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I have converted this document from the VUWRITER format in which it

originally appeared: partly by hand, party by use of a program written

by Paul Taylor It might be of some historical interest.

This paper has grown out of a talk I took round various hospitable logic

seminars in England in the winter term of 1981. I would like to thank members of

the Bedford, Cambridge and Leeds seminars for illuminating discussions which

have helped this document into its present form. It appeared in [3].

There are various problems in Set theory with a universal set: chief of them is

persuading people that there is anything worth studying. I shall say less on this

subject than I would like, for you who have already read this far are presumably

at least willing to listen. However I will allow myself one gibe: ZF is obviously

the core of any sensible axiomatic set theory of well founded sets, but that is

not to say that wellfounded sets are all there are. Much of the plausibility of

ZF as an axiomatisation for all of set theory arises from mistaking arguments

for the �rst for arguments for the second.

Although it is now over 40 years since the �rst axiomatic set theory with

a universal set was published, there is still no agreement on even a core for

an axiomatisation of set theory with V 2 V . In this paper I present some (i

hope) persuasive motivation for some axioms. The programme is best begun by

looking at the most basic problem of all, namely

The problem of identity in set theory with a uni-

versal set

The problem of identity in set theory with a universal set is the same as in the

more general case of illfounded set theory. Indeed I shall not make much of the

di�erence since there seems little motivation for illfounded set theory unless one

is interested in set theory with a universal set.

The axiom of extensionality summarises all that conventional wisdom has

had to say about \=" in set theory. It is the closest we come to saying in any

formal sense that sets are that-which-is-extensional. A set is just the collection

of its members, that and no more. (The most tough-minded expression of this
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point of view, which I shall adopt below, is that the only thing a set theorist can

know about = is that it is a congruence relation w.r.t. 2.) Thus extensionality,

in conjunction with the axiom of foundation, enables us to decide when x = y

by seeing if their members are identical. The regress we are launched on here

must terminate because the ranks of the things we are looking at is reduced by

the induction step. I am becoming more and more convinced that the appeal of

the axiom of foundation is simply that it provides us with this elegant recursive

characterisation of identity and thereby spares us the need to give the matter

any further thought. Historically this restriction has been fruitful as it has

enabled us to concentrate our e�orts on those parts of set theory where results

could be obtained quickly and applied widely. Of late the profuse growth of

parts of wellfounded set theory of no interest to outsiders has begun to suggest

that it has had all the help it needs and that the time is now ripe to reopen the

fundamental questions we have ignored since the turn of the century.

The problem then is that when V 2 V , the regress I spoke of in the last

paragraph ( \x = y? Are all their members identical? Are all their members

identical? . . . ") cannot be relied upon to terminate. Here we can pro�tably

introduce some ideas from game theory. Notation and terminology here will be

standard except for the use of the word `Wins' with upper-case `W' to mean

\. . . has a winning strategy for. . . " and that a strategy is not a thing that

says \when here, do this" but only \when here, do one of these", namely a

thing variously known as a nondeterministic strategy or a restraint etc. This is

because, as have argued elsewhere ([1]), AC is probably false in any sensible set

theory with a universal set, so if we use strategies in the standard sense (which

can often be little more then thinly disguised choice functions) we are liable to

�nd that a game has no Winning strategy in the standard sense|for reasons

that have nothing to do with the game itself but derive from our uneccessarily

strong notion of strategy and the large and uncertain universe in which the

game dwells.

The �rst game here will be notated G

x=y

("The identity game") to com-

memorate the fact that it is being played to decide whether or not x=y.

Player II moves �rst, choosing a subset R

1

� (x � y) s.t. R

1

\V = x and

R

�1

1

\V = y. At each stage Player I picks an ordered pair hx

n

; y

n

i from II's

previous choice. Subsequently Player II chooses R

n+1

a subset of x

n

� y

n

s.t.

R

n+1

\V = x

n

and R

�1

n+1

\V = y. Player II loses if she is confronted with a pair

hx

n

; y

n

i one of which is empty and the other not. I loses if he picks hx

n

; y

n

i both

of which are empty (notice that this allows for the existence of urelemente). If

the game goes on for ever II wins. The idea is that II is trying to prove x = y

and that I is trying to prove x 6= y. In earlier versions of this paper I had

II pick bijections rather than relations, the rationale being that a set cannot

have two identical members. The present version is better all the same though,

because it does not compel us to decide, in order to know what the rules are to

be, whether or not some things u; v in the transitive closure of x are identical

(which we could discover only by playing G

u=v

). Another way of putting this
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is to say that to specify formally the rules governing II's moves in the version

of the game where she has to play bijections would use the \=" symbol whose

meaning is explained only by the game which is yet to be played.

Player II's choice of R

n+1

when faced with x

n

and y

n

is obtained by par-

titioning x

n

, y

n

into equivalence classes under identity and then pairing the

equivalence classes for x

n

with those for y

n

in an appropriate way. On the

face of it, this suggests that we should always require II's choice R to satisfy a

condition

(uRv ^ u

0

Rv ^ u

0

Rv

0

)! uRv

0

but it is not hard to persuade oneself that the resulting games are equivalent,

and the proof is omitted.

G

x=y

is a open game. That is to say, if player I wins at all, he has done so

after �nitely many moves. So I or II must have a winning strategy. It is not

hard to see that the relation

II Wins G

x=y

is a congruence relation w.r.t 2. Indeed it looks a very good candidate for a

de�niens of `x = y'. However there are good reasons for looking for something

even stronger. Let us de�ne j an operator on maps so that (j`f)`x = f\x, and

let us de�ne, for each n 2 IN, an equivalence relation �

n

by

x �

n

y i� (9� )(� is a permutation of V ^ (j

n

`� )`x = y)

x �

1

y i� x �

n

y for all n.

. . . and we invoke the notations [x]

n

, [x]

1

for equivalence relations as usual.

The importance of n-congruence derives from the fact that if x �

n

y then x and

y satisfy the same strati�ed formul� in which they both appear at type n. This

derives from a theorem, important in the folklore of NF, that

LEMMA 1

�(x; y; z : : :) ! �((j

m

`� )`x; (j

n

`� )`y; (j

k

`� )`z; : : :)

where m, n, k . . . are the types of x, y, z . . . in �.

This fact, which will not be proved here, will be used later on. x �

n

y

says that the top n \layers" of x and y look the same. This being the case,

extensionality would lead us to be very suspicious of having x and y with x 6= y

but x �

1

y. Since there is no obvious way of constructing a Winning strategy

for II in G

x=y

given merely that x �

1

y a tougher de�nition of identity will

be required.

Consider again the game G

x=y

. Let us suppose I has a winning strategy.

Let us consider the tree of all plays obtained by I using his Winning strategy

and II doing anything legal. This tree is wellfounded since all plays (branches)
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terminate after a �nite number of steps (the use of DC here may or may not

be signi�cant: see the next game below where a similar problem occurs) and

occordingly has a rank. Let us nbotate this ordinal \2

x;y

". 2

x;y

looks rather

like a truth-value of x = y but the ide of ordinals as truth-values of anything is

profoundly repugnant and suggests that we have too much structure, some of it

spurious. Fortunately we have the following crucial fact:

If 2

x;y

and 2

y;z

are both in�nite, so is 2

x;z

Proof:

\2

x;y

is in�nite" simply says that for each natural number n, player II has

a strategy that enables her to postpone defeat until n moves have been played.

If II has such strategies for G

x=y

and for G

y=z

then she has strategies for G

x=z

by composition.

What this means is that the relation \2

x;y

is in�nite" is an equivalence

relation and hence must be the identity (!) That is to say

Axiom of strong Extensionality

(8x)(8y)(x = y  ! (8n 2 IN)(II has a strategy to postpone defeat

in G

x=y

for n moves))

This axiom deliberately expunges a lot of structure. If we had instead de�ned

x = y to be \II has a Winning strategy in G

x=y

" then we would have lots of

exciting equivalence relations to play with, since ! cannot be the only ordinal

� such that 2

x;y

� � is an equivalence relation, but we would nothave ensured

that �

1

is equality.

A Quine atom is an object x = fxg. Strong extensionality prevents there

being more than one Quine atom. Indeed it prevents there being more than one

object whose transitive closure does not contain the empty set. It also excludes

the possibility of 2-automorphisms of V .

G

x=y

has generalisations which can be useful when de�ning identity in a

non-recursive way in models that we obtain by deleting objects e.g., urelemente,

from some given model. First we identify objects whose symmetric di�erence

consists entirely of things to be deleted. Then we delete all but one from each

equivalence class, and iterate. The same e�ect can be achieved by playing a

version of G

x=y

where the domains and ranges of the relations played by II

avoid objects which are to be deleted.

The next game we consider has a simpler structure. This game, played with

an initial set x, is notated G

x

and in it each player (I starting) picks a member

of the other player's last choice until the game is ended by one trying to pick a

member of an empty set (the game can be played in universes with urelemente)

and thereby losing. If the game goes on for ever it is a draw. When x 2 x I

and II can go on picking x for ever and thus draw, but one has the feeling that

empty sets ought to be su�ciently dense in the transitive closure of any x for

one player or the other to be able to force a win. Let us adopt the de�nitions
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I =

df

fx : I Wins G

x

g; II =

df

fx : II Wins G

x

g

(we will leave open for the moment whether I and II are to be sets or

proper classes) Obviously x 2 I i� (9y 2 x)(y 2 II) and dually x 2 II i�

(8y 2 x)(y 2 I). We can rewrite this as I = B\II (B`x =

df

fy : x 2 yg) and

II = P`I. If, with a view to readability, we invent a new function letter b so

that b`x =

S

B\x (the `b' is an upside-down `p' to remind us that b corresponds

to 9x 2 : : : and p to 8x 2 : : :) we can rewrite this as I = b`II and II = P`I.

This is rather reminiscent of the fact that x 2 WF i� (8y 2 x)(y 2 WF ) and

x 2 �WF i� (9y 2 x)(y 2 �WF ). Apart from the elegant characterisation

this enables us to give in a language where formul� can have themselves as

proper subformul�, it invites us to consider what happens if we stick in yet

more quanti�ers, for example

x 2 X i� (9y 2 x)(8w 2 y)(9u 2 w)(u 2 Y )

x 2 Y i� (8y 2 x)(9w 2 y)(8u 2 w)(u 2 Y )

or, for short, X = bpbY and Y = pbpX. In this case I and II are no longer

unique solutions since b`Y for X and P`X for Y will satisfy the same identity.

This is rather reminiscent of the way e

x

splits into sinh(x) and cosh(x) when

we require not f = Df but merely f = D

2

f . Both in that case and here we

�nd that by increasing the number of iterations new roots will appear. This

parallel will not be taken further here. Once we notice that � 2 II and V 2 I

the discussion above suggests the following recursive construction:

I

0

= fV g; I

�+1

=

[

B\II

�

II

0

= f�g; II

�+1

= P`I

�

. . . taking sumsets at limit ordinals. It is not hard to show by induction that

I

�

and II

�

are increasing sequences under inclusion. Let us associate with each

object in I or II its rank, the least � such that it belongs to I

�

or II

�

. We

need to show that everything in I or II does indeed have a rank. The proof is

analogous to that in ZF that every wellfounded set has a rank.

Suppose x 2 II is unranked. Then every y 2 x is in I but then some y 2 x

is unranked, otherwise the rank of x is just sup

y2x

rank`y+1. Similarly if x 2 I

is unranked. But this illfoundedness enables (in either case) the \losing" player

to construct a strategy ("play unranked sets") which results in an in�nite play

and a draw, contradicting the existence of a winning strategy. This justi�es the

de�nition if I and II as the union of their partial sums over the ordinals.

REMARK 2 I

�

and II

�

are disjoint for all �, �

Proof: Suppose � and � are minimal counterexamples, then we have x 2 II

�

and x 2 I

�

. So there is y 2 x such that y 2 II

�

for some � < �. But any such y

(since y 2 x 2 II

�

) must also be in I




for some 
 < � contradicting minimality
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of � and �. This enables us to construct a canonical strategy for the winning

player.

The minimal strategy

\When confronted with x, play anything in x\ II of minimal rank"

It is well-known that the rank of a well-founded set can be de�ned either as

the rank of 2 jTC`x considered as a wellfounded relation or as the least ordinal

� such that x 2 V

�+1

. There is a corresponding result here: let the pseudorank

of x be the least ordinal � such that x 2 I

�+1

[ II

�+1

. The pseudorank of x

is the same as the rank of the tree of plays obtainable in G

x

by the winning

player using her minimal strategy and the other player doing anything at all.

The proof is an easy induction on rank and is left to the reader. The reader

may also wish to verify that any wellfounded set of rank � will have pseudorank

� too. The proofs all have such an engaging familiarity to them that it suggests

one should adopt, as an analogue of the axiom of foundation the following

Axiom of 2-determinacy

V = I [ II

There is a slight blemish to the parallel between the axioms of 2-determinacy

and foundation, namely that 2-determinacy tells us that we can associate with

each set x a canonical tree which is wellfounded in the weak sense that every

path through it is �nite. This involves DC in subsequent proofs. We could

frame 2-determinacy in a way that gets round this by de�ning recursively, on

the tree of possible plays in G

x

, a two-valued function f such that f `y = 0 says

\II has a Win from stage y" and f `y = 1 says \I has a Win from stage y".

The new version of 2-determinacy would then say that for all x, this function

is de�ned on the whole of the tree of plays of G

x

.

To lend plausibility to this axiom, we can prove it for a large natural class

of sets. (For the de�nition of n-symmetric, see below)

PROPOSITION 3 Let X be n-symmetric, with n even (odd). Then either I (II)

Wins G

X

in n+ 2 moves or II (I) Wins G

X

in n+ 3 moves.

Let us take the case n = 6 as a typical illustration. Let `�(y; x)' be short for

(9x

5

2 x)(8x

4

2 x

5

)(9x

3

2 x

4

)(8x

2

2 x

3

)(9x

1

2 x

2

)(x

1

� y):

Since II Wins G

x

for any x � B`�, �(B`�; X) will certainly imply that I

Wins G

X

(in eight moves in fact). `�(y; x)' is a strati�ed w� in which `x' is

of type 6 and `y' of type 1. By an application of lemma 1 (the automorphism

lemma for de�nable sets) we have

�(B`�; X) ! �((j`�)`(B`�); (j

6

`�)`X)

for any permutation �. But X is by hypothesis 6-symmetric, which is to say

X = (j

6

`�)`X for any �, so this becomes

�(B`�; X) ! �((j`�)`(B`�); X):
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Now suppose I does not have a strategy toWin in eight moves. Then :�(B`�; X)

and indeed :�((j`�)`B`�; X) for any permutation �.

We now seek a permutation � so that (j`�)`(B`�) = �P`B`�. This is easy

because (B`�) and �P`B`� are the same size, as are their complements. So

:�(�P`B`�; X) which is

(8x

5

2 x)(9x

4

2 x

5

)(8x

3

2 x

4

)(9x

2

2 x

3

)(8x

1

2 x

2

):(x

1

� �P`B`�)

and the matrix simpli�es to (9x

0

2 x

1

)(8x

�1

2 x

0

)(� 2 x

�1

) which is to say II

Wins in nine moves. The proofs for other �nite n are similar

2-determinacy can thus have no counterexamples which are sets de�nable

by strafti�ed expressions.

2-determinacy gets rid of Quine atoms for us (only one play possible in G

x

if x = fxg and that is a draw!), but there are equally pathological objects that

it does not get rid of, such as x = fx;�g. Such an object clearly belongs to I so

it does not contradict 2-determinacy. Strong extensionality limits the number

of such objects to 1 but does not get rid of them altogether. We shall �nd such

an axiom in the next section where the discussion has been broadened a bit.

I am going to introduce some canonical objects, canonical in the sense that

they are distinguished representatives of their kind generated in a very natural

way by the theory. In what sense any of them are to be sets will be left open.

1 The canonical topology

The pseudorank function given by 2-determinacy may eventually give us again

some constructive control over V but until we have that sort of wellfoundedness

available again it is more natural to look instead from the top downwards and

classify sets according to what their top few layers look like. For this we natu-

rally turn to the n-equivalence classes of [1]. We topologise V by taking as basis

all sets of the form [x]

n

. All neighbourhoods will in fact be clopen. If we use

Quine ordered pairs (so that V = V � V ) we �nd that the product topology on

V

2

is identical to the topology on V . The fact mentioned earlier, namely that

�(x; y; z : : :)  ! �((j

n

`�)`x; (j

m

`�)`y; (j

k

`�)`z : : :) where n;m; k. . . are the

types of x; y; z. . . in � can accordingly be minuted as

REMARK 4 Functions de�ned by strati�ed formulae are continuous in the canon-

ical topology.

The bad news this brings is the following:

REMARK 5 The canonical topology is not compact

In the presence of AC

2

we can �nd a permutation � of V so that � and j`� are

conjugate, with � 6= the identity (see [5]). This amounts to saying [�]

k

= [j`�]

k

for some �xed small k. Also we can show, for any n, that
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[�]

n

= [j`�]

n

! [j`�]

n+1

= [j

2

`�]

n+1

for any permutation �.

From this it follows that [�]

k

, [j`�]

k+1

. . . [j

n

`�]

k+n

. . . is a nested sequence

of closed sets, whose intersection must be nonempty (by compactness) and a sin-

gleton fag (by the axiom of strong extensionality) It then follows that a = j`a,

which is to say that a is an automorphism. Any two objects that are inter-

changed by an automorphism must be 1-equivalent, so strong extensionality

will imply that there are no automorphisms, contradicting compactness.

DEFINITION 6 A set is symmetric if it is isolated in the canonical topology.

x is n-symmetric if [x]

n

= fxg.

That is to say, x is symmetric if it is n-symmetric for some n. The termi-

nology "symmetric" is motivated by the fact that an n-symmetric set is �xed

by lots of permutations of V , namely all those that are j

n

of something. All

sets de�nable by strati�ed expressions will be symmetric. This suggests that

the family of symmetric sets might be an appropriate model for some set of

axioms we might wish to develop. This possibility is discussed in [1] where it is

shown in NF that if SYMM (the family of symmetric sets) is extensional (i.e.,

if x; y are distinct members of SYMM then x�y meets SYMM) then it is a

submodel of V elementary for strati�ed w�s and that AC

2

must fail. One could

motivate an axiom V=SYMM along the following lines: the second axiom of

strong extensionality implies that [x]

1

= fxg for all x and V = SY MM says

that for each x there is some n such that [x]

n

= fxg already. So \V = SY MM"

is a natural strengthening of strong extensionality. However its consequences

are too bizarre for that to be a su�cient reason for adopting it.

A permutation model obtained from V and a permutation � in it (notated

V

�

) is the structure obtained by keeping the same elements but rewriting 2

so that x 2 y (in the new sense) i� x 2 �`y (in the old sense). Such models

have been of great help in the devising of relative independence and consistency

results in NF since the transition to a permutation model preserves all strati�ed

sentences true in the original model, and all the axioms of NF are strati�ed. To

procede further we shall need some notation. Let 
 be an arbitrary permutation.

DEFINITION 7 


0

= identity; 


n+1

= (j`


n

) � 


Now we can express the following piece of folklore

V




j= �(x; y; z; : : :) ! V j= �(


n

`x; 


k

`y; 


m

`z : : :)

where n, k,m . . . are the types of `x', `y', `z' . . . .in �. In particular, V




j= x �

n

y

i� 


n

`x �

n




n

`y. We shall now try to identify n-equivalence classes across

permutation models. We shall need a analogue of the j operation for maps

� : V

�

 ! V




. Call it m`� (a nonce notation). We have

(m`�)`x = �\x (in the sense of V




)
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so

m`� = 


�1

� (j`�) � �

so that to say that x (in V

�

) is n-equivalent to y (in V




) becomes

(9�)(y = ((


n

)

�1

� (j

n

`�) � �

n

)`x)

If we set � = identity we see that (


�1

n

� �

n

)`x is an object in V




which

has the same n-equivalence class in V




as x does in V

�

. In other words, V

�

and V




have the same n-equivalence classes. Another way of putting this is to

say that the canonical topologies in V

�

and V




have the same lattice of open

sets and that the only di�erence is in which sequence of closed sets have empty

intersection. By judicious choice of � we can arrange to V

�

to have, or not to

have, a Quine atom. Assuming the second axiom of strong extensionality the

(non)-existence of Quine atoms is equivalent to the following nested sequence

of closed sets:

�\V; �

2

\V; : : : �

n

\V : : :

having empty (nonempty) intersection. (� is the singleton function.) This

motivates a partial order of permutations where � � � if more intersections of

closed sets are empty in V

�

than in V

�

. De�ne

� � �  ! (9f)(8x)(8n)(9�)(f `x = (�

n

)

�1

� (j

n

`�) � �

n

`x))

Thus � precedes � i� we can �nd a function f which sends each x 2 V

�

to

something f `x 2 V

�

which is n-equivalent to it for each n. It is mechanical to

verify that � is transitive (take compositions). It is not actually antisymmetrical

because � � j`� � �. (� itself is an isomorphism between V

�

and V

j`�

) � has

an automorphism generated by -, the complementation function. - commutes

with everything in J

1

so j

n

`� commutes with everything in J

n+1

. We can use

this fact to verify that � � � i� � � � � � � � .

Permutations can be used to give us models free of rubbish like Quine atoms.

One might feel that any creature that can be thus eradicated is probably some-

thing we are better o� without. This motivates the Axiom of minimality =

� � for all permutations � .

Minimality is the promised axiom for getting rid of things like x = fx;�g.

The sweep made by minimality may be a lot cleaner even than that, since no-

one has yet proved that if V contains an in�nite von Neumann ordinal then so

must all its permutation models. If this is not true, and in�nite Von Neumann

ordinals can indeed be got rid of, then Minimality will have the consequence

that there are none, and that all von Neumann ordinals are �nite. The reader

may feel that the absence of in�nite Von Neumann ordinals is unfortunate, but

to do arithmetic one does not need Von Neumann ordinals any more than one
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needs �ngers. There are various ways out of this: one could adopt the hard-

nosed point of view expressed above, that von Neumann ordinals are essentially

irrelevant to ordinal arithmetic even, and are no more mathematically necessary

than �ngers. There is also the possibility that further research will reveal that

in�nite von Neumann ordinals can not, in fact, be got rid of, or that more

research will tell us so much more about � that we realise that minimality is

quite inappropriately strong for quite other reasons.

If we consider the special case of minimality that asserts that identity �

complementation and bear in mind that � � � i� � �� � � � � we infer that V

and V

�

must have the same canonical topology. This particular case has other

motivations. Let

^

� (read \�-dual") be the result of replacing all occurrences of

2 in � by 62 and vice versa. It is evident that

^

� is logically valid i� � is too.

Also that ^ is an involution which respects interdeducibility. There will be a

corresponding notion of the dual

^

M of a structure M. A structure isomorphic

to its dual will be said to be self-dual. In [4] Specker considers the behaviour of

such dualities and lists three possibilities for theories T whose languages admit

such a duality

1. for all �, T ` � i� T `

^

�

2. for all �, T ` � !

^

�

3. All models of T are self-dual (to which we may as well add, since large

objects can be sets here. . . )

4. All modelsM of T contain an isomorphismM'

^

M

Maps as in (iii) or (iv) are antimorphisms. An antimorphism as in (iii) is

an external antimorphism, one as in (iv) is an internal antimorphism. Such

antimorphisms are discussed in [1] where it is proved that the existence of an

internal antimorphism is inconsistent with AC

2

. That proof does not go through

if the antimorphism is external (not a set of the model).

REMARK 8 Any antimorphism of V is unique

Proof: The composition of any two antimorphism is an automorphism and

therefore the identity. Pending further progress on the minimality front we can

at least adopt the following special case of it: Axiom of duality: There is a

unique antimorphism.

Duality and strong extensionality together get rid of another class of patho-

logical object, the Bo�a atom. x is a Bo�a atom if x = fy : x 2 yg. The reader

may verify that if x is a Bo�a atom and � is an antimorphism then �`x is also

a Bo�a atom. Also that x 2 x i� �`x 62 �`x. Now let � be an antimorphism

and x, per impossibile, a Bo�a atom. �`x is also a Bo�a atom, and one of them

is self-membered and the other not. Notice x 2 �`x i� �`x 2 x, since they are

Bo�a atoms. Now, by duality, if there is a pair of Bo�a atoms that are members
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of each other, there must also be a pair that are not members of each other. So

there are two distinct, self-membered Bo�a atoms. But this is impossible, as II

Wins G

x=y

when x; y are self-membered Bo�a atoms, by playing a map � where

�`z = z when z contains both x and y or neither, and �`z = (z n fxg) [ fyg if

x 2 z and conversely if y 2 z.

If there is to be a unique antimorphism we had better set about �nding it.

If � is an antimorphism it must satisfy the identity: � : � = (j`� � �). This

suggests that we devise � by approximation thus

� = : : : j

n

`� � : : : j`� � � :

The in�nitary expression on the right hand side is easily seen to satisfy the

identity �. We now note that - is of order 2 and so is j

n

`� for any n. Also that

j

n

`�, j

k

`� commute with one another for all n, k, so we can rewrite the n

th

�nite approximation to the right hand side as

�

n

: � � j` � �j

2

`� � : : : ::j

n

`�

If we apply this permutation to a k-symmetric set, with k < n, we can ignore

the last k � n terms on the right, since they will not move anything that is

k-symmetric. So if x is k-symmetric �

n

`x = �

m

`x for any n;m > k and it

is this eventually constant value of the �

n

that we take to be the value of

the canonical antimorphism for argument x. It is now easy to verify that the

canonical antimorphism is, indeed, an antimorphism on the symmetric sets.

Any attempt to extend it to all sets meets only partial success.

The set-theoretical treatment above has been far from rigorous, and no con-

sistency proofs are on o�er. This second point should be seen as good news

rather than bad, since rather than saying to us that there are no sensible set

theories with a universal set, it tells us that they o�er us a glimpse of a world

so di�erent that interpretation of it in terms of the old are not easy to come by.

Besides, history shows that where the available mathematics is su�ciently ab-

sorbing, mathematicians are much more likely to get on with developing it than

worry about whether it is consistent or not. The philosophical rami�cations are

simply too tempting to be ignored inde�nitely.
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