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Abstract

This thesis is divided into two parts. In the first of these
we consider Ackermann-type set theories and many of our resulté
concern natural models,

We prove a number of results about the existence of natural
models of Ackermann's set theory, A, and applications of this work
are shown to answer several questions raised by Reinhardt in [56}.
At ( introduced in {{56] ) is another Ackermann-type set theory
and we show that its set theoretic part is precisely ZF. Then we
introduce the notion of natural models of A* and show how our
results on natural models of A extend to these models. There are
a number of results about other Ackermann-type set theories and
some of the work which was already known for ZF is extended to A,
This includes permutation models, which are shown to answer
another of Reinhardt's questions.

In the second part we consider the different approaches to
set theory; dealing mainly with the more philosophical aspects,
We reconsider Cantor's work, suggest that it has frequently been
misunderstood and indicate how quasi-constructive set theories
seem to use a definite part of Cantor's earlier ideas, Other
approaches to set theory are also considered and criticised., The
section on NF includes some more technical observations on ordered
pairs,

There is also an appendix, in which we outline some results

on extended ordinal arithmetic.
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Chapter 1

Introduction

1,1 Outline

Part 1 of this thesis concerns Ackermann-type set theories,

In chapter 2 we introduce Ackermann's set theory, discuss its
motivation, and show how it is related to other set theories,

Then, in chapter 3, we prove some resulis about the existence
of natural models of Ackermann's set theory, A, and applications
of this work are shown to answer several questions raised by
Reinhardt in [56] » The subject of chapter 4 is AY , an Ackermann-
type set theory which was introduced in [56] » We show that its
set theoretic part is precisely 7P, angwering another question of
Reinhardt's., Then we give several alternative axiomatisations ef
A¥ , introduce the notion of its natural models and extend the
results of chapter 3 to these models,

The first part of chapter 5 introduces two new Ackermann-type
set theories and we investigate some of their properties, Some
other Ackermann-type set theories are also discussed in that thapter,
Chapter 6 contains several isolated results, including proofs that
an Ackermann~type theory suggested by Wang is inconsistent and tha$
extending permutation models to A enables us to answer another
question of Reinhardt's,

In chapter 7 we consider some problems concerning natural
models of ZF., One of them arises as a generalisation of the
natural models of A and A¥ , The others concern the structure of
natural models under the relation of elementary extension: they
were motivated by some of the results in chapter 3,

In part 2 of this thesis we consider and criticise the
different approaches to set theory which have been made, This

part mostly concerns the philosophical aspects and we often seem
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to disagree with the accepted views,

We describe Cantor's work in chapter 8, Then. we emphasise
its second order nature, indicate how it seems to have been
misunderstood and suggest that g lot of later work was motivated
by such misunderstandings. Part of chapter 9 giveg a Justification
of ZF in Cantorian terms and in the remainder of that chapter we
consider related Problems and qQuasi-constructive approaches,

Most of chapter 10 concerns the theory NF, One section ghows
that it ig very important to note vhich definition of ordered pair
is used in thig theory, In the remainder of chapter 10 we consider
approaches to get theories with g wniversal get via theories of

Properties,

The main topics which we have considered are rather disconne
eeted, but we hope that they do not form a discordant mixture,
Also, it seems shame that thig thesis has to be linearly ordered
as several of the topics intertwine, we apologise for the number

of cross referenceg,

1.2 Notation
Most of our notation is that which is becoming standard in
set theory ( for instance, e, p, ¥obuh;X »¥ are variableg
vhich range over ordinals ) and, in general, we follow the
notation of [56], However, we wish to emphasise the following

abbreviations which are not completely standard,

® is the power set operation, R4 3}11\( ®(Rp )) and the
<

natural models of ZF are those of the form ¢RA » @ P RaY
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We write R +® for R(sc+ B ) and we often drop the FRAM, or even
all mention of € , from our natural model notation, Thus, for
example, Rec <RP means that (R, & MRec) is a proper
elementary substructure of (Rp,& PRP) . When ¥ &b, Rw LyR$
stands for Rec +¥ { Rp+ ¥ ,

If a and b are sets with a 2b, then Df(a,b) is the set of those
elements of a which are definable in {a, & a) using a first order
¢ -formula and parameters from b, The letters 95, ﬂ{—, X are always
assumed to gtand for € -~-formulae and § ,% are allowed to be any
formulae.

We write X for the cardinality of x and ¥ for the order type
of x, where the ordering is assumed to be €& Mx if no other
ordering is mentioned. For convenience we always suppose that if
K is an inaccessible cardinal ( written Inac(x) ) then % Yuwo,

Our notation for Ackermann-type set theories is explained in
chapter 2 and the following abbreviations are used for other set
theories,

ZF =~ Zermelo~Fraenkel set theory with the axiom of

foundation, see [16] .

Z - ZF without the axiom of replacement,

ZF® - ZI without the axiom of foundation,

ZM - ZF together with an axiom schema stating that every

normal function has an inaccessible fixed point, see [397].

NBG - von Neumarm-Bernays-Godel set theory, see {437.

For convenience we assume that NBG is axiomatised with
an axiom of foundation for sets only: this is clearly
equivalent to the formulation of [43].

MK - Morse-Kelly set theory, see (45]. This theory is

NBG modified by allowing class guantifiers to appear in
the class existence axiom and it is sometimes called

impredicative NBG.
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NF - Quine's system in [53] , which is now called New

Foundations.
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Thanks are also due to the Science Research Council for their
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Chapter 2

Review of Ackermann's set theory

2,1 Ackermann's paper

Ackermann's set theory was introduced in [1] . 1In section
one of that paper Ackermann describes his fundamental ideas in a
heuristic form, and he starts from Cantor's 1895 definition of a

set which says

" A set is any collection into a whole of definite, distinct
objects of our perception or our thought. These objects are called

the elements of the set, "

Whether or not Cantor intended this to be a definition is a
problem which we shall consider later. Before describing Ackermann's
ideas we note that many of his remarks seem more in keeping with
Cantor's 1882 paper, rather than the later one, In the 1882 paper
sets were thought of as " well defined " collections and Cantor

gays that

" A collection of elements belonging to any sphere of thought
is said to be well defined when, in consequence of its definition
and the logical principle of the excluded middle, it must be
considered as intrinsically determined whether any object belonging
to this sphere belongs to the collection or not and, secondly,
whether two objects belonging to the collection are equal, or not,
in spite of formal differences in the manner in which they are

given, "

As is usual Ackermann disregards objects of our perception

and he considers a general way of formalising Cantor's definition.
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Although it is not made explicit in [1] s Ackermann seems to be
imagining a universe in which there are many objects which are not
sets and, in general, these objects are called classes, Firstly
he argues for the axioms
1, All classes are extensional,
2, For every property P(x), there is a class whose members
are those sets which satisfy P(x),

and then he turns to his main axiom, and says

" The distinction between classes and sets can only be a
matter of a satisfactorily fine definition of what belongs to the
class and what does not. But the concept of set is completely

open. "

Consequently, he argues, one will not be able to think of a
class as sufficiently precisely distinguished if it can only be
defined with reference to the concept of a set, Thus he is led to
suppose that if the property P(x) ( of a class which, it seems, is
assumed to consist entirely of sets ) is such that its definition
does not refer to the property of being a set then the extension
of this property will be a set, Other sets are allowed as parameters.

The fourth axiom which is justified states that all members
and subclasses of sets are also sets: the argument for the latter
is that such a class can be defined without reference to the general
set concept. Ackermann then explains that the basic concepts of
such a theory are identity, membership and sethood, and he indicates
why such a system is not immediately inconsistent. He also suggests
that choice is a logical axiom, but it can be added in the usual
way if so desired.

In section two of [1] a formal system for Ackermann's set

theory is set up and we explain the current formulation, which is
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eagily seen to be equivalent to the original one. The system is
set up in the first order predicate calculus with identity, € is
used for membership and a constant, V, is included for the class
of all sets. Remembering our convention that small Greek letters
stand for (& , = )-formulae and large Greck letters for any formulae,

the counterparts of 1, 2 and 4 are

N OVt (texertey)d x=y,
A2 3Vt (tezerteV, § ), vhere ¥ does not involve 1,

A3 xeV , (yex,yex)-yyeV.

To formalise the main axiom we then take the following schema

A4 If 15 has exactly three free variables, then
x,y€V Vi (¢(x,y,t) 2 teV) >
3zeVVt (tez & ¢(x,y,t)).

Ackermann did not include an axiom of foundation in his theory

but it is convenient to introduce one here.
A5 xeV ,Juuex 2 JusxViex t¢u,

Next we give some abbreviations which we shall use throughout
this work. WB(X) is intended to be read " X is well behaved ",
and WB(V) is often the basis of a theory which generalises

Ackermann's set theory ( 4 ).

Definition 2,1 A is the theory with axioms Al, A2, A3 and A4.

A is A augmented by A5, WB(X) [WB* (x)] is the collection of

axioms Al, AZ, A3 [and AS} in which V has been replaced by X,
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Ackermann showed that the relativisations to V of all the
axioms of Z, except foundation, are provable in A, These proofs
are particularly elegant, For instance, to prove the power set
axiom let & be t&x so that A3 gives t€V when x€V. Then the
power set of x is in V by A4. He also claimed to prove that this
was true for replacement but, as Levy pointed out in [38] s there
is a mistake in his proof.

The only other notion from [17] which we shall refer to is
a theory mentioned in the last part of that paper, This incorperates
different orders of sets and, in an equivalent formulation, it has
a constant V., and infinitely many constants V, for new.
Ackermann did not feel that this theory was particularly important

as he said

" Such a theory is of no great interest as all important

sets are already contained in sets of the first order, "

Definition 2,2 A% is a theory with € as a predicate and constants

Ve and ¥, for nemwm . Its axioms are all sentences of the form
¢ (Ve ) and $(Vy ), where ¢(V) is an axiom of A* together with

Vy € V.. €V, fornew,

2.2 The development of A

4, and related systems, have been studied in {387, [40],
[22] and [567] and rather than attribute all results individually
we shall just give the main knowm results for A, Further details
are contained in [ 56] and we refer the reader to that work for
our omissions.

It is possible to develop a theory of ordinals in A which is
similar to that of ZF and in A* it can be shown that 3xV=Ra,

From this and A4 the following reflection principles can be
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obtained, These are extremely useful for proving results in A% ,

Theorem 2,3 (i) Downward reflection principle for V ( DR ),
If ¢ has exactly three free variables, then
A¥bx,yeV , ¢(x,y,V) 2 J2¢V ?}(x,y,z).
(ii) Upward reflection principle for V ( UR ).
£ 95 has exactly three free variables, then

A Fx,yeV 4 ¢(X$ysv) = 1z (Vez ﬁ#"(x,Y!Z))'

From UR we can see that in A™ , unlike WBG, there are proper
classes ( i.e. classes which are not sets ) which have proper classes
as members, and that constructions of such classes can be continued
for a long way.,

In {383 Levy proved the next theorem and this shows that

A* is not stronger than ZF.
Theorem 2.4 If ¢ is a sentence and A¥ b ¢ or A* ¢ ¢Y, then ZF F ¢ .

After the discovery of the mistake in Ackermann's proof of
replacement relativised to V, the main open question for A¥ ( and
A, where it is still open ) was whether or not it is provable.
This has been answered affirmatively by Reinhardt in [56] and,

consequently, the following result is now known,
Theorem 2.5 If $ is a sentence, then A¥ FdY irf zp .

It might be argued that on the basis of this theorem there
is little point in continuing the study of A* , but we have several
arguments against this, Firsily, there is the fact that the
reflection principles cammot be expressed in ZF, They are particu-

larly interesting as in {40] it is shown that A% can be
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axiomatised using WB* (V) and DR, The second argument is more
important and it is that there are many natural generalisations
of Ackermann's approach to set theory while this is not the case
for ZF, In the motivation for A4 it was said that if a property
can be used to form a set then this property must not depend on
the set concept., Then, to insist that the set concept does not
appear in the definition of the property is the crudest way of
satisfying this condition, Consequently, further refinement of
these ideas seems quite likely to give theories which are stronger
than ZP. Such theories are called Ackermann-type set theories,
Other reasons why we think that such theories are important are
that the use of more basic notions might make proofs clearer and
that their natural models often turn out to be of independent
interest.

In [38] Levy also considered adding a strong replacement
axiom ( i.e. the replacement axiom of NBG ) to A* , and combining

one of his results with one from [56] gives theorem 2.7,

Definition 2.6 A% is the theory A* augmented by the axiom

x&V AVuexdveV (u,v) & r 2 ye VVuex Ivey (u,v) & r.

Theorem 2,7 If ¢ is a sentence, then A%+ ¢V iff ZM"¢ .

Theorem 2.8 is proved in [567] using a straightforward, proof-
theoretic argument and UR., It shows that A:; gives no new

information about Vo

Theorem 2,8 If ¢) has exactly one free variable,then

B RV, ) ifr ar (V).

We shall refer to other work which has been done on Ackermann-
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type set theories as we require it,

2.3 Comparison with other set theories

We shall summarise the main relationships between A¥ , AL
ZF, NBG and MK, and, for this section, we assume that all of these
theories are consistent., For convenience, we use V for both the

constant of A¥ and the defined constant of NBG,

Definition 2,9 -'EV is the formula ¥ with all its quantifiers

relativised %o '€ V' and ?@' is the formula ¥ with all its
quantifiers relativised to '& V', If T is an appropriate set
theory, then we put
i =t p i t nd T ¢ ¢V
{V = [ ¢|¢is a sentence an }-43})
Ty ={%1 % is a sentence ana T v }Q"}‘

¢¥ and 19 are the natural ways of interpreting formulae of
ZF and NBG, respectively, in #* , The following results follow
from theorems which we quoted in vthe last section, well known
results or easy checks,

A1V = Z2F = NBGIV c MKV C A%V,

NG € MK C & (P 5 a @D .

Now the only questions about such inclusions which are not
answered are those concerning A™ { @ and NBG or K. Theorem
2.10 shows that there are no further strict inclusions here, so that
although A% |V = Z¥, the situation changes completely when we

consider A%} @ .

Theorem 2.10 (i) NBG ¢ A%} () |

(i) a*1 @ ¢mx.

Proof (i) Suppose that NBG € A* |} (¥) . Then strong replacement
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would be provable in A¥ so that A¥ = A% . This is false,

(ii) Suppose that 4* | (NE MK, Then as
MK Fe(V = B , Inacec)) ( see {43} , for instance ) and
downward reflection holds in A* we would have MK v 3w gV Inac(asc ),
This is a contradiction as the consistency of MK can be proved

in ZF + 3 e Inac(= ), 3

Next, we shall indicate how A® is very useful for accomodat=
ing category theory. In [42] , iMacLane said that NBG is sufficient
to describe all of present day category theory with the exception
that it cannot accomodate categories above large categories, ILarge
categories are proper classes in the sense of NBG, superlarge
categories contain functions which are themselves proper classes etc,
NBG has only finitely many axioms and let Cf’ be their conjunction.
If V =Rec then, from above, we know that $* ' holds in At .

Hence we can derive in A:} » using the upward reflection principle,
the existence of a least B for which VéRp and 43““" holds.

Now this Rf has the very pleasant attribute that if any € -property
can be proved to hold for all members of V ( which corresponds to
all small categories ) then all members of Rf ( which corresponds
to all small, large, superlarge etc. categories ) also have this
property, To see this one need only take the conjunction of the
property and ‘#Rﬂfﬂ and use the upward reflection scheme, Thus RB
is a suitable universe for category theorists as they need only
worry about small categories,

In actual practice only finitely many axioms of ZF, rather
than all of NBG, would be required for proofs ( say, those axioms
with less than 10'* symbols ) so that the above procedure could be
carried out with A* in place of AY . Thus we suggest that until
a consistent axiomatisation of a ( the? ) category of all categories

is given, category theory can be neatly handled in A* without any
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artificialities having to be introduced,

2.4 Some reconsiderations

We do not find Ackermann's heuristic description of his theory
in [1],0r the arguments by which he obtains A from the basic idea,
totally convincing. However this might, in some sense, be
inevitable. Further, the ideas which led to A are not necessarily
those which Ackermann published, and this suggestion is supported
by the fact that A has been rediscovered by at least two other
people who were not working from Cantor's definition.

In section one of (17 the fundamental point at which
Ackermann diverges from Cantor is when he allows proper classes
in his domain of individuals, It is clear that he thought of them
as well defined entities, Of course this is alien to Cantor's work
and even Ackermann insists that the set concept is throughly open
despite the fact that his theory proves the existence of a unique
class which is the class of all sets. The ability to prove this
comes from A2 and in chapter 5 we show that the strength of
Ackermann-type systems strongly depends upon this axiom. Now,
although A cannot be viewed as an axiomatisation of Cantor's work,
there are many other systems which ass_ume the existence of 2 class
of all sets, A is such a theory in which it is suggested that
collections of sets which can only be defined by reference to V
are of a different order of existence to those which can be defined
without such reference. There are still problems about sets which
are not definable and we consider some of these in chapter 8,

When Ackermann argues from his heuristic description to A he
seems to ignore his earlier idea that the only difference between
a set and a proper class is " a matter of a satisfactorily fine
definition of what belongs to a class and what does not ", Such a

statement surely leads us to question the use of the excluded
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middle for formulae which involve V, An intuitionistic version
of A has been worked out in [517 , but the motivation for this
was completely different,

Despite these criticisms of the presentation of A, it can be
viewed as just being based on the dowmward reflection principle for
V so that it is not necessary to consider the original ideas behind
it at all.

It is very interesting to consider other ways of formalising
Ackermann's notion of the class of all sets not being sharply
delimited, Reinhardt suggested ( in [56] ) that one way of doing
this would be to suppose that there are alternative candidates
for such a class: this idea is considered further in chapters 4

and 5,
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Chapter 3

Natural models of A

3,1 Existence of natural models

Natural models of A are models of this theory which take the
form {Rec, Rp, € PR) , where Rx is the domain of the model
and R@ is the class of all sets in the model, We shall usually
drop the suffix from € and from now on we adopt the convention
that ® is (Rac, RQ,@) where = 3y B.

The natural models of A were first studied in {227 and the
main results which Grewe gives in that paper are the next three

theorems,

Theorem 3.1 If (B, U, EY kA then U is not definable in (B, U, E}

using an € ~-formula and parameters from U,

Theorem 3.2 If <« »P and R3 ¢ Df(Rec,RR ), then K b A,

Theorem 3.5 If R A then either RB <Re¢ or if § is the least

ordinal such that B <;<a: and R} € Df(R« ,RB ), then RBLRY .

Actually Grewe only proves theorem 3.2 for the case when o
is a linmit ordinal, but it is straightforward to extend this proof
to the case when o =w +n ( where n ¢ w) by relativising
appropriate definitions to Reet

Some further results on natural models of A are included in

[56] and the main one of these is
Theorem 3.4 If ¥€ B and RE <y Rec then (R +X, R, €)F A.

The above theorems provide some knowledge about the structure
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of natural models of A, but only theorem 3.4 gives us examples of
their existence., Our first main result, theorem 3.8, shows that
assuming the existence of . inaccessible cardinals there are a
large number of natural models of A, Ve give some applications
of this in the remainder of this chapter. Theorem 3.7 is a more
general result which we shall use later, and theorem 3.6 is a
straightforward modification of the main result of [47] 1 we
include a proof for completeness,

Throughout this chapter we always assume that there are
arbitarily large inaccessible cardinals, although the existence
of one or two inaccessible cardinals suffices for most of our
resultas., Theorem 3.9, however, seems to require a stronger

hypothesis,

Definition 3.5 A function f:¢ ~¥o€ is said to be regressive if

£(0) = 0 and for 0O< g<>x f(B)< .

Theorem 3.6 If X is a regular cardinal greater than ¢ and f is
a regressive function on W, then there exists an =<K such that

for « many B <« ,f(f) =,

Proof Suppose that the hypothesis of the theorem holds while tae
conclugion is false, Then for any A< & there is a A< % such
that for every § 3 % f£(}§)> X\ , as k is regular, Hence, for
arbitary g <% we can obtain an w ~sequence of ordinals £ &
£(Ae) € Mo £(A)C M < v v v o ()

vhere for every § % Ay £f(§) > S\, Let the supremum of (k)
be ¥ , which is < & by regularity, and then as (¥ )< ¥ we

have £(% )< A,y for some me w, But then X> A @3 50 that from

the definition of (%) £(¥)>A, , which is a contradiction. UJ
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Theorem 3,7 If % 1is an inaccessible cardinal, « » & and x is a
set of cardinality less than & which is contained in Rsc, then

there are X many P < x for which R fo(Rcc,Rﬁ Wx).

Proof Let X,ec,x be as in the hypothesis of the theorem and suppose
that there are less than K f*s with the required properties.
If P has the required properties then put £(P) = 0, and we

complete the definition of f: x - X as follows

If £f(# ) has not already been defined then
RE & Df(R=.,RA VW x) and put (% %)

f(B) = the least ¥ for which Rp € Df(Rex ,R¥ U x),

It is clear that f is a regressive function on & go that by
theorem 3.6 there is a &< X such that for X many B<% f(B)=§ .
Further, & many of these P 's must have had their f value
defined by (% * ) so that there are X many ordinals less than x
which are in Df(R= ,R§ vx). This is impossible as there are only
countably many formulae and max( ﬁ , X ) (< & as & is inaccess-

ible ) many parameters available. D

Theorem 3.8 If & is an inaccessible cardinal and o« ) « then there

are & many natural models of A of the form (Ret, Rf ,€% , with f<K.

Proof This follows directly from theorem 3.2 and theorem 3.7 (O}

Remark We have recently shown that V = L implies that theorem 3.8
is best possible, in the sense that the first inaccessible

cardinal becomes the smallest cardinal for which the conclusion
holds, V =1L also decides some other questions about natural models

of A and details of these results will appear elsewhere,
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In {56 Reinhardt asked if there is a second order vesion
of Grewe's theorem ( i,e. theorem %.3 ). He made this precise in
Question 4,13 of that paper which is

" Suppose that for every x€RP P is not definable in
{Re< +1,€& ,x) . Is there a ¥€o such that Be¥ and

RBE < ,RE? ™,

We can use theorem 3.7 to show that the answer to this question
is no, in general, as follows,

Let X be an inaccessible cardinal and = % %, ‘hen, by
theorem 3,7, there is a f < & such that for every x¢Rf, B is
not definable in (R« +1,&,x) . Now suppose that the answer to
Reinhardt's question is ves so that there is a ¥ § ¢ such that
p€X and RB€,R¥ . Theorem 4,12 of [ 56) shows that if V = L
holds then we can derive the existence of arbitarily large inaccess-
ibles in RA from R <, R¥ . Hence the usual consistency proof of
ZF 4 3e¢ Inac(et )+ V = L relative to ZF + BocInac(x ) shows that we
can derive the consistency of ZF +¥Vx 3 & > s Inac (B ) from the
consistency of ZF + JucInac(™ ). This is well knowm to be false.

Reinhardt's gquestion is a straightforward generalisation of
Grewe's theorem and it still might be true that there is a less
obvious generalisation. The reason why the original proof does
not generalise to higher orders is that the most natural generalis-

ations of the following statement fail,
For limit A, Rx< RA iff Wi(x€ 5< A 2 Ry € DE(RA,Rex)).
It might be possible to get a higher order version of this result

by adding further conditions, which are vacuous in the first oxder

case, to the right hand side.
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3.2 Bounded upward reflection

In the theory A%, the different constants were intended to
represent different orders of sets., As an upward reflection
principle is provable in A, if xeV; , ¢(x,V; ) holds in A¥ then
it seems natural to insist that there is a y of the same order as
V, for vhich V, & ¥ , q{}(x,y) holds. Thus we are led to consider

the following principle of bounded upward reflection ( BUR ) in A% .

BUR, If ¢ has exactly two free variables, then

xeV; p bV ) D3y (V6 veVu,¢0y).

Our next theorem shovs that BUR is not derivable in A¥ by
constructing a natural model. This suggests that there might be
some intuitively reasonable generalisations of A;’: and we return
to this in chapter 5. Theorem 3.10 constructs a natural model of

A’:L + BUR using only one inaccessible cardinal,

Theorem 3.9 If there is a l-indescribable cardinal ( see [56] for
a definition ), then there is a natural model of A% in which BUR

is false,

Proof Let ‘A be a l-indescribable cardinal and we firstly show

that there is an inaccessible £<N such that R <RA .
Theorem 2.2 of [45]) shows that there is a normal function

fsf\~$A such that if § is a fixed point of f then RE< R\ .

Hence we can suppose that

. +l,€,—'} k * f is a normal function on A with the above

property, and A is inaccessible n,
Then, by indescribability, there is a R < A for which
{(Bp*1l,e) B " fARP is a normel function on f with the

above property, and B is inaccessible ¥,
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Tt is clear that B is a fixed point of f so that B is an inaccess-
ible cardinal satisfying Rp< R% , as required.

Theorem 3.4 shows that {RN,Rf,€) F 4. Let B' be the least
inaccessible cardinal greater than @ and then theorem 3.8 shows
that there is an (w+¥1)-sequence of ordinals

8o < §, < P o - = € By,

all between P and R', satisfying <{RA,R§ (€ F 4 for all ie wil,
Then <R')\,Rfi,RSi s « + « RE ,&y is a natural model of A:,
in which Vg = Re¢,Jnac(ac) holds but 3 ¥ (V,eR¥ & V, o Tnac(¥ ))

fails., Thus BUR is false. L.l

Theorem 3,10 There is a natural model of A¥Y + EUR,

Proof Let « be an inaccessible cardinal so theorem 3.8 shows
IR % (Rx,RA,€) F 4. UR holds in this model so that for any
formula L;[J with exactly two free variables

Rx F x€R3 A cf&(x,RE) -3z (R;S(-‘.z,\(sﬁ(x,z)).
Let the supremum of the least ranks of such z's ( over all x¢ RB
and all suitable formulae ¢ ) be «; and then o;< % as ¥ is
inaccessible. Using theorem 3.8 again, let 13.; be the least ordinal
greater than =X ; for which <Rx sRBs,E€Y F A, Then use RE as
Ve 4 RE, as V, and iterate the above construction to obtain a
natural model of A:‘; with domain Ri¢. Clearly BUR holds in this

model . Cl

2.3 Some questions of Reinhardt's

Theorem 3.11 answers question 4.14 of [5561 negatively.
This, in turn, shows that theorem 3.9 of \:'_56] cannot be improved
to a wversion without a parameter, answering another guestion of
Reinhardt's. It is noted in ]:56] that question 4,14 is equivae-

lent to asking whether or not the schema
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” ¢ 3,
xeVy = (B ()¢ B%(x))
is provable in A¥ , where € is a formula with exactly one free

variable,

Theorem 3.11 Let N be the sentence JB Inac({d ). Then there is

2 natural model in which ( A4 Y &3 V") is falge.

Proof We construct a natural model of 4¥ in which A“* and —p Ve
hold, Let ., ¥, be the first two inacessible cardinals. Then,
by theorem 3.8, there is a model of A of the form (R %, Rty 4
with o€ < %, As in the proof of theorem 3.9 we can then find an
(w3 + 1)-sequence of ordinals oL+, all between S, and 4,, such
that R %, ,Re, ,Re, , . . Rw,,&€Y FAY,. In this model

AR &V, Inac() and ~dgeV, Inac(f ) so that as V, and V, are

supertransitive, ”ff'v‘ and '\f\lf‘ff‘ hold. 1]

Our next result proves Conjecture 4.16(b) of [56}, again by

using our natural model methods,

Theorem 3.12 A+ZF is not finitely axiomatisable over A.

Proof Suppose that Pi, , . . B, are axioms of ZF. We construct
a natural model <Rf ,R&,&) of a4+ B, +, ., .+ B, where (RE,e)
is not a model of ZF, and the theorem will then follow,.

Let % be the least inaccessible cardinal and let =< be the
least ordinal greater than &« for which (RaC,z% k ZF. Using the
reflection principle for ZF we then see that in Rec

36 (x<p . B0 87, (+)
Let f3 be the least ordinal which satisfies the bracketed part of

(k) in RS, Then, by theorem 3.8, there is a »< % satisfying

(RRRE,€D EA. Now (RB,eYE D, o By from (%), but
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(RE,&) J ZF from the definition of E so that this model is as

required, [_|

In proving theorem 3.12 one of the facts which we used is that
if & is 2 sentence and ZF + 8 then
Vx Ay (x%y o (y,:&_} = 8 A (y,&'} ¥ ZF): we constructed y using
s reduction of the length of the universe. 4An analogous width

reducing principle for % would be

If {3 ig a sentence and % + B then
) & (% )

Vxdy (z%34 {y1eY F 8 A (7yE7 K z).

We cannot yet prove (k % ), but we end this section by showing
that if its true then it answers another of Reinhardt's questions.
Tt also seems possible that further results about one theory not
being finitely axiomatisable over another can be obtained by these
methods as problems of equiconsistency arc avoided by constructing

models in a stronger theory. Question 4.22 of [567] is

" T will be a theory formulated in a language with € and
individual constants V,, (n€w>). The axioms of T include ( for
each n ) the pairing, union and power set axioms relativised to V,, ,
a comprchension axiom for each V, and an axiom V& V.o IS THg

finitely axiomatisable over T % ".

We answer this gquestion nocgatively, subject to (¥ &), as
follows. Let 5, » . » P4 be axioms of Z and then, using (* %),
let y be such that Rw* Sy, {¥s&7 ¥ &, A... o5, -2nd
{y,ey ¥ Z. Then by taking Rw +i as V; we see that {y,&Y)

gives a model for Ty Fys « o 97‘, but not for Z, as required.
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Remark It is known that Z is not finitely axiomatisable ( see
Montague's paper Semantic closure and non-finite axiomatisability I,
in Infinitistic Methods, Pergamon Press, 1961 ), but this result

does not seem to give (3 ¥ ) directly.

3.4 Existence of more natural models

Theorem 3.8 shows that given a large o« , there are many Bs
for which (?\, B4 and in this section we consider the possibility
of finding results of the form ' given a certain fi? , there are many
ows for which & kA ', Most of the proofs in this section are
just outlines as otherwise we would have to give a full treatment

of absoluteness conditions, as is done in [22] ¥

Definition 3.13 P is said to be suitable if 3«>B & Fa,

U(R) = {8 Fa},
B(R)= {>)RpL R},

Our use of U(f:‘) and E(®) will be quite loose as these abbre-
viations stand for sets, virtual classes ( in the sensc of Quine,
see 1:55] ) and proper classes at different times. We hope that

the reader can see which use is intended from the context.

Theorem 3,14 f is suitable iff Jeoc » 3@ RE AR,

Proof If P is suitable then theorem 3,3 shows that dw 5 g RE<Rec .

Theorem 3.4 implies the other half of this theorem,

Theoren 3,15 If & is an inaccessible cardinal, then there are

& many f < for which U($ ) is unbounded.

Proof Let & be an inaccessible cardinal and we suppose that there
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are less than % many [ <& for which U(R ) is unbounded. Let ‘A
be the supremum of

{oc) 3p<x (& ¥ A , U(P) is bounded ), .
Then by theorem 3,8 there are % many B<i« for which
(RA*uw ,RB,EY F A so0 that there are « many B <% for which
U(F) is unbounded., This contradicts our assumption so that the

theorem holds, D

Corollary 3.16 If = is an inaccessible cardinal, then therec are

% many R<& for which {o¢|oc e U(R) accis a limit ordinal}

is unbounded.

Proof If {Rw}+ n,RB,&Y kA then, by theorenm 3,1,
RE ¢ Df(Rwk+ n,Rp) so that RR ¢ DF(Ruw}y sR$ ). By theorem 3.2

{Rw! ,RB, €Y F A so that the corollary follows from the theorem, [_}
Theorem 3.15 shows that for many suitable f s U(#) will be
unbounded, but the next result shows that this will not be true of

all suitable Es,

Theorem 3.17 ¥ &5 ,¥ ‘_‘:lﬁ“;g ( ﬁ?‘;‘s-)::*(),

Proof Choose 5,% and let x be the least inaccessible cardinal
which is greater than max(&,%¥ ), Then, by theorem 3,15, there is
a B' withmax(8,¥ )eB'ex and U(R') unbounded, Thus there
is a B which satisfies
Xe o 8€B A T(R)Y € (%)

vwhere we assume that (#<) is written in a way which does not
assume U($8) to be a set.

Now let & be the least ordinal which satisfies (%), and if

e

E‘("’{é )> %, let %% be the Xth. member of U( B ) under the natural
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ordering., If ¥ is a successor ordinal then [% will be definable
in R« using (%K), which uses & ,¥ as parameters., By theorem 3.1
this contradicts & ¥A, If ¥ is a limit ordinal then it is
straightforward to see that P is definable in R, in terms of Sy
Kg using
Ke i Jbef AV < E,( there is a set of ordinals ™ for which
Q. B A and the order type of the set, under € , is A-).

Again, this contradicts theorem 3,1 L[]
Theorem 3%.14 characterised suitable ordinals and it might
suggest that U(B) " looks like " E(§), but our next theorem shows

that this is not true from the point of view of order types.

Theorem %,18 If & is the first inaccessible cardinal and X € & ,

gt s 11w

then 3B (T(g)=x + 2(E)*X ).

Proof Choose ¥4 X and then, by theorem 3.15, there is a R'
with ¥< fi'¢ % and U( £') unbounded. I(f')cs as ~ 3 & Inac(ec )
is true in RP', so that there is a f ' which satisfies
K<<, T(B)Y < #B(R) © ¥ (%)

where (%) is written in a way which does not assume U(R) is a
set,

Let R be the least ordinal which satisfies (%) and put
) F K4 ﬁg—j+ ¥ . Mow suppose that "t}'Z";?) 2% and let &« be the
¥ th, member of U( B ), under the natural ordering, Then we can

get a contradiction as in the proof of theorem 3.17. O

Theorem 3.18 admits some generalisations, but this method does
not seem to give results of the form ¥ ¥ 3 B( (p) = B(B)+Y ).
The main trouble seems to be our lack of knowledge about the

structure of E(ﬁ) and we return to this problem in chapter 7.
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Although U(R ) and B( §) can be quite different, theorem 3,4
shows that E(§ ) G U(P ). If there are ordinals $, ¥,% for which
RAA, RY < RS then theorem 3,4 shows that E(#) need not be an

initial segment of U(P ), but this leads to our next question.

Question 3.19 TIs {ect¥) ¥ep, Rp X yRw} an initial segment

of U(R) ?

3,5 'The smallest natural model of A

In this section we just note that there is a reasonable

definition of a smallest natural model of A,

Definition 3.20 &X,,, [ ®my] is that natural model of A

determined by letting vim; LBmi be the least ordinal for vhich
FR®<m BB, &P FL [ FaudBe Ry €)F A] and letting
Fen [%q] be the least ordinal for which R R Emp €7 F A

E{R‘*M%R Brds E} 12 A] .

Theorem 3.21 Ry, = @‘*“\l ‘

Proof From the definitions igmg L Ber and Uim‘sﬂc"“mi, Suppose
that &g, < Xy and then &y, is definable in Rx,,so that from
theorem 3.3 (RowpwRBpmq, &) B A, which contradicts the definition

- \ = :"’
of olypy, Thus o, =, and hence By * Reg .

We now put [‘R‘M ’@H\ “'@\m 2 and we call @\!’t the smallest
natural model of A, It is also straightforward to see that ™,
B+ are the least ordinals ( again, it makes no difference which
order these are taken in ) for which RPe 4 Rotp.

Rfas is appreciably larger than the smallest natural model

of ZF and we can see this as follows, As Rfm 4 ReCy, REm is
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larger than the ¥ th, natural model of ZI' for any ¥ e@yq . Hence
there are 3~, natural models of ZF smaller than Rﬁn . But gwm
is not the first natural model of ZF with this property as

By & DE(Ro y ,REp ). Consequently, there are B smaller natural

models of ZF each having this property, etc, etc.
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Chapter 4

The set theory At

4,1 Background

The set theory AY was introduced in [56] as an alternative
way of formalising Ackermann's principle that 7 the collection of
all sets is not sharply delimited ", Reinhardt interpreted this

by suggesting that there are different classes Vo s Vi, 5 o «» o« all

]
of which are possible candidates for * the class of all sets ",
Then, to interpret the principle that " sharply delimited
collections of sets are sets ", he suggested that if the extension
of 2}5 (V) AteV is independent of which candidate V is, then
& (V) Ab€V can be used as an abstraction term, Parameters in this
expression are assumed to be sets, as in A.

In the formal theory A% only two possible classes of all sets

are considered, and we have constants V and V' for them. The only

predicate is € . The axioms of AT are WB¥* (V) together with

A4t If ¢ has exactly four free variables, then
X yE€V AVE (¢ (V,x,y,t)  te Ve ¢V ,x,y,t) , teV') 3

JzeV Vs (tez&te Va ¢(V9X9Yst))s
A6 V&V,

In [56] Reinhardt indicates that
(i) e g g,
(ii) At rvev,
(iii) At is consistent if A¥ 4 the following schema
of indescribability is consistent.

Xy EVJ\ ¢(V9XQY) ¥ AveV ?(V,X nv,yN v) (1)
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e shall use (i) and (ii) without explicitly mentioning them,
(iii), together with the result of [58] , shows that if ZF +
' there is a Ramsey cardinal ' is consistent, then so is At
However, it did not seem very likely that AY was much stronger than
A and we confirm this in the next section,

For A, we can see that V cannot be definable in terms of € ,
but this proof does not work for V' in AT we shall exploit this
fact in the next section.

Theorem 4.1 shows that a bounded upward reflection principle
( see section 3.2 ) is provable in AY ., This shows that V! cannot
be defined using a certain type of expression and that V' must he
' quite a bit ' larger than V, The proof of the theorem is an

extension of Reinhardt's proof of (ii).
Theorem 4.1 A% b x,y& V¢ (x,7, V) Az (VEz€ V', 2€ V', ¢ (x,7,2)),

Proof We work in AY , Suppose that x,y&V and b (x,y,V) holds.
Then, by considering the dovnward reflection scheme, we know that
V= {t|I3BeV ($(xy,Rp ) rt@RRE VAR e . (2

If we also have

V= {t] 3REV (§(x,7,RR) ALERFEVARE V) ,  (3)
then from (2), (3) and A4Y¥ we obtain V&V, This is a contradiction
as it implies the existence of the Russell set, Hence there is a
B for which R ¢V and RRE V' ¢ (x,7,Rp )ARE & V'. From

the development of ordinzl theory which is given in [563 we know
that if Rf $V, then VERB , so that R can be used as z in the

conclusion of the theorem, D

4.2 The strength of AY

The main result of this section is corollary 4.7, vhich shows

that the set theoretic part of AY ( i.e. AY|V ) is precisely %ZF,
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On the way to this result we also show that if a theory is an
extension of A% with a @efinable class ( i.e. definable by an €
formula ) which contains V, then the (€ ,V)-theorems of this theory
include those of A* ( this is theorem 4,2 ); and that it is
relatively consigtent with A* +that there is a class x satisfying
Vy yex ( this is theorenm 4.4, essentially ). A1l Ackermann-type
set theories are assumed to have the appropriate language in this

section,

Theorem 4,2 If 4» is a formula with exactly one free variable, then

A¥ 4 Wx (xeV' N (x)) + Uxe VA (x) b a* .,

Proof Ve need only show that A4* is derivable in the given theory
and we do this as follows.
In the given theory we can replace x€V' by ¥ (x) and V'ﬁz X
by 3t (Vx (xet@Y(x)) ot E x). We suppose that the & -formula
obtained from @ (V',V) by such replacements is gﬁ-q,.(v). Then an
instance of the hypothesis of A4% becomes
X, 7E VAV (P (V,x,7,t) A t€ Vo & 4 (%,57,8) A (1) ).
sﬁ*(x,y,t) AY(t) is an & -formula, N, (%,7,t) say, so that we have
5LYEVAVE (q (x,7,%) 2 tevV).
The conclusion of A4 ¥ ‘then follows by applying A4 to the formla

7, as required. {:]

Lemma 4. If <i{; is a sentence, TO is the theory with axioms Al-A4,

s e 5
and Au u@x%x#xhauéx\f«;(—;u t%x, and Tot"r'z‘: then AF{-#» .

Proof This result follows directly from the proof of theorem 1

of [38].0
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Theorem 4.4 If T is the theory A¥ + 3xVy yg x and T, is consistent,

then T is also consistent.

Proof We interpret T in To and we use & , V as the basic symbols
of T and £0, '\TO as those of TO. tﬁ is the empty set of ’l‘o, &ﬁ
is {¢] and "¢ is {7 b} : these sets being defined
using & & The membership relation is defined by

ye ¢ iff v¢ o

yfi“"q‘iff y(io;“‘{) i

yex iff yeox, in all other cases,
We also put V=V = ( {¢% v {xeovohﬁ & T0(x)} ), where T¢(x)
is the transitive closure of x in T, The membership part of this
interpretation is similar to an idea used in tll} .

It now remains to show that the interpretations of the axioms
of T hold in To. The axiom of foundation guarentees this for Al,
and we obviously have the interpretation of BXVy ye& x holding,
It is also clear that for every € -formula 'V, there is an equiv-
alent € -formula, *o say, and that for every (& ,V )-formula &,
there is an equivalent (EO,VO)-formula, B o 98Y.

To show that the interpretation of an instance of A2 holds
for a formula ¥, we just need to use (x eV, 4 )0 in A2, Now
suppose that x€V and we prove the interpretation of A3, If yex,
then from the definition of V and as TC(y) & TC(x) we get y€V,

If y&x, then yeovo by A3, y-frtﬁ ( 47 being the empty set defined
using g . ) as VO is not a member of any of its members and
TC(y)&TC(x). Hence we have y&V from the definition of V.
Now suppose that the hypothesis of A4 holds for a formula '{/ i
ice. X, ye VAVt (V(x,y,t) = t€V), (4)
Then we also have x,y€ V Y (»if.o(x,y,t) ﬂteovo), so that by
A4 3260 VOV‘h ( té’.oz{-’r-"{ob(x,yqt)). If z= t“c’ﬁ , then

A t€ z >t € \*"¢$ ) so that the interpretation of the
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conclusion of A4 holds in this instance, Thus we can assume that
Yt ( te 20y tgz Yand z ¥ "¢ , 1If (ﬁé'l‘(}(z), then for some
Y€ 2 $ € TC(y) which contradicts (4), Hence z &V and the inter-
pretation of A4 holds,

Similar, straightforward arguments show that the interpretation

of A5 also holds. I

. LV .
Corollary 4.5 If ¢> is a sentence and T t ¢, then Tk 4‘:.

Proof By inspection of the construction used in the proof of the
theorem, it is straightforward to check that there is a natural

isomorphism between V and Vo, go that the corollary holds. U
Theorem 4,6 If ZF is consistent, then A% is also consistent,

Proof Suppose that ZF is consistent. Lemma 4.3 and theorem 4.4
then show that T is alsc consistent, We can use T in theorem 4.2
by taking ¥ as x =x, so that, by that theorem, AY is also

consistent,

Corollary 4.7 If $ is a sentence, then AT b @V ifr z¢ b P,

Proof By theorem 4.2, corollary 4.5 and lemma 4,3 we see that if

At b 4!\' , then ZFE-¢ . The converse follows from the main result

of [56]. a

In [56), Reinhardt asked if A¥ ¥ (1) is stronger than AY .
Theorem 4.6 answers this question positively, provided that ZF is
consistent, as the existence of inaccessible cardinals, for

instance, is derivable in A% + (1).
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4.% Reflection principles

Tn the last section we showed that it is rmelatively consistent
with AY' for V' to be definable in terms of € s but our next theorem
shows that V cannot be defined in terms of &€ and V', This leads
us to show ( in theorems 4.9 and 4.10 ) that extended reflection
principles are provable in AY , in which V' can be used as a
parameter. Then we show that A% can be axiomatised using the
extended downward reflection prineciple in place of A4* « This is
analogous to the situation in A, where the corresponding result

was proved in EA,O] .

Theorem 4.8 If '+ is a formula with exactly four free variables,

then AY b x,76V =2 =Vt ( t&V O H(x,7,V',t) ).

Proof Suppose that x,y€V and that for a suitable N

V't ( te Ve "?’(X,y,V‘,t) )' (5)
Firstly we will show that
‘V"GGV "P(x’lﬁv! t)- (6)

Suppose that (6) does not hold so that for some t'€ V, we have
'ﬁ"{r-(x,y,V,t'). Now consider the formula
X%, 7,7 ,t) = (A (x,y,X,t' ) 4 tE€X ) ( N (x5, %, 1) A ¥ (2,7, X, 8) )
Then

K(x,y,V,t4, t)EFtEV  follows from (6),

X(K,y,V',t',t)@ teV follows from (5),

Using A4Y with Y(x,y,V,t',t) At€V gives VEV, a contradictiion,
so that we know (6) holds. Then

~ (%,7,V,t) \tEVEITEV  follows from (6),

P (x,y, V', t) A tEV €I L€V follows from (5).

Using A4* again we get a contradiction. Hence (5) is false

and the theorem holds, G
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Theorem 4.9 Extended dovmward reflection.
TE 95 is a formula with exactly four free variables, then

AY b ox, 7€V, ¢ (x,5,V,V") > BzeV ® (x,5,2,7").

Proof Suppose that x,y&V, ¢ (x,7,V,V') and = Jz &V tf)(x,y,z,V‘).
Then, by the usual theory of odrinals in A , we have
tE V€Y ' t&Rw, where o is the least ordinal for which
X,y € R¥: and #)(x,y,RﬂCﬂ') '
& Y (x,y,V',t), say.

This contradicts theorem 4.8, so that the result holds, [:]

Theorem 4,10 Extended upward reflection,

If t# is a formula with exactly four free variables, then

A+ " X,yEVh P (X,Y V,V') - 32 ( VgzeV' AZQ‘—VIA'¢ (X,Y,Z,V') )'

Proof Suppose that x,ye€V, -.?S(x,y,V,V') and " Jz ( VEzeV'A
z SV Sﬁ (x,y,z,V‘). Then,as in the proof of the last theorem,
we have
tEV &Y ' t& Rek, where of is the supremum of those ordinals
for which x,y& RoC and ReCc &V' RocZzV! ,,.\4! (x,y,Rec , V).

The result then follows from theorem 4.8. O

Theorem 4,11 AY can be axiomatised using the extended dowmward

reflection principle in place of A4* .

Proof We neec only show that A4"' is provable from the other
axioms of AY and the extended downward reflection scheme.
Suppose that an instance of the hypothesis of A4 holds,

fve. Xy EV, Wi (CfJ(x,y,V,t)At&Vﬁ #b(x,y,V',t) whE T T,
Then, by A2, 3z STVt ( tez&3teV' A ¢ (x,y,V',t) ). Applying

extended dovmward reflection to this formula gives
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Ave V3zewVt ( t&z¢FEE V!, ¢ (x,y,7',1) ),
Hence, by A3,
dzeVVt ( tez &y tEV ¢ ooy, Vi,t) Y|

and we immediately get the conclusion of A4+from this, (3

The last theorem in this section gives another alternative
axiomatisation of AY , This one is more akin to the original system
A. It shows that the only additional assumption in AY is that

there is a class containing V which can be nsed as a parameter in

A4,

Theorem 4,12 ¥ can be axiomatised uwsing the following schema

in place of A4+ .
If ¢ is a formula with exactly four free variables, then

%y eV AVt (¢ (x,y,7',1) 316V ) JzeV ¥ (tezer plx,y,7,1)).

Proof Firstly, we show that the above schema is provable in A+ i
Suppose that x,y&V ¥t ( qf;(x,y,v',t) > t&V ), and then by A2
2z SVVE (tez <> d(x,y,V',t). The result then follows as in the
proof of theorem 4,11,

liow suppose that this schema holds, and we prove A4+,
Suppose that the hypothesis of A4+ holds for a suitable formula 4.

Then we just need to apply this schema to the formula

'V(X,Y;V' !t) ATEV!, D

4.4 Natural models

Natural models of AY are models of this theory which are of
the form {RX,R{ ,R¥, € PR}, vhere Re¢ is the domain of the
model, R is the interpretation of V' and R¥ is the interpretation
of V., We extend our conventions about natural models of A to

those of AT and we use 8 for the structure (R%,Rﬁ JRY¥ ,e—_) 3
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in which we assume o > 8 > ¥,

Our first theorem is directly analogous to theorem 3.1,
and theorem 4,14 gives a precise characterisation of the natural
models of AY , We shall not include full details of absoluteness

considerations in the proofs of these results.

Theorem 4,13 If (p = <B,U' sU;EYFAY | then U is not definable

in {3,U',U,EY by an & -formula with parameters from U U {ug .

Proof Suppose that the hypothesis of the theorem holds, but that
the conclusion is false. Then, for some elements X,y of U and some
formula 55 s wé have
teu it (G Fd(x,y,t,01), (7

where all free variables are shown and we confuse objects with
their names, Then (A Fx,y&V AW+ ( ¢ (x,7,V,t) 2tV ), so
that, by theorem 4,12, we get

WFx,yeV 3zeVVt ( tez & P27, 7',8) ).

From (7) we then see that C\ F V&YV, which is impossible, ]

Theorem 4.14 If RX §Df(Rec,RY U {RRE} ) and e > R > X, then

2EL .

Proof Suppose that <Y 8%¥ and R¥¢ Df(Rec,RE v {RR) ).
It is clear that we need only show that A4¥ holds in & . Hence,
by theorem 4,11, it suffices to show that the extended downward
reflection principle holds in & .

Suppose that o is a limit ordinal and that for some x,y¢ RX,
Lk 4: (x,y,V,V'), Then if EA’-’ 32&V¢)(x,y,z,V') we would have

£ k' V=RY, where ¥ is the least ordinal for which x,yeRE
and ¢ (x,y,R¥,V') ',

This contradicts our assumption so the result holds when & is a
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Next we shall compare the natural models of AY with those of A.

Theorem 4,18 If A A+, then {RH,R¥,e) F 4,

Proof Suppose that & F A¥ . Then RX ¢ Df(Re ,RE U {RR} ),

from theorem 4,12, and hence R¥ ¢ Df(RR ,R¥ ), as required, i1

1f (R*,RB,e Y V4 and {Rx,RP, € Y E A where B> P
then it might seem plausible that <R¢"—,R§3',Rﬁ: y €} AT, Dbut
we next give a counterexample to this,

Let Rat,R B ,R¥ be the first three natural models which are
elementary substructures of R&, where % is the first inaccessible
cardinal, Then (RY¥,RE,E% ¥ A and {RY ,Rec, €Y b4 as
Rec{ RE {RY. However, Rex €Df(RY ,Rec U {RAY ) as o is " the
largest ordinal § for which R& {Rf ", so that by theorem 4.13

CRX ,RE ,Rec e £ 4t

Consideration of the smallest natural model of A shows that
there are set universes which occur in natural models of A but not
in those of AY . In theorem 4.20 we note that the smallest natural
set universes of various theories form a strictly increase sequence.
It is amusing to note that the provable set theoretic statements of
all the theories mentioned in that theorem are the same, so that
from a natural model point of view what constitutes a smallest

natural set universe depends heavily on the formalism used,

Definition 4.19 The smallest natural set universe of an appropriate

set theory is R, where o is the least ordinal for which there is
a natural model of the theory in which ReC is the class of all sets

( or domain, if the theory has no proper classes ),
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Theorem 4,20 The smallest natural set universes of the theories

ZF, A, AY , and NBG form a strictly increasing sequence of sets.

Proof In section 3.5 we noted this result for ZF and A, Let REy
be the smallest natural set universe of AY, Then if

{Ret,Rg ,REp ,€% FAY, theorem 4.18 shows that

RP,R¥m, €Y BA, Hence ®,,, the smallest natural model of 4,
will be definable in any natural model of A% so that Bm< ¥,
Now the second part of the theorem holds. Theorem 4,17 shows that
¥m is an accessible ordinal, It is well known that the smallest
natural set universe of NBG is Rx, where X is the first inaccess—~

ible cardinal, so that the last part also holds, [
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Chapter 5

Some Ackermann-type set theories

5.1 AT1

In section 4.1 we discussed the motivation behind the theory
At . Some of the later results of chapter 4 suggest that the
objectives of A“" have not been reached in the formal theory.
AT1 is an Ackermann-type set theory which is based on only part of
the intuition which led to AY ., We again suppose that V and V!
are alternative candidates for the class of all sets, beth of them
being models of a Zermelo-type theory so that they are much
" larger " than all of their members. Consequently, we include
WB¥(V) among the axioms of ATI,

To express the idea that V and V' are equally good choices
from the point of view of € -formulae we assume that they have
the same & -properties. As it is natural to allow parameters from
V in this schems, 1t becomes

X, yEV( ¢ (x,y,7) € Pplx,y,7') ).

Finally, we suppose that VE&V' as V' is the larger candidate.
We have not considered formalising Ackermann's idea that " well

determined collections of sets are sets " within this system.

Definition 5.1 ATl is a theory with language & ,V,V', Its axioms

are Wn ¥(V), VeV' and the schema
(AT1) If $ is a formula with exactly three free variables, then

%, 76V =>( P (0¥, 1) & $xy,V') ),

Hext we note that A* €AT1. This result had previously

been observed by Reinhardt in a different context.

Theorem 5.2 Tf A%k (V,V') then ATLF $(V,V').



Proof We need only show that 441 is provable in AT1, so we suppose
that x,yeVA V1t (& (x,y,V,t) \teT $(x,7,V',t) atev ),
Then, by A2, Fz@VVt ( tez e ¢ (x,5,V',t) At€V' ). By 43 and
(AT1) we have z2SVEV* 32€V', and hence we have

€V VL (1€ 23 (k7,7 ,8) pt €T ),

Applying (AT1) to this sentence gives the required result, OO

From theorem 5.2 we know, very indirectly, that ZFY can be
derived in ATl. Theorem 5.3 shows that this can be proved straight-
forwardly, without using the axiom of foundation, and that the
existence of arbitarily large natural models of ZF is derivable in
ATl, Ve find it interesting that the motivation behind AT1 leads

to the latter result,

Theorem 5.3 (i) If ¢is a sentence and 4F ¢ $, then ATLF ﬁv i
(i1) AT b (e I BSxRBEZF ) , and further
ATL & VoceV v < V',

Proof (i) If qsis a2 formula with exactly one free variable and
A F#(V), then from theorem 5.2 ATl } (}(V). Hence, by the easy
proofs given by Ackermann in [l_] y 1t only remains to show that
replacement holds when relativised to V. Suppose that

X, 7€ V, VueVIite v Sﬁv(x,y,u,t) and then, as in the proof of
theorem 5.2, dzeV'yt ( tez <> Auex ¢V ). From (AT1) we have
¢V > tj.\"‘ so that replacing t}’)v by f:w and using (AT1) again

we get the required result.

(ii) We can work in classes " above " V' in exactly the
same way that we worked in classes above V in A¥ ., Formaliging
the proof of (i) in such a class shows that VEZF can be derived

in AT1., Hence the first result follows by the dovmward reflection
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principle. To obtain the second result, we just need to work an

appropriate distance above V' and relativise in the obvious Wa,y.D

As V LV, for all x &€V, it seems quite likely that it will
be difficult to give an extension of 7F which is the set theoretic
port of iT1, for we do not know how strong the condition Rec £ |, Rf

is., Another question is

Question 5.4 TIs strong replacement provable in AT1 ?

Theorems 5.2 and 4.1 show that bounded upward reflection is
provable in AT1. The next theorem shows that, analogously to
theorem 2.8, there is no proof-theoretic weakening of ATl by our
congidering only two possible set universes. Consequently, we

suggest that ATl is an improvement on A;; s, a5 well ag on At .

Theorem 5.5 If V; are constants ( for i€« ) and we add to
WB¥ (V) the axioms i<j<ec VeV, €V, and

X, yeV =3( c;b (x,y,7) & ?S(x,y,v“ ) ) ( for iGX and ¢ any
formula with 3 free variables ) then this theory V "fv(V,VO)

ifT ATH*(V,V' ).

Proof (Outline) Suppose that the hypothesis of the theorem holds
for a formula ”f" o Let i, i . . . iy De the indices of the
V s which occur in the axioms used in a proof of 'Q»(V,VO).

The upward reflection principle holds for v“ﬁ-: so the instances
of those axioms akin to (ATl) involving V, can be replaced by
those which involve only Vg Ny Iterating this process as in the

procf of theorem 4.5 in [56] gives the result. {J)
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Definition 5.6 AIR is the theory A¥ augmented by the following

schema of indescribable replacement.
(IR) If B is a formula with exactly three free variables, then

%,y € Va 8(V,x,y) =& IveV B(v,xNv,y0v).

Theorem 5.7 shows that the consistency of AIR implies the
consistency of AT1, so that by the result of [58] s 1f ZF +
there is & Ramsey cardinal is consistent, then so is AT1. The
proof which we give is due to Reinhardt and we include it as it has

not been published,

Theorem 5.7 If AIR is consistent, then so is ATI1. 3

Proof By compactness and consideration of the axioms of A%it
suffices to show that if Sf) is a formula with exactly two free
varisbles, then AIRF JvevViev (¢ (t,v)e3¢ (t,V) ). To show
this, note that Ax & VVteV ( ¢(V,t)«» t&x ), and applying

(IR) with x as a parameter we get AveVViev ( ¢(v,t)(—-}’s&,xhv ),

as required, O

5.2 AT2

In A4 the parameters must be sets although it seems natural
to allow certain classes as well., Such classes cannot be too
" close " to V ( e.g. not V-3 ) or have a structure from which V
can be extracted ( e.g. not o u {V} , for any ordinal e ), In this
section we suggest one way of approaching this idea and we restrict
our attention to classes x& V. Then if ¢ (y,t) >t€V, for all
vy 2%, we allow ¢(x,t) to be used as an abstraction term. This
was partially inspired by Poincaré's notion of predicativity,
although it certainly does not follow from it,

The formal system AT2 is set up as an extension of WB¥(V),
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Its only other axiom schema is as follows. We include parameters

from V for convenience,

CA. If ¢ is a formula with exactly four free variables, then
X,7EVAp @V AVa ( p&a= V(e (x,y,0,t) 2 tEV ) ) >

Az eVVE (tez ¢ (x,y,p,8) ).

The next result shows that strong replacement is straightfor-

wardly provable in AT2 and theorem 5.9 strengthens this,
Theorem 5.8 Strong replacement for V is provable in ATZ2,

Proof Suppose that for some p &V we have x €V, Vuex3iv {u,v)ep.
Let ¢(x,p,‘t) be the formula

Yuex v {u,vy € pp Juex {u,tD &,
and now suppose that p& g and ¢ (x,q,t). Then
Yue xVv( {u,v} € p> {u,vYeq) so that t&V and the hypothesis
of CA is satisfied. The conclusion of CA shows that strong replace-

ment for V holds, D

Theorem 5.9 AIR ©AT2,

Proof We need only show that IR is provable in AT2 and it clearly

suffices to prove a version of IR which has only one parameter.

Suppose that x & VA B(V,x) holds. We may then also suppose that

xéV, as otherwise the result follows from the downward reflection

scheme. Now suppose that the conclusion of IR is false, sc that
-« A% eV (R ,xNRe ).

Put y = { ee, {{2M) | « €V.z = RxAx} and let fr(x,y) be

a2 formula which asserts that
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A6 (y: 6> - VBRES Iz=RB y(p) = {2l o
x = ULzl 3ReS y(p) = {zl} T ).
Then we have Y(x,y) A § (V,x). Let B (q,t) be the formula
Ax (V') A VE(P (RE ,x'NRE ) 5 tERY) ), and we next prove
Vo (yS@a-yVE (§(a,1) 2teV ) ). (%)

Suppose that y< q and § (q,t) hold., Then Jix'~Ax',t), and let
%' be this set. gq is a function from an ordinal £ and y&gq so
that if V =Rst, we have o & §. From the definition of Y it is
also clear that x'NRec =y so that sl:(Rg';,x'nRgg) holds. Hence
t &V and (#<) holds.

Using CA and (%) we obtain

3zeVVh ((tez e B(x,t) ). (% %)
From our assumption that “W¥Xe€V-— f}J(R\g ,xNRYX ) and the
definition of & we get P(x,t)¢» t&V, Hence, from (¥ ¥), V&V

which is a contradiction. J

Theorem 5.11 gives a weak relative consistency result for

AT2, but we leave open the next question.

Question 5,10 How strong is ATZ2 ?

Theorem 5.11 Suppose that o< and [ are ordinals with & 7 J, and

that there is an elementary embedding jsRR+ 1~ R> +1 which is

fixed on R and has j(g)==.Then (R +1,RR,&7 F AT2,

Proof Let =, R,j be as in the statement of the theorem. T'rom
theorem 3.4 we need only show that Ch holds in {Rect 1,RR,€ .
Suppose that, in this model, x =V and

Vp ( x&p >V ( qtc(q,t) = t€&V ) ) ( we are ignoring parameters
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from V for convenience ), Then x< j(x) and, in the model, we
have WVt (¢(j(x),t) -2 £+ &V ), Comprehension then gives
{t 1 Sfi(j(x),t)} ERPB+1LERx = j(V), and as j is an elementary

embedding, we obtain {t [Sfa(x,t)} & V, as required. L}

5.3 Weak forms of Ackermann-type set theories

In the original motivation for A it was asserted that the
notion of a set is not " sharply delimited " and one way of
interpreting this would be to ensure that there are collections
which may or may not be sets, Consequently, there may be no class
of all sets and we shall therefore return to Ackermann's original
formulation of A with the predicate #(x) for " x is a set " instead
of the constant V, in this section. To formalise the above ideas,
or doubts, we would have to drop the law of the excluded middle
for forrmulae involving M and to alter A2 so that it only applied
to subclasses of sets. However, theorem 5.13 shows that such a
theory would be very weak as A" , a theory in which it would he

contained, cannot even prove one version of the axiom of infinity.

Definition 5.12 A™ 1is a theory set up in the predicate calculus

using € for membership and M(x) for " x is a set ¥, Its axioms
are Al, A3 and A4, where V is replaced by M in the obvious way,
together with the following weakened form of A2.

A7 M(x)—» Jz V¥t ( tezDtex, B ).

Theorem 5,13 1If ZF is consistent then A” ¥ (Inf)™, where Inf is

the sentence $c(¢&xAV?Exyuﬁ}&x).

Proof Let (B,E) be a model of % +Vx Ix xeRac, in which the
natural numbers are non-standard. We extend this to a model of

A™ by taking B as the domain, E as membership and M(x) holding
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iff x has rank n in the model where n is in the isomorphic copy
of the true natural numbers which is an initial segment of the
ordinals in (B,E‘) . Al and A% are clearly true in this model
and A2~ holds as all subsets of the ( externally ) finite sets
will be in the model. To show that A4 holds suppose that
M(x) aM(y)a ¥t (6 (x,7,t) 2 1(L) ). (%)

If there are only finitely many t's which satisfy $(x,y,t) then
then there is obviously a set in the model which satisfies the
conclusion of A4, Otherwise, the overspill lemma shows that there
must be an infinite natural number in the model which is the rank
of a t which satisfies ‘){) This contradicts (%) so that A4 holds.

As all the sets for which M(x) holds are finite, it is clear

that (In_'f’)M is false in the model, as reguired. |

Next, we briefly consider alternative developments of ATl in
which V and V' are not assumed to be " much larger than all of their
elements ", Here, not all members of V could be used as parameters
in (4T1), but theorem 5,15 shows that if none are allowed we again
get a very week theory. It still might be possible to find a

natural way of distinguishing suitable sets, however,

Definition 5.14 AT1™ is the theory with axioms Al, A2, A3, VEV!

and 9S(V) H(‘ﬁ('\f'), for all formulae }f) with exactly one free

variable,

Theorem 5.15 If ZF is consistent, then AT1™ K Inf,

Proof We produce a model of L1, A2, A% and a finite number of
instances of gﬁ(v) ¥ (V') in which V is Rn, V' is Rm for some
ne€méew , and the domain is R . The result will then follow

from the compactness theorem.



Clearly Al, A2, A3 and VE V' will hold in such a model,
Suppose that the given instances of the schema contain the formulae
Polx)y « « éﬁ-l(x). Then at least one of ‘iméu.a { R B ﬁD(Rm)l
and {m&w | Rk -1 ¢, (Bm)] is infinite and let 4 be one of them
which is infinite, Then at least one of {m&4 {Rw F¢,(Rn)}
and {m€A | Rew P $,(Rn) is infinite and let 4, be one of them
which is infinite. Contimuing this process we get an infinite set
A y.y with the property that
Vi<nV¥m,mn'é Ay ( B F $¢(Bn)€> Riv ¥ ¢ (Rm') ), Choosing two

numbers from A,.; then gives us a model with the required property. |
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Chapter 6

Some isolated results

6.1 Permutation models of A

In this section we extend some of the work on permutation
models of ZF ( see {141, for instance ) to models of i, This
suggests that it should be possible to extend much of the Frankele~
Mostowski machinery to models of A but, at the moment, we do not
think that this would give sufficiently interesting results to be
worthwhile. The main result of this section is theorem 6.2 and we

use it to auswer a question raised in [56] .

Definition 6.1 A functional formula, y =F(x), is said to be a

permutation if it represents a bijection of the universe onto
itself. If y = F(x) is a permutzation then we write x €, y for
F(x)€y and ¥, for the formula ¥ with all instances of & replaced

by (EF..

Theorem 6.2 If y =F(x) is a functional & ~-formula such that
(i) F is a permutation,
(i1) x&V iff F(x)ev,
then we can interpret A in A using & for the membership relation

and V as V,

Proof PFirstly note that x € VEIF(x) ¢ VeIx €V, and we often use

this in showing that the interpretations of the axioms hold,

(M)F’ Extensionality holds as F is a bijection,

(AQ)F We show that Iz WVt (4 &r z &> t€V, &, ), By 42 and (ii)

AzVp (pez > 3tev(p =F(+), ¢, ) ). Then
t€r 2OF(t)e 2¢>t6€ V,, &, as required,



(Aﬁ)F Firstly we show that x &€y yE V¥x6V,

X€e Yy F(x)€ y 2 F(x)€V->x€V, by L3 and (ii). Now it remains

to show that WVt ( t Erx Dt Epy ) \7&VDIXEV,

Vi (te.x=te,y) dVE (F(t)ex3P(t)ey ) vy definition,
xSy by (ii),

~IXEV by A3.

(a4)  Suppose that x,y €V and V't (QSF(x,y,t) 3 4&V ), and we
show that Az€VVt ( t &€y 26 g’bt;(xgy,t) ). Let n|{x,y,2) be the
formula 3t ( p =F(t)A ér(x,y,t) ) and then from (ii) we get

Vo (V¥ (x,y,p) D€V ). Then by A4 Fz&VV¥p ( pez&V{(x,y,p) ).

Novw t&€pz¢IP(t)ez & (}’Jp(x,y,t) so that (44)p holds, M

Corollary 6.3 If y = F(x) satisfies the conditions of the theorem

then we can interpret A+ZP® in A+ZF° using &g for member-

ship and V for V,

Proof This follows directly from the theorem and the usual result

for ZF® which is proved in [14] , for instance. [
Question 4.24(c) of [561 asks

" If we add the following schema of downward reflection to
A, then do we get 4% 7
DR If ¢> has exactly two free variables, then

y&V,\tﬁ(Vyy) -7 33(6‘19‘9(3:930- "

e shall answer this question negatively, provided that ZF
is consistent, by interpreting A+DR in AT IR in such a way that
the interpretation of A5 fails,

Let y = #(x) be a functional € -formula which says that



L

r(72)= {72} ,
r({72}) =712,

F(x) = x, otherwise,
F obviously satisfies the hypothesis of theorem 6.2 so that result
shows we can interpret A in A<DR using &g for membership. An
instance of (DR)g becomes

YEVA Pr(Vy) P 3x6V o (xuy).

This is just another instance of DR so that we can interpret A+ DR
in A4+ DR using EFufor membership. The interpretation of A5 does
not hold as x €¢ {72} ¢3 F(x) € {72} & F(x) =126x ={ 712},

as required,

6.2 Rezl classes

In a first order theory in which all the objects are sets
questions about arbitary subcollections of sets do not really arise.
However, when we add classes to the theory it becomes conceivable,
from some points of view, that there are subclasses of sets which
are not sets, This posgibility has been considered for NBG in [76]
and we indicate, in this section, how it is possible to set up an
analogous system for A

It is natural to consider rezl clagses in such a system, where
a real class is one which intersects all sets in a set, This is a
problem for producing an Ackermann-type theory as the noticn of a
real class is defined in terms of V and so cannot be used in A4,

Our formal theory gets round this by introducing a new predicate

for rezl classes and a further predicate for hereditary real classes.,
The latter notion cannot be defined by recursion as we are not
guarenteed any structure above V.,

The axioms of the theory are obvious modifications of those
of A and the condition which replaces xSy&V~3>x €V is intended

to say that subclasses of sets which are defined by reference to
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nicely behaved classes are themselves sets,

Definition 6.4 The theory R has the language of A extended by two

unary predicates: Re(x) for " x is a real class " and HRe(x) for
" x is a hereditary reszl class ", Its axioms are
RO Re(x)&? VyeVAzeV VWt (1€ 263 t€x Lt &y)
HRe(x) €3 Re(x)a V¥ ye x HRe(x),
RI Vb (texextey)rx =y,
R2 If ¥ is any formula not involving z, then 3z Wt (t€z&3EV.F),
R3 XEyEV-x&V
If ¥ has exactly three free variables, then
Re(x) ARe(y) AZEV A {'téz | Z{;&(x,y,t)} v,
R4 If T is any formula with exactly three free variables vhich
does not involve V, then
0LyeV vt (E(x,y,t) 3teV)=> Aze vVt (v€z2<>T (x,7,1)),

R5 x&VaA3dy y@.x-—??y&x\”z@y z{_Lx.

Theorem 6.5 If & is an & ,V-sentence, then R +¥xRe(x)v & iff ¥ t &,

Proof This follows directly from considering the axioms. 13

‘fheorem 6.5 shows that R can be viewed as a refinement of A¥
as one would expect, It is straightforward to prove a number of
of elementary results in R ( similar to theorem 1,6 in E56] )
and, using these, we can prove the next theorem which shows that the
hereditary real classes form an inner model for %, The only
surprising fact about this is that RO gives us sufficient information

about HRe,

Theoren 6.6 If % is an & ,V-sentence, then R}-E“& iff v @,

Proof Omitted, due to length and lack of originality.
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6.5 Modified abstraction principles

On page 428 of [71} Wang briefly considers Ackermann's set
theory and he suggests that it might be possible to allow any

formula fto occur in A4 if we modify the axiom to

VAV x,yﬁvh\?]t (B(x,y,t)> teV) Aatév *‘@(x,y,t)“‘)
dze vVt (tez <% (x,7,1)),

where all free variables are shovm,

He also mentions that it might be necegsary to add the sxistence of
the empty set as an axiom, but it is straightforward to check that
there is a model of such axioms in which V = ‘iﬁ’} . However, our
next result shows that if we add an axiom asserting the existence

of two sets then the theory becomes inconsistent.

Theorem 6,7 The theory with axioms Al, A2, A3, Ad,, and

3xeV3yeVx$y is inconsistent.

Proof In this theory we firstly prove
VeV x4x, (&)
Suppose that Jx €V xex and let ¢ (x) be the formula xEV,@c&}c.
Then by Adw, 2 = £t [té—.thfitj €V, ut z&zé>zdz, so that ()
holds. From (%) we know that
végv. (% *)
Let x€V and we can suppose that x= t}(} . Using % {: t in A,
we see that §€V, Let E\(t) be tE€VAt+¢ so that by M,
z' = {x( xeV, x+pl € V., Let fﬁl(t) be tE-z'vtm? "
Then Wt (¥ ,(4) =>t&€V), z'¢z' by (%) and 2'£ ¢ by our
assunption that there are at least two sets. Hence we can use
fz in 44, and this gives 4x |xe&z',x= ‘#)} &€V, i.e. VEV,

which contradicts (k ¥).
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Wang's idea was to allow V to appear in the formula of Ad and
to alter this axiom to give an extension of A, If i is a formula
with three variables which could be used then we would have

(i) V2 (&(x,y,2) Tz&V ),
The other conditions which we put on T rmust prevent it from being
equivalent to z€V, as this implies V€V, 1In fact, noticing the
downfall of Adw,, we must prevent the possibility of % being
converted to a definition of V when the process of conversion does
not mention V, liore precisely, if ¢ is a formula with exactly four
free variables, then E would satisfy

(1i) =Vt (48 Ve A2 E(x,y,2) A $(x,y,2,t) ) ).

Qur next result shows thet if 4 satisfies the above conditions
then {zl ¢ (x,y,z)} £ V is already provable in A¥ , Consequently,

A% is maximal in this sense.

Theorem 6,8 If § is a formula with exactly three free variables,

x,y&€V and § satisfies (i) and (ii), then A¥ t {z | &(x,y,2)} & V.

Proof Suppose that the hypothesis of the theorem holds and let ¢s
be the formula 3o ,R ( « =the rank of z , B&®At&RB ). Then

(i) and (ii) show that s = {t| 3z ( 4 (x,y,z)&#g (z,t)} Cv,

The ordinals in & form an initial segment of those in V, and let ¥
be their supremum. Then Yz ( £ (x,7,2) 2 2%R¥ +1 ) so that the

result follows by 42, ()

There are some similarities between Wang's idea and a modific-
ation of the general abstraction principle { i.e. JxVy (ye&x&>K),
for any € -formula K ) which Hintikka described in [267) ., We
shall show that Hintikka's axiom together with certain other axioms
is inconsistent, This indicates another direction in which A4

carmot be generalised,



- J0 =

Hintikka proposed two modified versions of the abstraction

principle., The first of these is

AxVy (v +xS( yexer 131”) s (1)

where ¢ is any formula which does not involve x and gﬁ*is obtained
from {\ by replacing subformulae of the form Iz by 3z (z Fxa¥)
and those of the form Vz"{z vy Yz(z x> V) etc., in such a

way that all the variables become distinct. The second version is
Fx¥y (yFx v Fzo .o oavEz D> (vexes ¢t) ), (2

where 45* is a formula of the type described above and z, . . Tg
are all its free variables,

In {(27], Hintikka derived a contradiction from (1), but not
from (2), and he argued that this was a disproof of Russell's
vicious circle principle. Shiman has suggested ( in [65] ) that
this is not the case as the contradiction requires instances of (1)
which contain free variables, He has produced a more complicated
theory which ensures that the set being defined by an instance of
(1) cannot occur as a velue of a bound variable in the specification
of a parameter used in this instance.

Theorem 6.9 shows that (2) is inconsistent with some very
reasonable set theoretic principles. We will also indicate how
this result extends to a number of weaker theories. The reasonable
principles are extensionality ( this is a basic assumption for set
theory ), the nonexistence of two cycles of sets ( this seems
essential in formelising the vicious circle principle ) and the

existence of three sets,
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Theorem 6.9 The axiom of extensionality and (2) are inconsistent
with the following axioms

(1) VxzVyex x¢v,

(11) Fmeysz (X FyayBzacfx).

Proof We assume that extensionality, (2), (i) and (ii) all hold
and we derive a contradiction. Obviously we have
(iii) Vx x¢x.
By (2) IxVy (yFx2(yexedy =y ) ) and then by (iii)
FAxVt ( tExe>t =t .t ¥£x ). Then (i) shows there is a unique
x satisfying this condition end we call it a. We next show that
= 3Jx aé&x. (%)

Suppose that Ix a€x and then a#x by (iii), so that ag€xe&a by
the definition of a, which contradicts (i). Thus () holds,

B (2) FxVy (y 4% Syexe a(s £33 £y 7€2) ) ),
and let b be an x satisfying this expression, If b3 a, then from
(%), a€ b &=z, which contradicts (i). Hence b = 2 and we get

Vyea=dz (z Fa,.y&z2 ). (&%)

By (2) 3xVy (y# x-»( yexey»y#y ) ) and we then get
FxVy (yexedy $+y ) and we call this x ¢, as usual., Trom
(1) 3z (¢ # 2 #a) and z€& a follows from the definition of a.
Also, Ay yez by extensionality, but this y ga by (i) so that

y€a as well, This contradicts (k ¥ ). (_J

The only instances of (2) which have been used in the proof of
theorem 6,9 have no parameters so that this proof will go through
for any version of (2), no matter what conditions are put on the
free variables, 1In particular, it applies to Shimen's system of
[es].

Just for completeness theorem 6,10 shows that assumption (ii)

was necessary in the last theorem,
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Theorem 6,10 The theory with axioms extensionality, (2), (i)

and 3x,y x# y is consistent.

Proof Consider the model {4), itﬁlj Y wherc the membership relation
is used for ¢ . Clearly we only need to show that (2) holds in
this model and let W be the formulas used in an instance of (2).

LE \{f has two or more free variables then (2) will be vacuously
satisfied so we can suppose that 1/ has only one free variable.
Firstly we consider the case when "fl’contains no quantifiers, 'Then
N = +* and it will always be true or always false so that letting
x be ¢}  or ¢3 , respectively, shows that (2) is satisfied,

If 4~ contains at least one quantifier, on a variable z say, then
after this quantifier we have z ¥ x . % zf: y. Again, "{r“" becomes

always true or always false and (2) is satisfied as before.
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Chapter 7

Some natural model problems

7.1 Introduction

In this chapter we consider some natural model problems which
were motivated by earlier results in this thesis. A few results are
given but really we do no more than to point out some possible
directions for future research,

Sections 2, 3 and 4 are concerned vith E(R) and U(B ), where,
a8 in chapter 3, E(B) = {a|Rp {Rec}  and
U(B) = {oci(Be,rp, ey Y. It is clear that E(R) forms a
tree under the ordering o << RB' iff Rs¢’ARB’ and we shall often
refer to this tree structure on E( R) without explicitly mentioning
it. There are a large number of questions concerning the structure
of B( B) which seem interesting in their own right, but we shall
only consider some basic structual properties.

In the last section we introduce a problem concerning the
definability of ordinals in natural models which is g generalisation

of the natural models of A and A,

7.2 Is B(R) always bounded ?

Theorem 3.15 shows that U( B) is not always bounded and it is
natural to ask if this is also true of E(B). Ve shall consider the
following three vways of expressing the idea that E(ﬁ) cannot bhe
bounded: only the first two of them can be written as statements
of ZF.

(i) E(B), considered as a virtual class, is unbounded,

(ii) the lengths of the branches of E(R ) are unbounded,

(iii) E(E ) has a branch which is unbounded,

The existence of a P satisfying all of these statements is

provable in MK ( see {451 ). Clearly (iii) =(ii)=>(i), and we
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next show that neither of these implications can be reversed, with

respect to natural models of Z,

(2) To show that (ii)$P(iii).

Let % be an inaccessible cardinal such that R¥ ¥ 7l and let K

be the least ordinal for which R %'< R%. Then R x' FzM +(ii), for
some B < k', but (iii) cannot hold for this P as otherwise
taking the union of the unbounded chain would contradict the

definition of XK1,

(b) To show that (i) #(ii).
We assume that do¢, §,% Roc<{RR<L RY ¥ 7, and then let ¥' be the
least ordinal which satisfies

qw,R Rx< R { RX , RX F 2, (%)
Then let of', B' be the corresponding ¢, P, From theorem 7.5,
below, E(ac') is unbounded in R ' so that (i) is true ofet! in
R X', Further, E(=') cannot have o branch of length 3 in R¥"'

from the definition of &', so that (ii) fails for =<' in R X',

Part (a) shows that the existence of a § satisfying (iii)
ig not always true in natural models of ZM, We next suggest that,
from a Cantorian viewpoint, there will be no such 8. The motiv-
ation behind this will be explained in the next chapter, If, in
reality, there is such a [§ , then taking the " union " of the
unbounded branch of L({# ) would give the Absolute. Hence there
would be an an ordinal such that first order truth in RR ig the
same as first order truth in the Absolute: we consider this very
unlikely. There is a large factor of analogy in this argument as

the union of elementary chains argument is only proved for the
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We conclude this section by showing that the existence of a §

satisfying (ii) is provable in ZI,

Theorem 7.1 ZM} AP ' the lengths of the branches of E(f )

are unbounded *'.

Proof We work in ZM and suppose that for every  , the lengths of
the branches of E( 8) are bounded., Then put
Flee) = U 4% 1 3p8dx ¥= \,:’«{the lengths of the branches of E(f )} }‘
and ag there are arbitarily large inaccessible cardinals we know
that there are arbitarily large F(o¢ )s. Hence there is a functional
formula G which satisfies
G(0) =0,
G(% +1) = F(' the least A satisfying F( )y G(=xc) 1),

a(h) = ;\_)\G(/LL), for A a limit ordinal.
Pl W

We clearly have G(o¢) 2F(ec) for all ordinals <« , G is a
normal function so that, in ZM, it has an inaccessible fixed point,
Let 7, be such a fixed point. As ?Z is inaccessible
Ry F 3 ' the lengths of the branches of E($£ ) are unbounded ',
Let B be an ordinal which satisfies this condition in Rq ; and then
P(g )2.-1 . Hence we have
(7)) PC(2)ZP(KE) T q = G(‘nl) as 7 is a fixed point of G. This

is a contradiction, L_:_L

1.3 The structure of E(g)

We work in ZM and our first three results concern possible

lengths of E(B ).

Theorem 7.2 ¥V ,¥ 3E>Y E(g )= =,



- 64 -

Proof We know that there are arbiterily large P s with E—G: ) 2 X
and let ' be the least ordinal which satisfies

e, Xep ,\i("‘éﬁ)‘:,;oc.
Suppose that E(ET) >o¢ and let 5 Ve the xth member of E( #').
Then ' the least § for which %¢§ and XéP and Ypm. <X there
is a set of ordinals N\, for which R g'{ R\, which has order type
Z At 4+1 ' shows that &'¢ Df(RE ,RES '}. This is a contradiction

so that ]?(vé DEE N

Theorem 7.3 “Vor,¥ AR 7YX ' the length of B({%), considered as

a tree, is equal to ',
Proof Similar to the proof of theorem 7.2 [\

Theorem 7.4 Yor,¥ ( F 2 >% E(B) has a branch of length o

iff o is a successor ordinal )

Proof If o4 is a successor ordinal then a proof similar to that of
theorem 7.2 shows that there is.a § with the desired property, If
1x.is a limit ordinal then no B(f ) can have a branch of length @< by

the union of elementary chaing result. D

The next two results give some indication of the width of the
trees which occur as E( g )s, and theorem 7.7 shows that all trees
of length 2 occur as E({)s. The method of proof used for theorem

7.6 can be extended to give a number of similar results,

e S
i e r ey A

Theorem 7.5 If RRX . . LR £ Rx ., , then E([.S):."s.‘*&'.,‘ = w4,

D e R D )
oK Do U il B

Proof Suppose that RRE <L Rx; < Rxi., and that B(E ) dwia X .,

Then in Rox,., we know that sup 'EL | REK RKE exists and is
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't

2 . This contradicts DF(R ¢ iy, 18} )= Dr(Ret, , {fY), so

that the result holds, |3

Theorem 7.6 If Rp 4 . . A Rx; 4 R 4, 4 R4y, . . occurs
in a branch of E( #), then I( #) has at least SC (4 branches all

of which have a different member less than &+,

Proof Suppose that the hypothesis of the theorem holds and we show
that there are at least oo, splittings ' of E() at L.,
Suppose that there are oniy &< 2,4, such splittings and then for
some  £'€ &, o4 is the ¢.'th ordinal for which Ret ; £ RA

and —1"3¥ Rec; 4 R¥ < R) in R4y, Thus o)y, EDF(ROL 4pRac )y, ),

which is a contradiction, [:_l

Theorem 7.7 For every tree of length 2, there is a ﬁ such that

E(P) has that tree structure.

Proof Given a tree of length 2 with X many branches, theorem 7.2

shows that there is a A > x with E(8 )= % . Theorem 7.5 shows that

this B(R) is of length 2, as required, |}

We finish this section by indicating how one might consider

the possible structures of short E(R )s.

Definition 7.8 Let ¥, be the least ordinal for which

Foc, B Res “Rg <A RY, and let o, and B, be the corresponding

a{,a.ndﬁ.

By the usual arguments of this section E(e¢,) has only one
branch of length 3 and E( e o ) = X 1yt 1. Theorem 7.5 shows that

=y
E(oC)) 2 &, so that E( ) has precisely ¥, branches so that
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its structure is

-

% & °

=
%.

This method of constructing Bs for which E(f ) has a certain
shape can easily be extended to other short trees, but we leave open

the next problem,

Question 7.9 Can those trees which occur as E(B )s be characterised

in any nice way ?

T.4 E(8) and U(E)
In chapter 3 we indicated that we often have B(R) #U(B),

but we do not know when equality holds. The two theorems of this

section give conditions which imply equality,

Theorem 7.10 If the length of E(R ) is e , then B(B) = U(H).

Proof Suppose that the length of B(B) is £ and that

o €U(R)-E(B). Then, by theorem 3.3,

A x¥ex( ¥ e df(Re,RPp) ARB< RY¥ ). Choose such o X and then
by our assumption on E({ ), ¥ will be the nth element of a branch
of E(B), for some n&«w>, Then consider the greatest B such that
there are n-1 ordinals 5| satisfying RE<{ R4, . . Re(, . 4R¥
and ! the definition of ¥ '. This shows that R & Df(Rx ,RR),

contradicting theorem 3.1, 11
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Definition 7,11  is said to be low if =3 ¥ R¥ ARE.

Theorem 7.12 If B is low, then E(g)=Uu(R).

Proof Suppose that B is low and that o & U( ﬁ‘)-E(ﬁ). Then, by
theorem 3.3, HXé&x(¥e DF(RX,RA) \RF<XRY ), and let ¥ be
such an ordinal. Then the least B for which Rg <R¥ and ' the
definition of X ' shows that B &€Df(R,RB ), contradicting

theorem 3,1, ]

Corollary 7.13 B(R )< B( R') 2 U(B)< U( BY).

Proof Let P be an ordinal less than the first inaccessible
cardinal for which U(B) is unbounded ( such an ordinal exists by
theorem 3.15 ) and let B ' be the least ordinal for which R B'<RE.
Then E(@ ) S EB(R'), but as @' is low, the theorem shows that

U(8') = B(B'), which 55 bounted oo that U(@) £u( 4. O]

Theorem 7,12 admits some generalisation, but we leave open the
j2

next problem,

Question 7.14 When does B(R) =U(R) ?

1.5 Definability of ordinals using parameters

Theorems 3,2 and 4,14 show that natural models of A and At
are equivalent to the nondefinability of ordinals in natural models,
using certain parameters. This suggests that more general results
might be obtainable and we briefly consider the problem of when
there is an ordinal B §Dr(R&,REUx), for xTRx and BLAC,
This is clearly a generalisation of the notions of natural models
of A and A¥, A partial solution was given in theorem 3.7 which

says
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If X is an inaccessible cardinal, &% x and x is a set of
cardinality <& such that xCRet, then there are X many BAx

for which R ¢ Df(Rec sRR 1 x).,

Thus the remaining problem is to extend this theorem to sets
x of larger cardinality. It is clear that the members of x must
fall into ™ B bands " ( shaded portions in the diagram below )
and that x cannot contain any complete # band, but we leave open

the next problem,

Question 7.15 How large, relative to Roc s can x be when

3B < B¢ DE(Be,RRUX) ?

In this question ' large ' can firstly be interpreted as
cardinality, but it might alsoc be possible to interpret it as the

inclusion reletion when results concerning scales might even hold,
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Chapter 8

Cantor's work

8.1 Introduction

Although it seems possible to trace the notion of 2 set back
for an indefinite period, it is indisputable that Cantor's work
made the greatest step, by far, in the development of the idea.

This is one of the reasons why we think it important to consider
his work here, The other is that ite nature is often misrepresented
in textbooks and mythology today.

Basicall;r we shall give an account of Cantor's work on the
notion of a st and, from his publications, we can discern three
stages in the development of his ideas. It is quite possible that
Cantor's views remained constant and that we are really only
considering divferent stages of presentation, but we shall always
write as if hie papers correspond to his ideas. The main references
which we shall use are [8], {91, [10] and [30] and we shall
usually refer {o Cantor's ( or C's for the rest of this chapter )
papers just by the year in which they were first published.

As well 1e describing C's ideas we shall often comment on
points at whish warious probiems arise and sometimes we shall inves-
tigate them further., Also, we shall try to show how, in the
development of set theocr; ~~mt L._..7° L= gone astray ( knowingly,
or otherwis~ ) from the original ideas., Frequenily, we shall
impose certain ways of thinking on the published work so that we
cannot Le sure that we are faithifully presenting C's work, but we
leave otilers to argue over such problems.

Actually, C has written relatively little on the notion of
a set‘( or aggregat?, as it was called at the end of the ninteenth
centuary: we shall always upnate such terminology without further

mention ) and most of his work concerns infinite ordinals and
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cardinals, He did not view these in the current way, but firstly
as newly postulated entities and later as abstractions from ordered
sets, During this chapter the terms ordinal and cardinal have a
variable status ( among the three meanings ) and we hope that the
intended usage will be clear from the context,

A reasonable introduction to C's earlier work and some
indications of his motivation are given in {307 . This also
describes his first work on powers of sets ( two sets were said to
have the same power if there is a bijection between them so this
corresponds to cardinality ) and we shall not discuss this. For
a discussion of the prior opinions and uses of the notion of infinity

in mathematics and philosophy C's 1883 paper is very good.

8.2 Early work on ordinals

In the last part of [1883} C explains certain principles by
which, he argues, we can form new infinite ordinals, His language
is very suggestive of one's creating new objects in time and we
shall discuss this interpretation in section 9.4.

C's considerations start with the seguence of natural numbers
(1) o 29 B¢ ¢ s s ao™3 5 5 3
In this sequence each element is obtained from the previous element
hy adding a unit to it, and this process is called the first prineciple
of generation. C then argues that we can posit a new number,®J,
which is the least number greater than zll of the elements of (I).
Then, applying the first principle of generation repeatedly, we
obtain the new seqguence

o tl, W2, W+3, . v . . ,¥Y, , ., .,
On the basis of this, and other, examples C defined the second

principle of generation as follows.

" If any definite succession of ordinals is given, for which
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there is no greatest, a new number can be created on the basis of
the second principle, which is defined to be the least number

greater than all of the elements of the sequence, "

Using this principle C then introduced «,n and ™ in the
obvious way and he proceeded to illustrate the dazzling array of
small countable ordinals. C then defined the totality of all
numbers of the same power as (I) as the second number class, (II)
( (1) was called the first number class ). Irom the existence of
(II) and the second principle C then obtained a least member of
the third number class, and so on. In making these definitions
C has used the third principle which takes the form of a restrict-
ing, or limiting, principle on the second one. This states that
the numbers to be next formed using the second principle are all
to be of the power of a smaller number. To be precise, the 1883
paper does not actually state the third principle, but it is said
that (II) has the required property and hence it is said to satisfy
the third principle, From the introductory part of [1883]

( see page 547 ) it seems that C might have wanted the third prin-
ciple to give the number classes rather than to restrict all uses
of the second principle in thig way,

Some theorems on ordinal arithmetic and a proof that the
power of (II) is the next greater cardinal to that of (I) form the
remaining technical results of [1885] . ‘lhese proofs are always
of a higher order nature ( i.e. they consider sets of ordinals etc,
but we shall consider this point again with respect to the later
work.

We learn from [36] that in 1883 the above approach to
ordinals had alrecady been replaced by C ( probably for reasons
which we shall outline in the next section ) and the notion of

an order type was introduced as an abstraction from an ordered

)



-T2 -

set, TFurther details of C's work between 1883% and 1890 are given
in [30] and we only note that some of the work which was published
in 1895 ( which we call later work ) had been completed ten years

earlier,

8.3 Some comrents on the early work

The main criticisms of ('s earlier work on ordinals seem to
concern certain uses of the second principle and we find it conven-

ient to split the uses of this principle into the following cases,

(2a) When we apply it to a countable, increasing sequence of
ordinalg which have already been introduced and for which we have

a notation. Such sequences are called fundamental ones.

(2b) When we are prodicing a least ordinal of the next higher

Cardinal ity .

(22) leaves no doubts that we have a definite succession of
ordinals, but this does not seem to be true of (2b). The third
principle might have been intended just as an assertion that (2D)
is dealing with a definite succession of crdinals, but this still
gives no reason for believing it. It seems intuitely reasonable
that however we describe any procedure which only uses fundamental
sequences of ordinals we shall never be able to generate the first
uncountable ordinal. The work on ordinal notations in ZF ( see
page 215 of [593 , for instance ) also suggests this. Thus, if
the second number class is to be thought of as a completed totality
we seem to require a more detailed description of the process
by which it is fo be generated. TIn particular, what is a definite,
uncountable procoss 7

It is hard to imagine an answer to this question which does
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not use an uncountable set to index the process, and the only way
to get such a set, at the moment, seems to be by using the power
set axiom, We cannot assume that C had such a scheme in mind as no
indication of it is given and it would hardly have been obvious to
his readers, An alternative solution to this question would be

to allow (2b) without the power set axiom by adding the proviso
that the class of all ordinals less than the new one is essentially
incomplete, However, we do not think that such an approach is
intuitively very plausible,

On the basis of the above arguments we suggest that Cts
justification of the existence of the second number class is not
completely convincing, It is egually possible to advance analogous
criticisms of the notion of a set which was given in C's 1882 paper,
which, in chapter 2, we suggested was the basic idea behind
Ackermann's set theory. In that paper the concept of power was

considered as an attribute of " well defined collections ", vhere

" A collection of elements belonging to any well defined
sphere of thought is said to be well defined when, in conseguence
of its definition and the lcgical principle of the excluded middle,
it must be considered as intrinsically determined whether any
object belonging to this sphere of thought belongs tc the collection,
or not, and, secondly, whether two objects belonging to the
collection are egual or not, in spite of formal differences in the

manner in which they are given, "

C went on to emphasise that " intrinsically determined "
does not mean that we can actually find the answer. With this
notion of a set it is hard not to jump to the conclusion that all
sets are definable, in some sense, so that there cannot be a first

uncountable ordinal, all of whose members are sets. It might be
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worthwhile to consider how far one could go in formalising a system
of sets and objects where all sets are definable, znd we mention
this again in section 8.8, %his notion is also slightly evident
in the following definition of a set which C gives in a note to the
1883 paper. It is also possible to see the later ideas developing

here,

" By a set I understand, generally, any multiplicity which

can be thought of as one, that is to say, any totality of definite

elements which can be bound up into a whole by means of a law, "

8.4 Cantor's later work

By the later work we mean the papers of 1895 and 1897. Here,
the main aims are to establish a rigourous basis for the ordinals
and cardinals, and tc start the development of their theories.
Throughout thesc papers set theory is not treated in general although
C says that he intended to formulate this theory later, The 1895

paper starts with the oft quoted " definition " of a set,

" By a set we are to understand any collection into a whole

of definite and seperate objects of our intuition or thought, "

It seems highly unlikely that C intended this to be anything
more than a heurisiic guideline as he frequently explains why certain
sets can be said to exist., Consequently, we shall not treat this
statement as a definition., We toke it to mean that any collection
which can be consistently " visualised ", in some sense, can be
thought of as a set.

Next in [1895] C explained his basic ideas about cardinality
and the relationships between cardinals, He also defined arithmetic

operations on the cardinals, proved some results about }{O and
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indicated some results concerning increasing sequences of cardinals,
The most important point, from our point of view, is that C no
longer based these ideas on direct intuition, but says that for

a rigourous foundation of these matters we must turn to the theory
of order types, which he considered next.

C starts fromlthe notion of a linearly ordered set. He congid-
ered this as a set with a seperate ordering relation rather than
the current view which includes the ordering as a set. Order types
are considered as abstractions from these ordered sets where the
abstraction is thought of as a set, all of whose elements are
" unity ", which has the same order precedence as the given set.

C then discussed similarity of order types and finite order types,
Finally, in [1895] s addition and multiplication of order types

are considered and the order types of the rationals and the reals
are discussed, The results include the well known characterisations
of the latter two order types.

This work continues in the 1897 paper where C defines well
ordered sets as linearly ordered ones for which

(i) there is a least element,

(ii) if a part, f, of the set has one or more elements of the

set above it, then there is an element of the set which

follows immediately after f,
1t is clear that this is equivalent to the usual definition of a
well ordering. C then proved the results on well orderings which
now form a well known part of courses on set theory., Ordinals are
defined as the order types of well ordered sets and the law of
trichotomy for ordinals is proved rigourously. Then, at the
beginning of section 15 of [1897] , there comes what, from our
point of view, is the most important definition in the paper.

This is
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" The second number class, Z(j{g), is the set of all order

types of well ordered sets of cardinality %{;. =

In effect, this is allowing us to gather into a whole all the
different well orderings of w and, as such, it is a new principle
which has not been previously used in these two papers. It is
quite clear when an ordering of & is 2 well ordering and, although
we cannot give a process which enumerates the well orderings of wi,
we are allowed tc gather them all together =t one sweep. Thus
Z(E{O) is defined in a single second order way ( we take all well
orderings of & - these can obviously be obtained from all subsets
of @ ), rather than by a vague belief that the building up processes
for obtaining ordinals can be continued through all countable
ordinals,

C then proceeded to analyse Z(S{O) and he proved that its
cardinality is the next greater one to }{0. He also proved his
normal form theorem and this illustrates C's approach to set theory:
he studied the structure of Z(}{O) in some detail, rather than

getting involved in vaguer macro problems.

8.5 The second order nature of the later work

We think that, at the moment, the second order nature of C's
work camnot be overemphasised. If we were to begin to formalise
his work on ordinals, then the principles akin to (2a) could
easily be handled within a first order system, but this does not
seem to be true when it comes %o the existence of Z(j{o) end the
power set axiom. We do not think that C would have assented to
founding set theory on full second order logic, where the variables
X, ¥, « « . range over subcollections of the ' universe of all sets
for reasons which we shall discuss in the next section, We suggest

that = suitable form of second order logic ( we call it a mild
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second order theory ) would be one where Xy ¥5 « « o range over all
those collections of sets which are equipotent to a set, and
Xy ¥s s » » Tange over sets, as usual, Then the power set axiom
( the existence of Z(HO) can be derived from this ) would take the
form

Vzidy ( Viey t &x, VX Sx Jtey t =X),
This essential viewpoint gets lost in first order axiomatisations
of set theory, such as ZF.

If is alsc important to notice how, on the basis of the above
ideas, we can justify the comprehension axiom of ZF without any
reference to truth considerations, as follows, We consider a set
y and, for convenience, a formula 4) with exactly one free variable.
If xey , C would argue that by the logical principle of the
excluded middle, we would have #(x) or '-w?ﬁ(x), Then, as the
power set of y contains all subcollections of y, there must be one,
z say, for which Vx (xgczedxay h?(x) ). Hence the comprehension
axiom holds. ©his reduces the truth of comprehension to o question
of logic and although people can, and do, work in non classical
logics, classical logic is presupposed in all of C's work.

This justification of the comprehension axiom runs counter
to what some people have recently suggested and we think that model
theory is partly to blame for this shift of emphasis, Here, one
frequently considers first order ZF ( a qu.ain"i: theory, as it only
ensures that certain definable subsets exist although it is not at
all clear what the variables range over so that we do not know in
what sense these subsets are definable anyway ) and then from Skolem's
work we know that there are countable models of ZF so that people
get very worried about which subsets of ws, for instance,

" really exist ", They also begin to think that comprehension
is true because, for a given formula 4) s ‘they can check the truth

definition of ¢ in the model, whereas questions of truth in set
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theory camnot use Targki's truth definition for it agsumes thet the
universe is a2 single consistent totality.

A good examnle of bad motivation which follows from such
misunderstandings is Barwise's paper [3] + In the concluding
remarks of that work he says thet to allow all first order formulae
to occur in the comprehension axiom ( a suggestion due to Skelem
which is obviously inadequate for giving all subsets ) assumes that
we can form a true universe of 211 sets., TWhy this should be true,
unless Barwise is worried about truth definitions, remains a
mystery. Barwise considers restricting the comprehension axiom to
AO(@) formulae ( i.e. those formulae which are Ao when we allow
G>, the power set operator, as a new basic symbol ) and he seems
quite willing to believe these instances., But now if one is
willing to believe the power set axiom in its mild second order form
then all ingtances of comprehension follow, and if one believes it
in some other form it seems to be a harder problem to say which
subsets exist than to accept the comprehension axiom.

It seems that [727] is the origin of such heresies and the
presupposition of this paper is that set theory is a first order
theory rather than a mild second order one, This fallacious belief
seens to be held largely by people who publish in logic journals:
mathematicians, in general, seem gquite happy to believe in a
genuine power set operation which cannot be first order, In [72]
Zermelo talks of comprehension holding for " definite properties "
and this notion is an open ended extension of Skolem's restriction
to first order formulae., Although all instances of Zermelo's
comprehension axiom will be true from a Cantorian viewpoint,
there does not seem to be any reason for supposing that these
ideas suffice for describing the true power set operation,

Finally, in this section, we note that, in ET] , Borel

criticised C's work on ordinal numbers and he was probably
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referring to the earlier work so that his reasons might have been
similar to those of section 3. Borel acknowledged C's proof that
Gﬁumms larger than }{O, but he did not believe in the existence of
#,, This was the motivation for his later (famous ) work. In a
footnote Borel asks why there should be a least cordinal greater
than }{6, although from C's later work and the Schroder-Bernstein
theorem ( both of which had been published before [7] ) there seems
to be a convincing proof of this fact. Of course, we do not know
that Borel was agueinted with these results and, as he offered no
criticisms of thein, we assume that he was not. Thus his work was
motivated by doubts about the principle (2b) and we shall later

suggest that other work also arose in this way.

8.6 Inconsistent multiplicities

A letter which C wrote in 1899 ( see [10) ) contains what
we consider to be his final conclusions about the notions of set,
ordinal and cardinal, The discussion in the letter assumes that
there are multiplicities ( we hope that this word does not have eny
conmotations of oneness ) which are not sets. The main point of
the letter is to show that all cardinal numbers are alephs, or, in
effect, that every set can be well ordered., However, C firstly
outlines his general idcas.

C says that it is necessary to distinguish between two sorts
of rultiplicities ( he nlways assumes that we are considering only
definite multiplicities ) and he says that for some multiplicities
the assumption that " 21l of its elements are together " leads to
a contradiction, so that it cannot be conceived of as " one finished
thing ". On the other hand, if the elements of a multiplicity
can be thought of as " heing together ", then it is called a
consistent multiplicity, or a set. Thus 2ll notions of processes

and building up are eliminated and the whole of set theory is
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given in one psychological ( though not obvious ) swoop.

Then C gives informal versions of the axioms of ZI" as ways of
getting from one set to another. Hence it would seem more reasonable
for this theory to be called CZF than ZF, Two of the statements

which are of interest to us are

(a) Mo equivelent multiplicities are either both sets or both

inconsistent.

(b) Every submultiplicity of a set is a seét.

(2) obviously implies the replacement axiom and (b) suggests that

our mild second order theory is a reasonable formalisation of part
of C's ideas. C probably bhelieved these axioms because of consid-
erations of the Absclute, although he does not explicitly say this.

As exemples of inconsistent multiplicities C gives " the totality
of all things thinkable " and-O., which is the sysfem of all ordinals
under their natural ordering. The proofs that these multiplicities
are inconsistent are, of course, the usual paradoxes. C then
reiterates his work on ordinals and gives the following procf that
if v is a definite multiplicity and no aleph corresponds to it as

its cardinal number, then v must be inconsistent.

Suppose that v is a definite multiplicity and that no aleph
corresponds to it as its cardinal number, Then " we readily see
that, on the assumption made, the whole system £2.is projectible
into the multiplicity v, that is, there must exist a submultiplicity
v' of v that is equipotent to the system Sk, +v' is inconsistent

because f% is and the same must therefore be asserted of v. "

From this C proved the law of trichotomy for cardinals.
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The quoted proof was objected to by Zermelo as it used inconsistent
multipiicities: we consider this further in section 8.

C's considerations of inconsistent multiplicities can be
argued to follow logically from his earlier work as, in [188%} ,
he says that considering the infinite in the sense of finite
increasing without bound implies the existence of the truely
infinite as the domain for the variables. In this way, the use of
variables over sets necessitates the existence of inconsistent
multiplicities as their demains.

In the introduction to C's letter in {247 , van Heijenoort
says that C's incongistent multiplicities prefigure the distinction
between sets and classes which was introduced by von Neumann.

This seems to be untrue as the nature of proper classes assumes
that they are definite, fixed totalities which are not inconsistent
by their very existence. The idea of a proper class seemg far more

likely to have originated with Zermelo's definite properties.

8.7 Cantor's notions and set thecretic developments

Before we consgider some of the interclations between C's
notions and get theoretic developments, we shall return to the so

called definition in (18957, which says

" By a set we are to understand any collection into a whole

of definite and seperate objects of our intuition or thought, "

It is often claimed that this leads to an inconsistent theory
and, as an example of this,we quote from pages 285-6 of [31} .

We do not think that the sense is altered by the omissicns.

" Cantor's definition has not been retained in quite its

original form by later authors, but was replaced at an early stage
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by a more abstractly conceived principle, or axiom, that has become
known as the principle of comprehension E e refer to it as the
abstraction principle sc as not to confuse it with the axiom of
comprehension.] “ e a0 EThis} can be expressed in the following
form
AzVx ( xez e H(x) )

e« + + « The formal system which we have obtained in this way

[:the abstraction principle and extensionality formulated in the
first order predicate calculus with E:). « « » may indeed be regarded

as a reasonable formalisation of Cantor's naive theory of sets, "

This argument simply does not seem to be valid, Presumably
the variables of the formal system are ranging over sets, but then
the abstraction principle shows certain objects to be sets whilst
C showed that they were not sets. The formal system has more in
sympathy with Frege than with C as it ignores C's insistence on
our being able to visualise all the members of a set being together.
Also, on page 262 of [20] ; Godel suggests that " a satisfactory
foundation of Cantor's theory in its whole originzl extent and
meaning " can be given cn the basis of iterations of the notion
of 7 set of 7, and this contrasts sharply with the suggestion that

o reasonable formalisation of C's theory is inconsistent.

Next we point out three areas where people have extended set
theory using new principles which run contry to C's ideas, Their
justifications do not seem to be as well motivated as C's work.

The first example is Ackermann's set theory which we discussed
in chapter 2. 'The second is the notion of building up sets
" oin time "y [:5i1 and [ 52 being examples of this, On page
57% of [1883} C says that, in his opinion, it is wrong to use the

concept of time to explain the much more basic concept of a
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continuum and hence it is reascnable to suggest that this is also
true for the notion of a set. Thirdly, there is the topic of
reflection principles and their comnections with the Absolute,

In [:5] and {50] , for instance, axioms are asserted which suggest
that there exist sets ( or at least consistent multiplicities for
the notion of set in such theories is often weaker than C's notion )
which resemble ( e.g. are elementary substructures of ) the Absclute.
It is quite clear that C believed we could not have any good

approximation to the Absolute and on page 587 of [1883} he says

" There is no doubt in my mind that in this way E_producing
new nunber classes-l we may mount even higher, never arriving at
any approximate comprehension of the Absolute, The Absolute can

only be recognised, never known, not even approximately. "

Phus if we are to have any strong reflection principles and
to maintain a Cantorian viewpoint then we must believe thalt the
expressive power cof the language under consideration is hopelesly
inadequate for truth in the Absolute., However, such ideas do not
seem tc be considered at all in the works on reflection principles.
One way of making reflection principles and Ackermann's set theory
more reasonable is to consider them as ways of picking out certain
ordinals which occur in their natural models, but this was not

the original motivation for these idcas.

Comparing the kind of results which C proved with those
which are proved today we get another contrast, this time in
nethodology. Ile concentrated on structual problems for small sets
rather than larger cardinals, for instance. Although C was
investigating problems which oceur in nature ( gpecifically the

continuum hypothesis, of course ) perhaps we could still gain
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much guidance from small, structual considerations.

Sierpinski is one of the very few mathematicians who have
continued to work in C's original spirit. Some further topics
for structual consideratiohs are countable order types ( although
there is quite a bit in the literature on this topic ) and other
countable partisl orderings. Another topic which seems to have
been neglected is n dimensional order types ( for nfiw see page
80 of {9] ) and higher dimensional ones. It might be possible
to show that all interesting guestions concerning these objects can
be reduced, in some uniform way, to guestions about ordinary order

types, but we know of no such results.

8,8 lFormalising parts of Cantor's work

Here, we shall briefly outline three problems connected with
formalising parts of C's work. Firstly, there is the " constructive *
notion of building up sets by a definite process, which we shall
again refer to in the next chapter. These ideas have been considered
by Lorenzen, [41) , Wang, [71} , Borel, [ 71, and many others,

We consider all this work to be motivated by C's ideas which lead
to the first principle and the principle (2a). Is it possible to
isolate a definite part of set theory which results from just these
principles ( when (2a) is modified to deal with sets as well as

ordinals ) ?

Qur next considerations concern the interpretation of C's
earlier work, mcntioned in section 3, which suggests that all sets
are definable, Although we cannot easily formalise such statements
in a first order system we indicate how a first order systen,
analcgous to ZF, could be sel up , the cxioms of which would be
true under this interpretation. It would not be assuned that all

members of sets are sets so that an additional predicate, M(x),
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would be introduced for " x is a ( definable ) set ", We then let
§:(x) stand for Jly gf');(:\/”) ~ B(x), vhere f‘f)(x) is an € -formula
with onc free variable, and we would have the schema
& (x) ¥ 1(x).
The other axioms would be obvious variants of those of ZF and, for
instance, the comprehension axiom would take the form
B(x)n 8302 3z (4(2) V1t ((t€ze>tEXAP(L,y) ) ).

This system would be quite similar to one which Friedman
introduced in El7i§ and if we add Vx M(x) ( which is false under
our intended interpretation ) to our system it becomes Friedman's.
Obvious questions which one could ask for this system are its
relative consistency and the structure of its models, but we shall

not pursue these questions.,

Our final considerations in this chapter concern C's notions
of inconsistent multiplicities and the Absolute. We hope to consider,
elsewhere, the general problems of formalising these notions and
here we only consider the conversion of C's proof that every set
has a cardinality which is an aleph ( sec section 6 ) into a proof
which would be acceptable in a ZF like system.

We assume that all variables range over sets and then the
hypothesis of the proof is

3ot v He ()

C then considered it obvious that we could project the whole of
JL into v, If we interpret this as meaning that there is an
injection from Ll into v, then this leads to a contradiction in
7F. Hence the question reduces to showing that £X can be projected
into v,

C seems to have used the axiom of choice as a logical principle
so that we feel it is reasonable to assume the existence of a

choice function F:®(v)-{¢} —¥ v with P(x)&x. Now the
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argunent that Ll can be projected into v can be represented by
defining the following function by recursion

g(0) = F(v)

g( %) =F(v-sL¥] ),
and then we know that g must be defined on all ordinals as, other-
wise, consideration of the least ordinal for which g is not defined
contradicts (X).

Thus it is possible to get a proof of the well ordering theorem
from C's proof ( by eliminating one of the reductio ad absudrums )
so that therc are grounds for believing his proof. However, it
remaing true thot Zermelo was the first person to rigourously prove

the well ordering theorem without using inconsistent multiplicities.
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Chapter 9

Z2F end quasi-constructive approaches to set theory

9,1 Historical developments of ZF and NBG

Briefly, “ermelo first axiomatised part of Cantor's work
( see (727 ) and then Frankel noted the omission of the replacement
axiom ( sec [15] ). IHowever, Zermelo's axiomatisation included
the notion of a " definite property ", or definite assertion, so
that his comprchension axiom took the form

For every definite propositional function F(x),

Vy3zWt ( t&€z €P(t) at€y ).
It is not completely clear what Zermelo meant by a definite property,
but Skolem suggested that it could be taken as any first order
expression ( see [59:} ), giving us the theory which is now known
as ZF, We believe that Skolem's suggestion is, essentially, a
correct interpretation of Zermelo's ideas, except that Zermelo
wanted to allow all ( definite ) predicates to appear in the
comprehension axiom rather than just € , so that his notion is open
ended.

Another line of development from Zermelo's axioms is that
which considers definite properties as objects in themselves.
This started with von Neumamm ( see {46] ) and his justification
of this step seems to be somewhat formalistic as he talks of how
far the abstraction principle can be extended without generating
the paradoxes. We shall ignore the fact that von Neumann's work
is couched in terms of functions, but just note that the theory
was put nearer modern NBG by Bernays in [4t}s his theory explicitly
considers two types of individuals, sets and classes, adopting an
extensional view of both. For the rest of this chapter we shall
use the term class for proper classes ( i.e. those classes for

which there is no set which has the same members ), The obvious
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question which we must now consider is what these classes are
supposed to be.

From the Cantorian viewpoint it would seem natural to think
of classes as inconsistent multiplicities, but this is a2lien to
their appearing as definite collections in a formal system. The
next alternatives is to think of classes as genuine properties
( rather than collections of sets ) or as the extensions of properties,
poasibly over some given ccllection. One criticism of both these
approaches 1s that the notion of a properiy scems to be at least
as complex as that of a set so that it is just as much in need of
clarification: one need only consider the property of " not holding
of itself ". Also, if we think of classes as genuine properties,
then NBG does not seem tc be reasonable for

(i) why should properties be extensional ?

(ii) presumably therc is a property U with x€7U corresponding
to " x is identical with x ", sc that U€U would have to
holid,

There have been attempts to modify NBG to meet the second of these
criticisms and we shall ccnsider these in chapter 10.

The second of the alternative programmes was to consider classes
as the extensiong of properties, possibly over some given collection,
Without the added condition, this view is still open to an obvious
modification of (ii). Purther, it ig not at all obvious that the
amended scheme could be carried out as the following situation
might well arise. Suppose that we are taking claosses as the
extensions of properties over V, where, as in Ackermamn's set theory,
V is thought of ag the collection of 211 sets. Then there should
be a property P meaning © is a set " and a property Q meaning
" is identical to itself " so that although these properties have
the same extensions on V we would obviously want dx ( XEQATMXEP )

to be true,.
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the stages of the collection arc completed., . . . If a collection
consists of an infinite sequence S,, S5, . . . of stages, then we
can visualise a situation in which all of these stages are completed,
go there is to be a2 stage ofter all of the Sne « « « o Suppose

that we have o set A and that we have assigned o stage Sa tc each
element a of A, Since we can visualise the collection A as =

single object ( viz, the set A ), we can also visualise = situation
in which all of these stages are completed. This result is called

the principle of cofinality. "

There cre certain problems connected with a literal interpre-
tation of these ideas, such as what indexes the stages and what
" assigned " means, but these do not affect what is the intended
meaning. Shoenfield gocs on to justify all the axioms of ZF using
this principle, We consider this principle, which is sometimes
knom as Shoenfield's principlejnlhﬁxvariant of Cantor's second
principle ( from the 1883 paper ) combined with the power set
axiom, Later, we shall show that it follows from considerations
of the Absolute so that, in an imprecise sense, it is half way
between ZF znd the Absocluie.

L significant problem for Shoenfield's principle is that it is
phrased in terms of the notions of building up stages and visualising
situations so that the usual first order semantics do not give an
intended model. Thms it only justifies ZF if we can jump to the
conclusion that the process of visualising and completing has
itself been completed as otherwise it is not obvious that the law
of the excluded middle would hold, fhis is suggested by Kripke's
constructive semantics ( see [35:} ) where the law of the excluded
middle can fail although, as Kreisel mentions in [ 337 , this
only holds for models which are themselves sets., Also, this

slightly dubious point ( if the building up and visualising is
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completed, then why can we not start again ? ) makes the set concept
seem more complex than is necessary ( see the noxt section ). This
mekes some people worry about such building up processes.

The problem of formalising Shoenfield's principle is congidered

in [57] . Reinhardt slightly modifics it to

() " 1D ais a property of stages and if we can imagine a situation
in which all the stages having P have been built up, then there

exigts a stage s beyond all of the stages which have P. U

He introduces a new constant V such that x €V is to be thought of as

" x is a set ", and then he produces = set theory st which has

some similarities with Ackermann's systen, $¥ has variables for
properties and an axiom corresponding to (S), Reinhardt shows that

s¥ is very much stronger than ZF and, although this is very inter-
esting, there are still problems about what V and the properties

are intended to be., It is suggested in EBT] that the usual semantics
arc not really adequate for these ideas and it is a significant

open problem to introduce = suitable semantics, Perhaps this is

where one should start in formalising classes. In the philosophical

remarks at the end of [57} , Reinhardt states that

" T have tried to introduce the axioms for properties in such
a way that the naive reader will find them natural for naive ( or

Cantorfs ) set theory ",

but, again at the risk of overemphasing a point, we do not think
that it is reasonable to introduce properties as consistent
collections whilst maintaining a Cantorian viewpoint.

Finally, we not¢that Shoenfield's principle could be argued to

give answers to some questions which are independent of ZF. For
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instance, it seems much casier to visualise a situation in which
there is a scale for *&u than one where the is no such scale. Are

we then justified in asserting the existence of such a scale 2

9.% ZF from the Absolute

In this scction we hope to show that ZF can be justified by
considerations of the Absolute. The viewpoint which we adopt is
an extrapolation from that of flql , but we do not claim that this
is an exposition of Cantor's views.

We are thinking in terms of collections of objects where a
collection is thought of as a ' bringing together ' of the objects
under consideration, However, we must fir%iy ask what the Absoclute
is. Basically, we think of it in terms of everything which has
ultimate existence: we shall not consider its metaphysical overtones.
¥ith Cantor, we believe that the ibsolute can be recognised ( which
implies that it is o meaningful notion, of coursc ) but that it can
never be knowm. The latter point means that it is not good enough
to imagine some very large set playing the part of the Absolute
because the inherent nature of the ibsolute ensures that it cannot
be thought of as o unity in itself. Our usage of consistent and
inconsistent rultiplicities will be as in the last chapter and we
identify sets and consistent multiplicities. It does not seem to
be immediately true that 21l inconsistent multiplicities have the
same ' size " as the Absclute, but we shall often assume that they
share much of the nature of the Absolute, If we add a new principle
saying that all inconsistent multiplicities are of the same " gize "
( this would be analogous to von Neumann's maxinal principle ), then
many of our arguments would flow more smoothly. We shall not do
this as we do not find such a principle completely convincing,

Extensionality is basic for the view of scts vwhich we have

adopted and we next indicate how a version of Shoenfield's principle
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can be justified. The axiom of infinity follows from this by
congidering the natural numbers. Congsider the version of (S) with
' property ' replaced by ' collection ', and then if we imagine a
situation in which all the stages in P have been completed, we can
imagine the collection of those stages as 2 consistent totality.
The nature of this collection is not that of the Lbsolute ( or any
other inconsistent multiplicity ) so that we have a consistent
multiplicity and there is a stage beyond all those in the collection
P. e shall not use Shoenfield's principle to justify the remaining
axioms of ZF =5 we believe it overcomplicates matters, but we
indicate how they can be got directly from considerations of the
Absolute.

The replacement axiom follows from Cantor's statement that
" tyo equipotent multiplicities are both consistent or both inconsis-
tent " ., Thig is the same as saying thet there camnot be two
equipotent collections, on¢ of which is an inconsistent multiplicity
ond the other of which is o set: this seems a transparent fact
from the nature of the Absolutc. The comprehension axion, in the
form that every subcollection of a set is o set, gsimilarly follows
from the noture of inconsistent mmltiplicities,

The sum and pover set axioms follow as it is inconceivable
that an inconsistent multiplicity could be obtained from a set by
onc of these visualisable operations. This even clearer if we
assume that all inconsisten’ multiplicities are the same size, for
then the power set axiom, Ior instance, says that there is no set
for which the collection of all its subcollections is the same pize
as the Absolute.

The axiom of foundation does not seem to be evident on this
interpretation, although there is no reason vhy one should not
restrict one's attention to well founded sets if it is desired.

0f course, the non existence of cycles of sets follows from our



s 0,

bagic viewpoint of forming collections by bringing together certain
objects, We consider the exiom of choice to be a logical principle
for sets so that it is not in nced of justification.

Now we consider two other kinds of axioms from this point of

view.

(i) Let {L be the inconsistent multiplicity consisting of all
ordinals, ordered by their natural ordering. We consider certain
axioms about " stopping points ¥ in £k, It is convenient to think
in terms of processes for going up #% and then the nature of the
Absolute shows that there camnot be any definite process, the comple-
tion of which is £X, Thus if Vst 3R ¢ (e, ) there must be 2
cardinal & scuch that from below % this process ( i.e. going from
o to the least R satisfying 4) (s¢,R) ) does not get beyond X ,
Further, it is reasonable to insist that % is regular as otherwise
the process can be continued by taking the union of a shorter
cofinal sequence. Consequently, we have the schema
Voo AR BB ) > I x( Rea(k ) A WamegDApex ¢, B) ),

which, together with ZF, gives the theory Zi ( we showed that in

371 )

(ii) The existence of a measurable cardinal does not zeem to
be justified, at the moment, Ly arguments similar to those which we

have already encountered.

(i) shows that ZM can ts justified from the Absolute and (ii)
sugzests that one should investigate other ways of justifying
axioms from the Absolute. ‘/hether or not measurable cardinals
turn out to be reasonable, the latter programme should be very

useful. For instance, does it give any new structual information %
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9.4 Intuitionistic #I

Intuitionistic ZF is ZI set theory based on intuitionistic
logic. liyhill, in a seminar, suggested that such a theory, without
the axiom of choice, corresponds to that part of ZF which gives
effective results, using this word in the sense of [68} . This
is a thoroughly reasonable attitude and, like Church's thesis in
recursion theory, the conjecture is open to empirical testing.

However, intuitionistic ZI" :s also the end product of a paper
of Pozsgay's, [52] , and for the remzinder of this section we
shall be considering this paper. Pozsgay claims to be formalising
2 certain intuitive approach to zet theory which he thinks represents
the basic insights underlying the ZI' axioms. He thinks of sets as
mental constructions and he gives the following principle for set

construction.

" Any well defined mental process for constructing sets which
has been clearly envisioned without ambiguities or contradictions
may be regarded as already compl ted, regardless of any merely
practical difficulties which may prevent one from actually carrying

it out. "

On the basis of this princiyle Pozsgay argues that we can
justify the axioms of %F and, in particulac, the power set axiom,
But what mental process is available for constructing the power
set of 37 Certainly we cannot give any step by 3tep procedure
for doing this as any countanle number of countable processes will
remain countable. Somehow ve need to jump to the uncountable set.,
Consequently, we feel that “his principle does not justify the
power set axiom, but that it must be added as a further principle.
Then we seem to get Sheoenfield's principle, though.

Pozsgay's paper splits inte two sections and in the second he
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turns to the problem of formalising his principle, where he says

i As far as set theoretic axioms go, the best available seem
to be the ZF axioms, and the main question is whether the underlying

logic should be intuitionistic or classical. "

The procedure now seems to have very little to do with the
original principle. For example, a first order theory is assumed
without any explanation of how this affects the power set operation,
although, in justifying the comprehension axiom Pozsgay circumvented
the problem of impredicativity by saying that he took all possible
subcollections of a set in the power set, Consequently we feel
that the reasons for using ZF' to formalise this work are a little
obscure, but the reason for using intuitionistic logic seems even
less clear,

Pozsgay states that he wants 3x B(x) only to be provable if
there is " at hand a definite construction for producing a set x
with the property B(x) ". Two pages previously he justified the
axiom of choice and it remains a complete mystery how we are to
give a definite construction for a choice function on infinitely
many pairs of socks.

Bagically, 152t} belongs to those approaches to set theory
which can be thought of as " building up in time " and hence we
do not see how 3, can be thought to exist ( unless one adds the
power set as an additional basic operation ). Hence Powell's
approach to such a theory in [51] seems more reasonable, if
one is not going to allow time to be completed.

In E57:} we gave a possible axiomatisation of Pozsgay's
building up ideas, but we now think that Wang's system of predic-
ative set theory (EE , see \:Tl] ) is probably a better candidate

for such a theory. To really axiomatise 2. we should make
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explicit the principles by which one indexes the types: perhaps we
could just allow completiqns of fundamental sequences for some
given system of notations, Section 4 of 1:371 contains some
considerations of the power set axiom and we now believe that the
ideas of that section are superseded by that of a mild second order

logic, which we introduced in the last chapter.
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Chapter 10

Set theories with a universal set

10.1 Introduction

In this chapter we shall consider some aspects of set theories
in which there is a wniversal set ( i.e. a set x such that for all
sets vy yex ). Such a set cannot exist from a Cantorian viewpoint
50 there must be some other motivation for such theories., One
possible approach is via properties and such theories are discussed
in sections 5 and 6., "The remaining theories all seem to result
from formalist inspiration and the main one of these theories is
NF: sectione 2-4 are devoted to questions related to this theory.

Another approach to set theories with a universal set has been
made by Church in [11] . Here the motivation is that the abstrac-
tion principle is desirable but ( unfortunately ? ) it turns out
to be inconsistent so that we must investigate all ( formalistic )
ways of approximating to it whilst remaining within the realms of
consistency or, at least, relative consistency. This view also
seems to be an assumption for the book by Frankel, Bar-Hillel and
Levy ( {16] ). e have little sympathy with such ideas as there
does not seem to be any clear reason why we should have believed

the abstraction principle in the first place.

10,2 GQuine's WF

The theory NF was introduced in [53} and is formulated with
€ as the only predicate. Equality is introduced by definition
and there is an axiom of extensionality. The only other axiom is
the abstraction principle for those formulae 4} which are stratified
( i.e. one can attach numerals to the variables in such a way
that whenever x €&y occurs in :ﬁ with n attached to x, then n+4l

is attached to y ). The motivation behind this is that stratified
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formulae correspond, in an obvious way, to those of type theory

and that the paradoxes ( at least, the old familiar faveuritcs )

do not seem to be derivable in the theory. Thus NF is a formalisi's
theory, but it still could be a reasonable set theory as well,

In [16] it is suggested that the unprovability of all instances
of induction in WF, if this theory is consistent, shows that it is
not a: reasonsble theory,but it would be nicer to have a stronger
condemnation., The next scction contains some arguments which show
that NF is not, as it stands, a good set theory, in the sense that

it is not adequate to describe certain mathematical notions.

Section 2 of Rosser and Wang's paper [62} claims to show that
if NF is consistent ( we always assume this when discussing its
models ) then it does not have a standard model. Briefly, the
argunent is as follows, NF is assumed to have a model in which
the natural mumbers are standard and then, using Rosser's paper

[60] , one shows that transfinite induction cannot hold for all the
formulae of NF. Consequently, the order relation of the ordinals
in the model is not really well founded and NF cannot have a standard
model.

The actual arguments which are used in the proof are correct
tut it is implicit throughout that the definition of ordinal which
is used ( equivalence classes of ' well ordered clagsses ', in the
sense of NI - ordinal(NF), say ) corresponds to the intuitive
notion of ordinal ( ordinal(I), say ). There is no atienpt in

[62] to show that ordinal(¥F) is a good approximation to ordinal(I).
Usually, the definition of an ordinal occurs within an enviroment
where we may suppose that all instances of the comprehension
axiom hold and when this is not the case the definition of an
ordinal is suitably modified ( see, for instance, [17) or (407 ).

From page 474 of [61] we know that NF does not ensure that the
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order type of the class of ordinals(NF) less than an ordinal (NF) ¢
is &, so that it is natural to strengthen the definition ordinal(NF)
to

ordinal' (WF) (x) = ordinal(NF)(x) A' the order type of the

ordinals(NF) less than x is x ',
However, we still would not kmow that ordinal'(WF) is a good approx-
imation to ordinal(I) in NF, Indeed; there might be no formula of
NF which satisfies this requirement,

On this basis we suggest that Rosser and Wang's result shows
that if NP has a stendard model, then ordinal(iF') does not represent
the notion ordinel(I) in NF, This suggests that one should look
at the adequacy of the representations of the usual mathematical
notions in NF, rather than assuming that a formal definition gets

its intended meaning: we start this in the next section.

10,3 Ordered pairs in MNF

In any set theory, two sets are said to have the same cardinality
if there is a bijection between them. Thus the notion of having
the same cardinality ( which we call being equipollent ) is
dependent on that of function and hence on that of ordered pair.
e shall show that in NF, the definition of ordered pair which is
used affects whether, or not, two sets are equipollent, and we make
some further considerations based on this fact, ‘he following
definitions will aid our discussion: we hope that it is obvious

how they could be made precise.

Definition 10,1 A formula'ﬂf(x,y,z), yith exactly three free
variables, is said to represent an ordered pair relation in a set
theory T if

(i) 2 FVx,y 3tz Y (x,y,2), and

(11) T FV5,x', 707" 2 ( N (7,2)0 NP (x',y'52) X = x4y =7' ).
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Definition 10.2 If '\P represents an ordered pair relation in a set
theory T, then x Ryy is a formula which, in a natural way, says
that there is & function, represented as a set of ordered pairs

which are defined using '\i/'g which is a bijection from x to y.

Vie shall always assume that z = {x,y} is a formula which
says that z is the Kuratowski ordered pair ( i.e. {{x} ; {x,y}} )
and this represents an ordenfed pair relation in both ZF and iF,
Also, x Ay means XX-$y , where «?5 is the formula z = {X,¥Y) -
The next theorem shows that, in a certain sense, the notion of
veing equipollent is independent of the representation of ordered

pairs in ZF set theory.

Theorem 10,3 If ~}» represents an ordered pair relation in ZF, then

7P b VY,V (e vesumz ey ).

The proof of this result is completely straightforward, For
instance, if u=msv then let I be a bijection from u to v, put
f'' = {z | Fx.y (¥ (x,7,2) o (x,y) = i‘} and verify that use yv
using f'.

Prom a mathematical point of view theorem 10.3 is highly desirable
as the actual structure of the ordered pair does not seem to be
important for two sets being equipollent. However, provided that
WF is consistent, the analogous form of theorem 10.% for NF is false,
even if we restrict ¥ to being a stratified formula. This can be
seen as follows. If “'(x,y,2) is the formula
s {{x} ,{x, {y}}}- , then A represents an ordered pair
relation in iF. By considering Cantor's theorem for IT in £54}
Quine showed that if V = {xgx‘:» x} and S 5{_}{ 3y x = {y}} ;
then =( V228 ), but it is straightforward to show that 5=V,

in NF, as required,
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The key point in this counterexample is that we have represented
an ordered pair relation using a formula which can only be shown
to be stratified by attaching different numerals to x and y. It
might be argued that this is not desirable in NF, but then one must
explain the process of stratification in such a way that this
becones highly unreasonable as, from a mathematical point of view,
there is no significance in the representation of ordered pairs.

The following weak form of theorem 10.3 does hold for IF,

Theorem 10.4 If Y (x,v,z) and '(x',y',2') are formulae which

represent ordered pair relations in KF and can be shown to be strat-
ified in such a way that one numeral can be attached to both x and
%' and another to both y and y', then
kamv(u%?wﬁumyvﬁ

Theorem 10.4 shows that when considering sets being equipollent
in NF, it is only the way in which the ordered pair relation can
be shown to be stratified ( we restrict our attention to stratified
definitions from now on ) which is important. Hence the following

definition of ﬁsi is independent of which 4” we choose.

Definition 10,5 If %f(x,y,z) represents an ordered pair relation

in NF and can be shown to be stratified by attaching a numeral n
to % and a mmeral 1 to y, and i = m-n, then ve write x Qﬁiy for

XA Yo Nor definiteness, we could take z = (x, { ) \_ﬁy} : }3

i brack§¥§

mri'MEnizmzmdz=<ﬂ,‘Sg}=_}m> hr*fmmniﬁo.

-1 bracké%%

We can now reformulate the results which we quoted earlier as
=1( Vas 8 ) and S=&, V. Another result of [541 shows that

—( V%,V ) although, of course, V2 V. Our next theorem notes



- 10% -
some properties of being i-equipollent ( i.e. Mi ) and it is

obvious how these are generallsations of being O-equipollent.

Definition 10.6 ™ ={y | Jtexy= 4L ... 1Y .. 33 .

(’m brackets

Theorem 10.7 The universal closures of the following statements

are provable in INF

(1) X X X (ie. x=x),
(ii) XRLTIT R
(iii) X R YNV %jz AR T
(iv) (™ e %,

o

The proof of theorem 10.7 is straightforward. It might be
interesting to investigate further properties of i-equipollence,
but we shall next consider a method of extending NF.

It seems emminently reasonable to suggest that if uf:;;iv, for
any integer i, then u and v are equipollent in an intuitive sense.
Consequently, we let ENF be NF extended by adding a new symbol 2

together with the axiom
Ar - 4
u % v € for some integer i, u Rz V. (#<)

We shall not consider methods of formalising (3¢) in first order

terms but will continue to treat it in an intuitive sense.
Theorem 10.7 then shows that ¥ has the properties

(1) x¥x,

(ii) x =

(11i) xRy, vy Xz—orxix2,

(iv) % % x,
s0 it seems that & is a more reasonable formulation of being

w5

equipollent than in WF as == also posesses the intuitively true
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property (iv). "To actually work in ENF we would probably have to
add axioms asserting the existence of cardinals, as equivalence
classes under % , and other comprehension principles, but we shall
leave these problems, We shall next consider the interpretations,
when = is replaced by %, of two results which have been proved
for WF.

In [49] it is shown that if ¥F is consistent, then the
axiom of counting is not provable in WP, This axiom is the intui-
tively true statement

Va( ¥n(n) 2 {n tin(n) \n<n}é&n ),
vhere Nn(n) is a fornula saying ' n is a natural number ! ( using

e

= for equipollence ). Hence, the axiom of counting says that if

Nn(n), then for some t¥n,
{n { in(n) , m< n} = t. (3 3)

( To consider (¥ X) in ENF we should really consider natural
numbers as equivalence classes under ?5’-, rather than =¥, but, for
convenience, we continue to use Wn defined using & .)

Tntuitively, the reason why (X ) is not derivable in ¥F is
that the objects on the left and the right are of different
" types ", although it is straightforward to show that the following
version of (3«%) is provable for some t&n,

im| Mn(m) \n<n} 3y b
Thus in ENF we have 4m | Nan(m)  m< n} ® 4, again suggesting that
% ig a better notion of being equipollent than =,

Henson showed in [25] that if Ne(x) is the cardinal of x,
then it is relatively consistent with NF that for finite sets x
we have Ne(® (x))< Ne(x) or Ne(& (x)) > We(x). He also showed that
we can have Ne(x(D) <, = or » Te(x). Ve have already noted

thmt 4lm 1attor nathalosias are oliminated in ENF as R &= X,
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In BIF x % xWEG(x) so that ®(x) will probably be at least as
big as x, but we do not seem to get an immediate answer to this

prodlem,

There are a number of similar problems which could be invest-
igated in ENF and one could also consider other properties which
depend on ordered pairs. For instance, in iWF ordinals are equiv-
slence classes under similarity where this is defined using a
O-bijection ( an obvious extension of our notation ), but it seems
more natural to allow all i-bijections. To formulate such a theory
in detail seems to require an inordinate amount of work, It would
be nice to show that any such extension of ENF is inconsistent,
but proofs using the idea of Cantor's theorem do not seem to yield

such a result. The Burali-Forti paradox, perhaps 7

On the above basis we think it reasomable to claim that NI is
not a nice set theory as various natural notions, such as equipollence,
depend on the way in which ordered pairs are represented, Iurther,
if the theory is extended to take care of these problems, then the
resulting system would be extremely complicated and completely

unusable.,

10.4 Consistency of a fragment of NF

In t23j} Halperin showed that NF can be finitely axiomatised
using extensionality and P1-P9, which are all instances of NI''s
comprehension axiom., Uy constructing a model in number theory in

[6] , Benes showed that extensionality and P1-P8 are consistent.
Sterting from a Benes-like construction and iterating transfinitely
we proved theorem 10,8. The proof which we now indicate starts
from a model of NFU ( this is NP with extensionality replaced by

Yzex, Vz ( z&xz&y )¥x=Y ), which is proved consistent



in £29] , as this is more straightforward. We only outline the
proof as we will refer to this method again later. NModifications
of it yield the relative consistency of other fragments of WF, but

none of these methods seem to give a result for full NE,

fheorem 10.8 In ZF we can prove the consistency of the theory

whose axioms are extensionality, P1-P5 and P7-F9.
set of

Proof ( Outline ) Let <NOgEO> F NFU in which N is theznatural
nmumbers, We define a sequence of models < DI.)",E‘;) for NE w, T1,
Es will always be N;“ f\EO and we define N# by induction:

(i) Suppose that ™\ =¥ 41 and we are given Hy . Put

= = v Z N 8 :
Ay {t| t50y and Yy,z6tVnely ng y<InEz ) and
Ny, = {mi for some t&Ay, m is the least member of t} .

(ii) For limit A, put Wa = (1 Ng.
’ BN

We have NO:}‘WN] DH, 2. . . o RN, andwe next show that
Ny, is of cardinality w, Let k be the least natural number which
represents an urelement in (NO,EO> and then consider the sets
I, {k} , ﬁ,{k}} , o « « =5 Where Vo ( nEo{k_} & n=k ) ete.
Each of these numbers can be ! replaced ' only finitely many times
in the production of the N;}qs and let ¥ ve that number which x
! ends up ' as. Clearly, f;, ‘{ij s & @ o @ Will ald be different

numbers so that N, is infinite.

As Na, is always countable there must be some ¥ <, for which
Ny = Ny oy and let T be the least such ordinal. Extensionality
clearly holds in <N"l "'E"\> and we indicate why P1 holds in this
structure: the verifications of the other axioms are similar. Pl is
\V’u,v:‘]ny ( x& y&>r MG u,1xXa v ), and suppose that W, VENa o
Then as (NO,EO§ F P1, there is a y& N_ which satisfies Pl there.

¥ has the required property in <Nh By Y - a



10.5 Properties as properties

Sets can be considered as collections of objects which satisfy
a given property, or in other words, as the extensions of properties.
This is the usual view from which people argue that the abstraction
principle is intuitively plausible, but there seems to be no agree-
ment as to whether the variables arc ranging over properties, objects,
extensions over some collection, or anything else.

The property of " not satisfying itself " might show that
if properties are allowed to apply to properties, then we cannot
expect them to be everywherc defined: this is probably the motiva-

tion behind Kreisel's following remarks on properties in [54] F

" Por this notion, with y& x being interpreted as: the property
y has the property x, FxVy ( yex>P ) l:i.e. the abstraction
principle:] is indeed evident, provided that the most general kind
of property is considered, including properties which are not

everywhere defined, V

le goes on to say that we camnot expect the usual logical laws
to hold in such a system but we find it unlikely that the logical
laws must be altered before we can talk about properties: we consider
another way of approaching this problem below. Kreisel also suggests
that no property can be defined for itself as argument whilst
consideration of the property of " being a property " suggests that

sometimes this might be guite harmless.

An earlier suggestion regarding an approach to properties

( or concepts -~ we make no distinction between these notions )

was given by Godel in El9] s, Where he says

" Tt is not impossible that the idea of limited ranges of

significance could be carried out without the above restrictive
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principle [ referring to type theory] . It might even turn out
that it is possible to assume every concept to be significant
everywhere except for certain " singular peints " or " limiting
points ¥, so that the paradoxes would appear as something analogous

to dividing by zero, "

We next outline a framework, based on the first order predicate
calculus with identity, within which such ideas can be formalised.

There are two predicates:

M(x,y) for " it is meaningful to ask if the property x has

the property y ¥, and

( " fhe property x hes the property y ", if h(x,y)

b
.- §
=

for
\ no intended interpretation, if M(x,¥y).

If X is any 7 -formula, then we define a translation giving
a formula K%, as follows: every instance of Vx x'iy is replaced
by Wx ((H(x,y)~>x Wy ), of Ix xny by 3Ix ( M(x,y) AxNy ) ete.,
in such a way that x¥jy only occurs when we have M(x,y). ( This
is an obvious gencralisation of the translation described in section
6.3. ) Uhen if X is an N -formula, the abstraction principle takes

the form

Iyvx (H(Ey) S xnye Y ) ). (%)

Thus we have formalised a framework for talking about properties
which are not meaningfully defined everywhere, without altering
the underlying logic. The paradoxes give us examples of properties
for which =(x,y) holds and the main open problem is to say for

which properties we have M(x,y). L 27-_1 shows that if we have
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Vx +y M(x,¥), then (&) is still inconsistent, and if we take
M(x,y) as 3z xNz, then (¥) turns into the class existence axiom

of NBG.

Guestion 10,9 Is there any natural way ( syntatic, or otherwise )

of saying when 1i(x,y) holds in the above system ?

During the above considerations the variables were assumed to
be ranging over properties. Given that a system of properties could
be produced, it is often suggested that extensional collections can
be obtained just by " taking the extensions of the properties ",
Two possible interpretations of this view are

(i) the extensions are taken over all possible objects, and

(ii) the extensions are taken over some given collection of

individuals,

and we suppose that x, ¥y, « . . Tange over the resulting extensions.
If (i) is assumed and we suppose that the extensions are already
objects, then it seems quite possible for two cxtensions to have
the same extensions as members, but to differ over some property.
Thus, such a system would only be extensional if there are urele-
ments in the theory: this seems a little surprising, If (ii) is
adopted, then it is not at all clear what the membership relation
is intended to mean and it certainly cannot be the original?t.
Consequently, we suggest that the notion of taking the extensions
of properties to get an extensional system is gtill in need of

clarification.

10.6 Other views of properties

The approach to properties with which most people are familiar
is that of Zermelo's in EjE} : which was refined in Eé] and {l?l] .

Basically, this view assumes the existence of a totality of all sets
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and works with it exactly as if it were o set: wve criticised this
in chapter 9.

Zermelo's original motivation seems to be gimilar to Russell's
notion of a propositional function and, althoush it is not complete-
ly clear, one way of viewing this is as a variable ranging over the
first order formulaec of a given language ( cf. a weak second order
logic ). However, during his later work ( gee [73j} ) Zermelo
has extended his ideas to arbitary propositional functions and it
might be possible to make some seénse of this idea without using
proper classes.

One method of extending WBG is considered by Powell in [50} P
Here, properties are identified with their extensions on V and a
different predicate is used for " has the property ". This is
showmn to lead to quite a strong theory with other interesting feat~
ures, but a point vhich does not seem to have heen considered is
why two different properties should not have tiic same extension
over V. Alsc, this approach does not allow quantifiers over proper-
ties to occur in the main comprehension axiom,

Another extension of Zermelo's approach is EBT} , wWhere
Reinhardt includes an axiom corresponding to Shoenfield's principle
(see section 9.2). The intended semantics of this system has

modzl overtones and there are some similarities between the systems

of 57] and [50] .

Despite our doubts about the ontological overtones of systems
such ag NBG, it is still possible to view these theories as ways
of delimiting vorious levels in the cumulative hierarchy by means
of their natural models. There seems to be an implicit belief
that any reasonable set theory will have such a natural model, but
next we attempt to give a counterexample tc this, TIn chapter 7 we

suggested that the following is a reasonable axiom cf set theory
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() If X is a class of ordinals such that for some p,Xis a

branch of E(Q), then X is a set.

We suggest that NBG +(C) is a suitable theory as it clearly has no
natural models ( i.e. models of the form <R’“’- %1,6} ). The
consistency of i¥BG1(C) can be proved in HK as follows. Let K
be the least cardinal for which R4V and then RX E ZF with the
property that (C) is true for X being any subclass of R« . The
usual relative consistency proof for NBG and ZI' ( see (487 )
then gives a model (R}( L1A9€> of WRG +(C), for some ASR&% + 1.
0f course, UBG +(C) is not a reasonable set theory from our
point of view because of the existence of proper classes, but it
might be possible to include the essence of its axioms in a
modified version of ZF ( strong replacement is catered for in a
mild second order logic so (C) is the only remaining problem ).
Mso, the fact that MK+(C) is inconsistent can be taken as a

condemmation of the naive opproach to proper classes.
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Appendix

Some results on extended ordinal arithmetic

A,1 Introduction

Extended ordinal arithmetic was introduced by Doner and Tarski
(in [12] ) as a contimuation of the recursive definition of
ordinal multiplication in terms of ordinal addition., The extended

operations, Oy, are defined by

Moxgzﬂc‘\-ﬁ ’ whenxf-'-o,

Xoxp = 3’}«’-%‘,’50{( (a€0y M) )0_3 o ), when ¥ >0,
and it is straightforward to check that this is a natural general-
isation with 0, corresponding ( essentially ) to multiplication
and 04 to exponentiation. Theorem 3 of [12] shows that
oc0; (1t p) = cc“ﬁ , but a few calculations show that the higher
operations increase much faster, Some basic properties of the
extended ordinal operations, some identities and some results
concerning main numbers ( i.e. those ordinals & such that for a
given %, B < § ¢ 0gB<§ ) are also proved in (12} .
For convenience, we shall refer to [12] as [D—TJ in this appendix:
similarly, we refer %o [63] and [64} as |RRL] and [RRB] ;
respectively.

Part of [RR}.] gives necessary and sufficient conditions
for the associativity and commutativity of Oy when ¥ is a limit
ordinal, The corresponding results for Oy , 0. and 02 are
classical. In section 2 we prove analogous theorems for O 3 and
indicate scme other results., Section 3 gives some inequalities
for the extended ordinal operations and we show how these prevent
one from giving a straightforward answer to one of the problems

vhich was raised in [D-T7Y.
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Tt was suggested by J. Rubin ( in a letter ) that it should
be possible to extend some of the classical results about permuting
the elements of infinite sums to the extended operations and in
section 5 we indicate how some of these results can be directly
transferred, However, it seems that many of the classical results
for infinite sums are far from best possible and we improve one of
them to a best possible result in section 4. Anderson has also

tackled some problems in this field (see [2]).

A.2 Some properties of Og

Qur first result gives necessary and sufficient conditions

for the associativity of ordinals with respect to O3 .

Theorem 4.1 (%04 B )05 b= K 0g(B 03 f5 ) iff one of the
following conditions holds

(1) any one of &«,8,6 is 0 or 1,

(2) & is an € -number and &*,B <&,

(3) $=cw and &¢,B<%,

(4) §=2,x<twand B is any ordinal for which B= wB= BB
where £ = wf bt. . » is the normal form of B,

(5) &=2, o, [3 »w and @ is a limit ordinal, vhere the normal
form of (b is as above and that of x is Yo+, . . , & PPEp

(6) =2, ®=f , o »wand % is a successor ordinal,

(7) $€w-3, B is an infinite successor ordinal such that (& 1)1,
where the normal form of }3 is as above, and a proocess for
obtaining a unique e from B and & can be described,

(8) =, B,SEwuz and r:’, + QGF‘G‘(E 1) = Bg&‘l

Proof We omit the proof as the number of subcases which have to
be considered would make it about ten pages long: the result does

not seem to justify this. CX
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Cases (1) = (7) of theorem A,1 give complete answers to the
associativity of Oy . Although it is easy to solve case (8) when
one of the variables takes a small value, we have not found a
general solution. From page 363 of [68)] we see that the ordinals
which are associative with respect to 03 do not coincide with
those which are associative with respect to 01, Theorem A,4 shows
that this situation is unlike that with respect to commutativity.

We cannot extend the methods used in proving theorem Al.l to
higher ¥ as we do not have a suitable representation of the first
term of the normal form of & Oy B in terms of the normal forms of
et and ﬁ, but the the next theorem shows that a partial generalisation

of theorem A.,1 gives a much nicer result.

Definition A.2 § is a main number of Oy if for all &, R < &

x0, B< & . H(0Oy) is the collection of main numbers of Oy .

Theorem A,3 If % is a limit ordinal and ¥ #2, then

(e O:xﬂ )018 & = 025({501,‘ ¢) iff one of the following conditions
is satisfied

(1) & or B isOorl,

(2) B<EeEm(0y).

Proof Suppose that § is a limit ordinal and X 22. Then the
theorem clearly holds if o€ or P is O or 1, so that from now on
suppose that o¢, 22, Theorem 32 of ED-T] then shows that
(K 0y B)0gx & =5 0yg( B+ $ ) s0 we have
(0cOpg B)0gy & =05 (RO &) iff R +E§ =[P0258.
Now suppose that

B+S =R0;x € (k)
If B 6 then PO, 6 2 B.6 Y peprp >E+E » so that B<L.,
Theorem 47 of | D=7 | shows that (2) will follow from RO,y £=5%
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and we now prove this., Let wH d,+ . . . be the normal form
of § and then the normal form of R+& is mz"e,l—.)for some
e,& w-1. P 0y,6 2P0, 6 =B  so that as the first term of
the normel form of R% is wh® | () shows that %, » Ri. 8.
Hence #,2% and & is an ¢ -number, Then, from (3<), ROy d =% ,
as required,

If we have B<§ € M(0yy), then LEPIG € B0k =6

so that (¥) holds and the theorem is proved. (1

Theorem A.4 o 0z R = 30 0c iff Oy R = RO, 0C,

Proof Wecessary and sufficient conditions for the commutativity

of 0, were given by Jacobsthal and his theorem is proved in [767] .

A
Our proof uses modifications of his method and we omit it because of

its length., I_l

As in the case of associativity, the method of proof used in
theorem A.4 does not extend to higher ¥ . Our next result shows
that for certain ¥, the ordinals which are commutative with respect

to Oy are not commutative with respect to 0, .

Theorem A.5 If o, 732 wy xLlf,¥ 22 and o€ Ozney B = £ Ongry oy

then =04 3 ¥ A0, .

Proof Suppose that all the hypotheses of the theorem hold and that
we also have 0, B = B 0,00, Then & is a linit ordinal and

B = Ter , where T is an { -number greater thaneC . Then, by
theorem 33 of [D-‘I‘]

OCO3g4, B = ®%0qy %0 o) = X0yl T )= O Ogy( B.),

Then, using that theorem again, &0,y B = f Ogyy X = (3 0‘-,_-;((3 o)

Hovever, OOy B€ B0z B < BOz( B.%), contradicting this. 1
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Corollary A.6 If o<P; oc, B are limit ordinals, ¥ » 2 and

- X w .
o Oy P = B Ougy ™ then f-?i <ot™ .

Proof From the proof of the theorem
o€ Oy B =X 00g( X B)& PO,(. B) and P Oggyy & = ROy (B.oc)
so that we get

R Lo (k )
Assuming that the normal forms of oC and ﬁ are as usual, consider-
ing the normal forms of the sides of (R X) gives By vy < o+ Ry
Now let X, = wMalt ., . . and B, = WL
Then V=7, as otherwise X, +PB;= B, . Hence
By = VY4 .. S W 2 L) o & S W &

fg ::oog"l,\'t..: = w it &(w"'""’)w & a e (:1

The following relation was defined and studied in EB’Rl} »

Definition A o« Ly@ iff 36%F0 (§0,x = ).

Ly is transitive for ¥ = 0,1,2 or 3 and it is stated in \:RRl]
that L[f is not transitive. It is left as an open question in
[RR1) as to vhetber or not Ly is transitive for limit ¥. Our
next result gives necessary and sufficient condition for the
transitivity of Ly, when ¥ is a limit ordinal, so that from
theorem 26 of (RRL] it then follows that L is not, in general,

transitive for 1limit ¥ .

Theorem A.8 For limit ¥ ; & LyR , fLys andoCDyé all hold
iff one of the following conditions is satisfied

(1) == and &Ly 5,

(2) B= & and «Lyp ,

(3) x=1<B and BLy§ ,



i,

(4) = 2, RB=4,%56 ( N u0;,) ) and 4Lys .

. ) ¥

<y
Proof We omit the proof as it uses many of the results from T.:RR:L] .
The methed is similar to, though more straightforward than, that

used for theorem A.l. El

A.5 Some inequalities

Tt is noted in |D-T)] that no identities involving the
operations Og 4 + « 04’ are known for the finite domain, except
for those which are trivially implied by those which are already
known for Og y « « « O3 . The straightforward method of proving
such identities is to use induction together with an identity for
o0y ( B+ % ). For ¥ =1,2 or 3 we have the following identities

01 (B0o4 ) = (200, g )00 (x0,% ),

%0, (B0y G ) = (0 0y B )0y (0y 6 ),

acos(g%oa% ) = (%0, )04 (035 )
This suggests that one might compare ™ Oy (BOo & ) with
(0g B )0y (00 ¢ ) for i €%, but theorem A.9 shows that there
are always strict inequalities between these expressions in the
finite domain for ¥ 6w -4, Thus a new method is required to

answer Doner and Tarski's question affirmatively.

Theorenm A.9 Suppose that o<, R,% € vs-T and e uo -4,
Then, if ¥ is even

o O (ROsG ) > (X Oy f )0x-(x0y & ).
Then, if § is odd

(n0y R )0y~ (%03 B) 70 (B0 ) (¢ 0g B )0yuy (X0, § )

Proof Suppose that all the hypotheses of the theorem hold and

that ¥ is even. Then put W = max.(f,%) and ve get
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a0y (RO, & ) >0y (N +6)
2(x 0x )Ox2 by lemma 31(i) of [D-T)
= (o€ 0yg ) )0y (X 0y ). from the definition of Oy
H(ec 0y B O (= 0¢ & ),

so that the first inequality of the theorem holds.

Next we prove that for o, Bp,6€w-2, ¥& w1
oc Oy (B0g 6 ) 7(%¢0x B )0y (60, ), (<)
and this implies one half of the second inequality. To prove (i)
we firstly show that (scOx P )0y & > &0y (B0, 5 ) holds for
the above range using induction on ‘8 » Actually, we combine the
induction and the basis steps by noticing that this is an equality
when & = 1.
(e 0g POy (6§0:1 )P(*0 (B0 &) )0y (x0y B) by assunption
>0y (B 0o §) )0, o
=0 (BOg (80, 1) ), as required,
Now we prove (¥) using the same method.
L0y (R0y £ O 1):3,( (0cOy B )0y (ec0, % ) )0y oC by assumption
S (a0 B )0 ( (620, & )04 o€) by above inequality

=(oc0¢ B )0y_(ec0, (60, 1) ), as required,

Finally we prove that for oc, Ew-4, H,¥& -2

800404 ( BOs & ) < (XK 0gya, R )02¥ (o 0, & ), (= %)

and thig implies the remaining half of the second inequality. The
proof of () is similar tc that of (¥), using

(C&Ozg B )O?G‘S <u02¥(a.0,§, ) as the first inequality. o

A,4 The sums of permutations of a sequence of ordinals

If we are given an of -sequence of ordinals and we permute the
members of that sequence to give a new o(-sequence, then the two

sequences often have different infinite sums. This is the reason
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for considering the problem of this section.

Definition A,10 If a is an oC -sequence of ordinals, then Sa(ec)

is the number of different ordinals which can be obtained by
permuting the members of a into an oC-sequence and taking the sum

of that sequence.

One natural question is to find a best possible upper bound
for S (oc) in terms ofe< . This has not been fully answered in the

literature, although the following results appear.

(i) ( Erdos, [13] ) Ifetis finite, then
sa(uc);g max, (k.25 "¢ 1).83,(’36 -k) , and the proof shows that
k

<o, af
this result is best possible.

(ii) ( Sierpinski, [6?] ) Sa(w)<w and Sa(}\ YEw when N
is a countable ordinal. Clearly the first of these results is

best possible and we shall show that the second one is also.

(iii) ( Ginsbers, [18] ) If ®p is a regular cardinal, them

s (we) & H

He
e L]

Theorem A.1l improves on (iii) and completes the answer to

the above question.

Meorem A,11 Suppose that ©¢ is an infinite ordinal, Then

(a) if eC=wy or « is weakly inaccessible, Sa(Oc)<0<.", and
(b) otherwise, Sa(QC)(\ of .
Further, these results are the best that can be obtained indepen-

dently of a .
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Proof Firstly, we shall show that Sa(mc)f_sghc and this clearly

follows from the following statement

=
1f W€ K., then the number of different sums of \ -sequences of
ordinals, all of whose members are taken from a given set of ordinals

of cardinality He, is & }{e. (1)

We prove (1) by induction on’\, Clearly its true for A\ = 1.
If its true for A, then E_ a{ = Z a;+ ay 80 that its also
N . ) & et PN
true for At1l as HC'HE = He-
How suppose that (1) holds for all B</ and N is a limit
ordinal. Then E a; = ) ( 2_1b; ) and as there are at most H&
RPN BN KB
different sums for B<M\ , the given sum must be the supremum of
o subset of a set, B say, of ordinals,which has cardinality H(.
Fither this subset has arbitarily large members in B or there is
a least member of B which is not in it. Hence, the supremum of the
subset is an initial segment of B ( under the natural ordering )

go that there are at most /“1& different values for the ﬁxsum. Thus

(1) is proved,

If a is an & -sequence and Sa(oc) =& , then for R>*x we
can obtain a B -sequence, b, with 8 (B )2« by letting its first
a¢ terms be the same as a's and the remainder C's, Let c be the
(0% +1) sum wrwhe, L WSk, L L+, fora<we.

Then, by altering the last term, we get Sc(wg'&- 1) = we , so that
Sa( we+ 1) & we is the best possible inequality. The prior
observation then shows that Sa(OC)‘égfi is the best possible
inequality when ©C is not a cardinal.

The following example of Ginsberg's shows that we can have
Sd( We. )= we,, @ Pub d;= gy for i <we and d; = 1 for

i Wp. Consequently, we can now restrict our attention to
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of being a limit cardinal, wx 83y, and we consider two cases,

Case 1wy is singular.
We show that Ja Sa( wa )= wa . This implies that all of (b)
holds, Let X = cf(tos ) and consider the sequence b= S i
i Lwa

Clearly Z i = s, and for any {3< w4, we show that there is a
permuta'ti;flug} b with 00 -sum ﬂda,\.((?)-&- 1), and the result will
then follow.

hs B wy, Bﬁuée for some Q‘:’)‘ and we can choose ﬁ different
cofinal % sequences, each of which has sum w4, as follows,
Let f: % =% W  Dbe such that W';\'-’é;fgf(é) 3
£($*1)7£(6 )+ B and all £(§)>we . Then £(%)ri, for i< B
give the required sequences.

Now we form the required sum by letting the first %, f3 terms
be the above cofinal sequences arranged one after another and then
we " compress " the remaining elements of b, without altering

their order, to take the remaining places. Clearly, the sum of

this sequence is (R +1),

Case 2 4 is regular
Let a be an Lus -sequence and we show that the number of different
ws, sums which can be obtained by permuting the members of a
to another & sequence and taking its sum is < wy . This completes
the proof.

‘Phe method which we use for this case is an extension of that
of {671 ana [18] . We can clearly suppose that infinjtely many
of the members of a are non zero, Then, an element a; is said to

have the property P if

{ajl aj?.» ai} < W s and then {_’18] shows that <« elements
of a have the property P.

Let Eai: ki+ w5 and then for some s z a, = ws tor
I b7 b
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g&(w% . Suppose that b is an tO,sequence which is a permutation
of a, and then as @s is regular, there is some index; g say, such

that for q&i< wh , &, doss not have the property P, We show that

St

> by = wb (2)

1
9 & 1<wWn,

By cardinality, there is some member of a, ) 52y, such that
k?-é and a.k?} bq. We can then continue this argument, as in
[18] , to get z bi éwg . If we suppose thati b, = o
4% Sy, _ Ed o L& Qwy
then, by reversing the argument, we get W*S €', so that (2) holds.
Now we have shown that all sums take the form z bi + ish
for some q< o4 , where all the terms with the prope::ig; P occur
before bq. Next we show that all terms which do not have the property
P may be replaced by 0 it the initial segment of b up to bq, without
altering the sum, We call the new terms b:‘i.' buppose that this
works up to B< q and that b g does not have the property P. Then
bf; {wg as there are arbitarily large terms X bﬁ , S0 that
baty b rwh= P b+ wt, by the lemma of [67). fhwus
A<y, Feidq
bﬁ can be replaced by O without altering the sum, Hence a2ll sums
are of the form Ebi‘.k we , where the only non zeroc terms are
b
those having the p§0perty P. As there are less than ZSTY such terms

the result now follows from (1), {_\

A5 Infinite extended ordinal operations

We define the infinite extended ordinal operations as a
natural extension of infinite sums and products in definition
A,12, Theorem A,13 shows that for limit X , we can reduce many
questions about J'lg to questions about infinite sums, and
corollary A.14 shows how theorem A.ll can be iransferred to such

operations.,
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Definition A.12 “G"‘d’ 5 = 1 if ¥>0 or 0 if ¥ =0.
5<o

“hen €3 O, -—%Xay ;;)e( (-n—”& at )Oxag ).

Theorem A,1%3 If ¥ is a limit ordinel, € 22, ac 2 2 and all ay 21,

then —0»3 a, = a, Ox(z(a',“l) ).
Y<p A 5
o< s<p

Proof Ve prove this result by transfinite induction on @ , and it

clearly holds when @ =2. OSuppose that it holds for all @«(Q §

and then
-‘szé‘gai, = ﬁ‘.{é ( ( "Q'Kag )0y ag ) by definition
= U ( (2g Oy p (a._ -1) O ag ) Dby hypothesis
ot Vit ¥R
= u (a 0 (3’ (2y -1)0g (2y 1) ) )
LEp<e s-:w.p
by theorem 27 of [ D-17)
U (ag Oy }_.(ax_$ -1) ) by definition.
2<p<e o<y«

If € is a successor ordinal then this immediately gives the result.
If @ is a limit ordinal then Z = is also a limit ordinal and

the result follows by theorem 15(111) of ED«T-\ d

Corollary A,14 If Sg’.a(‘?’C) is the definition corresponding to
2
Sa(cﬁ) with “Q‘k" replacing infinite sun and ® is a limit ordinal,

then theorem A,11 is also true when Sa( %) is replaced by S a(r.r:),
H

Proof This follows from theorem A.11, the proof of theorem 4,11
and the theorem. The only important point to note is that if bo
does not have the property P in Case 2, then we may replace it by

2 rather than by O. a

It is possible to prove other theorems, like A,13, which
enable us to transfer questions about infinite extended ordinal
operations to those concerning infinite sums, Theoren A.15 is an

example of such a result.
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Theorem A,15 If ¥ >»1 and {a3 | j‘(Q'} is a sequence of ordinals,

all of which are 3 w? then

L ay = a, (Z 2

s<e o<3<e -
Proof Suppose that the hypothesis of the theorem holds and,
initially, also suppose that all of the ay are limit ordinals.
We prove the result in this case using transfinite induction as
follows.
.E!;):zgab \g) ( (ay 0nx( 2“;., ) )Oﬁa#) by hypothesis

Qu (25025( ( Z ay J0a2g) )

<ten
by theorem 32(i) of [D..T]

= U (an OQK(Z ag ) ) by definition,
Bkl
The initizl result then follows asg in the proof of theorem A,13.
Now drop the assumption that all of the ay 'g are limit
ordinals, It is clear that we can define a sequence of ordinals,
az’ , with the property
0 wa 'S ags wa(ayg'+ 1) for § > 0, and al =&

Then, using the monoticity laws and the first result of this proof,

we get
Oy ( Sy )€ Mogag & 2, 054 ( Zw(ay'v1) ),

o< 5K € o< k< oKk ¢
As all of the a § are 72 w? we clearly have

Eﬂa:' = ‘Zu:(a(,.'—é- 1), so the inequalities give the result. U
0Ls<e by
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Initial corrections to
SCME TOPICS IN SET THEORY

by
John Lake

p20 In the proof of theorem 3.7, the given definition of
£f(f) should only be used when F is not of the form
w&+1, When B=wl 41, put f(B)=w.y . This

ensures that f is a regressive function.

pp26,27 Delete the first sentence of the proof of theorem 3%.15
after " . . . inaccessible cardinal ", Delete the last

sentence of that proof as well,

p128 Jourdain's introduction should refer to

reference 9 instead of to reference 11,



