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Sixty years ago in this journal, the distinguished American philosopher W.V.
Quine published a novel approach to set theory. The title was New Foundations
for Mathematical Logic [6]. The diamond anniversary is being commemorated
by a workshop in Cambridge (England) and comes at a time of rapid increase
of interest in the alternatives to the hitherto customary Zermelo-Frankel set
theory, which promises a new lease of life for the axiomatic system now known
as ‘NF’; its creator remains in good health too. Although he is best known to a
wider public for his philosophical writings, his most enduring and most concrete
legacy for the next fifty years may well turn out to be his most mathematical:
he gave us NF.

Set theory is the study of sets, which are the simplest of all mathematical
entities. Let us illustrate by constrasting sets with groups. Two distinct groups
can have the same elements and yet be told apart by the way those elements are
related. Sets are distinguished from all other mathematical fauna by the fact
that a set is constituted solely by its members: two sets with the same members
are the same set. To use a bit of jargon from another age, sets are properties
in extension. As a result, all set theories have the axiom of extensionality:
(Vzy)(z =y «— (Vz)(z € z «+— z € y)): they differ in their views on which
properties have extensions.

Since set theory first sprang on the scene about a hundred years ago there
has been a tendency to attempt to use this simplicity to simplify and illuminate
the rest of mathematics by translating (perhaps a better word is implementing)
it into set theory. After all, if we can represent all of mathematics as facts about
these delightfully simple things, some facts about mathematics might become
clear that would otherwise remain obscure. This same simplicity means that set
theory is always a good topic on which to try out any new mathematical idea.

Early twentieth century mathematicians used the expression “The Crisis
in Foundations”. This crisis had many causes and despite the disappearance
of the expression from contemporary speech has never really been resolved.
One of its many causes was the increasing formalisation of mathematics, which
brought with it the realisation that the paradox of the liar could infect even
mathematics itself. This appears most simply in the form of Russell’s paradox,
appropriately in the heart of set theory. At first blush one might think that



where sets are concerned any intension has an extension: this is the axiom of
naive set existence. For any property of sets there is a set containing precisely
the sets with that property, all of those and no others. This leads rapidly to
Russell’s paradox, the paradox of the class of all sets that are not members of
themselves. This is the Russell class. Is it a member of itself? Well, if it is it
isn’t and if it isn’t it is. This is Russell’s paradox. The apercu that leapt to
mind was that the problem is something to do with the possibility of sets being
members of themselves, or to do with defining sets in terms of membership
in themselves. Although these two might sound like two formulations of the
same insight, they nevertheless lead to radically different resolutions, and to
two traditions in set theory represented by Zermelo-Frankel set theory (often
just called “set theory” by its votaries, and universally abbreviated to ‘ZF’) and
Quine’s NF, which is our primary concern here.

According to the first view, the source of the trouble manifested in Russell’s
paradox is thinking of sets as things that even might be members of themselves.
This critique gives rise to a conception of set (usually called the cumulative hi-
erarchy conception) that is very easy to explain to people in a modern computer
science culture: it is simply the idea that sets form a recursive datatype:

The empty set is a set; any collection of sets forms a set;
nothing else forms a set.

This declaration carries with it a kind of induction principle, as recursive
datatype declarations always do. If we have an assertion that is true of the
empty set, and is true of any set = as long as it is true of all z’s members, then
it is true of all sets. This induction principle is €-induction and is a theorem
scheme of ZF. It has various consequences, of which one of the easiest to show
is that no set is a member of itself. Clearly the empty set is not a member
of itself. If no member of z is self-membered, then x cannot be self-membered
either, otherwise z would be a self-membered member of =, contradicting the
assumption that there aren’t any. How does this way of conceiving sets help
with Russell’s paradox? Since no set is a member of itself, the collection of sets
that aren’t members of themselves would have to be the collection of all sets,
and there can’t be such a thing, since it would be a member of itself, and we've
just used €-induction to show that no set can be a member of itself.

If one had more space it would be natural to expand at this point on how
the conception of sets as a recursive datatype gives rise to all (well, almost all!)
the axioms of ZF by using €-induction to show that the recursive datatype is
closed under operations corresponding to those axioms. However, here the only
reason for discussing ZF is to explain the difference between the conception of
set that underlies it and the conception of set that underlies NF.

The NF conception of sets does not identify the problem behind Russell’s
paradox as a problem about the kind of set we are going to allow to exist, and
therefore not as one that can be solved by banishing sets that do not belong to



a nice recursive datatype. It locates the problem instead in the way the sets are
defined. It does this by appeal to a concept of type, very closely related to the
concept of type in modern typed programming languages such as ML. In an ML
program, it must be possible to assign every variable a consistent type, subject
to various typing rules; the same idea occurs in NF. Just as in ML, where one
assigns types to variables in the context of a whole program, in NF one gives
types to variables in a formula, and does not give a variable a type for life. In
NF the types are natural numbers, and if the variable ‘z’ in a formula ¢ is given
the type n and the subformula ‘z € y’ appears in ¢, then we must give ‘y’ the
type n+ 1. If ‘c = gy’ appears in ¢ then ‘z’ and ‘y’ must be given the same
type. A formula is stratified if there is an assignment of types to variables that
meets these constraints; otherwise it is unstratified. NF’s axioms are now very
simply stated: (i) Extensionality; (ii) a scheme that says that the extension of
a stratified formula is a set.

Let’s try this on —(z € z). Clearly we will end up trying to give ‘z’ two
distinct types and concluding that the formula is untyped. Therefore there is
no axiom of NF saying that the collection of all sets that are not members of
themselves is a set, and so, prima facie, no paradox. The other paradoxes are
all held at bay in the same way. I am careful not to say that they are avoided,
for it is an open question whether or not NF is consistent, but they are all held
at bay in the sense that the obvious derivation for each paradox relies on a
set-existence axiom that is not available in NF because the relevant formula is
not stratified.

So far so good: stratification seems to prevent the usual paradoxes from
being derivable, but are there any deep reasons why one would expect it to have
this effect, or is it just a happy—and perhaps merely temporary—coincidence?
Naturally people have tried to find reasons why stratification ought to work in
this way, and it turns out that stratification is not a purely syntactical notion.
To explain why, we need a device first used by Bernays and Rieger to prove the
independence of the axiom of foundation from ZF. A model M of set theory is
a class with a binary relation on it, typically written (M, €). Now let m be a
permutation of M, and associate with M a new relation, which holds between
x and y precisely if x € 7(y). If there is a universal set in the model (M, €)
then there is one in the new structure too, because if V' was the universal set of
(M, €) then 7~1(V) will be the universal set under the new dispensation. The
assertion that there is a universal set is stratified, and it turns out that not only
is the assertion that there is a universal set preserved by such redefinitions of the
membership relation by permutations, but also every stratified assertion is thus
preserved. (Subject to some small print the converse is true too: every sentence
thus preserved is equivalent to a stratified formula.) Although this equivalence
tells us that the apparently purely syntactical concept of stratification does have
some semantical significance, it doesn’t seem to tell us that this significance has
anything to do with the avoidance of paradox. The clearest manifestation of this
gap in our understanding is that our insight about the meaning of stratification



has not yet given rise to a consistency proof for NF.

The feeling among modern NFistes is that this fact about stratified formulae
(which T like to think of as a completeness theorem since it identifies a seman-
tical and a syntactic property) is nevertheless something that should be taken
seriously. The argument runs like this: I said just now that a model of set theory
is a set (M, say) with a binary relation (R, say) on it. For present purposes we
want to think of a model of set theory as a set M of atoms (things with no in-
ternal structure) associated with an injective map i : M — P(M), from M into
the power set of M, so that the original R associated with M can be recovered
as the relation a € i(b) (where ‘€’ is the membership relation of the real world
in which we who are contemplating the model reside). We can think of 7 as a
coding function: each a € A “codes” a subset of A, namely {z € A: z € i(a)}.
We know from Cantor’s theorem (every set is smaller than its power set) that
not every subset of A can be coded by a member of A, so in constructing a
model of set theory we have to leave some sets of atoms uncoded by atoms. A
decision on what injection ¢ to associate with A is (among other things) a deci-
sion about which collections of atoms are to be sets. Now revisit the idea of the
“permutation models” of the preceding paragraph. If = is again a permutation
of A then we can define a to be a member of b not if (as at the start of this
paragraph) a € i(b) but instead if a € i(w(b)), and we obtain another model
of set theory. What is the difference between these two models? Well (since i
and ¢ o 7 have the same range) they have made the same decision about which
classes of atoms are to be sets, but different views on how that decision is to
be implemented: the same collections of atoms are to be sets of the model, it is
just that they are not necessarily going to be coded by the same elements of A
as before. Accordingly the general feeling among NFistes is that stratification
is the syntactical arm of a gang of concepts to do with what computer scientists
call implementation-invariance.

But this is all very unhistorical. Let us go back to the years following 1937.
NF was born in interesting times, and the West had other things on its mind
during NF’s youth. The first really interesting development did not take place
until 1953, when E.P. Specker in Ziirich showed that NF refuted the axiom
of choice and thereby proved the axiom of infinity [7]. This result was a most
mysterious and disquieting one, best approached in the context of another result
of Specker’s, nine years later, that is in many ways more illuminating.

Specker’s 1962 paper [9] connects NF with Russellian type theory in a way
that neatly turns back the clock about 50 years. The syntax of Russell’s type
theory is very nasty, but the elements needed to tell its story can be recounted
relatively easily. In Russell’s type theory, as simplified by Ramsey, every set
belongs to a type. The bottom type is a type of atoms, and thereafer type n+1
consists of sets of things of type n. Every variable of the theory is constrained
to range over one level only. Accordingly no allegation that the collection of
all sets that aren’t members of themselves is a set can even be formulated in
this sort of theory, let alone proved. That fact was the attraction; there are



of course drawbacks as well. One is that we thereby chuck out the baby with
the bathwater, in the sense that as well as rendering unsayable things like the
existence of the Russell class we also make certain apparently entirely innocent
things unsayable as well. A specific consequence is that the Russell-Ramsey
theory makes all sorts of assertions that look very similar but are actually dis-
tinct, even though in some sense one feels that they ought not to be. For
example (according to Russellian type theory) there is no single empty set but
an empty set at each type. The language does not enable us to say anything
like (32)(Vy)(y & ). But it can say (3z1)(Vyo)(yo & 1), B2)(Vyr) (s & 22),
(Fz3)(Vy2)(y2 & x3) ...and so on, where the subscripts are type subscripts.
The language clearly has an endomorphism executed as follows: take a formula,
increase all the type subscripts in it by 1. The result is a new formula, written
‘¢t if the first formula was ‘¢’. What is the relation between ¢ and ¢¥? In
[8] Specker drew a parallel with projective geometry, which also has an auto-
morphism like this. By interchanging ‘point’ and ‘line’, and interchanging ‘lie
on’ with ‘meet at’ one can transform an assertion ¢ of projective geometry into
another assertion of projective geometry, which is standardly called the dual of
the first, and is written gi; It is standard that the dual of an axiom of projective
geometry is another axiom. By induction on proofs one shows that the dual of
a theorem is a theorem. But is <£ «—— ¢ a theorem? It is not obvious one way
or the other. In the case of projective geometry the story has a neat solution
and a happy ending (the scheme ¢ «—— (;Aﬁ is equivalent to Desargues’ theorem),
but in the type theory case it is more interesting, and not just because now the
‘4+’ operation is not an involution. It is certainly the case that ¢+ is an axiom
whenever ¢ is, and ¢T is a theorem whenever ¢ is, but is ¢ «—— ¢T always a
theorem? The example of the infinitely many statements saying that there is an
empty set at each type is one that suggests very strongly that ¢ «— ¢+ ought
to be a theorem!

It turns out that the scheme ¢ «— ¢ is not a theorem of Russellian type
theory but that it is consistent with Russellian type theory if and only if NF
is consistent: this is Specker’s 1962 theorem. This is very fitting when one re-
minds oneself of Quine’s thinking behind the set existence axiom of NF. Quine’s
view expressed in this MONTHLY 60 years ago was that the type discipline
that banished the paradoxes from type theory did so by making it impossible
to formulate certain set existence axioms (like that giving the Russell class),
and that making multiple copies—one at each type—of apparently perfectly
nonproblematic sets like the empty set is an unwanted side effect and not part
of the solution. If we can avoid some of this duplication by means of judicious
polymorphism then this is all to the good. The result was that Quine kept the
type distinctions but instead of enforcing them at the level of syntax (so that
‘z € 2’ would be illformed, as in Russellian type theory) enforced them merely
at the stage of axioms of set existence, so that ‘z € z’ is wellformed, but its
extension is not a set. A modern way to describe this development is to say
that Quine obtained NF from Russellian type theory by relaxing its syntactic



constraints by a bit of polymorphism, and that Specker’s 1962 theorem makes
this fact formal and explicit.

One consequence of Specker’s discovery was the involvement of proof theory
in NF studies. Any proof in NF of a stratified formula corresponds to a proof
of a version of that formula (with type subscripts glued on) in Russellian type
theory with a scheme of polymorphism: “from F ¢ deduce F ¢t and vice versa”.
This interchangeability relates the proof theory of NF to the proof theory of
type theory and thereby places NF studies firmly in the mainstream of modern
theoretical computer science. Once NF has been placed in such a context, it
is natural to think about what happens to the ideas that gave rise to its birth
if they are approached constructively. It is then natural in turn to see if the
strange derivation of the axiom of infinity works from a constructive standpoint.
It turns out that there is a sensible constructive version of NF in which we can
prove that it is not the case that every set is finite, but (since constructively
—Vzp is not the same as Jz—p) we cannot—apparently—prove that there is an
infinite set. When working with classical logic we are of course not hampered
in this way, and if we can show that not every set is finite then V', the universe,
is certainly infinite. Now according to NF V is a set (it is the extension of
the expression ‘z = z’ which is certainly stratified) and so too is its quotient
under the equivalence relation “is the same size as”. This quotient will also
be infinite, and it will give us an implementation of the natural numbers. The
contrast between the classical case and the constructive case, where although
we can prove that not every set is finite, there doesn’t appear to be any one
set whose infinitude can be proved (and so we apparently cannot obtain an
implementation of the natural numbers), suggests that it may be possible to
prove the consistency of constructive NF by much simpler methods than will be
needed to prove the consistency of NF itself.

There are other subsystems of NF for which we can in fact do more than
merely piously hope for consistency proofs. Most of these achieve their consis-
tency by restricting the number of comprehension axioms in one way or another.
For example NF; has axioms to say that the universe is a boolean algebra un-
der C and that {z} is always a set; NFO has in addition an axiom saying that
{y : © € y} is a set. (The operation sending = to {y : z € y} enables us to
show by induction on ¢ that {z : ¢(z,y1 ...yn)} is a set as long as ¢ is stratified
and quantifier-free, and it is actually an €-isomorphism!) NF3 allows {z : ¢}
as long as the corresponding set existence axiom can be stratified with no more
than 3 types. There is also a pair of theories arising from a third version of
the circularity critique: perhaps it is necessary not only to create sets in order
(as we do in the cumulative hierarchy conception) so that each set consists only
of sets created earlier, but also to restrict the ways in which we specify sets so
that we can form {z : ¢} only if ¢ not only does not hold of things created
later, but does not even quantify over sets created later. The idea is that we
should be allowed to form {z : ¢} only if checking that z has the property ¢
does not involve examining sets we have not yet created. Set existence axioms



obeying such a constraint are said to be predicative and it has been known for a
long time that adding predicativity constraints makes consistency much easier
to prove.

But the most interesting subsystem of NF doesn’t arise in this way and was
totally unexpected. This was NFU, uncovered by R.B. Jensen in 1969. If one
weakens the extensionality axiom that is so central to set theory to allow for
distinct empty sets (‘U’ for “Urelemente” which is what set theorists call empty
sets: they are certainly very hard to tell apart!) but retains it for nonempty
sets one obtains the system NFU. The corresponding manceuvre in ZF results
in a system which is equiconsistent with ZF and was—before the development
of forcing by Cohen in the 60’s—used for independence proofs for the axiom
of choice and the like. When we weaken NF to allow urelemente the effect is
dramatically different: NFU is provably consistent and is very weak indeed, too
weak to prove the axiom of infinity.

One could view the consistency of NFU merely as a vindication of Quine’s
insight that the type disciplines are enough by themselves to banish the para-
doxes, even if we flirt with danger by playing with a bit of polymorphism, as does
Holmes [3]. Although it certainly is such a vindication, it raises bigger questions
than it answers. After all, if type disciplines are enough to put paradox to flight
even when relaxed with polymorphism, why is there this dramatic difference in
strength between NF with and without atoms? Clearly there is something else
going on. (There is even the ghastly and largely unspoken possibility that the
counsistency of NFU might have nothing to do with stratification at all, but is
purely the result of weakening extensionality (and thereby betraying set theory)
and that even though NFU is consistent, NF itself isn’t.)

But even if we do not yet understand clearly why NFU is so much weaker
than NF, we can at least start to put this new system to use [4]. There is for the
moment a great interest in alternatives to ZF, driven by the feeling that certain
structures with non-wellfounded relations on them ought to be represented by
sets. (A relation R on a set X is wellfounded if and only if for every nonempty
subset X' C X (Jy € X')(Vx € X')(=(R(z,y)).) For a long time the standard
implementation of ordinal numbers in ZF has been one that arranges for the
(wellfounded) relation < between ordinal numbers to be implemented by €,
and the idea is abroad that all binary relations between mathematical objects of
interest should be thus representable by € between the sets chosen to implement
those mathematical objects. Under the recursive datatype conception of sets (as
in ZF) we can prove easily that € is a wellfounded relation on the universe of all
sets. Consequently there is no possibility of representing the kind of illfounded
relations that appear in computer science as relations between sets of ZF.

What is a suitable framework for this? A fashionable candidate about which
a lot has been written recently is ZF with “antifoundation” axioms, of which a
racy and entertaining treatment can be found in the recently published book [1].
Antifoundation axioms ensure that all binary relations between mathematical
objects of interest are representable by € between the sets chosen to implement



those mathematical objects. In a way this is a very unidiomatic thing to do to
ZF. As we noted earlier, the recursive datatype conception of sets entails that €
is a wellfounded relation. It is surely perverse to develop an axiomatic set theory
on the basis of one conception of set, and then throw away that conception by
adopting axioms that are incompatible with it—thereby rendering suspect all
the axioms it gave rise to. If we are to postulate sets that are forbidden by
the recursive-datatype conception, then there is no point in looking to axioms
arising from that conception to tell us how those sets are going to behave. Surely
it makes more sense to have axioms of set existence that never owed anything to
that conception in the first place. Such a set of axioms is to be found in NFU.

Can NFU in addition provide a set theoretic framework containing €-copies
of all the structures we can describe, as postulated by the antifoundation ax-
ioms? It turns out that for various technical reasons antifoundation axioms are
not consistent with NFU as they stand. They need to be restricted to heredi-
tarily small sets. (A set is hereditarily small if and only if it is a small set of
hereditarily small sets.) What is a small set? Fortunately there is an embarras
de richesse of direct concepts of smallness: we could say that x is small if and
only if x is wellordered, or if x is the same size as a wellfounded set, or z can-
not be mapped onto the universal set, or is smaller than its power set. These
last two seem a bit odd, but are actually quite natural in the context of NFU.
According to NFU the universe is a set. Therefore Cantor’s theorem, which
says that every set is smaller than its power set, must fail. But it succeeds for
some sets, and these typically tend to be smaller than those for which it fails.
A slightly smoother notion is strongly cantorian. A set z is strongly cantorian
if and only if the restriction of the singleton function to = is a set. Theorems
of Jensen [5] and Holmes [3] tell us that the hereditarily strongly cantorian sets
can be almost any ZF-style model we want. A place to look for substructures
of models of NFU in which every set is small and antifoundation axioms are
true would perhaps be the greatest fixed point for the operation = — the set
of small subsets of z. The least fixed point consists entirely of wellfounded sets
and satisfies foundation rather than antifoundation.

There is no space in a brief retrospective like this to give adequate pointers
to all the relevant literature, and I am uncomfortably aware that the work of my
Doktorvater Maurice Boffa, the unofficial head of the Belgian school of NFistes is
underrepresented in this survey, as is his collaboration with Marcel Crabbé and
his role in furthering NF studies by supervising André Pétry and Roland Hin-
nion. Nobody likes to appear to be promoting his own work unduly, but sadly
it really is true that the only book-length treatment of NF is [2]. This book also
contains treatments of permutation models and all the subsystems of NF men-
tioned in this article. Fortunately for readers who have access to the web there is
also Randall Holmes’ NF website at http://math.idbsu.edu/faculty/holmes.html,
which contains an exhaustive bibliography, links to other workers on NF and
Holmes’ introduction to NFU.
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