x means yvxg A Yo v X, ALA Yo xn)
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3) w(f) is preserved iff v(;) is @-preserved (@ being the

empty set)

1) tp(i) is copreserved iff v(;c) is @ -copreserved.

Then T + Contr(*') ¢ 6=+T b o

Proof : T + Contr(‘\a*) is a theory in £ A The models for that language c‘f "
. "

are of the form N = <A,E,»> where E and ~ are relations on A.
Suppose T + Contr(“) ko and M= <AE> is amodel of T (if T
is inconsistent, the proof is trivial). Let "~ be a contraction of M.
Then N = <A,E,w> is a model of T+Contr(~ ) if we interpret A by ™
SoNE 0.As o does not contain the symbol '\“, this implies that M ¥ o.

So we prove that WM (ME T =M ¥ o). This shows T}l a .

Proposition 2. Let ¢(X) be a formila in £ 7F*
Then Eq(v') bV XIX A" = ") < " H)).

Proof : By induction on the lenght of .

Proposition 3. Let va(X1,X2,...,Jﬂ1) be a formula in £ . Let T be a consistant

ZF
theory in ﬁ 7F"
Then ¢ is T-preserved iff W FTV . €C(M Vac€ |M
M ¥ w(aT...an)ﬁM/'\: E w([al],...,[an])).
Proof : 1) Suppcse ¢ is T-preserved and M ¥ w(';;]. Let e be a contraction on X
Then T + Contr('\:*) b VX [np(_)f) ‘”w*(f)]. So N = <A,E,m*> is a model
of ¢(4) and Nk o*(3). It is easy to see that N ¢ o* (@) is

equivalent to M/~ kg (la,],...[a ]). (by induction on ¥)
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2) Suppose T + Contr(’\a*) v ¥ XeX) = o 1.
Then for some model N = < A,E,’\:*> T+ Contr('\:*) + -p(;) we
will have N &k —Iw*(g) (for some a € |M|). But then we have

M= <AE> ®e(@) and M~k Te(lagl,la,)...la]).

The set of all T-preserved formulas (Pres(T)) and the set of all T-copreserved
formulas (Copres (T)) are not known exactly. But we give here some simple

properties of these sets, which will be useful in chapter 6.
Preservation properties : Let ¢,Y¥,... be formulas in ‘sz'

1) "' € Pres(T) = '"b" €Copres(T)

2) 1if "¢" 1is a sentence (=closed formula), then ''o" € Copres(T) « '"b" € Pres(T)
3) the atomic formulas "X € y ","X& X", " X = Y","X = X" are @-preserved.
4) the atomic formulas "X € y", X = Y" are @-copreserved
§) if '»" , 'Y € Pres (T) then the following formulas are T-preserved :
WAY, VYR, " Jx " "¥xEy ", "Ix €y ", Vx [8(X) = vl
where 8 does contain no other free variables then x and is T-copreserved.

6) if 'w',my" € Copres(T) then the following formulas are T-copreserved :
'YV, oAy where 'V and '¥" have no common free variable, ''Jx "

Using these properties, it is easy to prove results as : "X is empty" is

preserved, 'Y = a Ub" is preserved, 'X is not empty" is preserved, 'Y = {a,b}"

is preserved,...
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Theorem 1 : Suppose T is a theory in fZF and Vo ET o is T-preserved.

Take a sentence 8 which is T-copreserved. Then T+ EXT | 6 < Ty 8

Proof : Suppose T + EXT + 8 ; if M is a model of T such that M¥ 718, then
for any contraction ~ on M : M/v E 718 (as 6 is T-copreserved,
<19 is T-preserved).. As all the axioms o of T are T-preserved, we

have : M/~ F T + EXT, implying : M/a ¥ 6.

This contradicts M/~ & 710.

Theorem 2 : Suppose N is a definable relation in T such that T F Contr('\-*) H
if Vo€T, Tk o then T and T+ EXT are equiconsistent because

each of them can be interpreted in the other.

Proof : We suppose that there is a formula 6(x,y) such that, if we write x ’\;ty
instead of 6(x,y) we have : T v Contr('\:*). Our interpretation of T + EXT into
T is obtained by interpreting = by A and € by €. We have indeed :

T v (T + BXD)".

That there is an interpretation of T in T + EXT is trivial.

This theorem will be useful in chapter 6 to prove that Z (Zermelo's set theroy)
and Z' = Z without EXT are equivalent (from the point of view of relative

interpretability).
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CHAPTER 5 : Amalgamation property for extensional structures

In [2], M. Boffa proved the following result :

Theorem : Suppose M << M; ; M << My 5 MMM, [ EXT.
Then there exists a structure N and embeddings h1 : M1 + N,

h, : MZ + N such that :

2
1 ¥x € M| h(x) = hy(x)
2) h1(M1) << N
3) hZ(MZ) << N

4) NEEXT

pProof by contractions :

Let us take the following notations :

E>,M=<A,E1>=<A,E2>,A=AIHA

20 Eqfy = Epfy
Contruct first N' =<A',E'> , where :
A" = AVIANA)<(TH V(AN ={ZH ¢

and E' is defined by :

if X,Y €A ; XE'Y = XE;Y = XE,Y

1
if X,Y € Ai\A : <X,1i>E'<Y,i> e)CEiY (i=1,2)

if X EAYEANA: XE'SY,i> «XEY (i

n
—_
~
[y¢)
~—

Clearly M, is isomorphic to F11 = <A U] (A1\A)X{1]] , E'> by the isomorphism

g ¢ M1 -+ b_11 defined by :
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x if x€EA

gy(x)

gl(x] <x,1> if x¢& A1\A.
in the same way, define l'\'lz and g5}

a—

Remark that M, <«< N', M, << N' and g (x) =x if x€A (i =1,2).

1

Let ~ be the minimum contraction on N'. The structure N we search is N'/~.

Indeed : NFEXT is trivial ; take M'; = <iJ, |x € [M,|} , E'> and

M', =<{lx], | x € [M,[LE'>. Define h; : M; N by : hy(x) = [g; (1, (i =1,2).

Then hi(Mi) = M'; << N and hi is an embedding (i = 1,2) : this last fact

results from property 6 (chapter 3) and the fact that g; is an isomorphism (i = 1,2)}
that h;(x) = hy(x) if x € IM|= A is trivial.

(**) We may suppose that A does not contain elements of the kind : <x,I>",

<x,1> ; in fact A' is wanted to be the disjoint union of A, AI\A and AZ\A.
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CHAPTER 6. Prcofs by contractions of results of Scott and Gandy

1) Scott's result

In [ 3] Scott proved that the two versions of Zermelo's set theory Z are

(cf. [ 1] appendix A) equivalent for relative interpretability. In fact, he
proved somwhat more then this : the system 27é in which he gives an
interpretation of Z is in fact weaker than simply Z without EXT ; it should
be noted that our interpretation works too for Z and the system Z# defined
by Scott : it is only to give a clear idea of our construction that we prefer
here to work with Z and Z*', as those systems are probably more familiar to the

reader.

Before giving the proof, it is necessary to remark that there are some difficulties
when one works in a theory which drops the axiom of extensionality. In such theories,
a term as  {X|¢(x)} (where v is a fornmla) does not rcpresent a unique object,

so its use is ambiguous. Therefore, we will take the following convention : we will
only use such terms in fornulas, and never alone as represnting objects. For

example, the formula y = {X|v(x)} has to be understood as meaning : ¥t (t € y«—(t));
in' the same way : y = Pxmeans Vt(t€y+— tCx) ; tCzmeans VUE tUE z ;
y =Uxmeans ¥t (tE€y+«+ -z €xt € z}; and so on. Formnulas as Px € y will be
understood in the evident way : Jz (z = Px A z € y). With this convention, we can

go on using terms to clarify the sense of our formulas.

Theorem (D.Scott) : Z and Z' = Z without EXT are equivalent for relative interpre-

tability.
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Proof by comtractions :

First, define CL ("closure axiom') by :

CL zvx Jt (x€tAt is a transitive set) where 't is a transitive
set" means : Va,b (a €Eb &€t + a € t). It is easy to see that Z' is equivalent
to 2" = Z' +CL . Indeed, if H= {x | 3t (t is transitive A x € t)} then

<H,€,=> is an interpretation of Z" in 2'.

We want to prove now that Z' is equivalent to Z. It suffices to apply theorem 2
(chapter 4) in the case T = Z". We have in fact to show two things :
1) it is possible to define in Z'' a relation " such that " + Contr ('\:*).
2) for each axiom . o of 2" § Comtr o .
Let us first give here the list of axioms of Z :
Ax1: 3 xvttgx (empty set axiom)
Ax2: 3 x x= {ab) (pairing axiom)
Ax3: J x x= W (union axiom)
Ax4: 3 x x= Pz (power set axiom)
A x 5 : axiom of infinit y : there are many (non equivalent) versions of this axiom.
In [3] Scott takes the follawing:
E]x [ VvVt Wt(¥z zEt+tEx)A Va€x a € x|
Scott's proof (and ours too) works still if we take a more classical form, as for
cxample :

2x[Ve(VzzEt+tEXx)AVaEX {a} €x].

A x 6 : for any fornuh not containing x free, we have the axiom :

9 x x= {t€a e}

Ax7 :EXT=Vt(tE€EX<+«++t€E€Y)+X=Y
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Point 1 : define (in Z" = Z without EXT + CL) ; At by : x o y 1iff
Jt(xEtAYyELA tis transitive/\x'\-t y).

A here is the maximum contraction on the structure <t,& ; to avoid problems

t

it is necessary to work here with partitions of t instead of equivalence relations

on t to define what we mean by a contraction. In this way, it is possible to
rewrite in Z'" the proofs of most of the results obtained in chapters 1,2
and 3, applied to structures of the kind : <t,& with t a transitive set .
Using this fact, it will be easy to prove that ~* is a"contraction” of the
“structure' <V,& (where V is the universe); in a precise way : ZI'" | Contr ('\-*).
Indeed
1) x~" x : by axiomCL , we have Jt (x €t At is transitive). So clearly :
X v X.
2) x F y-+y ' T trivial

3) x:y Ay i 2+ 'z, "
Suppose x v y Ay z.Take t (transitive) such that xv.y and t' such that

Y Y Z. Take some t'" such that t" =t U t'.
By property 5 (chapter 3) «x VY X Y and ATl g2 So from

*
X Ny Ay ,z we deduce : x -\.t,,z, and so X v z.

tll
4) ' is final : suppose x Ey Ay '\»‘y'. Then for some transitive t : x €y Ay Ve y'

Sa Jx' €y x Ve X this shows Jx' € y' x! i ~

S) ~* is a contraction :
suppose (V2 €x 4 z' €y ' z') A (Mz' €y Jz Ex 2 A z'). Take a set a such
that a = xYU y and a set b such that b =P a. By axiomC|L , there is a
transitive t such that b€t ; so x €t and y € t. By property 5§, we
have then : (Vz € x J 2" €y zn z') A (V2! €y Jzexzn 2).

*
As g is a contraction, this implies x N Y and so x v y.
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Point 2 : we have to show that each axiom o of Z" : Z" | o . This is very
easy to show for axioms 1,2,3, simply using the preservation properties
{chapter 4).
Let us lock now to the other axioms :
A x 4 : let us show that the formula 'Y =P X" is Z" - preserved, for
our definable contraction = . By this, we mean :

2" v [(y =Px) = (y =Px)"1.

Suppose y = P x.

Then (y =Ex)* is Vt(t G’y vz €t ZG*X]. f t€ y, then

Jt €yt " t.As y=Px,wehave : 2€ t+ J z' €t 2 Az as

t' €y =fx, z' €x ; so z € x.

Conversely, suppose Vz &tz & x. If z € t, then 2z & t, and so z e x. This
implies J z' €x z' ' z. Take a t' such that t' = {z'|z' €xA Jz€ bk 2 A2t
Such a t' exists by A x 6. As we clearly have (Vz' € t! 3 z €t 2! A z)

and (VvzE€t Jz€tz " z)and (VzEt Jz €t 2! W' z), and as f

is a contraction, we may conclude : t " t'. Then, as t' Cx, we have t' €y

Fromt ~ t' At'€ y, we conclude : t e y.

A x5 : It is now easy to prove that
3x [¥t (t isnot empty >t €EX) AVa€x Pa€x] is Z"-preserved
(for m‘) Simply use the preserving properties and the following facts :
1) "'t is not empty" is @-copreserved : indeed : if Jz z € t, then

*
for some z' &~ "z 2' €t and so J z' z' € t.

2) "Pa €x" 1is preserved : it is in fact the fonmula

E]z (z=PxAz€x); z=Px is preserved, as we proved for A x 4.
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In the same way it is easy to prove that other forms of A x 5 are Z'-preserved

(for 'u*) .

A % 6 : take a formula ¢(t,...)
We have to prove in Z" :

[ X Vt(tEX - t€any (t,...))]*

Take some X such that X = {t € alnp*(t,...)}

As ~' is definable in YALN :.a*(t,...) is a formula in f and by A x 6

ZF
such a set X has to exist in Z".

If t€ X, then Jtext A" t. So t'€a A (t,...). We conclude :

t & a A p* (t,...), by proposition 2 (chapter 4).

Conversely, if t e aA-.a* (t,...), then J t'€at’ N t ; so v*(t‘,...) by

proposition 2 (chapter 4) ; this implies t' € X, and so t & x.
Ax 7 : (EXD)" results trivially form Contr (’\:*).

Axiom "CL' is Z"-preserved tco : in fact, by the preserving properties (chapter 4)

it is even @-preserved : (L= ¥x Jt (xEtAVWEL Ya€Eb a€t).

2) Gandy's result :
Let ZF be the Zermelo-Fraenkel set theory ([ 1], Appendix A) whose axioms are :

the axioms A x 1 to A x7 of Z and the following axiom scheme

A x 8 : for ead formula v(X,Y,z) not containing C as a free variable.
VX Jy (e(Y,3) AVz(e(X,2,8) + y = 2))
-w Jc C={y| Ix€b v(x,y,3)}
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ZFA is the following version of ZF : first introduce a new symbol A (abstract
operator) which means in fact : (At) ¢(t,...) is a set y such that
y = {t|e(t...)}. This new symbol allows to form terms of the kind : (At)e(t...)

The formulas are built up using i 7E and such terms. The new language is

called 'fZFJ.' In a precise way, the axioms of ZFA are : Ax1 to A x 5
as in ZF ; the shemes A x 6 and A x 8 are genralized to &£ ZEA at
last, there is an axiom scheme defining the behaviour of "\ : A x 9 :

( 3x x={t | ¥ (t...)}) » ¥t(t € (At) ¥(t...) — ¥(t...)).

Remark : as EXT is not an axiom of ZFA, the formula "x = {tj¥(t...)}" has

to be understood as being ¥t (t € x ++ ¥(t...)) (as for Scott's result).

Gandy's result [4] shows that ZF and ZFA are equivalent for relative inter-

pretability. W e give now a proof by contractions :

Proof : As ZFX can be interpreted trivially in ZF (take A defined by :
(At)e = {t]e} ; {t|e} is uniquely determined), it suffices to give
interpretation of ZF in ZFA. First define in ZFA what we mean

by''chosen by A" :

Definition : x is chosen by X iff x = (At) (t #£1t) V(Jt t € x A x = (At) (t&))
The set (At) (t # t) will be "the" empty set (@). A transitive set
x will be called "hereditarily chosen" iff (x is chosen by A and

¥t € x t is chosen by A).

Using these definitions, we can construct in ZFA ordinals having the usual

properties :
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Definition : a is an ordinal iff (1) a is a transitive set
(2) a is a hereditarily chosen

(3) € is a (strict) well-ordering on a

Using the operator A and the ordinals so constructed, we can define : the
pair ; the couple ; the power set ; relations ; functions; the usual sets Ru
R, =@ R, =PR, R, = o Ry (v limit ordinal).

Our second step will be to show that ZFX and ZFA + Vx 3 a (ordinal)

X € Ru (this axiom can be written : V = g RCL) are equivalent.

Indeed, ZFA 1is trivially interpretable in ZFA + V = g R“. Conversely, take
in ZFA the class H = {x| Ja (ordinal) x € R} = Y R, ; then <H,E, =>

is an interpretation of ZFA + V = g Ra'

Now it suffices to give an interpretation of ZF in ZFA + ¥ x 30. x € Ru.

Our inter pretation will be defined as in part 1 of this chapter :

*
X y iff Jt(x€EtAy€tat is transitive A x v, ¥)

(where v, is the maximm contraction on <t,€ 3).

The interpretation is obtained by replacing € by e (xE*y - ]x"\a*x HY"\:*yx'Gy')
and = by A", The proof of Scott's result shows that this gives an interpretation
of Z. So we have just to verifiy that the axioms A x 8 are well interpreted.
Suppose (in ZFA + V = g Ra) that ¢ has the property : Vx Hylvi(x,y....)

A Vy’(w*(x,y',...) = y! '\:*y)]. We have to show :
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Ju Vy[yE*UH j x € ae (x,y)l.

The problem now is that if we take some x such that x G"a, there is not
a unique y such that \o* (x,y;.--) but a class of such y (all equivalent for

"*y. So, for each x € a, take a, = (ua) (3 y €R, w*(x,y,...)).

[pe = the smallest ordinal a Such that].

Define : Ax = (Ay)(y ER o A w* (x,Yy---)). Ax is the set of all y satisfying
X
sa*(x,y,...) such that their rank is minimal.
Take U = U A . Then U is the set U we search ;
0 e X o
1) if y€ U, then Jy' €U y' "
Yy . y oY y-
So Jx€a v‘ (x,y',...). By proposition 2 (chapter 4) we have :
*
E{ann:at (x,¥y---). So axgav(x,y,...].

2) if Jx € a go.(x,y,...), then Jx' €a (x' W x At (x,y,...))(by
proposition 2 (chapter 4)). As we have 0 (x',y,...) there must be some
1
y' €R,

X
y' EUO. From ¢" (x',y',.-.) A\a*(x',y,...) we deduce : y' " y. So y e Uo'

with ¢"(x',y',...) (by definition of a). Soy' €A, and

This achieves our proof.
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CHAPTER 7 : Application to NF.

The axioms of NF (="New Foundations' of Quine ; cf [5]) are :
1) EXT : ¥Vt (t€x*t€y)=X=Y
2) Jx V¥t (t € x @) for each stratified formula ¢ not containing

1x'" free.

(Remember that a stratified formula is one which can be written 1in the language

of the simple theory of types).

Theorem 1 : Let the theory T be some extension of NF' = NF without EXT.
Suppose there is a stratified formula 0(x,y) with same type for 'x'' and '‘y"
such that, if xm'y means O(x,y), we have : T ¢ Contr(«r). Then there is

an interpretation of NF in T.

Proof : Interpret =by ~ and € by € (definedby x € y «

J x' A x J y " y X' €y'). We have T | (EXT)* : this results from

T4 Contr('\:*) and }-Contr('\:*) = (EXT)*. Let ¢ be a stratified formula. Then
w‘ too is a stratified formula (proof by induction on the lengh of ¢). In T,
take some x such that Vt (t € x e"-.ﬂ‘(t,...)). Then we have :

Ve(t e x ¢*¢*(t,...)) (same proof as in chapter 6) and so :

T F [Jxvt (tEx=9)]".

Remark that Jensen's result [8] implies thatif NF is consistent, the
theory T of theorem 1 has to be a proper extension of NF, for if we had
an interpretation of NF in NF', then the consistency of NF would be provable

in NF. So if we want to construct a contraction of the universe in NF' (definable
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by a stratified formula 0 (x,y)), it will be necessary to add some axioms

to NF',

First, let us lock how to define final equivalences and contractions in NF'.

As we avoid EXT, we will define contractions as being partitions.

In a precise way :
P is a partition of V (the universe)
iff

(Wx JZEPx€2)A (V2,2' EP (J tE€EztE 2" =3 "‘EXTZ'))
Define 2 by : x Ay - JzEP (xE€zAyEz).

A partition P 1is a contraction iff Cont('\:p). A partition P is final

iff '\.p is final.. The formulas '"P is a contraction” and "P is final" are

not stratified. So F = {P| P is a final partition} is not a set but a class.
Through F is a class, we can define '"<" on F as in chapter 1

P < P+ ¥x,y(x wpy = xmp.y). The operation "+'" can be defined too by :

x(,\_‘p)+ Y Xty Y vtEx Jtreyte '\.pt') A (Vt'e yJte€ Xt "~ t').
It is easy to verify that "+" has the properties described in chapter 1.

In fact <F,< > is an inductive ordering : by this we mean that

Vy [(y ©CFAy isachainfor ¢ Ayisaset)= JPEFV' €y P' < Pl.
In a more precise way :

Vv [((VPE€y P is a final partition) A (VPPPZ €y P, <P,V P2 < P1))=* je

(P is a final partition A VP' €y P' < P)].
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It is clear now that if <F,c > admits a fixed point P for + , then
P is a contraction.
Let o be the following axiom :
g £ "<F,<> admits a fixed point for +'.
In fact o is a kind of axiom of choice : it is similar to a consequence of Zorn's 1t
lemma, saying that '"each inductive ordering admits a maximal element' ; as +
is increasing, each maximal element has to be a fixed point.

So we have :

Theorem 2 : There is a kind of axiom of choice ¢ such that NF and NF + o

are equivalent for relative interpretability (¢ = '<F,< > has

a fixed point for +")

Proof : 1) Remark that NF t+ ¢ ; indeed : P = USC(V) = {{X} | XEV} is a
contraction in NF. So <F,< > has a fixed point. So NF' + ¢ is

trivially interpretable in NF.

2) In NF' + g, take some P such that P is a fixed point in <F,< >
for +. Then mp is a definable contraction :
x wb y <+0 X,Y) s J z(x€zAyEAz€EP) and 0 is

stratified. So by theorem 1, NF can be interpreted in NF' + o.

This theorem shows, as in the case of Gandy's result, that there is some connexion
between EXT and some forms of choice ; in Gandy's result, the choice is done

by the abstract operator A who picks exactly one element in each class

[X]m EXT®
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