
NF3 + AxInf is equivalent to Second-Order

Arithmetic

Jean-François Pabion;

and

The 3-stratifiable theorems of NF3

by

Boffa and Crabbé

Rendered into English by Thomas Forster

August 8, 2023

There are no footnotes in either of the original texts, so all the footnotes
here are comments from the translator.

1 NF3 + AxInf is equivalent to Second-Order
Arithmetic
Jean-François Pabion

The text was supplied to the translator by Marcel Crabbé, who fortunately
had kept a photocopy, and he has helped greatly with some details of the
translation. Crabbé’s English is better than my French(!). This is a fairly
free translation.
Boffa thought highly of this paper, and told everyone to read it.

A note by Jean-François Pabion, presented by Gustave Choquet.
Comptes Rendus Acad. Sci. Paris 290 (30/vi/80). Sér. A—1117
Submitted 2nd June 1980, accepted 16th June 1980.

TST3 + AxInf is the theory TST of simply typed set theory with three
levels augmented by the axiom of Infinity. Boffa has shown that TST3 + AxInf
interprets elementary arithmetic. We show that this interpretation extends to
a conservative interpretation1 of second-order arithmetic PA2.

1‘Conservative’ here represents an attempt to translate ‘conservatrice’. I am not yet clear
what is going on, tho’ i think that what is being claimed is that TST3 + AxInf does not prove
any more arithmetic than is in the range of the interpretation we are about to see. If one
could only state this properly it would probably become obvious!
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1.1 Interpretation of PA2 in TST3 + AxInf

TST3 is the theory TST of simply typed set theory with three levels, with
extensionality and comprehension. It proves the existence of a set F2 whose
members are the finite sets of elements of level 0. This enables us to formulate
an axiom of infinity:

(∃x1)(x1 ̸∈ F2) (I)

We briefly review Boffa’s [?] interpretation of arithmetic. We can capture

“There is a bijection between x \ y and y \ x”

by saying

“There is a set P of (unordered) pairs such that every p ∈ P has one
member in x \ y and one in y \ x, and everything in x XOR y belongs
to a unique pair in P .”

We write this last as x ∼ y. This relation ∼ between members of F2 is precisely
equipollence2.

We make the following identifications:

Natural Number = ∼ - equivalence class of a finite set of atoms;
Family of naturals = set of finite families of atoms closed under ∼;
Membership = inclusion3.

Since we have the axiom I of infinity this gives us an interpretation of PA2.

PROPOSITION 1 The above interpretation of PA2 into TST3 + AxInf is con-
servative.

What exactly
does this
mean?1.2 Plan of the Proof

We will describe an interpretation of TST3 + AxInf into PA2 for which the
reconstruction of PA2 into TST3 + AxInf is demonstrably isomorphic to the
structure with which we started. The technique is reminiscent of the Fraenkel-
Mostowski construction in set theory.

Let N = ⟨N,O, S,+, · · · D⟩ be a model of PA2. (D is a family of subsets
of N). In N “finite set” corresponds naturally to “bounded subset”. To each
n ∈ N we associate the element Xn of D given by

• if n = 2m then Xn = {x : the xth bit in the binary representation of m = 1};
• if n = 2m+ 1 then Xn = N \X2m.

This bijects N with the set of finite-or-cofinite4 sets of natural numbers.
We will say a permutation σ of N is internal if its graph is in D. (We fix an

arbitrary coding of pairs). Any internal σ is defined in a natural way on D.
2Notice that this relation uses only three levels.
4This version of the Ackermann bijection is due to Oswald and (arguably) Church [2].
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LEMMA 1
Suppose A ∈ D; A is finite-or-cofinite iff there is n ∈ N such that A is fixed by
every internal permutation fixing every i ≤ n.

Proof:
Internal permutations preserve finiteness/cofiniteness. Thus, to any internal

permutation σ, one can associate a new permutation σ∗ defined by

Xσ∗(n) = σ“Xn

We also have
2σ(n)+1 = σ∗(2n+1)

Now, for A ∈ D we will say A is invariant if there is n ∈ N such that A is
fixed by every internal permutation fixing all i ≤ n. We can now define a new
structure M = ⟨M0,M1,M2, ϵ⟩ for the language of TST3:

• M0 = N ;
• M1 = {Xn : n ∈ N};
• M2 = {X ∈ D : X is invariant}

with the membership relation ϵ defined thus:

If a ∈M0 and A ∈M1 then a ϵA iff a ∈ A;
If a ∈ N and A ∈M2 then Xa ϵA iff5 a ∈ A.

It is then easy to check that M satisfies extensionality. Verifying the axioms of
comprehension needs lemma 1 and the following

LEMMA 2 Let σ be an internal permutation of N . By having σ act as itself
on M0 and M1, and as σ∗ on M2 we have an automorphism of M.

Proof:
Let F be {2n : n ∈ N}. F is in M2, and clearly F is the set of finite

sets of atoms (in the sense of M). Therefore M and N have the same notion
of finiteness. Indeed, for X,Y ∈ F , we have M |= X ∼ Y iff X and Y are
equinumerous according to N. In N, let us declare |x| to be the least y such
that {0, . . . , y − 1} is equipollent to X2x (or 0). Wossat?

An isomorphism between N and the arithmetic of M is now given by

For n ∈ N , n 7→ {2m : |m| = n};
For A ∈ D, A 7→ {2m : |m| ∈ A}.

5I found this made more sense when i thought of it as:
If Xa ∈ M1 and A ∈ M2 then Xa ϵA iff a ∈ A.
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1.3 Remarks

The interpretation we have given from TST3 + AxInf into PA2 is not conserva-
tive. For example it verifies (∀x1)(x1 is finite or cofinite).

Of course we can construct lots of other interpretations: all one needs is a
subalgebra of D which can be coded and which contains all singletons. However
we have not so far found an interpretation TST3 ↪→ PA2 which is conservative.

Boffa-Crabbé [1] have shown that NF3 + AxInf (NF sans axioms that need
three types to stratify them, plus the axiom of infinity) is a conservative exten-
sion of TST3 + AxInf.

References

[1] M Boffa and M Crabbé “Les théorèmes 3-stratifiés de NF3” Comptes Rendus
hebdomadaires des séances de l’Académie des Sciences de Paris (série A) 280
(1975), pp. 1657-1658.

[2]

[3]

2 Remarks by the Translator

I have changed the notation from TT3I etc. to TST3 + AxInf to comply with
modern practice and also to avoid a collision with the notation that uses an
‘I’ suffix to denote a system with predicative restrictions on its set abstraction
scheme.
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3 Boffa-Crabbé on NF3 and TST3

C.R. Acad Sc. Paris 280 (23 Juin 1975) Série A — 1657

The 3-stratifiable theorems of NF3
NF3 is that fragment of NF axiomatised by the 3-stratifiable axioms of
NF. We characterise the 3-stratifiable theorems of NF3 (and of NF3 +
AxInf) in terms of TST, the theory of types6.

Let k be a natural number ≥ 2 TSTk is TST restricted to levels 0 to k − 1.
NFk is the theory axiomatised by the axiom of NF that can be k-stratified. Let
TST∞

k is TSTk be TSTk plus axioms saying that level 0 contains ≥ n things for
every concrete n. TST+

k is TSTk plus all k-stratifiable expressions of the form
A←→ A+. Grishin [1], [2], [3] proves the consistency of NF3 in arfithmetic and
proves NF = NF4.

PROPOSITION 2 The 3-stratifiable theorems of NF3 are precisely the theo-
rems of TST∞

3 .

Proof:
By using [] one can see that the 3-stratifiable theorems of NF3 are precisely

the theorems of TST+
3 . It remains to be shown that TST+

3 = TST∞
3 . This

reduces to the problem of of showing that every infinite model of TST3 satisfies
A ←→ A+ for every 2-stratifiable formula A. Let B be the formula obtained
from A by replacing in A every atomic subformula of the form x0 ∈ x1 by
x0 ≤ x1 and restricting to atoms every quantifier ranging over variables of type
0. Let M1 be the boolean algebra of elements of type 1 and M2 be the boolean
algebra of elements of type 2. It is evident that M |= A iff M1 |= B and that
M |= A+ iff M2 |= B. Since M is infinite we know that M1 and M2 are both
infinite atomic boolean algebras, so we know from [5] section 5.5 that they are
elementarily equivalent . . . which implies that M |= A←→ A∗.

An Aside: By drawing inspiration from [6] and quantifier elimination
for separable Boolean rings (see [7] p 62) we can even give an effective
procedure for transforming a proof of a 3-stratifiable theorem of NF3 into
a proof in TST∞

3 of the corrersponding formula of the language of TST.

COROLLARY 1
(i) Every 3-stratifiable theorem of NF3 is true in almost all finite models of

TST3;
(ii) Every 3-stratifiable expression true in infinitely many finite models of TST3

is consistent with NF3;
(iii) The set of 3-stratifiable expressions true in almost all finite models of TST3

is consistent with NF3;

6There are no footnotes in the original text, so all the footnotes here are comments from
the translator.
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(iv) There is not finite extension of TST3 whose theorems are precisely the
3-stratifiable theorems of NF3;

(v) If AI is a 3-stratifiable version of the axiom of infinity7 (for example, axiom
C of [8]) then the 3-stratifiable theorems of NF3 + AI coincide with the
theorems of NF3 + AI.

Remark:
For each 2-stratifiable expression A, let B be the formula in the langauge

of boolean algebras obtained as above. It is easy to see that A is a theorem
of NF2 iff B is a theorem of the theory of infinite atomic boolean algebras.
This remains true even if we replace NF2 by the theory T whose axioms are:
extensionality, existence of singletons, binary unions (x ∪ y) and complements.
This means that T = NF2. Thus the models of NF2 are precisely the structures
⟨M,∈⟩ where M is a boolean algebra with a bijection i to its set of atoms, and
x ∈ y ←→ i(x) ≤ y.

References

[1] Grishin, V.N. “Consistency of a fragment of Quine’s NF system” Soviet.
Math. Doklady, 10, 1969, p’ 1387-1390’

[2] Grishin, V.N. “Concerning some fragments of Quine’s NF system” (in Rus-
sian). Issledovania po matematicheskoy lingvistike, matematicheskoy logike i
informatsionym jazykam (Moscow), pp. 200-212.

[3] Grishin, V.N. “The equivalence of Quine’s NF system to one of its fragments”
(in Russian). Nauchno-tekhnicheskaya Informatsiya (series 2) 1, pp. 22-24.
(1972) pp 22–24.

[4] Specker, “Typical Ambiguity”, Logic, Methodology and Philosophy of Sci-
ence (Proc 1960 intern’ congr.), Stanford, 1962, pp. 116–124.

[5] Chang et Keisler Model Theory, North-Holland’ 1973’

[6] Crabbé, M. “Types ambigus” Comptes Rendus hebdomadaires des séances
de l’Académie des Sciences de Paris (série A) 280, pp. 1-2. Comptes rendus,
28O, série A, 1975, pp 1–2 1967’

[7] Kreisel et Krivine, Eléments de Logique Mathématique, Dunod, Paris,

[8] Gödel, K, The Consistency of the Continuum Hypothesis Princeton 1940.

7For example: say that a set is even if it has a partition into pairs. The axiom of infinity
will now say that there are sets x ∈ y with both y and y \ {x} even.
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4 On first looking into Pabion’s “NF3 + AxInf
is equivalent to Second-Order Arithmetic”

Pabion is interested in the relation between NF3 and PA2, second-order arith-
metic. It is evident that there is a close connection between the two, and Pabion
has some useful things to say about it.

At the very least, one expects the two theories to be mutually interpretable,
at least once one haas augmented TT3 with AxInf, the axiom of infinity. So
there are two directions to be studied: interpret PA2 into TT3 + AxInf, and
vice versa.

We start by thinking about how to interpret PA2 into TT3 + AxInf. On
the face of it this there is a huge obstacle. Level 0 of a model of TT3 + AxInf
contains atoms, level 1 contains sets (finite sets indeed) and level 2 contains sets
of finite sets, which will do duty as natural numbers. To get PA2 we need sets
of numbers, and that would involve level 3, which in our case we do not have.
However Boffa has a clever idea that gets past this impasse.

As long as x and y are finite, then |x| = |y| is equivalent to there being a
bijection between x \ y and y \ x, and the existence of such a bijection can be
stated without using ordered pairs, by saying “There is a set P of (unordered)
pairs such that every p ∈ P has one member in x \ y and one in y \ x, and
everything in x XOR y belongs to a unique pair in P .” So we can assert bijectivity
inside three types.

In fact we can do this anyway—even without the assumption of finiteness—
using a device of Henrard, but Boffa’s device is simpler and does what we
need.

Next we record that we can say that x is finite in a formula using three types
where the variable ‘x’ occurs at the middle type. So in TST3 (levels labelled 0,
1 and 2) natural numbers appear at the top level, as equivalence classes of sets
of atoms. The next clever idea is to think of sets of natural numbers as their
sumsets. This succeeds beco’s

⋃
is injective on sets of naturals. That way we

get second order arithmetic inside three levels!
The other direction we want is an interpretation of TST3 + AxInf in PA2.

Here too we seem to run out of sky, since PA2 has only two levels while the
TST3 we are trying to shoehorn into it (with or without AxInf, it matters
not) has three. For this we need ideas going back to Ackermann and Oswald.
We start with a model M of PA2, and obtain from it a model N of TST3 +
AxInf. The atoms of N are going to be the natural numbers of M. The sets
of atoms of N, too, are going to be the natural numbers of M, by means of a
Ackermann/Oswald coding. The top level of N is going to be the top level of
M.

Next we have to ensure that we code (in the naturals of M) all the sets-
of-atoms that the axioms of TST3 + AxInf allege to exist. Fortunately for us,
TST3 + AxInf is not very demanding. All it can say is that the sets of atoms
in N form an infinite atomic boolean algebra; so it suffices to ensure that: V
exists, every atom has a singleton and that sets are closed under \, ∪ and ∩.
The basic Oswald construction gives us this much, and so do lots of others.
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Perhaps we should insist on a CO construction that gives us a boolean algebra
with the splitting property. It is evident from Pabion’s paper that his CO-style
construction gives models of TST3 + AxInf in which the boolean algebra that
is level 1 does not have the splitting property, whence we can infer that TST3

+ AxInf does not prove that the boolean algebra that is level 1 has the splitting
property.

Here is a fact that might come in useful. If M is a countable model of PA2

(second order arithmetic) then level 2 of M—the family of subsets of IN—is a
countable atomic boolean algebra with the splitting property.

Let A be an infinite member of the top layer of M. A = ⟨ai : i ∈ IN⟩ divides
naturally into Aeven = ⟨a2i : i ∈ IN⟩ and Aodd = ⟨a2i : i ∈ IN⟩. It will suffice to
show that these are both sets of M. We will exploit to the utmost the fact that
in any coding system we might be using any finite subset of IN can be coded by
a member of IN. So we can say of any finite subset A′ of A that it can be split
into pairs (possibly discarding the top element) of adjacent elements. . . and we
can say this while talking only about finite sets of naturals. We then say an
element of A′ is odd if it only ever appears as the smaller element of a pair from
such a decomposition, and even otherwise. Thus naturally Aeven and Aodd are
sets of M that split A into two.

When defining the model of TST3 + AxInf starting from the model of PA2

why do we not set M2 to be the whole of D? This is a good question. There
is a roadblock in the form of Cantor’s theorem. We can have a bijection σ
between the set of naturals and what the model believes to be its power set but
y = σ(x) cannot be equivalent to an expression in the language of PA2 lest we
get {n : n ∈ σ(n)}. Duh.

That is to say, if we turn the level consisting of the naturals into a count-
able atomic boolean algebra with the splitting property then there will be an
isomorphism between it and level 2 but it won’t be definable. But if σ is not
definable there is no easy way of showing that the result is a model of TST3 +
AxInf. Another consideration is that D might contain too much information,
with the result that the model we construct is not a model of TST3 + Ax-
Inf. For example, suppose M1 contains only finite-or-cofinite sets (as Pabion’s
model in fact does). Suppose further than D contains the set E of finite sets
of even naturals (or, strictly, the set of naturals that code finite sets of evens).
But then if our model is to satisfy TST3 + AxInf it would have to contain—at
level 1, its middle level—the set of atoms that code even numbers. This is a
moiety—neither finite nor cofinite.

So we are in the market for a way of turning a countable model of PA2 into
a model of TST3 + AxInf that doesn’t involve discarding any sets of naturals.

Thinking aloud . . . Let M be a countable model of PA2. It has two level,
IN and D. By the above remarks D is a countable atomic boolean algebra with
the splitting property. Then we need a bijection between IN an D in the form
of a CO-construction that makes the algebra coded by the naturals IN of M
isomorphic to the countable atomic boolean algebra with the splitting property
that is D. Both of these things can be done by fiat. We cook up—any old how—
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a CO-style coding that makes the bottom level into a countable atomic boolean
algebra with the splitting property. That is to say, we have a function σ s.t. σ(n)
is a set of naturals. This boolean algebra σ“IN is going to be isomorphic to the
top level beco’s any two countable atomic boolean algebras with the splitting
property are isomorphic. Let τ be an isomorphism σ“IN→ top level of M.

We now have (with any luck) a model of TST3 + AxInf
Level 0 is level 0 of M;
Level 1 is level 0 of M;
Level 2 is level 1 of M.

How are we to think of an element z of the top level of M as a set of sets of
atoms?

We say
x0 ∈ y1 iff M |= xo ∈ σ(y1);
y1 ∈ z2 iff M |= σ(y1) ∈ z2.

M |= y1 ∈ τ−1(z2)
garbled
Now we have to verify that this is a model of TST3 + AxInf. This means

that we have to choose σ and τ very carefully!!
garbled
What is the (second-order!) arithmetic of (what Boffa-Crabbé call) TST∞

3 ?
Consider the following construction. Start with the algebra of finite-and-

cofinite sets of naturals. Add the odds and the evens; and then, recursively
given x, add the odd and the even parts of x. This gives us countably many
moieties, M . M naturally presents itself as the vertices of a perfect binary
tree, and we can enumerate its members as: 0 (which is IN), then 1 and 2 (the
odds and the evens) then 3, 4, 5 and 6 (the four residue classes mod 4) and so
on. Then add everything that has finite symmetric difference with one of these
moieties. The result is a countable atomic boolean algebra with the splitting
property.

Any element of this family can be represented as an ordered pair of two finite
sets S1 and S2 of naturals. S1 codes up a set X of moieties, and we recover

⋃
X

from it. The subset of IN encoded by the pair ⟨S1, S2⟩ is now the set
⋃
X XORS2.

It is (or should be) evident that any subset of IN has a unique coding in this
fashion, since for any x there is precisely one finite union of moieties in its
equivalence class under finite symmetric difference (Two distinct finite unions
of moieties have infinite symmetric difference.)

This coding powers a CO construction of a structure for the language of set
theory with the splitting property. However this is no big deal co’s we can get
the same effect by contruction B(x) for every x. Hmm. Have we done this
anywhere...? Yes, but we didn’t get a model of NF0.

Is there a natural family of moieties of IN s.t. every b.a. generated by a
finite subfamily is free?
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