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1 Introduction

This essay works on a proposal of Quine that type theory (the simple typed
theory of sets, the precursor of New Foundations) can be presented as an
unsorted theory.1

In section 2, we give a self contained and naive presentation of a system of
this kind from first principles. We call the system presented there TTGV (for
“type theory with general variables”; Thomas Forster persists in referring to
it as trains de tres grand vitesse.)

In section 3, we discuss prior proposals along these lines.

2 A Self Contained Development

2.1 Basic Axioms

In this document I will give a naive account from first principles of a theory
of sets. It is ultimately based on an idea of Quine. We will talk about what
this idea was in a later section when we shed our naivete. The theory is
called TTGV but we have no reason to use this name in this section, and
explaining it would subvert our naivete.

1This theory was defined by Holmes as a modification of Forster’s proposal which will
be discussed later; at that time Holmes had no acquaintance with the earlier work of Quine
or Resnik ([?]): it is a slight (?) weakening of Resnik’s theory, however, which confirms
the naturalness of the approach.
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The theory we introduce is a first order theory with membership and
equality as primitive relations. We may in a less naive later part talk about
the logic more carefully.

Some objects have elements and some do not. Objects that have elements
are called nonempty sets (for the moment this is an unanalyzed phrase) and
we state a natural identity criterion for nonempty sets.

Definition: An object is a nonempty set (written Set(x)) if and only if it
has an element:

Set(x) ≡def (∃y : y ∈ x)

Axiom of Extensionality: Nonempty sets with the same elements are equal:

(∀xy : Set(x) ∧ (∀z : z ∈ x↔ z ∈ y) → x = y)

The axiom is not asymmetric between x and y: the hypotheses obvi-
ously imply Set(y).

The use of sets is to represent properties of objects: where P is a property
of objects of kind κ, P is represented by the set of objects of kind κ which
have property P , and we suppose that such a set exists for any kind and any
property. We further suggest that objects belonging to the same set are of
the same kind. Thus, objects are of the same kind if and only if there is a
set which contains both of them. We view this as so important (for the sake
of argument at least) that we adopt a definition and axioms.

Definition: Where x and y are objects, we define x ∼ y, read, x is of a kind
with y, as (∃z : x ∈ z ∧ y ∈ z).

Axiom of Kinds: For each object x there is an object κ(x), which we call
the kind of x, such that x ∈ κ(x) and (∀y : y ∈ κ(x) ↔ y ∼ x). Note
that there is exactly one such object for each x by extensionality.2

Theorem: The relation ∼ is symmetric, reflexive3, and transitive [so the
kinds are equivalence classes under this relation in some external sense].

2We refer to these sets as “kinds” rather than types, because a type is not really a set,
but a syntactical characteristic of a variable. We do not extend this terminology to the
historical systems discussed in section 3.

3Forster notes that whether or not ∼ is reflexive corresponds to whether we assume
that everything belongs to something, that is, whether we are in set theory or class theory
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Proof: x ∼ κ(x) and x ∼ κ(x), so x ∼ x.

Logic tells us that if x ∼ y, there is z such that x ∈ z and y ∈ z, so
y ∈ z and x ∈ z, so y ∼ x.

Suppose x ∼ y and y ∼ z. Then x ∼ y and z ∼ y. Then x ∈ κ(y) and
z ∈ κ(y). So x ∼ z.

This theorem motivates our giving ourselves permission to read x ∼ y
as “x and y are of the same kind”: they share a specific uniquely
determined kind, they do not merely share some kind.

Now we talk about the construction of sets of objects of particular kinds
with particular properties.

Axiom of Separation: For any object a and property P (x) of objects x
we introduce notation {x ∈ κ(a) : P (x)} (this could also be written
{x ∼ a : P (x)}) and assert the following about the referents of these
symbols:

1. For any b, b ∈ {x ∈ κ(a) : P (x)} if and only if b ∼ a and P (b).

This asserts the correspondence between properties and sets de-
scribed in our motivation.

2. {x ∈ κ(a) : P (x)} ∼ κ(a)

This asserts in effect that a kind is of the same kind as its subsets.

3. {x ∈ κ(a) : P (x)} = {x ∈ κ(b) : Q(x)} iff a ∼ b (equivalently,
κ(a) = κ(b)) and (∀x ∈ κ(a) : P (x) ↔ Q(x)).

This provides identity conditions for the referents of these sym-
bols. It only supplies new information here in the case where the
extension of the referent of a set abstract is empty, but this is an
important case.

Of course, this is an axiom scheme, with an instance for each formula
P (x) of our language defining a property.

Notice that {x ∈ κ(a) : P (x)} ∼ κ(a) is equivalent to

{x ∈ κ(a) : P (x)} ∈ κ(κ(a)).

Being of the same kind as a kind occurs often, and motivates a conve-
nient definition.
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Definition: We define κ1(x) as κ(x) and define κn+1(x) as κ(κn(x)) for
each concrete numeral n (the n here is not a variable over which
we can quantify).

Thus we can rewrite the observation above as

{x ∈ κ(a) : P (x)} ∈ κ2(a).

Axiom of Diversity: If κ(x) ∼ κ(y) then κ(x) = κ(y). No two dis-
tinct kinds are of the same kind. This is equivalent to the assertion
that κ2(x) = κ2(y) → κ(x) = κ(y) [if you wonder why it is in the
box with the definition above]. The purpose of this axiom will
become clear below.

Definition: For any integer n, if a type κ(u) belongs to κn(x), define
κn−1(x) as κ(u). If there is no such type, we leave this symbol
undefined. This definition is justified by the Axiom of Diversity.

This completes the presentation of the basic axioms of the theory we are
investigating. Unfolding the consequences will take a bit, since this is in
fact a system which could be used as the foundation for mathematics.4

Further, its possible role as a foundation for mathematics suggests that
we can expect that other candidate axioms will present themselves.

2.2 Sets, atoms and individuals: some taxonomy

We have introduced a notion of nonempty set at the beginning of our inves-
tigation. We now give a general account of sethood, which will allow us to
investigate empty sets and non-sets of various kinds.

Definition: We say that x is a set (written set(x)) iff for some object y,
x = {z ∈ κ(y) : z ∈ x}.

4The theory of Resnik, which we were not aware of when we defined this theory, differs
from ours only in two additional assumptions which we can state at this point in terms
of concepts we have explained: strong extensionality is assumed (objects with the same
extension which cohabit with a nonempty set are equal), and an axiom provides that there
are individuals (there is an object which does not cohabit with any nonempty set). Resnik
apparently believed that he could prove that all individuals are of the same type, so this
may be taken to be his intention, but it does not follow from his axioms.
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Observation: It is straightforward to show by extensionality that if A is a
nonempty set with a ∈ A then A = {x ∈ κ(a) : x ∈ A}, since these will
be nonempty sets with the same extension. So every nonempty set is
a set.

Observation: Notice that every set belongs to a type κ2(y).

Definition: If x has the property that for no y is κ(x) = κ2(y) we call x
an individual . Notice that no individual can have an element: if u ∈ x
then x = {v ∈ κ(u) : v ∈ x} because these are nonempty sets with the
same extension, and further x ∈ κ2(u).

Note further that there is nothing in our formalization which provides
that two distinct individuals are necessarily of the same type, or that
there are any individuals at all.

Definition: For any object x, we define ∅κ(x), the empty set cohabiting with
κ(x), or equivalently inhabiting κ2(x), as {y ∈ κ(x) : y ̸= y}.
Clearly nothing can belong to ∅κ(x). Thus {y ∈ κ(x) : y ∈ ∅κ(x)} =
∅κ(x), because the two are defined by set builder notations with the
same bound and the same extension, so empty sets as we have defined
them are in fact sets.

Observation: Note that ∅κ(x) ∈ κ2(x). Note that any two empty sets of
the same kind are equal: if u and v are sets of the same kind and
nothing is an element of either, we have u = {x ∈ κ(w) : x ̸= x} and
v = {x ∈ κ(q) : x ̸= x} and κ2(w) = κ2(q), so κ(w) = κ(q) by Diversity,
so the two sets are equal because they have the same bounding kind
and the same extension.

Nothing in this establishes that two elementless objects of the same
kind are equal. This motivates the following definition.

Definition: An atom is an empty object which is not an individual (and so
belongs to a kind which contains sets) but also not a set.

The theory does not prove the existence of either atoms or individuals
but these are important formal possibilities.

Observation: Sets of the same kind with the same extension are equal.
They are either nonempty sets with the same extension, so equal, or
they are empty sets of the same kind, and so equal.
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2.3 General set builder notation, the subset relation,
power sets and unions

We define general set builder notation.

Definition: For any set A ∈ κ2(u) and property P (x), we define

{x ∈ A : P (x)}

as {x ∈ κ(u) : x ∈ A ∧ P (x)}. The reader should be quite familiar
with this notation: the only novel property to keep track of here is
{x ∈ A : P (x)} ∼ A (which is directly verified).

We introduce the familiar subset relation, whose definition is a little more
baroque than we are used to.

Definition: We define x ⊆ y as

x ∼ y ∧ set(x) ∧ set(y) ∧ (∀z : z ∈ x→ z ∈ y).

Thoerem and Definition: For any set A there is a set which we write
P(A) such that for all B, B ∈ P(A) if and only if B ⊆ A. This set is
called the power set of A.

Proof: It is evident that A ⊆ A if A is a set. It is further evident that if
B ⊆ A, then B ∼ A. From this it follows that P(A) exists by the
axiom of separation, being {B ∈ κ(A) : B ⊆ A}. Further, it is evident
that P(A) ∈ κ2(A).

Another very familiar notation is introduced.

Definition: If x ∼ y, we define {x, y} as {z ∈ κ(x) : z = x ∨ z = y}. Note
{x, y} ∈ κ2(x) = κ2(y).

We define {x} as {y ∈ κ(x) : y = x}. Of course this is the same as
{x, x} and belongs to κ2(x).

We define (x, y) as {{x}, {x, y}} for any x, y of the same kind. Note
that (x, y) ∈ κ3(x). Note that x can be determined from (x, y) as
the only element which belongs to all elements of (x, y), and y can be
determined from (x, y) as the only element which belongs to exactly
one element of (x, y), from whcih it follows that if (x, y) = (z, w), it
follows that x = z and y = w.
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Observation: It is important to notice that we do not have an unrestricted
axiom of pairing. The pair {x, y} exists iff x and y are of the same kind.5

The same is true of ordered pairs, and this restricts the formation of
relations and functions.

Definition: We define ι(x) as {x}. We define ι0(x) as x and ιn+1(x) as
{ιn(x)} for each concrete n (n here must be a numeral constant: no
quantification is possible here). Notice that ιn(x) ∈ κn+1(x) will hold
for each concrete natural number.

We establish the existence of the union of a set.

Theorem and Definition: For any set A for which there is u such that
A ∈ κ3(u), there is a set

⋃
A ∈ κ2(u) such that for all x, x ∈

⋃
A iff

there is y such that x ∈ y and y ∈ A.

Proof: The key is to show if x ∈ y and y ∈ A, we can determine the type
of x. We have A ∼ κ2(u) and A = {u ∈ κ(x) : u ∈ A} ∼ κ(y), from
which it follows by Diversity that κ(y) = κ2(u). We have x ∈ y and
x ∈ κ(x), from which it follows that y = {u ∈ κ(x) : u ∈ y} is equal to
y and belongs to κ2(x). But then κ2(x) = κ2(u), since both contain y,
and it follows by Diversity that κ(x) = κ(u), so by Separation we can
define

⋃
A as {x ∈ κ(u) : (∃y : x ∈ y ∧ y ∈ A)} and this belongs to

κ2(u).

Definition: For A ∼ B, sets, we define A ∪B as
⋃
{A,B}, establishing the

existence of binary unions6. We define A ∩ B as {x ∈ A : x ∈ B} and
define A−B as {x ∈ A : x ̸∈ B}. These operations are familiar though
the fact that their operands must be of the same kind (and in all cases
the resulting set is of the common kind) should be noted and verified.

5Notice that this is a restriction on applicability of the pairing operation, and TTGV
falls in the more general category of Zermelo-like theories in which pairing fails. Track
down Bolzano’s discussion of attributes of the notion of set which includes formation of
sets from objects of different species, which is not permitted here, and is permitted in
Zermelo.

6It is amusing to note that the existence of binary unions immediately implies the
axiom of diversity: if κ(x) ∼ κ(y) then κ(x) ∪ κ(y) exists and contains both x and y,
so x ∼ y so κ(x) = κ(y). In previous formulations we have used an axiom asserting the
existence of binary unions of sets of the same type instead of the axiom of diversity. The
reader can see above how diversity is used to prove set union (from which binary union
follows) in this development.
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We can now define {x1, . . . , xn−1, xn} as {x1, . . . , xn−1} ∪ {xn}, com-
pleting the definition of the usual notation for concrete finite sets by
metatheoretical recursion.

2.4 Relations, functions, and numbers

We proceed to define relations and functions in a standard way, then define
cardinal number in a way which is unusual now but has precedent.

Definition: Notice that if (a, b) exists, we must have a, b of the same kind
and (a, b) ∈ κ3(a) = κ3(b). Thus for any sets A ∼ B we can define
A × B as {u ∈ κ2(A) : (∃ab : u = (a, b))}, and this set will contain
exactly the pairs with first projection in A and second projection in B.
As usual, this is called the cartesian product of A and B.

Definition: We call a set a relation if all of its elements are ordered pairs.
If R is a relation, we define xR y as (x, y) ∈ R. If R is a relation, we
define dom(R), the domain of R as {x ∈ κ−2(R) : (∃y : (x, y) ∈ R)}.
We define R−1 as {u ∈ κ0(R) : (∃xy : xR y∧u = (y, x))}: this is called
the converse of R, We define rng(R), the range of R, as dom(R−1).
We define R“A as rng(R ∩ (A × κ0(A))), for any set A and relation
R ∈ κ3(A).

Definition: We call a relation F a function iff F“{a} is a singleton set for
each a ∈ dom(F ), We define F (x) implicitly by the equation F“{a} =
{F (a)} for all a ∈ dom(F ). We define F : A → B as “F is a function,
dom(F ) = A, and rng(F ) ⊆ B”, and read this “F is a function from A
into B”. We say that a function F is an injection iff F−1 is a function:
if F−1 is a function, we call it the inverse of F . We say that a function
is onto B iff rng(F ) = B, and we say that a function is from A onto
B if its domain is A and its range is B. We say that a function is a
bijection from A to B if it is an injection with domain A and range
B. We define |A| as the set of all B such that there is a bijection from
A to B, and call this the cardinality of A. The condition |A| = |B|
expresses for us the idea that two sets are of the same kind and the
same size. There are obvious examples of sets which are of the same
size but of different kinds: if x ̸∼ y, then {x} and {y} are of the same
size, but their cardinals are not the same, being of different kinds.
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Definition: We define for any set A the set ι“A as

{u ∈ κ(A) : (∃a ∈ A : u = {a})}.

This is the elementwise image of A under the singleton operation. No-
tice that κ(ι“A)) = κ2(A). We define ιn“A analogously. We define
T (|A|) as |ι“A|. It should be clear that this does not depend on the
choice of A from the cardinal |A|. We define T n(|A|) as |ιn“A|. An
element of |A| and an element of T n(|A|) are clearly of the same size,
and this captures the relation of being the same size between sets of
different kinds, but unly under particular concrete circumstances. The
T operation on cardinals is injective, so there are natural partial oper-
ations T−1 and T−n.

Definition: We say that |A| ≤ |B| iff there is an injection from A to B
(again, this clearly does not depend on the choice of representative sets
from the cardinals). We define |A| < |B| as holding iff |A| ≤ |B| and
|A| ≠ |B|.

Definition: We define |A|+ |B| as |A∪B| where A and B are disjoint. The
sum of two cardinals will be undefined if they do not have disjoint rep-
resentatives. We define |A|×|B| as T−2|A×B|. If A and B are sets, we
define |B||A| as T−3(|{f : (f : A → B)}|), the cardinality of the set of
functions from A to B shifted downward suitably in type. All of these
operations may fail to be total. If the axiom of infinity is assumed, ad-
dition and multiplication of cardinals are total; exponentiation cannot
be [because the collection of functions from A to B is provably larger
than the common type of A and B under some circumstances].

Definition: We define 0κ2(x) as |∅κ(x)| and 1κ2(x) as |{x}|. We say that a
set of cardinals which belong to κ3(x) is inductive if it contains 0κ2(x)

and contains λ+1κ2(x) whenever it contains λ. We define Nκ3(x) as the
intersection of all inductive sets with elements in κ3(x) [types contain-
ing sets of sets]. [the subscripting convention here is to subscript with
a kind of the same kind as the subscripted object; the subscripts may
be omitted where they can be understood in the context]. We have
succeeded in defining natural numbers belonging to each kind κ3(x).
Natural numbers of different kinds are not the same objects, but the
T n operation provides an injective external map from natural numbers
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in κ3(x) to natural numbers in κ3+n(x), which is also onto if the axiom
of infinity is assumed.

Definition: We define a sequence as a function with domain some Nκ3(x).
We demonstrate the ability to define sequences by iteration such that
x0 = a and xi+1 = F (xi). In this case we can write xi as F i(a).
We define the sequence x as the intersection of all sets which contain
(0, a) and contain (u + 1, F (v)) whenever they contain (u, v): it is
a straightforward exercise to prove that this set is a function with
the desired properties. This can be used to justify more complicated
recursive definitions. What it cannot do, except by analogy, is cast
light on the meaning of notations κn(x) or ιn(x), because all elements
of the domain of a sequence (or any function) must be of the same kind,
and operations like κ and ι send objects to objects of different kinds.

Cantor’s Theorem: We rearticulate and prove Cantor’s Theorem on sizes
of power sets. We have to rearticulate it because in its original form
it is false: |A| < |P(A)| is false because the cardinals are of different
kinds. The correct theorem is |ι“A| < |P(A)|.

Proof of Cantor’s Theorem: Clearly |ι“A| ≤ |P(A)|: the identity map is
the desired injection.

Suppose |ι“A| = |P(A)|. Then there is a bijection F from the singletons
of elements of A to the subsets of A. All that we use about it here
is that it is an injection. Define R as the set of all a ∈ A such that
a ̸∈ F ({a}). Then consider F−1(R) = {r} and consider the proposition
r ∈ R: this holds exactly if r ̸∈ F ({r}) = F (F−1(R)) = R, which is a
contradiction.

The mathematics here is the same as in the usual treatment. The
treatment of kinds here makes it a little less familiar.

Observation: Notice that for any x, |ι“κ(x)| < |P(κ(x))|: this indicates
that there are more elements in κ2(x), which includes P(κ(x)) as a
subset, than there are (singletons of) elements of κ(x). The cardinal
|P(κ(x))| over κ2(x) is in an external sense larger than any cardinal
over κ(x). There is a proof here that κ(x) ̸= κ2(x), though we do
not address this issue until the next section. This is the treatment of
the Cantor Paradox of the largest cardinal in this theory: there is a
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largest cardinal over each kind, but there are cardinals larger than this
cardinal over the “next” kind.

Schroder-Bernstein Theorem: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.
The proof of this here is quite standard, we point out that we have it.

Observation: We can define transfinite ordinal numbers as isomorphism
classes of well-orderings under similarity. The usual definition due to
von Neumann does not work here, because the successor step x ∪ {x}
of the construction of the usual ordinals always fails: there is no such
set.

We define linear orders and well-orderings in the usual way: a well-
ordering for us is reflexive (≤ rather than <). The notion of isomor-
phism of well-orderings is defined as usual. If ≤ is a well-ordering, the
order type of ≤, written ot(≤), is the isomorphism class of ≤; an object
is an ordinal number iff it is the order type of some well-ordering. For
any relation R, we define Rι as {({x}, {y}) ∈ τ 2(R) : xR y} and for
any ordinal α = ot(≤) define T (α) as ot(≤ι). The ordinal T (α) seems
in some sense to be the same order type as α, but it is a distinct object
because it belongs to a different type.

Notice that if x is in the domain of a well-ordering ≤ belonging to α,
then ≤ belongs to κ4(x) and α belongs to κ5(x). The well-ordering
of the ordinals up to α, which we might think from the outside is the
same order type as α, is actually in κ9(x), four types higher, and can
be shown to be T 4(α). The Burali-Forti paradox does not afflict us: if
Ω is the order type of the ordinals over κ(x), the ordinal Ω+1 contains
well-orderings longer (in an intuitive sense) than any over κ(x), but
it is a well-ordering over κ5(x) (the type where ordinals α over κ(x)
live) and we have here a proof that κ5(x) is not the same type as κ(x),
though we will not chase down the details (a simpler proof appears in
the next section).

Observation: We can formulate axioms of infinity and choice very naturally.
A simple form of the axiom of infinity is the assertion that for any
natural number n (in any type) n + 1 is nonempty. The axiom of
choice can be formalized exactly as usual as asserting that partitions
have choice sets. The well-ordering theorem can be proved.
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2.5 There are many kinds, but the apparent hierarchy
of kinds is hard to talk about

We have an axiom, the Axiom of Diversity, which asserts that there cannot
be more than one kind of the same kind . How do we know that there is more
than one kind?

Theorem: For any x, κ2(x) ̸= κ(x).

Proof: Suppose that we have an x such that κ(x) = κ2(x).

Define R as {y ∈ κ(x) : y ̸∈ y}. R ∼ κ(x) so R ∈ κ2(x) = κ(x).

So R ∈ R iff R ∈ κ(x) [just shown to be true] and R ̸∈ R. This is a
contradiction.

Theorem: For each concrete n > 1, κn(x) ̸= κ(x).

Proof: The argument is very similar to the argument above but with some
devious use of iteration of the singleton operation. Suppose κn(x) =
κ(x).

Let Rn,x = {ιn−2(y) ∈ κn−1(x) : ιn−2(y) ̸∈ y}. To make it entirely
clear that the existence of this set follows from Separation, rewrite it
as {u ∈ κn−1(x) : (∃y : u = ιn−2(y) ∧ ιn−2(y) ̸∈ y)} Notice that for
any y ∈ κ(x), ιn−2(y) ∈ κn−1(x). Notice that Rn,x ∈ κn(x) = κ(x). It
follows that ιn−2(Rn,x) ∈ κn−1(Rn,x). It then follows that ιn−2(Rn,x) ∈
Rn,x if and only if ιn−2(Rn,x) ̸∈ Rn,x, which is impossible.

Observation: Another proof of this has already been given, perhaps not
to be preferred because it is considerably more complicated. Cantor’s
Theorem as stated and proved above, and the obvious fact that ι“A
and ι“B are the same size iff A and B are the same size, imply that
for any n, |ιn“(κ(x)| < |ιn−1“P(κ(x))| < . . . < |ιn−i“P i(κ(x))| < . . . <
|Pn(κ(x))| ≤ |κn+1(x)|. Now if κ(x) = κn+1(x) then there would be
an obvious bijection from κ(x) to ιn“(κ(x)) (the singleton map, which
would under this hypothesis be an actual function) and an obvious
bijection from κ(x) to κn+1(x) (the identity map), contradicting this.

If we have an object x, we can now see that κ(x), κ2(x), κ3(x) and so
forth are distinct kinds, as far as we can count. But notice that we cannot
really talk about this very much. We cannot define a sequence of kinds in
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this way, because when we define a sequence, all of its terms will be of the
same kind.

Nor can we express the thought that this apparent sequence of kinds
includes all the kinds there are. We just do not have the language to express
this thought.

Now we can hint at another thing we cannot say. It seems very dubious to
suppose that there is a kind κ(x) such that κi(x) is defined for every integer
i. But we cannot prove that this is not the case, as we will discover. We may
even be tempted to adopt an axiom which seems to imply that all kinds are
like this.

We prove a lemma which we have in effect already proved, but which are
useful to state here.

Typing Lemma: If x ∈ y and x ∈ κn(u), then y ∈ κn+1(u). If x ∈ y and
y ∈ κn(u), then x ∈ κn−1(u).

Proof: Suppose x ∈ y and x ∈ κn(u). Any element of y is of the same kind
as x and so belongs to κn(u), so y = {v ∈ κn(u) : v ∈ y}, and this set
belongs to κn+1(u).

Suppose x ∈ y and y ∈ κn(u). It is also the case by the previous lemma
that y ∈ κ2(x), so κ2(x) = κn(u), and κ(x) belongs to κ2(x) and so is
the unique type belonging to κn(u), that is, κn−1(u).

We prove a theorem with a famous name

Vicious Circle Principle: For each concrete n, there cannot be any se-
quence x1, x2, . . . , xn such that each xi ∈ xi+1 and xn ∈ x1. That
is, there are no loops (of a given concrete length) in the membership
relation.

Proof: Suppose there was such a sequence Clearly xi ∈ κi(xi) for each con-
crete index i. Since xn ∈ x1, we have x1 ∈ κn+1(x1). But by a theorem
proved above, κn+1(x1) is distinct from κ(x1), which is also purported
to contain κ(x1), and so disjoint from it (since kinds are equivalence
classes under ∼) which is a contradiction.

2.6 Coercing formulas into typed or typable form

We discuss the possibility of imposing a typing convention on our language.
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Definition: We say that a formula is kind-bounded iff each quantifier in the
formula is restricted to a kind κ(u), where u is free in the formula.

We say that a formula ϕ is stratified iff there is a function τ from
variables to natural numbers such that for each subformula x = y of
ϕ we have τ(x) = τ(y) and for each subformula x ∈ y of ϕ we have
τ(x) + 1 = τ(y).

Meta-Theorem: Every kind-bounded formula in which we have an in-
tended assignment of values to parameters is equivalent to a stratified
formula.

Proof: We begin by defining a general procedure for assigning types in for-
mulas which we highlight for future reference.

General typing procedure: Construct a function τ ∗ (in the metathe-
ory, there can be no such function in our world) mapping variables
in a formula ϕ to kinds. Each parameter is understood to be as-
signed a value, and since we know the value of a parameter v we
can set τ ∗(v) = κ(v). For each bound variable u which is restricted
to κ(u) where u is a parameter (whose value is understood to be
known), we set τ ∗(x) = κ(u). We can assume without loss of
generality that bound variables restricted to different kinds have
different names.

General stratification procedure: Now each atomic formula u = v
for which τ ∗(u) ̸= τ ∗(v) (both being defined) is equivalent to
¬u = u and can be replaced with that, and each atomic formula
u ∈ v for which κ(τ ∗(u)) ̸= τ ∗(v) (both being defined) can be
replaced with the equivalent ¬u = u.

In a kind-bounded formula ϕ, the general procedures above assign a
type to every variable and make some modifications to subformulas to
facilitate stratification enforcement.

In the formula ϕ∗ obtained after these modifications, define τ(x) for
each variable x as the largest n such that τ ∗(x) = κn(τ ∗(y)) for some
variable y appearing in ϕ. This is a stratification.

Theorem: Every formula of our language is equivalent to a stratified for-
mula.
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Proof: We start (as above) with the stronger idea that each variable is
assigned a kind as a type, in such a way that a parameter v will be
assigned type κ(v) and a bound variable x which is bounded in a kind
κ(u) will be assigned the same type as u.

Notice that if each of u and v is typed and u = v appears in the
formula and the types assigned to u and v are different, then u = v
can be replaced with u ̸= u, since it is simply false (and this can be
eliminated by logic). If u ∈ v appears and u and v are both assigned
types and the type assigned to v is not the kind of the type assigned to
u, then u ∈ v can be replaced with u ̸= u as it is false (and eliminated
using logic). If the process of reduction removes all atomic subformulas
under a quantifier, the entire quantified expression can be reduced to
a truth value and eliminated. If all subformulas but one happen to be
eliminable in the entire formula, surprisingly, the final formula can be
a tautology or the negation thereof. Thus we can assume that these
typing conditions hold on atomic subformulas in which both variables
have been assigned types: for any atomic subformula uR v where u is
assigned type s and v is assigned type t, sR t holds, where R is either
= or ∈.
Notice that if we express each kind used as a type in the form κn(u)
where u is used as a type and is not the kind of any kind used as a type,
then assigning n as type to each variable originally assigned κn(u) will
give a stratification [restricted to variables actually assigned type; a full
stratification if all variables are typed] (subject to enforcement of the
conditions on atomic subformulas described in the previous paragraph).

In a formula ψ in which each parameter and each variable bounded
in the kind of a parameter are typed as discussed, consider a largest
subformula (∀x : ϕ) of ψ, where x is not assigned type because it is
quantified over without bound. Without loss of generality, we assume
that we use only universal quantifiers, and that bound variables are
systematically renamed so thet different quantified subformulas always
have different binding variables. The relation of connectedness between
variables in a formula is defined as the smallest equivalence relation
containing each pair of variables which appear together in an atomic
subformula of the given formula.

In the formula ϕ, the variable x is free. Enumerate the types κ(ti) of
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the form κm(u) where u is a type already used and m is an integer with
absolute value less than or equal to the number of variables in ψ plus
one. Notice that this will include all types which could be deduced from
x by its occurrence with a variable already assigned a type in an atomic
formula, but it also includes any type which could be deduced for x at
any time in the future due to future type assignments to variables.
(∀x : ϕ) is equivalent to the conjunction of formulas (∀xi ∈ κ(ti) : ϕi),
where ϕi is the result of first replacing x with xi then eliminating atomic
subformulas which become ill-typed, and an exotic conjunct

(∀x∗ : (
∧
i

κ(x∗) ̸= κ(ti)) → ϕ∗),

where ϕ∗ is the result of first replacing x with x∗, assigning it a type
distinct from the κ(ti)’s [the resulting formula ϕ∗ will be the same
for any such choice of type], then extending the type assignment and
removing ill-typed atomic subformulas, which will include all of the
atomic subformulas contining x and a variable already assigned a type,
so that ϕ∗ contains no typed free variables other than x∗ which are
connected to x∗’s via typed variables, and supports a type assignment
to x∗, as well as the variables already typed [the only ones which occur
are ones not connected to x∗, or at least not via variables assigned
types]. Retain the type assignment to x∗ for further use though we
do not bound x∗ in the formula. If x∗ is connected to a variable y,
there must be a variable z on the path from x∗ to y which is untyped
so far, which means it must be bound by an unrestricted quantifier,
which must be inside ϕ∗ since any quantifier in ψ whose scope includes
(∀x : ϕ) is restricted to a kind. [Further progress toward assigning
a type to y will take place at the later stage where we process the
formula quantified over z; it is impossible for y to be assigned a type
used before the type of x∗ was determined and remain connected to x∗

when all variables on the path are typed, because the path cannot be
long enough: some atomic subformula would be eliminated.]

Now we describe the elimination of the exotic conjuncts, whose strange
boundedness to complements of concrete finite unions of kinds rep-
resents a stratification violation. [we write ϕ∗(x∗) instead of ϕ∗ to
facilitate writing many substitutions]

The assertion (∀x1, . . . , xn+1 : (
∧n+1

i=1

∧i−1
j=1 xi ̸∼ xj) →

∨n+1
i=1 ϕ

∗(xi))
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succeeds in asserting that there are no more than n counterexamples
κ(t) to (∀x∗ ∈ κ(t) : ϕ∗(x∗)) [in this transformation, note that a type
assigned to x∗ continues to be assigned to the variables xi; this is coun-
terintuitive because the formula says that any two distinct xi’s have
different types, but formally it works, because we never do any type
reasoning in contexts involving more than one of them subsequently,
and in the formulas xi ̸∼ xj, the two variables have the same relative
type for purposes of stratification, weirdly enough].

Now it is straightforward to assert that listed items κ(t′1), . . . , κ(t
′
m) are

exactly the m counterexamples by asserting that each is a counterex-
ample and there are no more than m counterexamples:

(∀x1, . . . , xm+1 : (
m+1∧
i=1

i−1∧
j=1

xi ̸∼ xj) →
m+1∨
i=1

ϕ∗(xi))∧
m∧
i=1

¬(∀x′i ∈ κ(t′i) : ϕ
∗(x′i))

Then the desired assertion equivalent to

(∀x∗ : (
∧
i

κ(x∗) ̸= κ(ti)) → ϕ∗(x∗))

is the disjunction of the assertions that each finite subset of {κ(t1), . . . , κ(tn)}
is the exact collection of counterexamples κ(t) to (∀x∗ ∈ κ(t) : ϕ∗(x∗)).

Now observe that this procedure produces a formula respecting all type
assignments already made (preserving types assigned to unrestricted
bound variables of which copies are made, as noted above).

We then iterate the procedure on the outermost quantifiers to which
type assignments have not been made to the (unrestricted) binding
variable, and we arrive ultimately at a completely typed formula, which
can then be stratified as described above [with the observation that
subformulas xi ̸∼ xj produced in the elimination of exotic conjuncts
are unproblematically stratified with xi and xj assigned the same type,
as is easy to check by expanding them, though their semantics makes
this rather unexpected.]

Theorem: Each instance of stratified comprehension
“{x ∈ κ(u) : ϕ(x)} exists” is implied by a conjunction of instances
“{x ∈ κ(u) : ϕ∗(x)} exists” which are kind-bounded and use no kinds
as bounds other than types κi(x) where i is an integer.
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Proof: It is straightforward to establish by purely logical manipulations that
each instance is a consequence of ones in which each variable, free or
bound, is connected to x: any subformula of a quantified formula in
which no variable is connected to the binder can be pulled out of the
quantified formula, and when all subformulas containing only variables
(free or bound) not connected to x are pulled to the top, they can
simply be replaced with truth values [each such replacement has the
effect of making the original instance of comprehension a consequence
of two simplified ones, one for each assignment of a truth value to the
formula eliminated]. Now a formula ϕ in which each variable is con-
nected to x will contain no nontrivial unbounded quantifiers at the end
of the process described in the proof of the previous theorem, because
the quantified variable is connected to x, and all the variables other
than the quantified variable will have been assigned type, so every for-
mula containing the quantified variable, and the quantifier itself, will
be eliminated, so the stratified formula obtained at the end will be
kind-bounded, and moreover every type assigned to a variable in it will
be κi(x) for some integer x.

Observation: It should be noted that all statements of equivalence in this
subsection hinge on the infnite collection of instances of the separation
axiom which prove κn(x) ̸= κ(x) for n > 1: these are used to justify
elimination of ill-typed atomic subformulas.
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3 Typed theories of sets introduced; older

proposals for type theory with general vari-

ables

We presented TTGV in the previous section as if it were an independent pro-
posal for the foundation of mathematics. The knowledgeable reader should
be able to divine a lot about where it came from from what we have said so
far; in this section we will make the historical background of this proposal
clear. Our aim in organizing things this way is to make it clear that a the-
ory of this kind can be presented without explicitly or implicitly supposing
knowledge of the typed theories at all.

3.1 Typed theories of sets: TST and variants

The original theory of this kind, which appears to have been implicitly pro-
posed by Norbert Wiener in 1914 and explicitly described by Tarski in the
1930s, has been called TST by the Belgian school of logicians who studied
NF, and this is what we will call it. We note for historical accuracy that
this is not the theory of types of Russell and Whitehead’s Principia; it is
considerably simpler, and Russell and Whitehead did not have mathematical
knowledge required to simplify their system to this form.

TST is a multi-sorted first order theory with equality and membership.
The sort of a variable v will be written type(v). We provide a countable
supply of variables of each sort. Using ++ to denote concatenation of strings,
the formation rules for atomic formulas are that v++‘ = ’++w is a well
formed atomic formula iff type(v) = type(w), and v++‘ ∈ ’++w is a well-
formed atomic formula iff type(v) + 1 = type(w). All atomic formulas are
formed in this way. Writing this out in a way which manages use and mention
correctly is a technical challenge!

We do not follow the convention of equipping variables with type super-
scripts in TST, which makes for very cluttered notation, though if we do
provide a variable with a numeral superscript, one may expect that the type
of that variable is as indicated.

The axioms of TST are a scheme of extensionality and a scheme of com-
prehension. The scheme of extensionality provides that each well-formed
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formula of the shape

(∀xy : x = y ↔ (∀z : z ∈ x↔ z ∈ y))

is an axiom. This asserts that objects of type n+1 with the same extension
(consisting of type n objects) are the same. The scheme of comprehension
provides that for each well-formed formula ϕ in which the variable A is not
free, (∃A : ∀x : (x ∈ A ↔ ϕ)) is an axiom if it is well-formed (the only
additional requirement being that the type of A is the successor of the type
of x).

It is usual to adjoin an axiom of infinity (whose form can be deduced
from the development of mathematics in TTGV in the previous section) and
often the axiom of choice to this theory, but they are not part of the formal
definition of the theory we give here.

Some variants of this theory are worth noticing. Hao Wang proposed the
variant TZT which differs simply by indexing the sorts by all integers instead
of just the nonnegative integers. The consistency of TZT follows from the
consistency of TST by a simple compactness argument. Wang himself called
the theory TNT for “theory of negative types”; Forster prefers TZT because
the theory in fact has all integer types, not just the negative ones.

The variant TSTU differs from TST in allowing urelements. Its exten-
sionality scheme is

(∀xyz : z ∈ x→ (x = y ↔ (∀z : z ∈ x↔ z ∈ y)))

(providing that nonempty sets with the same extension are equal) and it is
convenient to supply a primitive constant ∅i+1 of each type i with the axiom
scheme consisting of (∀x : x ̸∈ ∅i+1) for each concrete natural number i. An
object of type i+ 1 is a set if it has elements or is equal to ∅i+1.

In any of these theories, one can provide a term construction {xi : ϕ} of a
term of type i+1 representing the unique set A such that (∀x : (x ∈ A↔ ϕ).
The type rules for term constructions are straightforward to adapt from those
for variables.

It is straightforward to show that TST is interpretable in the usual set
theory ZFC. Let X0 be an arbitrarily chosen set. Define Xn+1 as P(Xn) for
each n. In any formula of the language of TST, assign each parameter of
type i a value in Xi and interpret each quantifier over type i as a quantifier
restricted to Xi. It is straightforward to check that each interpretation of an
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axiom of TST is true. The fact that the sets representing the types are not
disjoint is harmless.7

We further note that TSTU is interpretable in TTGV, the theory we de-
fined in the first section. Let κ(x) be a kind. Interpret each parameter of type
i as an element of κi+1(x). Interpret each quantifier over type i as a quantifier
restricted to κi+1(x). That the axioms of TSTU hold is immediate from the
axioms of TTGV: the weak extensionality of TSTU has the same form as the
extensionality of TST, and the interpreted comprehension axiom of TSTU
follows from the separation axiom of TTGV. Of course TST is interpretable
in TTGV with the additional assumption of strong extensionality.

Our reasons for preferring to frame our flagship theory of types with
general variables with weak extensionality will become evident shortly.

3.2 Quine’s original proposal of type theory with gen-
eral variables

Quine’s original proposal of a type theory with general variables equivalent
to TST is the subject of this subsection.

definition of “being of the previous type”: x PT y is defined as

(∃zw : x ∈ w ∧ w ∈ z ∧ y ∈ z).

definition of type 0: T0(x) is defined as (∀y : ¬y PTx).

definition of next type: For each concrete natural number n, Tn+1(x) is
defined as (∀y : Tn(y) → y PTx)

He then stated his axioms schematically.

Quine’s comprehension axiom: For any formula ϕ,

(∃A : Tn+1(A) ∧ (x ∈ A↔ (Tn(x) ∧ ϕ)))).

Quine’s extensionality axiom:

(∀xyz : Tn+1(x)∧Tn+1(y)∧(∀w : Tn(w) → (w ∈ x↔ w ∈ y))∧x ∈ z → y ∈ z).

I preserve the form of this axiom, which reflects defining equality in
terms of membership, but it could be phrased differently.

7This is one of a couple of places in the paper where we are reminded that we need to
track down Boffa’s discussion of typed properties
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These are actually not the axioms as he first states them: this is the
original extensionality axiom together with a modified version of the com-
prehension axiom which he states later as a consequence of the assumption
that all elements of type n + 1 objects belong to type n, which his original
axioms (astonishingly) do not imply.

Quine does recognize the importance of the relation of cohabitation as
representing the notion of belonging to the same type, though he does not
use it in the statement of his axioms.

This theory is not quite the same as ours. To begin with, it has what
we regard as a formal defect: there is no need to axiomatize the theory with
schemata with concrete natural numbers as indices, as we have demonstrated
with our axiomatization (and as Resnik did prior to our work and very simi-
larly). Quine does observe that he cannot prove and cannot even actually say
that every object belongs to some type. Further, his theory says nothing at
all about objects which do not belong to a type. In our theory and Resnik’s,
it is immediate that every object belongs to a type [which we call a “kind”
in section 2], but the types may not be restricted to the familiar ones.

Quine says more about individuals than we do. Quine asserts that all
individuals belong to the same type. Resnik also thought that he had asserted
this (see below). We have not felt the need to do this, but we could. We also
want to be free to explore the possibility there are no individuals at all.

We think that our presentation is superior to Quine’s for a number of
reasons. Our presentation does not allude to the simple typed theory of sets
at all in its formulation [or much less obviously]: the fact that it is actually a
presentation of the simple typed theory of sets unfolds in the development, as
the reader should see in our first section. We dispute something that Quine
says: he denies that systematic ambiguity as in Russll or in the development
of New Foundations has a place here: in fact there is a strong place for
systematic ambiguity in this theory; we do not escape this phenomenon when
we transition to a one-sorted theory. This also comes out in the development
in section 2: the fact that we get different systems of natural numbers for
counting objects of different kinds is an example of this.

The axioms as selected above from Quine’s treatment allow us to prove
that all elements of a type n+1 object are of type n: for any x of type n+1
there is x∗ of type n+1 containing exactly the type n elements of x, and then
by his original formulation of extensionality, x∗ = x, so in fact all elements
of x are of type n.

The fundamental point here is that Quine’s theory is not intellectually in-
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dependent from TST: Resnik’s theory and mine are independent of TST(U)
in their formulation, though related notions naturally develop as these theo-
ries unfold.

Finally, our theory differs from Quine’s quite deliberately in allowing
atoms as well as empty sets, for reasons to be discussed soon.

3.3 The system of Resnik

What Quine did was a kludge. The presence of meta theoretic natural num-
ber parameters corresponding exactly to the types reveals that he is not
really describing an autonomously motivated system.

Resnik gives a genuine one-sorted theory with one-sorted motivation from
which type theory falls out, as we do, and his theory is very close to ours.

We list his seven axioms, staying closer to our own notation.

Definition: x ∼ y means (∃z : x ∈ z ∧ y ∈ z). Resnik defines x = y as
(∀z : x ∈ z ↔ y ∈ z). So does Quine; for us equality is a logical
primitive, but the comprehension axiom of any of these theories should
make this definition harmless.

Ax 1: (∀x : (∃y : (∀z : z ∈ y ↔ z ∼ x))). This is almost the same as our
axiom of types: ours has the extra clause x ∈ y to ensure that ∼ is
reflexive. We use the notation τ(x) for the witness to the existential
quantifier y. Strangely, the axiom of comprehension has to be used to
fill in this detail in Resnik’s system.

Ax 2: (∀xyw : y ∈ x ∧ y ∈ w → x ∼ w). Sets which meet have the
same type. This is equivalent to our axiom of subsets. I’m wondering
whether this is provable from Resnik’s other axioms.

Ax 3: (∀uvwxy : y ∈ x∧u ∈ x∧y ∈ w∧v ∈ w → (∃t : y ∈ t∧u ∈ t∧v ∈ t)).
This axiom is used to support transitivity of ∼. I believe that it is
redundant. If y ∈ x ∧ u ∈ x then we have y ∈ τ(u), where τ(u)
witnesses Ax 1 with x := u. Similarly we have v ∈ τ(u). u ∈ τ(u)
is not a consequence of Ax 1 (as it is in our formulation) but it does
hold here because u belongs to some set by the hypotheses. So we can
choose τ(u) as t.

Ax 4: (∀vwxyz : y ∈ x ∧ v ∈ w ∧ x ∈ z ∧ w ∈ z → y ∼ v) We say that
in our development that because x and w have the same type, they
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have a union (a theorem following from the axiom of diversity), and of
course this union will contain y and v. We have considered this exact
statement as an axiom, but diversity seemed a simpler axiom.

Definition: xPTy is defined (following Quine) as (∃zw : x ∈ w∧w ∈ z∧y ∈
z). T0(x) (x is an individual) is defined as meaning ¬(∃y : yPTx):
nothing belonging to the same type as x has elements.

Ax 5: (∃x : T0(x)) We do not commit ourselves to the existence of any
individuals. But it is natural to do so given the historical origin of this
theory.

Ax 6: (¬T0(x) ∧ x ∼ y ∧ (∀z : z ∈ x ↔ z ∈ y) ∧ x ∈ w) → y ∈ w.
The form of this looks peculiar to us because Resnik treats equality
is a defined notion, but it is the axiom of extensionality. It is a bit
different from ours: it is weaker in that it does not force equality of
nonempty sets with the same extension (Axiom 2 assists with this); it
allows individuals with the same empty extension to be distinct but
any empty object in a type containing a set is the only empty object in
that type. This is natural; we are more liberal in allowing many atoms
in each type.

Ax 7: For any formula ϕ, (∀z : (∃y : w ∼ z ∧ (∀x : x ∈ y ↔ (ϕ ∧ x ∈ z)))).
This is Zermelo’s axiom scheme of separation, with the extra proviso
that the set defined is of the same type as the bounding object (which
actually doesnt not have to be a set, and this has a use).

The maneuver for showing that a general object belongs to a set is rather
strange here, and I want to be sure that Resnik actually realizes that he has
to do it. For an arbitrary x, there is w ∼ x with empty extension, by axiom
7...and incidentally, some set contains both x and w, so x belongs to a set.

That said, this theory is the same as ours with stronger extensionality and
the positive assertion that there are individuals. I think that my axiomatics
are cleaner, and that there are really good reasons to consider the possibility
of atoms in addition to empty sets.

There is an error in Resnik. He claims that he can prove that all individ-
uals are of the same type. This does not follow from his axioms. I think part
of the issue is that he defines ST (the relation of being the same type, which
we denote by ∼) in two different ways and does not seem to realize that they

25



are not equivalent. It wouldn’t be unreasonable given his evident intention
to strength his axiom asserting the existence of individuals to assert as well
that all individuals are of the same type.

We acknowledge this system as prior to ours, and as doing basically the
same work: we were not aware of this work when we framed our system of
the first section. We do think that there are formal advantages to our slightly
(but inessentially) weaker system, which will come out in further discussion.
Proofs of useful results from the first section port easily to this system.

3.4 Ambiguity and stratification: NF and NFU

TST exhibits a stronger form of a symmetry that Russell noted in the more
complicated system of Principia Mathematica and called “systematic am-
biguity”. This symmetry led to another proposal by Quine of an untyped
version of TST which we describe because it is relevant to our project here.

In TST, provide a map (x 7→ x+) on variables which is an injection and
raises type by one. For any formula ϕ, define ϕ+ as the formula which results
if each variable x is replaced with x+.

It is straightforward to see that if ϕ is provable, so is ϕ+. The converse
is not true.

One could then reasonably conjecture the consistency of the Ambiguity
Scheme, which asserts ϕ↔ ϕ+ for each closed formula ϕ.

Quine made the apparently stronger proposal that the types can simply
be identified. The resulting theory is called NF (New Foundations) after the
name of the paper in which it appeared.

NF is a one-sorted first order theory with equality and membership with
the axiom of strong extensionality (objects with the same extension are equal)
and the axiom scheme of stratified comprehension: {x : ϕ} exists if there
is a function σ from variables to natural numbers such that each atomic
subformula v++‘ = ’++w appearing in ϕ has σ(v) = σ(w) and each atomic
subformula v + +‘ ∈ ’ + +w appearing in ϕ has σ(v) + 1 = σ(w): such a
formula is said to be stratified and the function σ is called a stratification.
Clearly it is equivalent to say that we are asserting that {x : ϕ} exists if
ϕ could be turned into a well formed formula of TST by an appropriate
assignment of sorts to variables.

NF presents difficulties: it was shown in 1953 to disprove Choice, and its
consistency remained an open question until very recently.
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Specker showed in 1962 that NF is equiconsistent with TST + Ambi-
guity, and with the existence of a model of TST in which there is a type
raising endomorphism. This justifies Quine’s jump from the temptation of
the Ambiguity Scheme to the temptation of simply identifying the types.

Jensen showed in 1969 that NFU, the system with weak extensionality
and stratified comprehension, is consistent and not even very strong. It is
consistent with but does not prove Infinity, and it is consistent with Choice.
This formal advantage of NFU over NF is the main reason that we choose to
use weak extensionality in the definition of TTGV. It is now known that NF
is consistent, but this is much harder to show, and the character of general
models of NF remains ill understood.

3.5 The proposal of Forster

Thomas Forster proposed the following type theory of general variables,
which was the first one I encountered.

This is a first order one sorted theory with equality and membership

Definition: x ∼ y is defined as (∃z : x ∈ z ∧ y ∈ z).

Axiom of weak extensionality: Objects with elements are equal if they
have the same extension.

∼ is an equivalence relation: ∼ is an equivalence relation in which the
equivalence classes are sets: the equivalence class containing x is de-
noted by τ(x).

set union: The usual axiom of set union is asserted: for every A,
⋃
A exists

where x ∈
⋃
A↔ (∃y : x ∈ y ∧ y ∈ A)

comprehension: {x ∈ τn(u) : ϕ} exists where each variable appearing in ϕ
is typed in the sense that (if it is a parameter) it belongs to some τm(u)
and if it is bound, it is bound by a quantifier restricted to a τm(u), x
is assigned type n of course, and further that in each subformula u = v
the types of u and v are the same and in each subformula u ∈ v, the
type of v is the image under τ of the type of u.

This is something like the assertion that all sets determined by well
typed set abstracts exist (using the terminology of the first section)
though it is a bit less general.
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The author is somewhat critical of this proposal of Forster, though it does
have substantial interest. Like the proposal of Quine, it appears to depend
philosophically on prior awareness of TST. It does have the interesting feature
that it does not prove that the types are disjoint: if NF is consistent, a model
of NF is a model of this theory in which there is only one type. Forster is
also interested in the possibility of cycles in the types, in which τn(x) might
be equal to τ(x) for some n > 2. These would correspond to type theories
with loops in the types.

3.6 Interpretation of the theories with general vari-
ables in the typed theories

We now argue that a model of TST provides an interpretation of TTGV.
These results will extend to the other theories, possibly under special as-
sumptions.

Given a model of TSTU in which the sets implementing the types are
disjoint (a model not satisfying this condition is readily modifiable to one
which does), extend its language to a one-sorted language with the same
variables by the device of assigning the value False to each ill typed atomic
formula and interpreting complex formulas in the natural way.

All of the axioms of TTGV are obviously true in this structure for the
language of TTGV except the axiom of separation. The problem with sepa-
ration is that it asserts the existence of {x ∈ A : ϕ} for formulas which do not
correspond to formulas for which this set is provided by the comprehension
of TST.

We have foresightfully provided for this by proving in the first section that
every set {x ∈ τ(u) : ϕ} with fixed values for its parameters is provably equal
to a set {x ∈ τ(u) : ϕ∗} in which ϕ∗ is well-typed (a kind-bounded formula in
which each type is of the form κi(x) for some integer i), and in this context
a well-typed formula is exactly equivalent to a well-formed formula of the
underlying TSTU.

The system of Resnik is interpretable if the model of TSTU is a model of
TST. This is direct, as Resnik’s system differs very little from ours.

The system of Quine is close to TST in allowing only the types that
TST itself has. Some application of a theorem similar to our well-typedness
theorem will be needed, because the comprehension axiom of Quine’s system
is not restricted to well-typed formulas.
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The system of Forster shines here, because its comprehension axiom pro-
vides for exactly the sets which the comprehension scheme of TST provides
for, and also there is no need for the condition that the types are disjoint
which is important in our proof above.

Quine’s system is in some sense exactly equivalent to TST (apart from
the possibility of objects not satisfying any of the predicates Tn, about which
the theory says nothing).

The other theories cannot be said to be exactly equivalent to TST, be-
cause they do not restrict themselves to the hierarchy of types indexed by
the natural numbers which TST supports, and in fact their language cannot
even express such a restriction.

We describe a theory TSTG which is typed and in some sense exactly
equivalent to TTGV.

TSTG is a first order multisorted theory (or family of theories) with sorts
of two kinds, τ+(l, n) where l is a label and n is a natural number, and τ(l, i)
where l is a label and i is an integer (a version of the theory might have only
one of these kinds of type). For any type t we define t+ as τ+(l, n + 1) if
t = τ+(i, n) and as τ(l, i+ 1) if t = τ(l, i).

An atomic subformula u = v is well-formed ff the types of u and v are
the same; u ∈ v in which u is of type t is well-formed if and only if the type
of v is t+.

The weak extensionality and comprehension axioms of TSTG are the
complete schemes of formulas of the same shapes given for TSTU, with the
additional latitude afforded by having more types.

In effect, we are providing for an arbitrary large collection of models of
TST and an arbitrarily large collection of models of TZT. This is a family of
theories because we have not stipulated how many labels there are for types
of each kind.

Now there is a direct translation between models of TTGV and models
of TSTG. From a model of TTGV obtain a model of TSTG in which the
sets implementing the types of TTGV are the extensions of the kinds κ(x) in
the model of TTGV, and the (t 7→ t+) operation on type labels parallels the
κ operation on types in the sense of TTGV (to realize the type labels, one
needs to make a choice of “base type” in each orbit in κ without a minimal
element; this is not an essential use of choice because we could also allow
many interconvertible notations for each type in a sequence of types indexed
by all integers). This is readily seen to be a model of TSTG.

A model of TSTG is converted to a model of TTGV by assigning values
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to all ill-typed atomic formulas of False (ensuring first that the sets imple-
menting the types are pairwise disjoint) and extending the definition of truth
values of general formulas appropriately. Again, the only axiom of TTGV
which requires care to verify in the resulting structure is separation, and
its validity follows from the fact that general set abstracts in TTGV are
equivalent to well-typed set abstracts.

This result adapts to the theory of Resnik which has the added assump-
tions of strong extensionality and existence of individuals.

Consideration of the theory TSTG can be useful in thinking out things
about TTGV. Notice that an arbitrary set of models of TSTG can easily be
made a pairwise disjoint set, and the union of a pairwise disjoint collection
of models of TSTG is a model of TSTG. TTGV has similar properties.

One can get the condition that any well-typed formula ϕ(κ(y)/x) in which
x is the only free variable in ϕ will hold for all values of κ(y) if it holds for all
but a concrete finite collection of values of κ(y), which greatly simplifies the
proof that every formula is equivalent to a stratified formula, by replacing
the model of TTGV in which one works with a countable union of pairwise
disjoint copies of the model one starts with.

Another observation is that we cannot (verifying a claim we made above)
establish that arithmetic is the same everywhere in a model of TTGV, be-
cause we can take unions of models of TST with different arithmetic facts
and convert them to a model of TTGV.

Note that consistency of NFU (and of NF) implies consistency of TTGV
(even with strong extensionality) with the Ambiguity Scheme which asserts
that for any formula ϕ in which x is the only free variable,

(∀uv : ϕ[κ(u)/x] ↔ ϕ[κ(x)/x]).

A model of TSTU with a type shifting endomorphism, which exists by the
results of Jensen and Specker, converts to a model of TTGV in which this is
true.

An interesting footnote to this section is that TTGV is not finitely axiom-
atizable. The separation axiom for typed formulas is finitely axiomatizable:
this can be done for example by converting the axioms of Hailperin’s finite
axiomatization of NF to well-typed formulas closed with a quantifier over all
types. The equivalence of set abstracts over general formulas to set abstracts
over well-typed formulas depends also on the disjointness of the types, which
depends on a countable collection of instances of TTGV comprehension (the

30



ones defining the sets Rn,x in the proof). Suppose that TTGV was finitely
axiomatizable. Each of the axioms in this finite axiomatization would be
provable using the axioms implementing well-typed separation and finitely
many of the axioms providing for Rn,x’s (and the other axioms of TTGV).
Thus there would be a finite axiomatization consisting of the well-typed sep-
aration axioms, the other axioms of TTGV and finitely many of the axioms
providing Rn,x’s. But all of these axioms hold in a model of cyclic type the-
ory with weak extensionality with a large enough finite number of axioms:
because NFU is consistent, this theory is consistent. And this theory does
not cover TTGV because it does not prove existence of one of the Rn,x’s.
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