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Games played on an illfounded membershiprelationThomas ForsterJanuary 22, 2001AbstratThe 2-game as an attempt to salvage something from failure offoundation. Solitaire version gives rise to onept of wellfoundedset and rank, binaire version gives us pseudofoundation and pseu-dorank. These both give rise to games de�ning a binary relation ofrelative rank (resp. pseudorank). Greatest and least �xed points.Natural onstrutions of models of 2-determinay. A paradox ofindutively de�ned sets.Long before it was fashionable, Maurie Bo�a was working on set theorywithout the axiom of foundation, and his presiene in spotting its foundationalimportane aused him to beome the fous of|and an inspiration and exam-ple to|a irle of younger sholars and students to whose number it was myprivilege to belong. It is now a pleasure for me to be able to ontribute to hisfestshrift an artile on this topi that informed his early work, helped build hisreputation and brought me to sit at his feet. My enthusiasti fallaious proofsalways eliited from Maurie the response \Mais Thomas, il faut l'�erire!". Sohere is some illfounded set theory in writing for his eagle eye.De�nitionsAll games here are two-player games of perfet information, where the play-ers move alternately. These are sometimes alled ombinatorial games. Aompleted sequene of moves is a play. A game (in whih the players movealternately) is open i� the set of plays in the game that are wins for the �rstplayer (player I) form an open subset of the set of all plays in the produt topol-ogy. (Remember that the set of plays is a produt of ountably many disretespaes.) That is to say, in an open game, if player I is going to win this fathas beome apparent after �nitely many moves. In a losed game player I winsby not having lost at any �nite stage, and if player II wins this has beomeapparent after �nitely many steps. 2



In all the games that follow I shall use the onvention that `Wins' with aapital `W' means `has a winning strategy for'. We will also generally havethe normal play onvention. Any player �nding himself or herself unable tomove thereby loses.A bit of terminology used here is possibly not standard: binaire vs soli-taire. Binaire games are the usual two player games with two distint players.A solitaire version of a two-player game is the degenerate version where oneplayer takes both rôles. Although solitaire games are often muh easier thanthe orresponding binaire games (The sequene 1: P-K4 P-K4; 2: B-QB4 P-Q3; 3 Q-KB3 P-KKt3; 4 Q � KBP mate; is a win in solitaire hess) inludingthem enables one to give a smoother general treatment than would otherwisebe possible..IntrodutionSome say that set theory without the axiom of foundation is just the theory ofan extensional relation, and is not part of set theory proper. One ould start aquarrel by saying `In that ase, what is wellfounded set theory but the theory ofone wellfounded extensional relation?' but without taking sides in this debateone an still reognise interesting problems in (illfounded) set theory, even ifone prefers to desribe them as problems in something other than set theory.The point will of ourse be made that whatever an be said about gamesplayed on an illfounded 2-relation an be said also about games played on anyillfounded binary relation, and that this will reveal illfounded set theory to be|as it was harged with|merely the theory of one illfounded binary relation.However this same generalisability point an be made against the theory ofwellfounded sets. What is distintive about the theory of wellfounded sets is2-indution, and this too an be|and indeed very properly is|generalised toa priniple of indution over any wellfounded relation.The people who believe that the axiom of foundation is true (I all them`Fundi's) believe that there an be found a range of entities desribed by thetheory of one wellfounded binary relation with equality in a manner in whihone annot �nd entities desribed by any theory of illfounded binary relationswith equality.In what follows I shall be developing ideas for new axioms for illfounded settheory, and sine I want to keep them as open-ended as possible the disussionwill perfore have to be onduted in na��ve set theory. Readers should not takethis as an invitation to arp or pani, but rather as a warning to hold hard ontotheir seats.1 Simultaneous displaysThere are several onstrutors that reate new games out of old games that anbe naturally thought of as simultaneous displays.3



If G and G0 are two ombinatorial games, with G played between I and II,and G0 between I0 and II0, then we an imagine a simultaneously display puton by two artistes alled Arthur and Bertha, with Arthur playing I0 in G0and II in G, and Bertha playing II0 in G0 and I in G.Prima faie the two players move simultaneously, and so this would be agame of imperfet information. We an turn it into a game of perfet informationeither by ruling that at eah stage Arthur makes his move and then Bertha does,or by ruling that Bertha plays �rst and then Arthur.Even this desription is inomplete. For one thing, the player who playsseond (whih is to say the player who makes even-numbered moves) seems tohave the hoie of whih of G and G0 to play in. (Notie that the \odd" playerhas no suh liberty). It may be sensible to de�ne the game as restriting the\even" player to move in the game other than the game that the odd player hasjust moved in. That gives us eight ways of ombiningG andG0 in a simultaneousplay even before we remember that eah game an be taken as open or losed.We an dispose briey of the games in whih the even player is free to hosewhih omponent game to move in. Whenever the even player has a winningstrategy in either of the omponent games (s)he an hose to play entirely in thatgame, and an thereby win the simultaneous display. No new struture arises.Aordingly we onsider only simultaneous displays where the even player isonstrained to respond in the omponent game that the odd player has not justmoved in.Finally there is a kind of simultaneous display that makes sense only whenthe two games being displayed are solitaire. In this onstrution Arthur plays�rst by making a move in one of the games|he hoses whih. Bertha must replywith a move in the other game. Arthur's freedom of man�uvre means that hean swap between rôles I and II in both games so the distintion between Iand II is lost, and the games may as well be thought of as solitaire. We havethe normal play onvention as usual.Evidently Bertha has a winning strategy if the two games are the same game:she simply opies Arthur's move. We will think of this game as a game playedto test whether or not the two omponent games are the same.2 The 2 gameThe foregoing has slightly more generality than we will need here. All theombinatorial games that we will be stithing together with these onstrutorswill be instanes of the 2 game, to whih we now turn.The 2 game has two players: I and II. We an de�ne Gx by: I piks amember x0 of x (he loses if he an't), and then they play Gx0 , with II starting.With a bit of overloading we an also say that I is fx : I Wins Gxg and II isfx : II Wins Gxg.A bit of notation: b(x) is the set of things whih meet x. Thus b(x) =�P(�x). The `b' is an upside-down `P ' to remind us that these operations aredual. 4



If I Wins Gy for all y 2 x then II Wins Gx. Dually if II Wins Gy for evenone y 2 x then I Wins Gx. This tells us that I= b(II) and II= P(I), and thatI = b(P(I)) and II = P(b(II)). Obviously we want I and II be the least �xedpoints for these two operations, and sine P and b are both monotone funtionson the omplete poset hV;�i there will be suh least �xed points. We an de�neI = Tfy : b(P(y)) � yg and II = Tfy : P(b(y)) � yg.Least �xed points always allow a de�nition \from below" by iteration overthe ordinals. II1 =: f;g; I1 =: fV g;II� = P(S�<� I�); I�+1 =: b(II�); I� =: S�<� I� for � limit.Then the rank (�(x)) of a set in I or II is the least � suh that it belongsto I� or to II�. Notie that things in II (unlike things in I) an have limitrank. When I need to distinguish this onept of rank from the rank funtionof wellfounded sets I shall all it `pseudorank'.ThenI = S�2On I�; II = S�2On II� .If x is in I (or II respetively) then the appropriate player has a (nonde-terministi) winning strategy, namely \if i am player I, pik a member of II",or \If i am player II, pik a member of I" and the rank of x is also simply therank of the tree of all plays played aording to this strategy.2.1 The solitaire game and wellfoundednessIn solitaire Gx player I builds an desending 2-hain, and loses if he reahes anempty set. So x is wellfounded i� every strategy for I in solitaire Gx is losing.The rank of a wellfounded set is an indiation of how wellfounded it is:�(x) < �(y) says that x is more wellfounded than y. We an arrive at the sameomparison of rank of wellfounded sets by onsidering the apparently unrelatedphenomenon of simultaneous solitaire games of Gx and Gy . The simultaneousdisplay of solitaire Gx and Gy is put on by two artistes alled `Arthur' and`Bertha'. Arthur plays solitaire Gy and Bertha plays solitaire Gx, and as usualthe �rst player who is unable to move loses. (Normal play onvention) Theintention is that Arthur has a winning strategy if y is less wellfounded than x.Consider �rst the version where Arthur shows his hand �rst.DEFINITION 2.1 The rules for Gx<y are as follows.1. Arthur piks y0 in y (loses if he an't); and then2. Bertha piks x0 in x (loses if she an't);then they play Gx0<y0 . (So that then 5



1. Arthur piks y00 in y0 (loses if he an't); and then2. Bertha piks x00 in x0 (loses if she an't);and so on)This isn't really a de�nition of a single game, beause it says nothing aboutwho wins in�nite plays. To omplete it|as a de�nition of a game|we wouldhave to supply a funtion from f set of in�nite plays g ! fI; IIg. However,for the moment it is probably simplest to think of this as a game that allowsdraws|every in�nite play is drawn|so that even without supplying informationabout who wins in�nite plays we an at least say that if x is wellfounded but yisn't, then Arthur has a winning strategy, whih is simply his winning strategyfor solitaire Gy: he ignores Bertha ompletely. If both x and y are illfoundedthen both players have strategies to avoid defeat. If they are both wellfoundedthen Arthur has a winning strategy as long as �(x) < �(y). He simply piksa member of his last element whose rank is greater than the rank of the lastelement played by Bertha. The onverse is also true: if x and y are bothwellfounded and Arthur has a winning strategy in Gx<y then �(x) < �(y). Thisan be proved by indution on the rank of y.DEFINITION 2.2 The rules for Gx�y are as follows.1. Bertha piks x0 in x (loses if she an't); and then2. Arthur piks y0 in y (loses if he an't);then they play Gx0�y0 .In this version (where Arthur moves seond) he has a winning strategy i��(x) � �(y). He simply piks a member of his last element whose rank is atleast the rank of the last element played by Bertha.These two games are set up so that Arthur has a winning strategy in thegame i� hx; yi is in the appropriate relation. Thus� the games (be they open or losed) in whih Arthur moves �rst orrespondto �xed points (be they greatest or least) for the operation that sends Rto fhX;Y i : (9y 2 Y )(8x 2 X)(R(x; y))g.� the games (be they open or losed) in whih Bertha moves �rst orrespondto �xed points (be they greatest or least) for the operation that sends Rto fhX;Y i : (8x 2 X)(9y 2 Y )(R(x; y))g.Thus � orresponds to 89 and < orresponds to 98, whih is why the sub-sript in the game where Arthur moves �rst inludes a `<'.There is a notation in use for the seond operation, due I think to RolandHinnion, who writes \R+", but I know of no standard notation for the �rst. Boththese operations take quasiorders to quasiorders. The set of all quasiorders is aomplete lattie under � and both operations have lots of �xed points.6



Naturally we will be interested in the greatest and least �xed points forthese two lifts. The greatest �xed points orrespond to the versions of thegames where Arthur wins all in�nite plays, and the least to those where Berthawins all in�nite plays.2.2 The binaire game and pseudofoundationA simultaneous display of the binaire versions of Gx and Gy has a onnetionwith pseudorank analogous to the onnetion simultaneous solitaire Gx and Gyhas to (ordinary set-theoreti) rank.Arthur will play I in Gy and II in Gx, Bertha the other way around.DEFINITION 2.3 The rules for Gx<y are as follows.� Arthur piks y0 in y (loses if he an't)� Bertha piks x0 in x (loses if she an't)then they play Gy0<x0 .For the moment we onsider only the game where Arthur moves �rst: henethe `<' in the subsript.Naturally we will be interested mainly in the open game (all in�nite playswon by Bertha) and the losed game (all in�nite plays won by Arthur) ratherthan the others.This gives rise to two relations x <o y (if Arthur Wins the open game Gx<y)and x < y (if Arthur Wins the losed game Gx<y). Naturally <o is the least�xed point and < the greatest �xed point.We an also de�ne a trans�nite sequene of relations x <� y reursively as(9y0 2 y)(8x0 2 x)(9� < �)(y0 <� x0). The e�et of this is that <� is the �thiterate of = under +, taking unions at limit stages.Now we an give a nie game-theoreti demonstration that this least �xedpoint has the properties it should. Suppose Arthur has a strategy � in Gx<yand a strategy � in Gy<z. The following piture shows how he an use these toonstrut a strategy for Gx<z. This (entirely standard) man�uvre is known togame-theorists as strategy stealing.x y zBertha plays  Arthur fakes using �  Arthur plays#Arthur plays ! Arthur fakes using � ! Bertha plays#Bertha plays  Arthur fakes using �  Arthur plays#Arthur plays ! . . .When Arthur plays in the olumn under `z' he is using strategy � on thepretene that all his moves in the middle olumn (under `y') noted as being7



made using � were made by Bertha, and moves he made in the middle olumnnoted as being made using � were made by him.When Arthur plays in the olumn under `x' he is using strategy � on thepretene that all his moves in the middle olumn (under `y') noted as beingmade using � were made by Bertha, and moves he made in the middle olumnnoted as being made using � were made by him.Finally when Arthur fakes in the olumn under `y' he is alternately (on evenmoves) using strategy � on the pretene that all his moves in middle olumn(under `y') noted as being made using � were made by Bertha (and moves madeby him in the middle olumn using � were made by him), or (on odd moves)using � on the pretene that all his moves in middle olumn (under `y') notedas being made using � were made by Bertha (and moves made by him in themiddle olumn using � were made by him).That way the left-hand and middle olumns together look like a play ofGx<y in whih Arthur is playing aording to � and the middle and right-handolumns together look like a play of Gy<z in whih Arthur is playing aordingto � .This piture (and the orresponding piture for omposing Bertha's strate-gies) should be enough to prove thatTheorem 2.4 <o and < are transitive.This gives rise to the following observation.REMARK 2.5 x 2 II ^ y 2 I! x <o y.Proof:Suppose I has a winning strategy � in Gy and II has a winning strategy �in Gx. Arthur then has a winning strategy in the open game Gx<y as follows.x yBertha replies with x1 2 x  Arthur piks y1 2 y using �#Arthur piks x2 2 x1 using � ! Bertha replies with y2 2 y1#. . .  Arthur piks y3 2 y2 using �Sine � and � are winning Arthur is never at a loss for a move. Sine � iswinning in Gy this play outlined will ome to an end. The only way it an endis if II is unable to move in Gx. But that means that Arthur has won that playof Gx<y. We have made no partiular assumptions about what Bertha does, sothis will happen whatever she does. So this strategy is winning for Arthur.This is suseptible of progressive re�nement.REMARK 2.6 (8� 2 On)1. (8xy)((y 2 I ^ �(y) = � ^ (x 2 I ! �(x) > �(y)))! x <� y)8



2. (8xy)((y 2 II ^ �(y) = � ^ (x 2 II ! �(x) < �(y)))! x <� y)Proof:By indution on �. The base ases, where � = 0 are easy to verify. For theindution we prove the two lauses in order.(i) Suppose that this is true for all � < �, and that y 2 I, �(y) = � and(x 2 I ! �(x) > �(y)). We need to �nd a x0 2 y suh that for all y0 2 x,x0 <� y0 for some � < �. Now nothing in I has limit rank, so � is suessor,and every x0 2 y that is in II is of rank preisely � � 1. There may be otherthings in y that are not in II at all, but there must be at least one thing in IIof rank preisely �� 1. Arthur should pik one of those to be x0.What an Bertha pik from x? We know only that (x 2 I ! �(x) > �(y)).If x 2 I then the only things in II Bertha an pik are of rank greater than ��1and we an use lause (ii) of the indution hypothesis. If x 62 I then nothing inx is in II and again we an use lause (ii) of the indution hypothesis.(ii) Suppose that this is true for all � < �, and that y 2 II, �(y) = � and(x 2 II ! �(x) < �(y)). We need to �nd a x0 2 y suh that for all y0 2 x,x0 <� y0 for some � < �. Every member of y is in I and is of lower rank. Arthurwants to pik something that is of higher rank than anything Bertha an pikfrom x. It will be suÆient to pik something of rank at least �(x).What an Bertha pik from x? We know only that (x 2 II ! �(x) < �(y)).If x 2 II then all its members are in I and of lower rank, so Arthur hassueeded. If x 62 II then Bertha an if she wishes pik something not in I, butthat is of no use to her.Similarly we an proveTheorem 2.7 .1. x <o y ^ x 2 I ! y 2 I.2. x <o y ^ y 2 II ! x 2 II.Proof: of (1)Suppose I has a winning strategy � in Gx and Arthur has a winning strategy� in the open game Gx<y. Player I in Gy (let's notate him `Iy') an now playaording to the following diagram:x yIy plays x1 2 x using �  Iy piks y1 2 y using �#Iy plays x2 2 x1 using � ! II replies with y2 2 y1#. . .  Iy piks y3 2 y2 using �As before, sine � and � are winning, Iy is never at a loss for a move. SineI is playing aording to � in Gx, the game will end, and the only way it an isby II being unable to move in Gy, so Iy Wins.9



The proof of (2) is dual and is omitted.COROLLARY 2.8 .I is an upward-losed subset of hV;<oi.II is a downward-losed subset of hV;<oi.It was obvious from the outset that I is an upward-losed sublass of hV;�i andthat II is a downward-losed sublass of hV;�i, so this orollary is telling usthat we should think of this orollary as telling us that <o is a generalisation of�. It is obviously a re�nement of �.We an lose this setion by skething part of the top and bottom of hV;<oi.Notie that x <o y i� fyg <o fxg so this poset ontains an upside-down opyof itself.; < fV g < fV nfV gg < fV nfV nfV ggg : : : < : : : V nfV nfV gg < V nfV g < V3 Connetions with the equality gameIf we ombine Gx and Gy in the manner of the last onstrution of setion 1 wehave a game that tests whether or not x = y. Let us all it `Gx=y'. Let the �rstplayer be 6=, and seond player=. As usual, there are two versions, an openversion and a losed. It is easy to hek that the relation `= has a winningstrategy in the open game Gx=y' is an equivalene relation. Inonveniently, asIsaa Malitz notied, it is not equality. He points out that= will win the opengame GV=�fV g. For onsider: what an 6= do? He annot pik something in�fV g that isn't in V so his only hope is to pik something in V that isn't in�fV g, namely V . But even if he does pik V , = need only pik �fV g andthey are bak where they started. Anything else allows = to opy his movesblindfold and, if not atually win in �nitely many moves, at least never losein �nitely many moves, whih is enough to ensure that she an Win the opengame.A moment's reetion will reveal that this reasoning depends only on verygeneral properties of V and �fV g, and that what Malitz has shown is that ifx 2 x and (x n fxg) 2 x then the open game Gx=(xnfxg) annot distinguish xand x n fxg.This relation is a ongruene relation for the quasiorders de�ned by simul-taneous play of the 2 game, as follows.Obviously ='s winning strategy in Gx=y an be used by Bertha to WinGx<y.Clearly if Bertha has strategies to win the open games Gx�y and Gy�x then= an use them to Win Gx=y.Also if Arthur has a winning strategy in Gx < y (resp. Gx�y) and= has awinning strategy in Gy=z then he also has a winning strategy in Gx < z (resp.Gx�z). 10



Analogously if Arthur has a winning strategy in Gx < y (resp. Gx�y) and= has a winning strategy in Gx=z then he also has a winning strategy in Gz < y(resp. Gz�y).4 PseudofoundationPeople who believe in the axiom of foundation regard illfounded set theory|if they aord it any legitimay at all|as a theory of equality and a singleextensional relation, and tend not to think of it as part of Set Theory. One anargue against this view|and orretly|that it distorts history but I think thatdefene misses the point. The neatness and naturalness of the interpretation ofZF + Forti-Honsell AFA into ZF by means of isomorphism types of extensionalrelations shows that ZF + AFA really is, indeed, a theory of one extensionalrelation. One should not be attempting to defend ZF + AFA as a theory ofsets.Of the axioms inompatible with foundation the one that most obviously anarise only from an endogenous onept of sets is the axiom of omplementation:the harge of only being a theory of an extensional relation annot be levelledagainst theories with an axiom of omplementation. If one adopts this axiomit is natural to seek to add as well other axioms that preserve as many of theonsequenes of foundation as one an while still assuming omplementation.Suh axioms one might all pseudofoundation axioms. An obvious andidate is2-determinay: V = I [ II. It is implied by foundation; as we have seen itimplies some of the onsequenes of foundation (nonexistene of Quine atoms,for example); it remains only to exhibit some models of omplementation +2-determinay. Two illustrations follow.4.1 The theory of negative typesAs well as realling from Forster [1995℄ the de�nition of the theory of negativetypes we will need two fats, both proved there. The theory of negative typesis the simple theory of types, but with types Ti indexed by the (positive andnegative) integers, not IN. For eah type Ti the symmetri group on Ti atsin an obvious way on Ti+j . A set in Ti+j that is �xed by the ation of thesymmetri group on Ti is said to be j-symmetri. Thus the empty set at eahtype is 1-symmetri, the unordered pair of the empty set and the universe is2-symmetri and so on. In fat:(i) Every (set denoted by a) set abstrat is symmetri, and (ii) every n-symmetri set is of rank n+ 2 at most.We an �nd models of TNT in whih every set is of �nite rank by omittingthe type that says, for eah onrete n, that both I and II have strategies toavoid defeat for n moves.Suppose �(x) is a prediate that realises this type. Think about fx : �(x)g.It is a de�nable set, so is of �nite rank. But then either every member of it is11



in II and is of �nite (indeed bounded) rank, or it has a member in I, also of�nite rank. But neither of these is possible, so fx : �(x)g must be empty.Of ourse if every set is of �nite rank then 2-determinay holds.4.2 The models of Oswald and ChurhOswald's model hIN; Ei of a set theory with an axiom of omplementation isde�ned as follows.n E m i� either1. m is even and the nth bit of the binary expansion of m=2 is 1;or2. m is odd and the nth bit of the binary expansion of (m� 1)=2is 0.This obviously derives from the old trik (due to Akermann) of de�ning n E m(n;m 2 IN) i� the nth bit of the binary expansion of m is 1.The Oswald model has the rather nie property that 2 restrited to �nitesets (not even hereditarily �nite sets!) is wellfounded: the map from �nite setsto IN is a homomorphism sending 2 to <IN. Thus E is really wellfounded, seenfrom outside.We an now give an easy proof thatREMARK 4.1 (Forster [2000℄) 2-determinay holds in the Oswald model.Proof: Notie �rst that the Oswald model ontains all of V! , so it has in�nitelymany elements in I and in�nitely many in II.So any o�nite set ontains an element of II and so is in I.Any indeterminate set must therefore be �nite and nonempty. Indeed it musthave indeterminate members whih in turn are �nite and nonempty. But thenthe lass of indeterminate sets is a lass of �nite sets with no 2-least member,ontraditing the wellfoundedness of 2 restrited to �nite sets.There is a generalisation of this onstrution due to Churh [1974℄, in whihone starts with an arbitrary wellfounded model of ZF, rather than spei�allyV!. Models arising in this way have a onept of \small" set, where a setis small i� it is the same size as a wellfounded set. They tend to obey thepseudofoundation axiom \2 restrited to small sets is wellfounded" and we anuse that analogously to show that 2-determinay holds in them.5 A paradoxIn na��ve set theory both I and II are sets. All members of I are wins for playerI so GI itself must be a win for player II. So fIg must be a win for player I.But this being the ase, I's �rst move in GI an be fIg, to whih II an replyonly with I, leaving them bak in the same position as they start. So GI isn't12



a win for player II after all! So I and II annot be sets. More generally, butless idiomatially, we an write:There is no �-least set x suh that P(b(x)) � x.Proof: Suppose P(b(x)) � x. This implies that b(x) 2 x, so x n fb(x)g is aproper subset of x. We will show that P(b(x n fb(x)g)) � (x n fb(x)g) so x isnot �-minimal.P and b are both monotone (*) so P(b(xnfb(x)g)) � P(b(x)). Now P(b(x)) �x by assumption whene P(b(x n fb(x)g)) � x. We want `x n fb(x)g' not `x' tothe right-hand-side of the `�'. So we want w � b(x n fb(x)g)! w 6= b(x). Thisis just a long way of saying b(x) 6� b(x n fb(x)g). We established that b(x) 2 xso x n fb(x)g is a proper subset of x whene b(x) 6� b(x n fb(x)g) by injetivityof b. (*)So x is not minimal.This establishesREMARK 5.1 I and II annot be sets.In fat this generalises to a sort of omnibus paradox of indutively de�nedsets. At the points in the argument marked with an asterisk we have used theassumption that b is monotone and injetive, and indeed that is all we need.The fat that P and b are dual seems to play no rôle.REMARK 5.2 Suppose f is monotone and injetive: (8xy)(x � y  ! f(x) �f(y)). Let A := Tfx : P(f(x)) � xg. Then A is not a set.We will show that f(A) both is and is not a member of A.For any x we have P(f(�ff(x)g)) � �ff(x)gi� f(x) 62 P(f(�ff(x)g))i� f(x) 6� f(�ff(x)g)i� x 6� �ff(x)gi� f(x) 2 xNow P(f(�ff(x)g)) � �ff(x)g ertainly implies that A � �ff(x)g, andA � �ff(x)g is just a long-winded way of saying that f(x) 62 A. So we have(8x)(f(x) 2 x! f(x) 62 A)In partiular f(A) 62 A. 13



On the other hand, let x be an arbitrary set suh that P(f(x)) � x. A � xso f(A) � f(x) so f(A) 2 P(f(x)) � x so f(A) 2 x. But A is the intersetionof all suh x, so f(A) 2 A.If we take f to be the identity we get Mirimano�'s paradox. If we take f tobe b we get the paradox on I and II with whih we started.There is learly a lot more to be said about these paradoxes than an be saidhere and now, but the following observations may be in order. In general, as weall know, if the operation one is trying to lose under is �nitary or �rst-orderthere is no paradox: the set of natural numbers is not a paradoxial objet.However �nitary-ness is a suÆient ondition not a neessary one: V! an bede�ned as the intersetion of all sets that ontain all their �nite subsets, and theolletion of hereditarily ountable sets an be de�ned similarly and so on forlarger ardinals ad libitum. Although even at this stage there are ompliations(The proof that V!|as de�ned above|is not �nite has no normal form) wedo not seem to get outright paradox until we onsider olletions indutivelyde�ned by seond-order operations for whih there is no boundedness theorem.Roughly: the sethood of olletions indutively de�ned as the losures underoperations of bounded harater seems not to be paradoxial, even if some ofthe fats about these olletions (not being members of themselves for example)seem only to have pathologioial proofs.Closure under onstrutors of in�nite harater has long been known to resultin paradox: the hereditarily wellordered sets and the hereditarily transitive setsare both paradoxial olletions, and it is signi�ant that there are theoremstelling us that there are unboundedly large transitive or wellordered sets.The task before us now is to see if these two paradoxes (and possibly oth-ers) an be related preisely to the paradox of this paper to give a aurateunderstanding of when a seond-order indutive de�nition is legitimate.BibliographyChurh, A. [1974℄ Set theory with a universal set. Proeedings of theTarski Symposium. Proeedings of Symposia in Pure Mathematis XXV,ed. L. Henkin, Providene RI pp. 297�308. Also in International LogiReview 15 pp. 11�23.Forster, T.E. [1995℄ Set theory with a universal set. Oxford Logi GuidesForster, T.E. [2000℄ Churh's set theory with a Universal set. In theChurh 90th birthday festshrift.Oswald, U. [1976℄ Fragmente von \New Foundations" und Typentheorie.Ph.D. thesis, ETH Z�urih.
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