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TaE JOURNAL oF SyMBoLic LoaGic
Volume 7, Number 1, March 1942

THE BURALI-FORTI PARADOX
BARKLEY ROSSER

In the system presented by Quine in his book Mathematical logic,' one can
derive the Burali-Forti Paradox. It is the purpose of this paper to present the
details of this derivation.” For the derivation, only familiarity with Quine’s
book is assumed.

The present derivation is based on the derivations given by Hobson® and by
Whitehead and Russell.*

In both these sources, the primary interest is the theory of ordinals, and the
Burali-Forti Paradox is of interest only as something to be avoided. In the
present paper the primary interest is the Burali-Forti Paradox, so that much of
the theory of ordinals is absent from this paper and only those details remain
which are relevant to the derivation of the paradox. We now give a brief verbal
summary of the argument. The references D806, etc., refer to the formal
definitions and theorems below.

For a serial relation we take the relation “ <’ between real numbers as a model.
PM takes “<’’ as a model, but in modern treatments, such as the theory of
lattices, “<" is preferred. A serial relation (D806) must have properties corre-
sponding to the familiar properties:

Received November 29, 1941.

1 W. V. Quine, Mathematical logic, New York 1940.

2 It has come to my attention that there is a question of priority connected with the
discovery that Quine’s system admits the Burali-Forti Paradox. Quine tells me that a
former student of his, Mr. Roger C. Lyndon, while studying the theory of ordinals in Quine’s
system, came upon the Burali-Forti Paradox. This happened in the latter half of October.
Mr. Lyndon’s first reaction to his discovery was that it must be the result of an error on
his part. After an unsuccessful effort to find such an error, Mr. Lyndon sent his proof to
Quine in December. Quine describes the proof as painstaking, detailed, and correct.
Hence Mr. Lyndon certainly deserves credit for independent discovery of the paradox.

In my case, the circumstances are as follows. Toward the end of September, I wrote
Quine to the effect that I had been unable to convince myself that his system did not admit
the Burali-Forti Paradox, and suggested that he look into the matter. Somewhat later,
Quine wrote back that he was busy, and requested me to investigate carefully. Still later,
I sent Quine an earlier draft of the present paper. I happen to have kept his reply, which
was fairly prompt, and was dated October 24, and stated that my manuscript undoubtedly
established the presence of the paradox.

Obviously, we must fix the date of my discovery of the paradox as being the date on
which I prepared that manuscript, rather than the earlier date on which I suspected the
presence of the paradox.

On the basis of the above data, it would seem equitable to say that my discovery of the
paradox and Mr. Lyndon’s discovery were simultaneous.

$E. W. Hobson, The theory of functions of a real variable, first edition, Cambridge,
England, 1907, see Chapter III; second edition, 1921, and third edition, 1927, see Chapter
IV of the first volume.

¢ A. N. Whitehead and Bertrand Russell, Principia mathematica, volumes 2 and 3, see
*150-*152, *154, *155, *160, *161, *180, *181, *200-*202, *204-*208, *210-*214, *250-*256.
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2 BARKLEY ROSSER

1. Ifa <bandb = ¢, thena
2. Ifa <bandb < a, thena
3. Eithera < borb = a.

4. Foranya,a = a.

We express these by saying that a serial relation is transitive (D802), anti-
symmetric (D803), connected (D804), and reflexive (D805). A series is well-
ordered (D808) if every non-empty set of terms of the series has a minimum
term (D807). Two series P and @ are ordinally similar under the correspond-
ence R (D811) if R is a one-to-one correspondence (D810) of the series which
preserves order. A segment of a well-ordered series (D813) consists of all
terms which precede a given term. A basic result is that no segment of a well-
ordered series can be ordinally similar to the whole series (1812). Every well-
ordered series determines an ordinal number (D815 and D816). A shorter
well-ordered series determines a smaller ordinal (D817 and D818). One might
expect us to say that R is shorter than S if R is ordinally similar to a segment
of 8. However, for ease in proving theorems, it is more convenient to say that
R is as short as S (D814) if every segment of R is ordinally similar to a segment
of 8. The equivalence of the two definitions is a consequence of {822. A key
theorem is that the series of ordinals is a well-ordered series under the relation
“gn (1’835).

All the material up to and including 1835 belongs to the standard theory of
ordinals, and should be valid in any system which makes pretensions of being
adequate for mathematics. It is from here on that the theorems become ques-
tionable. So it is from here on that the derivation of the Burali-Forti paradox
should break down for a system with the proper inhibitions.

Now consider the series of all ordinals less than the ordinal a. This is well-
ordered (1835 and 1809), hence has an ordinal number. By 1841, that ordinal
number is « itself. We are now ready for the paradox. By {835, the series of
all ordinals is well-ordered, so it has an ordinal number, N. By {841, the
series of all ordinals less than NV also has the number N. So the series of ordinals
less than N is ordinally similar to the series of all ordinals. That is, we have a
segment of a well-ordered series ordinally similar to the whole series, which
contradicts 1812.

For the so-called systems of set theory (See Bernays, Fraenkel, Neumann,
Zermelo in the Bibliography to Quine’s Mathematical logic), 1842 fails to hold.
For PM, 1839 holds only if one attaches different type subscripts to the NO’s
occurring therein. This means that the two supposedly contradictory results
deduced in 1844 would not really be contradictory because of the different way
in which type subscripts would have to be attached in them. See PM, vol. 3,
p. 80, on this point. In systems with a simple theory of types a similar restric-
tion holds.

In New foundations for mathematical logic and in On the theory of types,’

c.
b.

I IA

5W. V. Quine, New foundations for mathematical logic, The American mathematical
monthly, vol. 44 (1937), pp. 70-80. We shall refer to this paper as Quine I.

8 W. V. Quine, On the theory of types, this JOURNAL, vol. 3 (1938), pp. 125-139. We shall
refer to this paper as Quine II.

This content downloaded from
202.36.209.217 on Sat, 26 Apr 2025 03:45:23 UTC
All use subject to https://about.jstor.org/terms



THE BURALI=-FORTI PARADOX 3

Quine proposes a number of ways of weakening the theory of types. It will be
instructive to consider the status of the Burali-Forti Paradox under these differ-
ent proposals. For definiteness, let us take our formulas in the symbolism of
Quine I. A formula is stratified if one can attach a subscript to each occurrence
of a variable so that for each occurrence of z €y, the subscript attached to y is
exactly one more than the subscript attached to z, and provided certain restric-
tions are fulfilled. Quine sets down the two restrictions:

1. In every part (x)¢, all occurrences of z shall have the same subscript
attached.

2. For each free variable, all of its free occurrences must have the same sub-
script attached.

On p. 78 of Quine I and in Section 4 of Quine II, it is proposed that we use
only stratified formulas which satisfy both restrictions. Then the formula of
1841 is not stratified, and the Burali-Forti Paradox fails. In Section 5 of
Quine II, it is proposed that we use only stratified formulas which satisfy the
first restriction, and we no longer ask that the second restriction be satisfied.
If we take {841 in the form

F aeNO.D.Nr(sege=<) = «,

then it is stratified. However the A used in the proof of {836, the A used in
the proof of 1841, and the @ used in the alternative proof of 841 are unstratified,
and the proofs of 1841 fail. Finally, on p. 79 of Quine I, Quine suggests using
stratification with both restrictions, but only insisting on its use in R3 (see
Quine I, p. 77). This amounts to using stratification with only the first restric-
tion and only insisting on its use in R3. Hence this is the least restriction of
all. Nevertheless the A used in the proof of 841 and the @ used in the alter-
native proof of 1841 are unstratified, and the proofs of {841 still fail.

Quine has let me see the manuscript of a paa in which he proposes to
remove the Burali-Forti Paradox from his Mathematical logic by replacing the
questionable axiom *200 by three weaker axioms:’

(i) () wweV.
(ii) (z)(y) zyeV.D.injeV.
(i1i) (2) 2eV.D.2@Ay)(yexr.zny ez) e V.

Under this proposal, all theorems of Mathematical logic remain provable, but
1837 to 1844 below will fail. However {801 to 1836 below will all go through,
and hence these thirty-six theorems may be considered as an introduction to
the theory of ordinal numbers for Mathematical logic. Therefore the theorems
and definitions have been numbered as though they constituted an eighth chapter
of the (revised) Mathematical logic. The notation has not been completely
subordinated to that of Mathematical logic, but uses capital italic letters for rela-
tions (except A and B in the proofs of 835, 1836, and 841), small italic letters
for individuals, and small Greek letters for classes and ordinals (ordinals being

7 This paper-has since appeared, in this JOURNAL, vol. 6 (1941), pp. 135-149; Editor:
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4 BARKLEY -ROSSER

classes of relations). Other minor variations will be observed, but they should
cause no confusion.

I wish to thank Prof. W. V. Quine for making a critical reading of the manu-
script of this paper, and for the suggestions which he has made in connection
with it.

Definitions. .

D801. C(R) for (R**V) u (R*V).

D802. trans(R) for (z,y,2) . R(:c,y),z) D R(z,2).

D803. antisym(R) for (z,y) . R(z,y)R(y,x) Dz = y.

D804. connex(R) for (x,y) : 2,y e C(R) .D. R(z,y) v R(y,x).

D805. ref(R) for (z) . z e C(R) D R(x,x).

D806. Ser(R) for trans(R) . antisym(R) . connex(R) . ref(R) . R C V.
D807. y ming afory eanC(R) : (2) - 2z e af = |R) D R(y,z2).

D808. Bord(R) for (a,x).x e anC(R) D (Ey) y ming a.

D809. Q(R) for Ser(R) . Bord(R).

D810. 1-1(R) for (z,yyz) . R(x2)R(y,2) Dz = y:(2,y2) - Rz,y)R(z,2) D

y=z:RCV. . .
D811. P smorr @ for 1-1(R) . P = R|Q|R . Q =R|P|R.
D812. P smor Q for (ER) P smory Q. E

D813. seg.R for y2(R(y,2) . R(z2,x) . z # x).

D814. LE(R, S) for (z):xeC(R).D.(Ey).yeC(S) . (seg.R) smor
(segyS). R

D815. Nr{P) for R(P smor R).

D816. NO for ¥(EP) . PeV . Q(P) .v = Nr(P).

D817. = for &¥(ER,S) . a,y e NO.a = Nr(R) .y = Nr(S) . LE(R,S).

D818. a = vy for <(ayy).

Theorems.

1801. } (R,x,y) - R(z,y) D z,y e C(R).

Obvious.

1802. | (R,z,y,a) . antisym(R) . 2 ming a . y ming « . D. x = .

Obvious.

1803. | (R,x,y,2) . antisym(R) . R(z,y) . R(y,2) .y # 2 .D.z # 2.

Proof. Since | R(z,y).z = 2.2.R(2,y), we have from D803 that |
antisym(R) . R(z,y) - R(y,2) .2 = 2.D.y = 2.

1804. | (R,S) : Q(R) .Ser(S).S CR.D.QS).

Proof. Assume the hypothesis. Clearly it suffices to prove Bord(S). So
assume r € anC(S). Then z € (anC(S))nC(R). So by Bord(R), there is a y
such that

(1) y ming (anC(S)).

We wish to show that ¥ mins . We have from (1) that y eanC(S). Let
z eanC(S). Then z e (anC(S))nC(R). So by (1),

(2) R(y,2).
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THE BURALI-FORTI PARADOX 5

Since connex(S) and y,z e C(S), we have S(y,2) v S(z,y). If S(z,y), then R(z,y),
whence by (2) and antisym(R), y = 2, whence S(y,2). So in any case S(y,z).
So % ming a.

1805. | (P).P CV D P smor; P.

Obvious by 7557, 1559, and 7560.

1806. (P,Q,R,S) : Psmorz Q.S = R .D. Q smors P.

Obvious by 461 and 491.

1807. H(P,Q,R,S,T,U) : PsmorsQ . @ smory R.U = S|T .D. P smory R.

Obvious by 1491 and 1494. )

1808. | (P,Q) : Q(P) . P smor @ .D. 2(Q).

Proof. Assume Q(P) and P smorr Q. Let Q(z,4)Q(y,2). Then R(R‘z,x) .
P(R'z,R‘y) . R(R'y,y) and R(R'y,y) . P(R'y,R*z) . R(R‘z,2) by D811. So since
trans(P), R(R‘z,x)P(R‘z,R‘z)R(R‘z2). That is, Q(x,2). So trans(Q). The
proofs of antisym(Q), connex(Q), and ref(Q) are similar. Also Q C V follows
from Q = R|P|R. So

(1) Ser(Q).
Now let z e anC(Q). Then R'z € (R*a)nC(P). So there is a y such that
(2) y minp R*a.

Since y e C(P) by (2) and since P = R|Q|R, we get y e R“V. So let R(y,2).
Then z e C(Q). Also, since y € R*a and 1-1(R), z ea. Suppose further that
w e anC(Q). Then R'w e (R*a)nC(P). So by (2), P(y,R'w). So R(zy) .
P(y,R*w) . R(R*w,w). So Q(z,w), since Q = R|P|R. Sozminge. So Bord(Q).
1809. | (R,S;z) i QR) :D: S = seg.R .=. S C R . QS .CS =
9(R(y,x).y#=z).
Proof. Assume Q(R) and S = seg.R. By D813:

(1) S cV.
(2 S CR.

Suppose S(u,»)S(v,w). Then R(uw) . R(v,x) .v # x . R(v,w) . R(w,x) . w # x.
So, since trans(R), R(u,w) . R(w,x) . w % z. So S(u,w). So

3) trans(S).
Suppose S(u,»)S(v,u). Then R(u,v)R(v,u) by (2). Sou = ». So
(4) antisym(S).

Suppose S(u,v). Then R(u,) .R(v,x).v#zx. Then by {803 and Ser(R), we
have R(u,u) . R(u,x) . u#x and R(v,p) . R(v,z) . v#x. So S(u,u) and S(v,p).
So

(5) S(u,w) DO S(u,u)S(v,v).
From this one easily gets
(6) ref(Q).
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6 BARKLEY ROSSER

Suppose u,» € C(S). Then by (6), S(u,u) and S(vp). So R(w,u) . R(u,r) .
u # z and R(v,) . R(v,x) . v%z. Since Ser(R), we have R(u,v) v B(v,u).

Case 1. R(uwp). Then R(up) . R(v,x) v % 2. So S(uyw).

Case 2. R(v,u). Then R(vu) . R(u,x) . u # z. So S(v,u).

So S(uw) v S(v,u). So

(7) connex(S).
By (3), (4), (7), (6), and (1), Ser(S). Using this, (2), and {804, we get
(8) AS).

Now let y ey(R(y,x) .y>*z). Then R(y,z).y #=z. So R(yy).Ryxz)-.
y#z. SoS(yy). SoyeC(S). So

(9) §(R(yx) -y # z) < C(S).

Let ¥ ¢ C(S). Then by (6), S(y,). So R(y,y).R(yx).y # z. So
y eJ(R(y,x) . y # z). So by (9),
(10) C(S) = §(B(y,x) . y # 2).

From Q(R) and S = seg.R we have derived (2), (8), and (10). Conversely,
assume Q(R), (2), (8), and (10). If S(u,»), then v e C(S). So R(v,x) .v # z by
(10). Also if S(u,v), then R(u,») by (2). So

(11) (u,) : S(uw) .D. R(u,p) . R(v,x) . v # 2.

If R(up).R@,x).v # z, then » e C(8) by- (10). Also R(u,x).u # z by
trans(R) and 1803, so that u ¢ C(S) by (10). So, by (8), S(u,) v S(v,u). If
S(v,u), then R(v,u) by (2). Hence u = v, since R(u,) and antisym(R). So
S(uwp). So in any case S(u,w). So

(12) (u,) : R(up) . R(v,z) . v # z .. S(u,p).

By (11), (12), 1447, and 8 C V (which comes from (8)), we have S = seg.R.
1810. (R,S,z,y) :QR) .S = seg.R .y e C(8) .D. seg,S = seg,R.
Proof. Assume the hypothesis. By 809:

(1) S CR.

(2) Q(8).

3) C(S) = 9(R(y,x) .y # ).
Let T=seg,S. By (2) and {809:

4) T C8.

(5) oT).

(6) C(T) = 2(8(z)y) - z#y).
So by (1) and (4),

@) T CR.
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THE BURALI-FORTI PARADOX 7

Let u ¢ C(T). Then by (6), S(u,y) .u = y. So by (1), R(w,y) .u # y. So
u €2(R(z, y) . 2#%y). So

(8) C(T) C&R(zy) - 2z = v).

Let u e2(R(z,y) . 2 # y). Then R(u,y) . u # y. Also by (3) and y € C(S), we
have R(y,x) .y # z. Hence R(u,y) . R(y,2) .y # z. So S(u,y). So by (2),
S(u,u). So S(uu) . S(uy) .u # y. So T(u,u). SoueC(T). So

(9) #R(zy) .z # y) € C(D).

By (8) and (9), C(T) = 2(R(z,y) .z # y). By this, (7), (5), and {809, T =
segyR. So seg,S = seg,R.
Cor. (R,S,z,y) :QUR).S = seg.R.R(y,x) .y # x.D.seg,S = seg,R.
1811. | (Pmn) :1-1(P) . m e Nn .D 1-1(P").
Proof by induction on n using 7682 and 683.
1812. | (R,S,x) : Q(R) . S C seg:R . z ¢ C(R) .D. ~(S smor E).
Proof. Assume the hypothesis, together with S smarq B. Put T = seg.R.

So

(1) SCT,

and by 1809,

2) T CR,

3) C(T) = 9(R(yx) . y # ).

Put 6(n) for (Q™)*xz. Then by 1682,

(4) 6(0) = =,

and by 1683, 1684, and 1538,

(5) (n) :neNn.zet(Q") .D. 8(n+1) = Q°6(n).

Lemma. (1) ineNn.D.zet(Q").R(6(n+1),6(n)) . 6(n+1)=6(n).

Proof by induction on n. Let n = 0. Then Q" = I, so that z e t(Q™) by
$551. Since z e C(R), R(z,x). So (Buy) . Q(u,z) - S(u,0) . Q(v,z), because R =
Q|S|Q. Remembering that 1-1(Q), this gives S(Q*z,Qz). However z = 6(0),
so that by (5), (1) = Q*6(0) = Q‘z. So S(6(1),6(1)). So by (1), T'(6(1),6(1)).
So by (3), R(6(1),z) - 6(1) > z. Hence R(6(1),6(0)) - 6(1) = 6(0) by (4). Now
assume the lemma for n. So z et(Q").R(6(n+1),0(n)).0(n+1) # 8(n).
Since B = Q|S|Q, we have (Eup).Q(u,0(n+1)).Suw).Q1,06(n)). So
(Ev)Q(v,0(n)). So 6(n) € 1Q since 1-1(Q). So Q(Q*6(n),8(n)). Also Q"(6(n),r),
since z e(Q"). So "7 (Q'6(n),x). Hence by 1811, ze Q™". Also, since
R(6(n+1),6(n)), B = @|8]Q, and 1-1(Q), we have Q(Q'6(n+1),0(n+1)) .
S(Q*0(n+1),Q°0(n)) . Q(Q*6(n),6(n)). So, since 6(n+1) > 6(n), we have
8(Q0(n+1),Q"(n)) . Q*6(n+1) = Q‘6(n). So by (5), S(6(n+2),6(n+1)) .
8(n+2) = 6(n+1). Soby (1) and (2), R(8(n+2),0(n+1)) . 6(n+2) = 6(n+1).
This completes the proof of the lemma.
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8 BARKLEY ROSSER

NowputB = #(En).neNn.y = 6(n). By (4),ze¢B8. SozeBnC(R). So
by D808 there is a y such that y min; 8. That is, there is an n such that

(6) neNn.y = 0(n).yeC(R) : (2) . z¢ fnC(R) D R(y,2).
Choose z = 6(n+1). Then by the lemma,
() R(zy) .z # y.

SozeC(R). AlsozeB. Soby (6), R(y,2). So by antisym(R) and (7), we have
a contradiction.

Cor. | (R,S)x) :Q(R).S Cseg.R.zeC(R).D. ~(R smor S).

1813. | (Rz,y) :Q(R) . z,y e C(R) . (seg.R) smor (seg,R) .D.z = y.

Proof. Assume the hypothesis, together with z = y. Let S = seg.R and
T = segyR. Since z,y e C(R), R(z,y) v R(y,z).

Case 1. R(y,x). Then R(y,x) .y # z. So by 1809:

(1) y € C(8).

(2) (S).

By (1) and {810,

3) seg,S = T.

So T CsegyS. So by (1), (2), and {812, Cor., ~(S smor T). This contradicts
(seg.R) smor (segyR).

Case 2. R(z,y). Similar contradiction.

1814. | (R,z) . ¢(R) D LE(seg.R,R).

Proof. Assume Q(R). Let S = seg.R. Let y ¢C(S). Then by 1810,
seg,S = segyR. So by 1805, (seg,S) smor (seg,R). Also by {809, S C R, so
that y e C(R). Hence (E2) .z e C(R) . (segyS) smor (seg.R). So LE(S,R).

1815. | (P,R,S,zy) : QR) . 2S) . R smor, S . P(z,y) . z ¢ C(R) .D.

y € C(S) . (seg-R) smore (seg,S).
Proof. Assume the hypothesis. Since P(z,y) and 1-1(P),
(1) P(zu) .=.u = y.

Since z ¢ C(R), therefore R(z,z). So since R = P|Q|f’, (Euw) « P(zu) .
S(uw) . P(z,v). Soby (1), (Bup).u = y.8Sup).v =y. So S(y,y). So

(2) y € C(8).
Since 1-1(P),
3) P@pb) . P(vec) .=.P(u,b).b = c.

Since 1-1(P), therefore P{,b) . P(z,y) . b = y.=.P(b) . P(zy) .v = z. So
P(b) . P(z,y) .v # z.=.P@b).P(zy) .b = u. So, since P(z,y),

(4) Pwb).v = z.=.P(v,b).b # y.
Now let A be (seg.R)(u,v). Then
A.=.R(up).R@z).v # .
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THE BURALI-FORTI PARADOX 9

by D813. So
A .=.(Eab,cd) . P(u,a) . S(a,b) . P(v,b) . P(v,c) . S(c,d) . P(z,d) . v # x,
since R = P|Q|P. So
A .=.(Eab,cd) .P(u,a).Sab).Pwdb).b=c.S(d).d =y.v#uz,
by (3) and (1). So
A .=.(Eab) . P(u,a) . S(ab) . S(b,y) . P(v,b) . v # x,

by *234. So
A.=.(Eapb) . P(u,a).S(ab).Sbhy).b # y.Pwb),
by (4). So
A .=.(Eapb) . P(u,a) . (segyS)(a,b) . P(v,b),
by D813. So

A .=. (P|(seg,S)|P) (u,).

Remembering what A is, we have proved

(6) seg.R = P|(seg,S)|P.
In a similar manner we prove
(7) seg,S = P|(seg.R)|P.

So (seg.R) smorp (seg,S). This with (2) gives the desired result.

1818. } (R,S) : (R) . (S) . R smor S.D. LE(R,S) . LE(S,R).

Proof. Assume Q(R), 2(8), and R smorp S. If z e C(R), then R(z,r). So
(Eup) . P(z,u) . S(uw) . P(x,w). Hence there is a y such that

(1) P(x,y),
2 y € C(S).

So by 1815, (seg.R) smorp (seg,S). So (Ey) .y ¢ C(S) . (seg.R) smor (seg,S).
We have now proved

(3) Q(R) . 2(8) . R smor S .D. LE(R,S).
However if R smor S, then S smor R by {806. So Q(R) . Q(S) . R smor S.D.
LE(S,R).

1817. F (R,S,r,y,2) : Q(R) . 2(S) . (seg.R) smor (seg,S) . R(2,x) . y e C(S) .
D. (Eu) . S(u,y) . (seg.R) smor (seg.S).
Proof. Assume the hypothesis. By 816,

(1) LE(seg.R,seg,S).
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10 BARKLEY ROSSER

Casel. z=2. Takeu = y.
Case2. z 3 z. Then by {809, z ¢ C(seg.R). So by (1) there is a u such that

(2) u € C(segyS),

3) (seg.(seg.R)) smor (segu(seg,S).

By 1810 and (2), seg.(seg,S) = seg.S, and by {810 and z € C(seg.R), seg.(seg-R)
= seg.R. So (seg.R) smor (seg,S). Also by (2) and 1809, S(u,y).

1818. F (R,S).Q(R).Q(S) . LE(R,S) . LE(S,R) .D. R smor S.

Proof. Assume the hypothesis. Put

(D P = %8(u e C(R) . s e C(8S) . (seg.R) smor (seg,S)).

If P(u,v) and P(u,w), then u e C(R) . v ¢ C(S) . w € C(S) . (seg.R) smor (seg,S) .
(seg.R) smor (seg,S). So by {806 and 1807, »,w € C(S) . (seg.S) smor (seg.S).
So by 1813, v = w. Similarly from P(u,w) and P(v,w), one would get u = v.
Obviously P C V. So

(2) 1-1(P).
Suppose P(z,u) . S(up) . P(y,w). Then:

3) (seg.R) smor (seg.sS).
4) (segyR) smor (seg.sS).
(5) z,y e C(R).

(6) u,w € C(8S).

(7) S(u,v).

By (5), R(z,y) v R(y,2).

Case 1. R(z,y). Then R(z,y).

Case 2. R(y,r). Then by (3), (6), and {817, there is a w such that S(w,u) .
(seg,R) smor (seg.S). So by (4), 1806, and 1807, w e C(S) . (seg,S) smor
(seg,S). So by (6) and {813, v = w. This with S(w,u) gives S(v,u). So by
(7),u =v. Soby (2),z=1y. SoR(z,y). Soin either case, R(z,y). So we
have proved

(8) P(z,u) « S(up) . P(yp) .D. B(z,y).
So
(9) P|S|P CR.

Now let R(z,y). Then z,y e C(R). So, since LE(R,S), there are u and v such
that u € C(S) . (seg.R) smor (seg.S) and v € C(S) . (seg,R) smor (seg,S). So:

(10) P(xu).

(11) P(y,v).
Since u,v € C(8), S(u,p) v S(v,u).
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THE BURALI-FORTI PARADOX 11

Case 1. S(u,w). Then S(u,v).

Case 2. S(v,u). Then R(y,x) by (8), (10), and (11). So x = y, since we are
assuming R(z,y). So u = v because of (2). So S(u,v).

So S(u,v) in either case. So by (10) and (11), P(z,u) . S(uw) . P(y,w). So
(P|S|P)(up). So R < P|S|P. So

(12) R = P|S|P.

Let (P|R|P)(u,p). Then (Eap).P(au).R(ab).Pbhy). So by (12),
(Ea,b,c,d) . P(a,u) . P(a,) . S(c,d) . P(b,d) . P(byy). So by (2), S(u,»). So

(13) PR|P C 8.

Let S(u,w). Then u,w ¢ C(S). So, since LE(S,R), there are x and y such that
z e C(R) . (seg.S) smor (seg.R) and y e C(R) . (seg,S) smor (segy,R). So by
1806, P(x,u) and P(y,w). So by (8), B(z,y). So P(z,u) . R(z,y) . P(y,v). So
(P|R|P)(up). So 8 C P|R|P. So with (13), S = P|R|P. So with (2) and
(12), R smorp S.

1819. } (R,S,T) : LE(R,S) . LE(S,T) .. LE(R,T).

Proof straightforward, using 1807.

1820. H(R,S) : Q(R) . @(8S) . LE(R,S) . ~LE(S,R) .D. (Ey) .y e C(S) . R

smor (segyS).
Proof. Assume the hypothesis. Put
(1) B = g~(Ez) .z e C(R) . (segyS) smor (seg.R).

Since ~LE(S,R), (Ey).y eC(8S).~(Ez).x eC(R) . (seg,S) smor (seg.R).
That is, (Ey) . y e BnC(8S). So, since Bord(S), there is a y such that

(2) y ming 8.

Put T = seg,S. Let zeC(T). Then by 1809, S(z,y) .z # y. So z e C(S).
If also z € 8, then by (2), S(y,2). This with S(z,y) . 2 # y would give a contra-
diction. So 2eC(T) D ~(zeB). So z2eC(T).D. (Ex) .z e C(R) . (seg.S)
smor (seg.R). However, by 1810, z ¢ C(T) .D. seg.S = seg.T. So

(3) LE(T,R).
Assume
(4) z e C(R) .z eC(S). (seg.R) smor (seg.S).

If S(y,z), then by {806 and {817, we get (Eu) . R(u,z) . (seg,S) smor (seg.R).
By 1806, this would contradict y ¢ 8, which follows by (2). So

®) ~8(y,2).

However, since y € C(S) by (2), we have by (4), S(y,2) v S(z,y). So

(6) S(z,).

Also by (4) and (5), we have z % y. So by {809,

7) z e« C(T).

Hence by {810, seg.S = seg.T. Combining these results, we have proved
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12 BARKLEY ROSSER

z e C(R) .z e C(8) . (seg.R) smor (seg.S) ..z ¢ C(T) . (seg.R) smor (seg.T).
By use of this and LE(R,S), one can readily prove LE(R,T). By (3) and {818,
R smor T. Since y ¢ C(S) follows from (2), we have the desired result.

1821. } (R,S) : Q(R) . 2(8) .D. LE(R,S) v LE(S,R).
Proof. Assume 2(R), 2(8), ~LE(R,S), and ~LE(S,R). Put

(1) B = y~(Ex) . z e C(R) . (seg,S) smor (seg.R).
As in the proof of 1820, we infer that there is a y such that
(2) y ming S.

Put 7 = seg,S. As in the proof of 1820, we infer

(3) LE(T,R).

Now suppose LE(R,T). By {814, LE(T,S). So by {819, LE(R,S). This
contradicts ~LE(R,S), which we assumed. So

(4) ~LE(R,T).

Then by 1820, (Ex) . x ¢« C(R) . T smor (seg-R). This contradicts y €.

1822. } (R,S) . Q(R) . Q(8S) :D: ~LE(S,R) .=. (Ey) .y ¢C(S) . B smor
(segyS).

Proof. Assume Q(R), 2(8). If ~LE(S,R), then LE(R,S), by 1821. So
(Ey) .y €¢C(S) . R smor (seg,S) by 1820. This proves half the equivalence.
Now let 4 € C(8S) . R smor (seg,S) and LE(S,R). From R smor (seg,S) we get
LE(R,seg,S) by 1816 and 1809. By 814, LE(seg,S,S). So by 1819, LE(R,S).
This with LE(S,R) and {818 gives S smor B. By {807, we have S smor (seg,S).
This contradicts 1812, Cor.

1823. | (R,S) : R smor S.D. Nr(R) = Nr(S).

Proof. LetRsmorS. IfQ eNr(R),thenQ eV .RsmorQ. HenceQeV.S
smor Q@ by 1806 and 7807. So Q eNr(S). Similarly, if @ e Nr(S), then
Q ¢ Nr(R).

1824. | (P) :P eV .Q(P).D. P eNr(P).

Proof. Assume P eV .Q(P). By {805, P smor P. So P e Nr(P).

1825. F (P,Q) : Nr(P) e NO . Nr(P) = Nr(Q) .D. P smor Q. Q(P) . 2(Q) .
LE(P,Q) . LE(Q,P).

Proof. Assume the hypothesis. Then by D816 there is an R such that
ReV.QR).Nr(P) = Nr(R). Hence by 1824, R ¢ Nr(P) and R ¢ Nr(Q). So
P smor R and Q smor B. So by 1806 and 1807, P smor Q. Also Q(P) and 2(Q)
by 1806 and 1808. So by 1816, LE(P,Q) . LE(Q,P).

1826. | (@) :@aeNO.D.a = a.

Proof. Assume a e NO. Then by D816, there is a P such that

a e NO.Q(P).a= Nr(P).

By 1805 and 1816, LE(P,P). So @ ¢ NO.a = Nr(P).LE(P,P). Soa < a
by D817 and D818.

827. F C(Z) = NO.

Proof. By D817, C(<) € NO. By 1826, NO < C(=).
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THE BURALI-FORTI PARADOX 13

1828. | trans(=).
Proof. Assumea < 3.8 <+v. Then by D818 and D817 there are P, Q, R, S
such that

a8 eNO.a = Nr(P).B8 = Nr(Q) . LE(P,Q),
By e NO.B = Nr(R) . v = Nr(8S) . LE(R,S).

By 1825, LE(Q,R). So by 1819, LE(P,S). So a = «.
1829. } antisym(=).
Proof. Assume @ < 8,8 =< a. Then there are P, Q, R, S such that

(1) a8 e NO .a = Nr(P) . 8 = Nr(Q) . LE(P, Q),
2) Ba e NO.B = Nr(R) . « = Nr(S) . LE(R, S).
By 1825, 2(P), (R), LE(Q,R), and LE(S, P). So by 1819,
3) o(P) . 2(R) . LE(P,R) . LE(R,P).

So by 1818, P smor B. So by 1823, « = 8.

1830. | connex(=).

Proof. Assume o,8 € C(=<). Then ,8 ¢ NO by 827. So by D816 there
are P and @ such that

PeV.QP).a= Nr(P),
QeV.2Q) .8 = Nr(Q).

So by 1821, LE(P,Q) v LE(Q,P). So by D817 and D818, < 8 .v. § = «.

1831. | ref(=).

Proof. Use 1827 and 7826.

1832. | Ser(=).

Proof. Clearly < C V. Use 1828, 1829, 1830, and {831.

1833. F (e, B,P) : 8= a.B#a.a=Nr(P).D.(Bu).ueC(P).B =
Nr(seg.P).

Proof. Assume the hypothesis. Then by D818 and D817, there are @ and
R such that

B, e NO.B = Nr(Q) . « = Nr(R) . LE(Q, R).

Then by Nr(Q) = Nr(Q) and 1825, we get Q(Q), Q(P), and LE(R,P). So by
1819,
(1) LE@Q,P).

Now assume LE(P,Q). Then by 1818, P smor Q. So by 1823, « = 8. This
is a contradiction. So

(2) ~LE(P,Q).

So by 1820, there is a u such that u ¢ C(P) . @ smor (seg,P). So by 823,
u € C(P) . 8 = Nr(seg.P).
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14 BARKLEY ROSSER

1834. | (a,8,Puw) : QP) . P(uw) . « = Nr(seg.P) . B = Nr(seg.,P) .
a8 e NO.D. a = 8.

Proof. Assume the hypothesis.

Case 1. u = v. Then o = 8, and we can use {826.

Case 2. u * v. Then by 7810, Cor., seg.P = seg.(seg,P). So by {809
and {814, LE(seg.P,seg,P). Use D817 and DS818.

1835. | Q(=).
Proof. By 1832, it suffices to prove Bord(=<). So let
(1) a e AnC(=).

Case 1. (B) : 8 e AnC(=Z) .D. @ = 3. Then a ming A by D807. So
(Ey) . y ming A.
Case 2. ~(B) : 8 €e AnC(=Z) .D. a = B. Then there is a 8 such that

2) BeAnC(=) . ~(a = B).

So by 1830 and {831,

(3) BZ a.B # a.

Then by 827 and D816, there is a P such that

(4) PeV.QP).a= Nr(P).

So by (3) and {333, there is a w such that

(5) w € C(P) . 8 = Nr(segusP).

Put

(6) B = 4(Nr(seg.,P) e AnC(X)).

Then by (2) and (5)

(7) w e BnC(P).

So by (4) and D808, there is a u such that

&) u minp B.

Then by (6)

(9) Nr(seg.P) e AnC(=).

Also by (8), (7), and D807, P(u,w). So by (4), (9), (5), (2), and {834,
(10) Nr(seg.P) < B.

We will cow prove that Nr(seg,P) ming A. To this end, assume
(11) v e AnC(=2).

Subcase I. B =< v. Then Nr(seg,P) < v by (10) and {828.
Subcase II. ~(8 =< ¥). Then by 830 and {831 and (2) and (11),
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THE BURALI-FORTI PARADOX 15

v < B.v # B. Then by {833 and (5), there is a v such that v e C(seg,P) . v =
Nr(seg,(seg,P)). So by 1809 and {810 and (4),

(12) v € C(P) . v = Nr(seg,P).

So by (11) and (6), v € BaC(P). So by (8), P(uyw). So by (4), (12), (9),
(11), and 1834, we get Nr(seg.P) = 7.

So in any case, Nr(seg,P) < v. So Nr(seg.P) ming A.

1836. | (a,P) : @ e NO . a = Nr(P) .D. LE(seg.<,P).

Proof. Put

(1) A = &(EP) . @ = Nr(P) . ~LE(seg.=,P).

Assume the theorem false. Then (Ea)(EP) . «a ¢ NO . « = Nr(P) .
~LE(seg.<,P). So by (1) and {827, (Ea) . « ¢ AnC(=). So by 1835 and
D808, there is an « such that

(2) o ming A.
By D807 and 1827, @ e AnNO. So by (1), there is a P such that
(3) a e NO.a = Nr(P) . ~LE(seg.=,P).

Hence by 1825 and Nr(P) = Nr(P), we get Q(P). So by 835, 1809, and 822,
there is a B such that 8 € C(seg,<) . P smor (segs(seg.=<)). So by 7809 and
1810,

(4) B=Za.B# a.Psmor (segs=<).
Since 8 < «, 8 € NO. So there is a @ such that
(5) QeV.2Q) .8 = Nr@Q).

Case 1. ~LE(segs=<,Q). Then by (1), (4), and (5), 8 ¢ AnC(=). So by
(2), a = 8.

Case 2. LE(segs<,Q). By (4) and {816, LE(P,segs<). So by {819,
LE(P,Q). So by D817 and D818, a« < 8.

So in any case, @ < 8. By 1829 and (4), we have a contradiction. Hence
the theorem must be true.

1837. F (@) : @ e NO .D. (sega=<) € V.

Proof. Use *200.

1838. | (P) : P e V. Q(P) .D. Nr(P) ¢ NO.

Proof. By *200, Nr(P) € V. So it suffices to prove (EQ) . Q ¢ V . Q(Q) .
Nr(P) = Nr(Q). For this purpose, take @ to be P.

1839. | (@) : @ e NO .D. Nr(seg.=<) ¢ NO.

Proof. Use 1837, 1838, 1835, and {809.

1840. | (@) : @ € NO .D. Nr(seg.=) = a.

Proof. Let o e NO. Then thereis a P such that P e V. Q(P) . a = Nr(P).
Then by 1836, LE(seg.<,P). So by 1839, D817, and D818, Nr(seg.=<) =< a.

1841. } (@) : @ € NO .D. Nr(seg.=<) = a.

Proof. Let

1) A = &(Nr(seg<) # a).
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16 BARKLEY ROSSER

Assume the theorem false. Then (EFa) . @ € NO . Nr(seg.<) # a. So
(Ea) . @ e AnC(=). So by 835 and D808, there is an « such that

(2) a ming A.

Put 8 = Nr(seg.=<). By 1840,

3) B =

(3)Case 1. Nr(segs<) # B. Then 8 ¢ AnC(=). So by (2), @ = 8. So by
B = a

Case 2. Nr(segs<) = B. Then by definition of 8, Nr(segg<) = Nr(seg.=).
So by 1825, (segg=<) smor (seg.<). So by 7813, 8 = «.

So in either case, 8 = «. This contradicts (1) and (2). So our theorem
must be true.

We give here an outline of an alternative proof of {841, for reference in case
any one should wish to test other systems for the occurrence of the Burali-
Forti Paradox.

For the alternative proof we dispense with {836 to 1841. By methods similar
to those used in the proofs of 1837 and 1838, we prove:

Lemma. [ (P) :P eV.QP).ueC(P).D. Nr(seg.P) ¢ NO.

Then to prove 7841, we assume a ¢ NO. There is a P such that

1) P eV.QP).a= Nr(P).
Put:
(2) Q = 49(y = Nr(seguP) . v = a.v # a.u e C(P)).
3) R = seg.=.
By 1825 and {813,
4 1-1(Q)-
By 1834,
(5) Q(w,B) - P(up) - Q(v,y) - 2. R(Byy).

If Q(u,8) - R(8,y) - Q(v,y), then P(uw) v P(v,u). By (4) and (5), we readily
deduce P(u,). So

(6) Q(u,B) - R(Byy) - Q) - O. P(uy).

If R(B,y),then B < a.B # a. So by 1833, (Eu) . Q(u,8). Similarly (Ev) .
Q(v;v). So by (6), (Eup) « Qu,B) « P(up) . Q). So (QIP|Q)(By). So by
(5),

©) R = Q|P|Q.

If P(up), then by the lemma, Nr(seg.P) e¢ NO. Also, by 7814,
Nr(seg.,P) < a. By 1825 and {812, Nr(seg.P) # a. So Q(u,Nr(seg.P)).
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THE BURALI-FORTI PARADOX 17

Similarly Q(»,Nr(seg,P)). Soby (5), R(Nr(seg.P),Nr(seg,P)). So (Q|R|Q)(u,v).
So with (6),

(8) P = Q|RIQ.

So by (4), (7), and (8), P smorg R. So Nr(P) = Nr(R). So a = Nr(seg.=).
We now continue with the derivation of the Burali-Forti Paradox.
i842. |} = e V.
Proof. Use *200.
1843. | Nr(=) ¢ NO.
Proof. Use {838, 1842, and {835.
1844. | Burali-Forti Paradox.
Proof. By 1843,

(1) F Nr(=) ¢ NO.
By {841,

(2)  Nr(segnr) =) = Nr(=).
By 1825,

3) b (segn:(y <) smor =.
By (1), 1827, 1835, and 1812,

4) F ~((segnr(s) =) smor =).

By (3) and (4), we have an inconsistency.
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