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We will establish the following result: every stratified instance of the
replacement scheme is provable in the set theory of Zermelo (Z−) with
neither the axiom of choice nor foundation.

Upper-case Roman letters F , G. . . will denote operators definable in Z−;
F ◦ G is the composition of F and G; F (k) is the operator F iterated k times,
with F (0) = I, the identity. If F is a permutation of the universe, F−1 is the
inverse of F .

DEFINITION 1 F is permitted if

(∀a)(∃b)(∀y)(y ∈ b←→ (∃x ∈ a)(y = F (x)))

If F is permitted, let F ∗ be the operator

a 7→ {Fa : x ∈ a}

For example, in Z−, the operators
⋃

(sumset) and P (power set) and {, }
(singleton) are permitted. If F and G are permitted so is F ◦ G. If F is
permitted, so is F ∗, and we will write as F [k] for the suite of operations defined
by

F [0] =: I; F [1] =: F ; F [k+1] =: (F [k])∗.

DEFINITION 2 F is an admissible permutation if both F and F−1 are per-
mitted.

We can now define the suite Fk by:

F0 =: I; F1 = F ; Fk+1 =: (Fk)∗ ◦ F1.

By induction on k one proves immediately: if F is an admissible permutation,
then the Fk are all admissible permutations. See note 1.

1



LEMMA 3 If F is an admissible permutation, Φ a stratified formula with free
variables x1 . . . xn, σ = (σ1 . . . σn) be a suite of integers stratifying Φ, Φ′ the
result of replacing xi ∈ xj by xi ∈ F (xj) throughout, then

(∀x1 . . . xn)[Φ(x1 . . . xn)←→ Φ′((Fσ1)−1x1 . . . (Fσn)−1xn)]

Proof:
We prove lemma 1 by induction on the complexity of Φ.

We can infer from it results analogous to those in reference [1].

LEMMA 4 Let F be an admissible permutation. Then the following hold for
every integer k.

1. If F is the identity on
⋃k

x, then F [k+1]x = x;

2.
⋃k ◦F [k+1] = F ∗ ◦

⋃k

LEMMA 5 With the notations of lemma 4, if Φ is stratified then for all integers
m

(∀x1 . . . xn)[Φ(x1 . . . xn)←→ Φ((F [σ1+m]x1 . . . (F
[σn+m]xn)]

Proof:
We prove lemma 5 by noting that if σ stratifies Φ, so does the sequence

σ +m.

DEFINITION 6 Let

• Φ be a formula with free variables among x1 . . . xn;

• K be a subset of {1, 2 . . . n};

• ni be the number of occurrences of xi in Φ;

• yj,k, for j = 1, . . . nk and k 6∈ K a suite of variables not occurring in Φ.

Then ΦK is the expression obtained from Φ by replacing the jth occurrence
of xk—for k 6∈ K—by yj,k. If ΦK is stratified we will say that Φ is stratified on
the set K, or—further—that the variables xi with i ∈ K are stratified in K. If
K is empty we will say that Φ is pseudo-stratified.

See note 5.
For example:

Φ(x1) : (∀t)(∀t′)((t ∈ t′ ∧ t′ ∈ x)→ t ∈ x)

Now for K = ∅ we have

Φ∅(y1,1, y2,1) : (∀t)(∀t′)((t ∈ t′ ∧ t′ ∈ y1,1)→ t ∈ y2,1)

The expression “x is a transitive set” is accordingly pseudo-stratified.
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COROLLARY 7 If Φ is stratified in K and F is an admissible permutation
then, for every integer m

∀x1 . . . xn[Φ(x1 . . . xn)←→ ΦK(. . . F [σi+m]xi . . . F
[σj,k+m]xk . . .)]

for i ∈ K, k 6∈ K, j ∈ {1 . . . nk} and σ a stratification of ΦK . See note 2.

LEMMA 8 If the variable xn+1 is stratified in Φ, and σ stratifies Φ{n+1} then
the following holds:

if
(Φ(x1 . . . xn, xn+1) ∧ Φ(x1 . . . xn, x

′
n+1))→ xn+1 = x′n+1

then Φ(x1 . . . xn, xn+1))→ xn+1 ∈ Pσn+1+1(v1 ∪ . . . vn),
where

vi =:
⋃

j=1...ni

⋃σj,i xi; i = 1, . . . n

Proof:
For every integer q we have x ⊆ Pq ◦

⋃q
x, and because Pq is ⊆-increasing See note 7

it will suffice to prove u ⊆ v where

u =:
⋃σn+1 xn+1 and v =: v1 ∪ . . . ∪ vn.

If u 6⊆ v then we can find a and b such that a ∈ u, a 6∈ v, and b 6∈ u ∪ v. See note 8.
Now let F be the transposition (a, b) (that swaps a with b while fixing

everything else). It is easy to check that F is admissible. F is the identity on
vi, so—by lemma 4 part (1)—we have

F [σj,i+1](xi) = xi (1)

Further,
⋃σn+1 ◦F [σn+1+1](xn+1) 6=

⋃(σn+1)(xn+1) = u
On the one hand—by lemma 4 part (2)—we have⋃(σn+1) ◦F [σn+1+1](xn+1) = F ∗ ◦

⋃(σn+1)(xn+1) = F ∗(u)

On the other hand u 6= F ∗(u) by construction of F . Therefore

F [σn+1](xn+1) 6= xn+1 (2)

Now, by corollary 7, we obtain

φ(x1 . . . xn, xn+1)←→ φ{n+1}(. . . F
[σj,i+1](xi) . . . F

[σn+1+1](xn+1)).

Formula (1) now gives us

φ(x1 . . . xn, xn+1)←→ φ(x1 . . . xn, F
[σn+1+1](xn+1)).

so, by the hypothesis on φ, xn+1 = F [σn+1](xn+1), giving a contradiction.
See note 3.

From lemma 8 we infer
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COROLLARY 9 In every extension of Z− every set definable by a stratified
formula without parameters is hereditarily finite.

COROLLARY 10 If the variable y is stratified in φ then see note 4
Z− ` (∀x)(∀y)(∀z)[Φ(x, y) ∧ Φ(x, y′) → y = y′] → (∀a)(∃b)(∀y)(y ∈ b ←→

(∃x ∈ a)Φ(x, y))

The axiom of replacement is therefore provable in Z−: we use only the axiom See note 6.
of comprehension for Φ.

Remark:
It is easy to find examples of pseudostratified formulæ for which replacement

is not provable in Z− + Axiom of foundation + Axiom of Choice. For example,
the formula with two free variables x and y saying that x is a wellordering and
y an isomorphic ordinal. See note 9.
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Notes

Although in general I have adhered slavishly to Coret’s notation, there are
limits. Where he writes ‘U ’ I write ‘

⋃
’ since that is obviously what he meant.

(Why did the Comptes Rendues use a printing house that lacked this symbol?)

He also uses a large boldface ‘C’ for complementation, which I have removed
by rewriting formulæ so as not to need any notation for complementation.

I have exploited the LATEXmachinery to provide numbers for all his defini-
tions and lemmata, not just those that he numbers.

Coret always writes “integer” (“entier”) even in circumstances where one
would have expected him to consider only natural numbers. I have translated
entier as integer throughout. I have inserted ‘Proof’ at the start of a proof and
‘ ’ at the end of a proof.

Note 1

In the later literature the word setlike is used for functions that have this nice
property. Specifically a function f is 1-setlike if f“x exists for all x. Coret
presumably had in mind the observation that if f is 1-setlike then so is j(f) =:
λx.f“x. This is because {f“y : y ∈ x} is {z ∈ P(f“

⋃
x) : (∃w ∈ x)(z = f“w)}

and therefore exists by power set and separation applied to f“
⋃
x—which exists

because f is 1-setlike.
A function is setlike if jn(f) is setlike for all n. What this argument shows

is that any definable function is setlike. In ZF the axiom scheme of replacement
makes it obvious that any definable function is setlike. What is striking about
the result here is that it holds for Zermelo set theory as well.
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Note 2

In the antecedent of the conditional of corollary 10 the ‘Φ’ is in lower case. This
is presumably a missprint.

Note 3

The extra information in this corollary and the preceding definition is of no use,
at least not here. It may be that this gadgetry is a good way to start thinking
about degrees of dysstratification of formulæ but that is not our concern here.
The point to notice for the moment is that we can prove lemma 8 by relettering
followed by substitution. The meat of the construction is the transposition.

Note 4

By “y is stratified in Φ” Coret means that there is a stratification of φ which,
although it might require distinct occurrenes of the other free variables to be
given distinct types, nevertheless it treats ‘y’ as a bound variable, in that it
gives all its occurrences the same type.

Note 5

Nowadays “pseudostratified” is universally called “weakly stratified”.

Note 6

This is of course a slip of the pen. He means: the stratified instances.

Note 7

I think nowadays we would say monotone rather than increasing.

Note 8

This construction exploits a background assumption that there is no universal
set.

Note 9

A more illuminating observation at this juncture might be that this proof works
only for stratified replacement; Mathias’ counterexample shows that stratified
collection is not a theorem of Zermelo. (“For every n ∈ IN there is a set of n
infinite sets all of different sizes”).
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