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Games played on an illfounded membershiprelationThomas ForsterJanuary 22, 2001Abstra
tThe 2-game as an attempt to salvage something from failure offoundation. Solitaire version gives rise to 
on
ept of wellfoundedset and rank, binaire version gives us pseudofoundation and pseu-dorank. These both give rise to games de�ning a binary relation ofrelative rank (resp. pseudorank). Greatest and least �xed points.Natural 
onstru
tions of models of 2-determina
y. A paradox ofindu
tively de�ned sets.Long before it was fashionable, Mauri
e Bo�a was working on set theorywithout the axiom of foundation, and his pres
ien
e in spotting its foundationalimportan
e 
aused him to be
ome the fo
us of|and an inspiration and exam-ple to|a 
ir
le of younger s
holars and students to whose number it was myprivilege to belong. It is now a pleasure for me to be able to 
ontribute to hisfests
hrift an arti
le on this topi
 that informed his early work, helped build hisreputation and brought me to sit at his feet. My enthusiasti
 falla
ious proofsalways eli
ited from Mauri
e the response \Mais Thomas, il faut l'�e
rire!". Sohere is some illfounded set theory in writing for his eagle eye.De�nitionsAll games here are two-player games of perfe
t information, where the play-ers move alternately. These are sometimes 
alled 
ombinatorial games. A
ompleted sequen
e of moves is a play. A game (in whi
h the players movealternately) is open i� the set of plays in the game that are wins for the �rstplayer (player I) form an open subset of the set of all plays in the produ
t topol-ogy. (Remember that the set of plays is a produ
t of 
ountably many dis
retespa
es.) That is to say, in an open game, if player I is going to win this fa
thas be
ome apparent after �nitely many moves. In a 
losed game player I winsby not having lost at any �nite stage, and if player II wins this has be
omeapparent after �nitely many steps. 2



In all the games that follow I shall use the 
onvention that `Wins' with a
apital `W' means `has a winning strategy for'. We will also generally havethe normal play 
onvention. Any player �nding himself or herself unable tomove thereby loses.A bit of terminology used here is possibly not standard: binaire vs soli-taire. Binaire games are the usual two player games with two distin
t players.A solitaire version of a two-player game is the degenerate version where oneplayer takes both rôles. Although solitaire games are often mu
h easier thanthe 
orresponding binaire games (The sequen
e 1: P-K4 P-K4; 2: B-QB4 P-Q3; 3 Q-KB3 P-KKt3; 4 Q � KBP mate; is a win in solitaire 
hess) in
ludingthem enables one to give a smoother general treatment than would otherwisebe possible..Introdu
tionSome say that set theory without the axiom of foundation is just the theory ofan extensional relation, and is not part of set theory proper. One 
ould start aquarrel by saying `In that 
ase, what is wellfounded set theory but the theory ofone wellfounded extensional relation?' but without taking sides in this debateone 
an still re
ognise interesting problems in (illfounded) set theory, even ifone prefers to des
ribe them as problems in something other than set theory.The point will of 
ourse be made that whatever 
an be said about gamesplayed on an illfounded 2-relation 
an be said also about games played on anyillfounded binary relation, and that this will reveal illfounded set theory to be|as it was 
harged with|merely the theory of one illfounded binary relation.However this same generalisability point 
an be made against the theory ofwellfounded sets. What is distin
tive about the theory of wellfounded sets is2-indu
tion, and this too 
an be|and indeed very properly is|generalised toa prin
iple of indu
tion over any wellfounded relation.The people who believe that the axiom of foundation is true (I 
all them`Fundi's) believe that there 
an be found a range of entities des
ribed by thetheory of one wellfounded binary relation with equality in a manner in whi
hone 
annot �nd entities des
ribed by any theory of illfounded binary relationswith equality.In what follows I shall be developing ideas for new axioms for illfounded settheory, and sin
e I want to keep them as open-ended as possible the dis
ussionwill perfor
e have to be 
ondu
ted in na��ve set theory. Readers should not takethis as an invitation to 
arp or pani
, but rather as a warning to hold hard ontotheir seats.1 Simultaneous displaysThere are several 
onstru
tors that 
reate new games out of old games that 
anbe naturally thought of as simultaneous displays.3



If G and G0 are two 
ombinatorial games, with G played between I and II,and G0 between I0 and II0, then we 
an imagine a simultaneously display puton by two artistes 
alled Arthur and Bertha, with Arthur playing I0 in G0and II in G, and Bertha playing II0 in G0 and I in G.Prima fa
ie the two players move simultaneously, and so this would be agame of imperfe
t information. We 
an turn it into a game of perfe
t informationeither by ruling that at ea
h stage Arthur makes his move and then Bertha does,or by ruling that Bertha plays �rst and then Arthur.Even this des
ription is in
omplete. For one thing, the player who playsse
ond (whi
h is to say the player who makes even-numbered moves) seems tohave the 
hoi
e of whi
h of G and G0 to play in. (Noti
e that the \odd" playerhas no su
h liberty). It may be sensible to de�ne the game as restri
ting the\even" player to move in the game other than the game that the odd player hasjust moved in. That gives us eight ways of 
ombiningG andG0 in a simultaneousplay even before we remember that ea
h game 
an be taken as open or 
losed.We 
an dispose brie
y of the games in whi
h the even player is free to 
hosewhi
h 
omponent game to move in. Whenever the even player has a winningstrategy in either of the 
omponent games (s)he 
an 
hose to play entirely in thatgame, and 
an thereby win the simultaneous display. No new stru
ture arises.A

ordingly we 
onsider only simultaneous displays where the even player is
onstrained to respond in the 
omponent game that the odd player has not justmoved in.Finally there is a kind of simultaneous display that makes sense only whenthe two games being displayed are solitaire. In this 
onstru
tion Arthur plays�rst by making a move in one of the games|he 
hoses whi
h. Bertha must replywith a move in the other game. Arthur's freedom of man�uvre means that he
an swap between rôles I and II in both games so the distin
tion between Iand II is lost, and the games may as well be thought of as solitaire. We havethe normal play 
onvention as usual.Evidently Bertha has a winning strategy if the two games are the same game:she simply 
opies Arthur's move. We will think of this game as a game playedto test whether or not the two 
omponent games are the same.2 The 2 gameThe foregoing has slightly more generality than we will need here. All the
ombinatorial games that we will be stit
hing together with these 
onstru
torswill be instan
es of the 2 game, to whi
h we now turn.The 2 game has two players: I and II. We 
an de�ne Gx by: I pi
ks amember x0 of x (he loses if he 
an't), and then they play Gx0 , with II starting.With a bit of overloading we 
an also say that I is fx : I Wins Gxg and II isfx : II Wins Gxg.A bit of notation: b(x) is the set of things whi
h meet x. Thus b(x) =�P(�x). The `b' is an upside-down `P ' to remind us that these operations aredual. 4



If I Wins Gy for all y 2 x then II Wins Gx. Dually if II Wins Gy for evenone y 2 x then I Wins Gx. This tells us that I= b(II) and II= P(I), and thatI = b(P(I)) and II = P(b(II)). Obviously we want I and II be the least �xedpoints for these two operations, and sin
e P and b are both monotone fun
tionson the 
omplete poset hV;�i there will be su
h least �xed points. We 
an de�neI = Tfy : b(P(y)) � yg and II = Tfy : P(b(y)) � yg.Least �xed points always allow a de�nition \from below" by iteration overthe ordinals. II1 =: f;g; I1 =: fV g;II� = P(S�<� I�); I�+1 =: b(II�); I� =: S�<� I� for � limit.Then the rank (�(x)) of a set in I or II is the least � su
h that it belongsto I� or to II�. Noti
e that things in II (unlike things in I) 
an have limitrank. When I need to distinguish this 
on
ept of rank from the rank fun
tionof wellfounded sets I shall 
all it `pseudorank'.ThenI = S�2On I�; II = S�2On II� .If x is in I (or II respe
tively) then the appropriate player has a (nonde-terministi
) winning strategy, namely \if i am player I, pi
k a member of II",or \If i am player II, pi
k a member of I" and the rank of x is also simply therank of the tree of all plays played a

ording to this strategy.2.1 The solitaire game and wellfoundednessIn solitaire Gx player I builds an des
ending 2-
hain, and loses if he rea
hes anempty set. So x is wellfounded i� every strategy for I in solitaire Gx is losing.The rank of a wellfounded set is an indi
ation of how wellfounded it is:�(x) < �(y) says that x is more wellfounded than y. We 
an arrive at the same
omparison of rank of wellfounded sets by 
onsidering the apparently unrelatedphenomenon of simultaneous solitaire games of Gx and Gy . The simultaneousdisplay of solitaire Gx and Gy is put on by two artistes 
alled `Arthur' and`Bertha'. Arthur plays solitaire Gy and Bertha plays solitaire Gx, and as usualthe �rst player who is unable to move loses. (Normal play 
onvention) Theintention is that Arthur has a winning strategy if y is less wellfounded than x.Consider �rst the version where Arthur shows his hand �rst.DEFINITION 2.1 The rules for Gx<y are as follows.1. Arthur pi
ks y0 in y (loses if he 
an't); and then2. Bertha pi
ks x0 in x (loses if she 
an't);then they play Gx0<y0 . (So that then 5



1. Arthur pi
ks y00 in y0 (loses if he 
an't); and then2. Bertha pi
ks x00 in x0 (loses if she 
an't);and so on)This isn't really a de�nition of a single game, be
ause it says nothing aboutwho wins in�nite plays. To 
omplete it|as a de�nition of a game|we wouldhave to supply a fun
tion from f set of in�nite plays g ! fI; IIg. However,for the moment it is probably simplest to think of this as a game that allowsdraws|every in�nite play is drawn|so that even without supplying informationabout who wins in�nite plays we 
an at least say that if x is wellfounded but yisn't, then Arthur has a winning strategy, whi
h is simply his winning strategyfor solitaire Gy: he ignores Bertha 
ompletely. If both x and y are illfoundedthen both players have strategies to avoid defeat. If they are both wellfoundedthen Arthur has a winning strategy as long as �(x) < �(y). He simply pi
ksa member of his last element whose rank is greater than the rank of the lastelement played by Bertha. The 
onverse is also true: if x and y are bothwellfounded and Arthur has a winning strategy in Gx<y then �(x) < �(y). This
an be proved by indu
tion on the rank of y.DEFINITION 2.2 The rules for Gx�y are as follows.1. Bertha pi
ks x0 in x (loses if she 
an't); and then2. Arthur pi
ks y0 in y (loses if he 
an't);then they play Gx0�y0 .In this version (where Arthur moves se
ond) he has a winning strategy i��(x) � �(y). He simply pi
ks a member of his last element whose rank is atleast the rank of the last element played by Bertha.These two games are set up so that Arthur has a winning strategy in thegame i� hx; yi is in the appropriate relation. Thus� the games (be they open or 
losed) in whi
h Arthur moves �rst 
orrespondto �xed points (be they greatest or least) for the operation that sends Rto fhX;Y i : (9y 2 Y )(8x 2 X)(R(x; y))g.� the games (be they open or 
losed) in whi
h Bertha moves �rst 
orrespondto �xed points (be they greatest or least) for the operation that sends Rto fhX;Y i : (8x 2 X)(9y 2 Y )(R(x; y))g.Thus � 
orresponds to 89 and < 
orresponds to 98, whi
h is why the sub-s
ript in the game where Arthur moves �rst in
ludes a `<'.There is a notation in use for the se
ond operation, due I think to RolandHinnion, who writes \R+", but I know of no standard notation for the �rst. Boththese operations take quasiorders to quasiorders. The set of all quasiorders is a
omplete latti
e under � and both operations have lots of �xed points.6



Naturally we will be interested in the greatest and least �xed points forthese two lifts. The greatest �xed points 
orrespond to the versions of thegames where Arthur wins all in�nite plays, and the least to those where Berthawins all in�nite plays.2.2 The binaire game and pseudofoundationA simultaneous display of the binaire versions of Gx and Gy has a 
onne
tionwith pseudorank analogous to the 
onne
tion simultaneous solitaire Gx and Gyhas to (ordinary set-theoreti
) rank.Arthur will play I in Gy and II in Gx, Bertha the other way around.DEFINITION 2.3 The rules for Gx<y are as follows.� Arthur pi
ks y0 in y (loses if he 
an't)� Bertha pi
ks x0 in x (loses if she 
an't)then they play Gy0<x0 .For the moment we 
onsider only the game where Arthur moves �rst: hen
ethe `<' in the subs
ript.Naturally we will be interested mainly in the open game (all in�nite playswon by Bertha) and the 
losed game (all in�nite plays won by Arthur) ratherthan the others.This gives rise to two relations x <o y (if Arthur Wins the open game Gx<y)and x <
 y (if Arthur Wins the 
losed game Gx<y). Naturally <o is the least�xed point and <
 the greatest �xed point.We 
an also de�ne a trans�nite sequen
e of relations x <� y re
ursively as(9y0 2 y)(8x0 2 x)(9� < �)(y0 <� x0). The e�e
t of this is that <� is the �thiterate of = under +, taking unions at limit stages.Now we 
an give a ni
e game-theoreti
 demonstration that this least �xedpoint has the properties it should. Suppose Arthur has a strategy � in Gx<yand a strategy � in Gy<z. The following pi
ture shows how he 
an use these to
onstru
t a strategy for Gx<z. This (entirely standard) man�uvre is known togame-theorists as strategy stealing.x y zBertha plays  Arthur fakes using �  Arthur plays#Arthur plays ! Arthur fakes using � ! Bertha plays#Bertha plays  Arthur fakes using �  Arthur plays#Arthur plays ! . . .When Arthur plays in the 
olumn under `z' he is using strategy � on thepreten
e that all his moves in the middle 
olumn (under `y') noted as being7



made using � were made by Bertha, and moves he made in the middle 
olumnnoted as being made using � were made by him.When Arthur plays in the 
olumn under `x' he is using strategy � on thepreten
e that all his moves in the middle 
olumn (under `y') noted as beingmade using � were made by Bertha, and moves he made in the middle 
olumnnoted as being made using � were made by him.Finally when Arthur fakes in the 
olumn under `y' he is alternately (on evenmoves) using strategy � on the preten
e that all his moves in middle 
olumn(under `y') noted as being made using � were made by Bertha (and moves madeby him in the middle 
olumn using � were made by him), or (on odd moves)using � on the preten
e that all his moves in middle 
olumn (under `y') notedas being made using � were made by Bertha (and moves made by him in themiddle 
olumn using � were made by him).That way the left-hand and middle 
olumns together look like a play ofGx<y in whi
h Arthur is playing a

ording to � and the middle and right-hand
olumns together look like a play of Gy<z in whi
h Arthur is playing a

ordingto � .This pi
ture (and the 
orresponding pi
ture for 
omposing Bertha's strate-gies) should be enough to prove thatTheorem 2.4 <o and <
 are transitive.This gives rise to the following observation.REMARK 2.5 x 2 II ^ y 2 I! x <o y.Proof:Suppose I has a winning strategy � in Gy and II has a winning strategy �in Gx. Arthur then has a winning strategy in the open game Gx<y as follows.x yBertha replies with x1 2 x  Arthur pi
ks y1 2 y using �#Arthur pi
ks x2 2 x1 using � ! Bertha replies with y2 2 y1#. . .  Arthur pi
ks y3 2 y2 using �Sin
e � and � are winning Arthur is never at a loss for a move. Sin
e � iswinning in Gy this play outlined will 
ome to an end. The only way it 
an endis if II is unable to move in Gx. But that means that Arthur has won that playof Gx<y. We have made no parti
ular assumptions about what Bertha does, sothis will happen whatever she does. So this strategy is winning for Arthur.This is sus
eptible of progressive re�nement.REMARK 2.6 (8� 2 On)1. (8xy)((y 2 I ^ �(y) = � ^ (x 2 I ! �(x) > �(y)))! x <� y)8



2. (8xy)((y 2 II ^ �(y) = � ^ (x 2 II ! �(x) < �(y)))! x <� y)Proof:By indu
tion on �. The base 
ases, where � = 0 are easy to verify. For theindu
tion we prove the two 
lauses in order.(i) Suppose that this is true for all � < �, and that y 2 I, �(y) = � and(x 2 I ! �(x) > �(y)). We need to �nd a x0 2 y su
h that for all y0 2 x,x0 <� y0 for some � < �. Now nothing in I has limit rank, so � is su

essor,and every x0 2 y that is in II is of rank pre
isely � � 1. There may be otherthings in y that are not in II at all, but there must be at least one thing in IIof rank pre
isely �� 1. Arthur should pi
k one of those to be x0.What 
an Bertha pi
k from x? We know only that (x 2 I ! �(x) > �(y)).If x 2 I then the only things in II Bertha 
an pi
k are of rank greater than ��1and we 
an use 
lause (ii) of the indu
tion hypothesis. If x 62 I then nothing inx is in II and again we 
an use 
lause (ii) of the indu
tion hypothesis.(ii) Suppose that this is true for all � < �, and that y 2 II, �(y) = � and(x 2 II ! �(x) < �(y)). We need to �nd a x0 2 y su
h that for all y0 2 x,x0 <� y0 for some � < �. Every member of y is in I and is of lower rank. Arthurwants to pi
k something that is of higher rank than anything Bertha 
an pi
kfrom x. It will be suÆ
ient to pi
k something of rank at least �(x).What 
an Bertha pi
k from x? We know only that (x 2 II ! �(x) < �(y)).If x 2 II then all its members are in I and of lower rank, so Arthur hassu

eeded. If x 62 II then Bertha 
an if she wishes pi
k something not in I, butthat is of no use to her.Similarly we 
an proveTheorem 2.7 .1. x <o y ^ x 2 I ! y 2 I.2. x <o y ^ y 2 II ! x 2 II.Proof: of (1)Suppose I has a winning strategy � in Gx and Arthur has a winning strategy� in the open game Gx<y. Player I in Gy (let's notate him `Iy') 
an now playa

ording to the following diagram:x yIy plays x1 2 x using �  Iy pi
ks y1 2 y using �#Iy plays x2 2 x1 using � ! II replies with y2 2 y1#. . .  Iy pi
ks y3 2 y2 using �As before, sin
e � and � are winning, Iy is never at a loss for a move. Sin
eI is playing a

ording to � in Gx, the game will end, and the only way it 
an isby II being unable to move in Gy, so Iy Wins.9



The proof of (2) is dual and is omitted.COROLLARY 2.8 .I is an upward-
losed subset of hV;<oi.II is a downward-
losed subset of hV;<oi.It was obvious from the outset that I is an upward-
losed sub
lass of hV;�i andthat II is a downward-
losed sub
lass of hV;�i, so this 
orollary is telling usthat we should think of this 
orollary as telling us that <o is a generalisation of�. It is obviously a re�nement of �.We 
an 
lose this se
tion by sket
hing part of the top and bottom of hV;<oi.Noti
e that x <o y i� fyg <o fxg so this poset 
ontains an upside-down 
opyof itself.; < fV g < fV nfV gg < fV nfV nfV ggg : : : < : : : V nfV nfV gg < V nfV g < V3 Conne
tions with the equality gameIf we 
ombine Gx and Gy in the manner of the last 
onstru
tion of se
tion 1 wehave a game that tests whether or not x = y. Let us 
all it `Gx=y'. Let the �rstplayer be 6=, and se
ond player=. As usual, there are two versions, an openversion and a 
losed. It is easy to 
he
k that the relation `= has a winningstrategy in the open game Gx=y' is an equivalen
e relation. In
onveniently, asIsaa
 Malitz noti
ed, it is not equality. He points out that= will win the opengame GV=�fV g. For 
onsider: what 
an 6= do? He 
annot pi
k something in�fV g that isn't in V so his only hope is to pi
k something in V that isn't in�fV g, namely V . But even if he does pi
k V , = need only pi
k �fV g andthey are ba
k where they started. Anything else allows = to 
opy his movesblindfold and, if not a
tually win in �nitely many moves, at least never losein �nitely many moves, whi
h is enough to ensure that she 
an Win the opengame.A moment's re
e
tion will reveal that this reasoning depends only on verygeneral properties of V and �fV g, and that what Malitz has shown is that ifx 2 x and (x n fxg) 2 x then the open game Gx=(xnfxg) 
annot distinguish xand x n fxg.This relation is a 
ongruen
e relation for the quasiorders de�ned by simul-taneous play of the 2 game, as follows.Obviously ='s winning strategy in Gx=y 
an be used by Bertha to WinGx<y.Clearly if Bertha has strategies to win the open games Gx�y and Gy�x then= 
an use them to Win Gx=y.Also if Arthur has a winning strategy in Gx < y (resp. Gx�y) and= has awinning strategy in Gy=z then he also has a winning strategy in Gx < z (resp.Gx�z). 10



Analogously if Arthur has a winning strategy in Gx < y (resp. Gx�y) and= has a winning strategy in Gx=z then he also has a winning strategy in Gz < y(resp. Gz�y).4 PseudofoundationPeople who believe in the axiom of foundation regard illfounded set theory|if they a

ord it any legitima
y at all|as a theory of equality and a singleextensional relation, and tend not to think of it as part of Set Theory. One 
anargue against this view|and 
orre
tly|that it distorts history but I think thatdefen
e misses the point. The neatness and naturalness of the interpretation ofZF + Forti-Honsell AFA into ZF by means of isomorphism types of extensionalrelations shows that ZF + AFA really is, indeed, a theory of one extensionalrelation. One should not be attempting to defend ZF + AFA as a theory ofsets.Of the axioms in
ompatible with foundation the one that most obviously 
anarise only from an endogenous 
on
ept of sets is the axiom of 
omplementation:the 
harge of only being a theory of an extensional relation 
annot be levelledagainst theories with an axiom of 
omplementation. If one adopts this axiomit is natural to seek to add as well other axioms that preserve as many of the
onsequen
es of foundation as one 
an while still assuming 
omplementation.Su
h axioms one might 
all pseudofoundation axioms. An obvious 
andidate is2-determina
y: V = I [ II. It is implied by foundation; as we have seen itimplies some of the 
onsequen
es of foundation (nonexisten
e of Quine atoms,for example); it remains only to exhibit some models of 
omplementation +2-determina
y. Two illustrations follow.4.1 The theory of negative typesAs well as re
alling from Forster [1995℄ the de�nition of the theory of negativetypes we will need two fa
ts, both proved there. The theory of negative typesis the simple theory of types, but with types Ti indexed by the (positive andnegative) integers, not IN. For ea
h type Ti the symmetri
 group on Ti a
tsin an obvious way on Ti+j . A set in Ti+j that is �xed by the a
tion of thesymmetri
 group on Ti is said to be j-symmetri
. Thus the empty set at ea
htype is 1-symmetri
, the unordered pair of the empty set and the universe is2-symmetri
 and so on. In fa
t:(i) Every (set denoted by a) set abstra
t is symmetri
, and (ii) every n-symmetri
 set is of rank n+ 2 at most.We 
an �nd models of TNT in whi
h every set is of �nite rank by omittingthe type that says, for ea
h 
on
rete n, that both I and II have strategies toavoid defeat for n moves.Suppose �(x) is a predi
ate that realises this type. Think about fx : �(x)g.It is a de�nable set, so is of �nite rank. But then either every member of it is11



in II and is of �nite (indeed bounded) rank, or it has a member in I, also of�nite rank. But neither of these is possible, so fx : �(x)g must be empty.Of 
ourse if every set is of �nite rank then 2-determina
y holds.4.2 The models of Oswald and Chur
hOswald's model hIN; Ei of a set theory with an axiom of 
omplementation isde�ned as follows.n E m i� either1. m is even and the nth bit of the binary expansion of m=2 is 1;or2. m is odd and the nth bit of the binary expansion of (m� 1)=2is 0.This obviously derives from the old tri
k (due to A
kermann) of de�ning n E m(n;m 2 IN) i� the nth bit of the binary expansion of m is 1.The Oswald model has the rather ni
e property that 2 restri
ted to �nitesets (not even hereditarily �nite sets!) is wellfounded: the map from �nite setsto IN is a homomorphism sending 2 to <IN. Thus E is really wellfounded, seenfrom outside.We 
an now give an easy proof thatREMARK 4.1 (Forster [2000℄) 2-determina
y holds in the Oswald model.Proof: Noti
e �rst that the Oswald model 
ontains all of V! , so it has in�nitelymany elements in I and in�nitely many in II.So any 
o�nite set 
ontains an element of II and so is in I.Any indeterminate set must therefore be �nite and nonempty. Indeed it musthave indeterminate members whi
h in turn are �nite and nonempty. But thenthe 
lass of indeterminate sets is a 
lass of �nite sets with no 2-least member,
ontradi
ting the wellfoundedness of 2 restri
ted to �nite sets.There is a generalisation of this 
onstru
tion due to Chur
h [1974℄, in whi
hone starts with an arbitrary wellfounded model of ZF, rather than spe
i�
allyV!. Models arising in this way have a 
on
ept of \small" set, where a setis small i� it is the same size as a wellfounded set. They tend to obey thepseudofoundation axiom \2 restri
ted to small sets is wellfounded" and we 
anuse that analogously to show that 2-determina
y holds in them.5 A paradoxIn na��ve set theory both I and II are sets. All members of I are wins for playerI so GI itself must be a win for player II. So fIg must be a win for player I.But this being the 
ase, I's �rst move in GI 
an be fIg, to whi
h II 
an replyonly with I, leaving them ba
k in the same position as they start. So GI isn't12



a win for player II after all! So I and II 
annot be sets. More generally, butless idiomati
ally, we 
an write:There is no �-least set x su
h that P(b(x)) � x.Proof: Suppose P(b(x)) � x. This implies that b(x) 2 x, so x n fb(x)g is aproper subset of x. We will show that P(b(x n fb(x)g)) � (x n fb(x)g) so x isnot �-minimal.P and b are both monotone (*) so P(b(xnfb(x)g)) � P(b(x)). Now P(b(x)) �x by assumption when
e P(b(x n fb(x)g)) � x. We want `x n fb(x)g' not `x' tothe right-hand-side of the `�'. So we want w � b(x n fb(x)g)! w 6= b(x). Thisis just a long way of saying b(x) 6� b(x n fb(x)g). We established that b(x) 2 xso x n fb(x)g is a proper subset of x when
e b(x) 6� b(x n fb(x)g) by inje
tivityof b. (*)So x is not minimal.This establishesREMARK 5.1 I and II 
annot be sets.In fa
t this generalises to a sort of omnibus paradox of indu
tively de�nedsets. At the points in the argument marked with an asterisk we have used theassumption that b is monotone and inje
tive, and indeed that is all we need.The fa
t that P and b are dual seems to play no rôle.REMARK 5.2 Suppose f is monotone and inje
tive: (8xy)(x � y  ! f(x) �f(y)). Let A := Tfx : P(f(x)) � xg. Then A is not a set.We will show that f(A) both is and is not a member of A.For any x we have P(f(�ff(x)g)) � �ff(x)gi� f(x) 62 P(f(�ff(x)g))i� f(x) 6� f(�ff(x)g)i� x 6� �ff(x)gi� f(x) 2 xNow P(f(�ff(x)g)) � �ff(x)g 
ertainly implies that A � �ff(x)g, andA � �ff(x)g is just a long-winded way of saying that f(x) 62 A. So we have(8x)(f(x) 2 x! f(x) 62 A)In parti
ular f(A) 62 A. 13



On the other hand, let x be an arbitrary set su
h that P(f(x)) � x. A � xso f(A) � f(x) so f(A) 2 P(f(x)) � x so f(A) 2 x. But A is the interse
tionof all su
h x, so f(A) 2 A.If we take f to be the identity we get Mirimano�'s paradox. If we take f tobe b we get the paradox on I and II with whi
h we started.There is 
learly a lot more to be said about these paradoxes than 
an be saidhere and now, but the following observations may be in order. In general, as weall know, if the operation one is trying to 
lose under is �nitary or �rst-orderthere is no paradox: the set of natural numbers is not a paradoxi
al obje
t.However �nitary-ness is a suÆ
ient 
ondition not a ne
essary one: V! 
an bede�ned as the interse
tion of all sets that 
ontain all their �nite subsets, and the
olle
tion of hereditarily 
ountable sets 
an be de�ned similarly and so on forlarger 
ardinals ad libitum. Although even at this stage there are 
ompli
ations(The proof that V!|as de�ned above|is not �nite has no normal form) wedo not seem to get outright paradox until we 
onsider 
olle
tions indu
tivelyde�ned by se
ond-order operations for whi
h there is no boundedness theorem.Roughly: the sethood of 
olle
tions indu
tively de�ned as the 
losures underoperations of bounded 
hara
ter seems not to be paradoxi
al, even if some ofthe fa
ts about these 
olle
tions (not being members of themselves for example)seem only to have pathologioi
al proofs.Closure under 
onstru
tors of in�nite 
hara
ter has long been known to resultin paradox: the hereditarily wellordered sets and the hereditarily transitive setsare both paradoxi
al 
olle
tions, and it is signi�
ant that there are theoremstelling us that there are unboundedly large transitive or wellordered sets.The task before us now is to see if these two paradoxes (and possibly oth-ers) 
an be related pre
isely to the paradox of this paper to give a a

urateunderstanding of when a se
ond-order indu
tive de�nition is legitimate.BibliographyChur
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