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In this document, I will reveal the exact equivalence of Russell’s ramified
theory of types from Principia to a far simpler system, the simple typed
theory of sets with a predicativity restriction, and I will demonstrate that
the axiom of reducibility in this context is exactly equivalent to something
much simpler, namely, the axiom of set union.

I begin with simple typed theories of sets. They are simple.
TST is a theory with sorts indexed by the natural numbers, with primitive

predicates equality and membership. We say that each variable x has a
sort type(x) which is a natural number, and that x = y is well-formed iff
type(x) = type(y) and x ∈ y is well-formed iff type(x) + 1 = type(y). We
assume that we have countably many variables of each type.

The axiom schemes of TST are: extensionality, all assertions of the shape
(∀xy : x = y ↔ (∀z : z ∈ x ↔ z ∈ y)) are axioms [There is effectively one
of these for each choice of the type of z]; comprehension, all assertions of
the shape (∃A : (∀x : x ∈ A ↔ ϕ)) are axioms [The object A, unique by
extensionality, may be denoted by {x : ϕ}, which has type one higher than
that of x].

Note that nothing but the type discipline distinguishes these from the
axioms of naive set theory.

In conformity with the needs of Principia, we can include the axiom of
infinity in TST for our purposes here. The collection of finite sets can be
defined (polymorphically, this is a definition scheme) as

{F : (∀I : ∅ ∈ I ∧ (∀A ∈ I : ∀x : A ∪ {x} ∈ I) → F ∈ I)}

Of course this definition has prerequsite definitions, ∅ = {x : x ̸= x} [this
definition is polymorphic: the type of empty set referred to is deduced from
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context] and A ∪ {x} = {y : y ∈ A ∨ y = x}. The axiom scheme of infinity
then asserts

{x : x = x} ̸∈ {F : (∀I : ∅ ∈ I ∧ (∀A ∈ I : ∀x : A ∪ {x} ∈ I) → F ∈ I)} :

the universal set (over each type) is not finite (in the sense appropriate
to subsets of that type).

The predicative simple theory of types (TSTP) has the same axiom
scheme of extensionality and a restricted scheme of comprehension. The
restriction is that (∃A : (∀x : x ∈ A ↔ ϕ)) is an axiom as long as no variable
appearing in ϕ is of type higher than the type of A, and any variable of the
type of A appearing in ϕ is free (not quantified over). This is exactly anal-
ogous to the predicativity restriction in Principia, but phrased for a much
simpler situation.

TSTP plus the Axiom (scheme) of Set Union, which asserts the existence
for any A of appropriate type of

⋃
A = {x : (∃a ∈ A : x ∈ a)}, is exactly

equivalent to TST. Define ι(x) as {y : y = x}. We can then conveniently
observe that {ιn(x) : ϕ} exists in TST for large enough n for any ϕ (the point
being that the type of the variable over which we abstract can thus be made
higher than that of any bound variable in ϕ).

Some paraphrase may be felt to be needed to make this absolutely clear.
Let y = {x} abbreviate the formula (∀z : z ∈ x ↔ z = y). {ι(x) : ϕ}
abbreviates {x1 : (∃x : x1 = {x} ∧ ϕ}). Note that the additional variable
which would be revealed by expanding x1 = {x} is of a type which already
appears in ϕ. {ιn(x) : ϕ} abbreviates n applications of this operation: the
thing to observe is that if n is taken to be large enough, the variable replacing
ιn(x) when we expand this will be the variable of highest type in the abstract,
so the abstract will be of the form allowed in TSTP. Then observe that⋃
({ι(x) : ϕ}) = {x : ϕ}, and more generally

⋃n({ιn(x) : ϕ}) = {x : ϕ}, so
the axiom of union together with the comprehension axiom of TSTP gives
the full comprehension axiom of TST (which in its turn justifies both union
and predicative comprehension, so there is an exact equivalence).

We discuss a method of defining n-tuples in TSTP with an essential formal
advantage. We define ⟨x, y⟩ as {{x}, {x, y}} as usual. We define individual
natural numbers [in each type with index at least 2] in a way standard for
this theory: 0 = {∅};n + 1 = {A ∪ {x} : A ∈ n ∧ x ̸∈ A}. An n-tuple
(x0, . . . , xn−1) is defined as {⟨0, x0⟩ , ⟨1, x1⟩ , . . . , ⟨n− 1, xn−1⟩}. An n-tuple
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(x0, . . . , xn−1) is of type three higher than the common type of the xi’s. Note
that 0-tuples, 1-tuples, and 2-tuples make sense. 0-tuples are empty, 1-tuples
(x0) are not the same as x0 (they are not even of the same type) and 2-tuples
(x0, x1) are not to be confused with pairs ⟨x0, x1⟩. We note that we are
implicitly requiring that the type of the xi’s be at least 2, since that is the
minimal type of a natural number as we have defined it.

It is possible to define an ordered pair ⟨x, y⟩ in TSTP which is the same
type as its projections x and y, for x, y above a constant type. The definition
is a variation of Quine’s ordered pair, modified because the usual definition
of N violates the predicativity restrictions of TSTP. This would then allow
(x0, x1, . . . xn) to be defined simply as ⟨x0, (x1, . . . , xn)⟩, the ordered pair and
the 2-tuple coinciding in this case, and the 1-tuple (x) coinciding with x. so
that n-tuples would be of the same type as their projections as well. The
overhead of the modified Quine definition of the ordered pair is in our view
rather high, though, so we will use the familiar pair. The apparently simpler
way of defining n-tuples given in this paragraph is incompatible with the type
system, and if it is modified to suit the type system, it will have the nasty
consequence that the type displacement between a tuple and its projections
will depend on the length of the tuple, which we need to avoid.

We now discuss the theory of types in Russell’s Principia (but not pre-
sented in the unintelligible way he presents it). This is a theory of propo-
sitional functions with arbitrary arity, and with an elaborate type scheme.
There is a type of individuals for which our notation is 0. The order of type
0 is 0. A type notation of order k > 0 is a sequence of type notations of order
< k with k appended. A type notation (t0, . . . , tn−1, k) is inhabited by propo-
sitional functions f for which f(x0, . . . , xn−1) is defined (and a proposition)
just in case each xi is of type ti.

A propositional function may be thought of as a reified n-ary relation on
arguments of the types listed in the notation for its type.

The comprehension axiom of Russell’s theory asserts that for any formula
ϕ[x0, . . . , xn−1] with xi of type ti, there is a propositional function f of type
(t0, . . . , tn−1, k) such that f(x0, . . . , xn−1) ↔ ϕ[x0, . . . , xn] holds for any values
of the xi’s if ϕ contains no constants or free variables of types of order greater
than k, and no bound (quantified) variables of type ≥ k. It should be noted
that he doesn’t say that he has a comprehension axiom: but this is the one
implicit in what he does say.

This is not Russell’s presentation. Russell defines no notation for types
whatsoever, which makes his book a bit hard to follow in places. We are
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going to brutally assume extensionality (though we don’t have to talk about
it). He thought this was an Issue. But the handling of types, orders, and
restrictions on quantification in definitions of propositional functions follows
Russell. [Russell appears to identify his propositional functions with actual
pieces of text, though it is not clear he is doing exactly this, an aspect we
are just not going to talk about.]

Russell’s theory interprets TSTP absolutely directly (as long as we assume
extensionality, which we do). Type 0 of TSTP may be taken to the the type
of individuals or any other fixed type one chooses. If type n of TSTP is
interpreted by a type t of order k, type n+1 is interpreted by type (t, k+1).
If x is a type i variable and y is a type i+1 variable, we interpret x ∈ y (in the
TSTP sense) as y(x). It is clear from our description of the interpretation
that this is well-typed. It should also be clear that the translation of the
comprehension axiom of TSTP will hold in Russell’s theory as we present it.

Now the really interesting thing is that TSTP interprets Russell’s theory.
We describe the interpretation. Each type of order k is implemented by a
subset of type 4k+2 in TSTP. The type of individuals is simply interpreted
as type 2 of TSTP, or any desired subset of type 2. For ay type notation τ ,
let order(τ) be define as its order.

The implementation set(t0, . . . , tn−1, k) in TSTP of a type in the PM
system is defined as

P{(ι4(k−order(t1)−1)(x1), . . . , ι
4(k−order(tn−1)−1)(xn−1)) :

∧
i

xi ∈ set(ti)}).

Please note that the recursion here is metatheoretical: we can describe each
of these sets in the language of TSTP but the recursion itself cannot be
described in the language of TSTP, only each instance of it.

If f is in set(t0, . . . , tn−1, k) and (
∧

i : xi ∈ set(ti)), what we mean by
f(x0, . . . , xn−1) (in the language of Russell’s theory) is

(ι4(k−order(t1)−1)(x1), . . . , ι
4(k−order(tn−1)−1)(xn−1)) ∈ f

The multiplier of 4 is needed because (x0, . . . , xn−1) ∈ f , the simple
membership of a tuple in a representation of an n-ary relation, has a type
displacement of 4 from the type of the xi to the type of f . Each projection
is being adjusted by application of the singleton operator to the same type,
4 types below the type 4k + 2 of the implementation of f in TSTP.

The complicated thing that we need to verify is that Russell’s comprehen-
sion axiom (as we call it, he might not call it that) holds in the interpretation.
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The executive summary is that it works correctly because the implementation
of a type of order k as a set is always a subset of type 4k + 2. Definitions of
propositional functions can be checked: if they meet the conditions described
in the comprehension axiom, their translations meet the conditions required
for TSTP. It might be a little disturbing that the order k type and the order
k + 1 type over the same sequence of arguments in the Russell sense are not
relations on the same domain in our sense: the domain of the type of order
k + 1 is the elementwise image under ι4 (the fourfold singleton operation)
of the domain of the type of order k. The domains are exactly correlated,
and the possible failure of Union in TSTP means that it is possible that
there are more relations on images under ι4 on a domain than those that are
correlated in the obvious way (elementwise image under ι4) with relations on
the domain.

And if the axiom of set union holds in TSTP, the theory interpreted is
the simplified theory of types of Ramsey: relations on the image of a domain
under fourfold singleton correlate exactly with relations on the domain, and
there is no reason to draw the distinctions. The representation of the sim-
plified theory can be decluttered: all types can have minimal order, and the
definitions become much more natural with less mention of ι4 (a type with
arguments of different orders will still require ι4 in its translation).

One might ask, what does the axiom of reducibility have to do with
the axiom of union? On the logical level, both are methods of implementing
impredicative quantification. The actual way that reducibility on the PM side
becomes union on the TSTP side can be sketched most easily by considering
types of classes over a single type τ . If τ is of order k, there are types (τ, k+i)
for each positive integer i which you can think of as inhabited by subclasses of
type τ (unary predicates of type τ objects). As i increases, one may discover
more subclasses of type τ . In TSTP, the set set(τ) representing type τ (a
subclass of type 4k+2) has an unequivocal power set P(set(τ)) of type 4k+2
and never itself acquires any more subsets. The representation set((τ, k+1))
is for technical reasons actually the type 4k + 6 set P({(x) : x ∈ set(τ)}).
Remember that (x) is not identified with x (it is actually {⟨0, x⟩}. The
representation set((τ, k + i)) is P({(ι4(i−1)(x)) : x ∈ set(τ)}), and the fact
that this type can have inhabitants not correlated with the inhabitants of
types of lower order depends on the fact that in TSTP there can be sets of
iterated singletons of elements of a set A which are not elementwise images
under the iterated singleton operation of subsets of A (precisely because
union can fail: union tells you that the subsets of the elementwise image
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under singleton of A are exactly the elementwise images under singletonof
subsets of A): this is how the idea in PM that there can be alternative power
sets with more inhabitants is implemented in TST, where a set has only one
power set of the next higher type.

This is made less transparent by the need to use cumbersome machinery
with added type increments to represent tuples, because PM supports types
of relations of arbitrary arity. This note might be improved by providing
as an alternative an account of how a type level pair improves the situation
(which would require the demonstration that the Quine pair can be modified
to be predicative).
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