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1 Introduction

This book contains translations of papers on set theory by Paul Finsler with
supporting materials prepared by the editors.

The book is divided into three parts, a philosophical part, a foundational
part, and a combinatorial part.

We summarize our conclusions at the outset. Finsler has interesting things
to say about the philosophy of set theory and of mathematics in general. He has
an interesting analysis of the notion of set, and of the reasons why the paradoxes
of self-reference present themselves and the nature of an appropriate response
to the paradoxes. He defends a Platonist view of mathematics using arguments
which we find congenial.

Finsler’s contributions to foundations are interesting, but ultimately unsat-
isfactory in the form in which he presents them. We agree with the apparent
consensus of modern set theorists that the Finsler set theory is incoherent as
presented. In asserting that Finsler’s full set theory is incoherent, we are taking
issue not only with Finsler himself, but with the editors of the volume. However,
Finsler’s concept of “circle-free” sets can be successfully implemented; this is
seen in the set theory of Ackermann, a complete description of which can be
extracted from Finsler’s papers presented in this book; discovering this fact
made reading the book worthwhile for the reviewer. Finsler’s notion of allowing
non-well-founded sets but strengthening the notion of extensionality on non-
well-founded sets has been carried further by Scott and Aczel, among others,
and systems with “anti-foundation axioms” resembling Axiom II of Finsler’s
system are now popular and are finding applications.

Finally, the combinatorial aspects of Finsler’s set theoretical work issue from
a specific line of investigation into the properties of small non-well-founded sets
which can be carried out in the various set theories defined in Aczel’s book on
non-well-founded set theory as well as in the Finsler set theory. No profoundly
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interesting combinatorial results are given in this book, but it seems that there
might be potentially interesting problems in finite combinatorics in the inves-
tigation of hereditarily finite non-well-founded sets. There is a philosophically
interesting idea to this section: Finsler enunciates a view of sets as “generalized
numbers”, regarding a set as having its elements as “predecessors”. This idea
may be of some use in trying to understand Finsler’s intuitions about set theory.
Finsler goes on to define analogues of arithmetic operations on small sets. We
will have nothing further to say about this aspect of the book in this review,
but the article by Booth introducing this part and at least the first article by
Finsler are worthwhile.

2 Finsler’s Platonism

There are many things which we find extremely problematic in Finsler’s work,
but his defense of mathematical Platonism is not one of them. It is Finsler’s
Platonism which leads him to the conviction that the paradoxes of set theory
must (and should be able to be) solved , not endured (as somehow unavoidable)
or merely avoided (as by schemes of type theory). Finsler believed that the
paradoxes arose from errors in reasoning which it should be possible to identify
clearly. He resists the idea that the mathematical world is “constructed” by
human thought. We quote from p. 79: “Now an antinomy would result if
. . . we were to see ourselves being compelled to ‘form’ mathematical objects
(for example, the set of all transfinite ordinal numbers) that is, to affirm their
existence. This idea confuses the class of the ordinal numbers and the differently
defined set . In an exact set theory sets do not arise through an act of collecting,
but are mathematical objects with definite properties, in exactly the same way as
the natural numbers are objects with definite properties. From p. 80: “In order
to be able to know what is true and what is false in set theory, one has to have
won back the certainty lost through the antinomies, however, nothing stands in
the way. This does not mean that one could then solve every single question;
this is not the case elsewhere in mathematics, either. . . . By “Platonism” one
can of course understand various things. In the case before us this expression
only means that in the realm of set theory too, objective relationships do exist;
it is not meant that sets would have to be given to us in some way other than our
knowledge of their existence. Consequently, quite another question is how we
know these objective relationships and how are we to base classical mathematics
on them?” Later, same page, referring to some disagreement with Bernays about
the significance of Ackermann’s formalization of part of Finsler’s theory (which
was probably independent of Finsler’s work): “The actual existence of infinitely
many things cannot be guaranteed in this way. This turns mathematics into a
‘doing as if’, pretending that there are infinitely many things. I cannot accept
this.” Finsler does state a criterion for the existence of mathematical objects:
on p. 169: “consistent things can always be taken to exist; in pure mathematics,
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existence means nothing more than freedom from contradiction”. The reviewer
finds nothing here to disagree with.

3 Paradoxes of Self-Reference

Paradoxes of self-reference are addressed by Renatus Ziegler, one of the editors,
in an introductory article, “Intrinsic Analysis of Antinomies and Self-Reference”.
We found this article not to be helpful. We summarize our objections to its
approach by considering an example and then considering the consequences of
this approach for an algebraic example.

The examples that Ziegler discusses are of the form

a: b is true

b: a is false

This pair of sentences is circularly defined and certainly paradoxical. Ziegler
alleges that the reason that the paradox arises is that the two occurrences of a
and b respectively are identified; if the identification were shown to be unsound,
the paradoxical character of the pair of sentences would be resolved. We actually
agree with this assertion. But Ziegler goes on to find the difference between the
two occurrences of a (for example) in the fact that the second occurrence of a is
presented to us as the subject of a proposition while the first occurrence of a is
presented to us as an entire proposition. On this basis, he tells us that the two
occurrences of a (and likewise the two occurrences of b) should be differnetiated
(say by adding superscripts) producing a situation something like this:

a(1): b(1) is true

b(2): a(2) is false

Of course, there is no longer any contradiction in this set of sentences. Ziegler
says that this is the result of “strictly following the principle of identity , which
says that only objects possessing identical properties may be identified” (p. 17).

We present a reductio ad absurdum of this line of argument. Consider the
familiar identity

x+ x = 2x

. The three x’s here are presented to us in quite different ways: the first is
the left term of a sum, the second is the right term of a sum, and the third is
not a term at all but a factor. Thus, they must be distinct: the correct way of
presenting this identity is

x(1) + x(2) = 2x(3)

. Of course, this is entirely absurd: the whole point of the identity (and any
other algebraic equation) is that a letter such as x can refer to the same object
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in different contexts. Indeed, it must refer to the same object in our algebraic
context; the modified identity is no longer valid (it is the same as asserting that

x+ y = 2z

for all x, y, and z)! The differences between the contexts in which different
occurrences of a letter like x occur do not make the referents of the different
tokens different.

The sentences must be understood as intended: the two occurrences of a
and the two occurrences of b are indeed to be understood as having identical
referents if they can be regarded as intelligible at all. If we cannot understand
different occurrences of the same symbol as having the same referent, we cannot
engage in mathematical discourse of even the simplest kind.

Something can be made of what Ziegler is trying to say if we explicitly
take into account the fact that the constructions involved in paradoxes of self-
reference are “token-reflexive”, so where a token (of certain specific kinds) occurs
can affect its meaning; Finsler does something like this with his idea of “implicit
content” below.

Finsler himself has much more reasonable things to say about paradoxes
of self-reference; the reader should look at Finsler’s articles in the book and
disregard Ziegler’s treatment.

Finsler states (we believe correctly) that the difficulty with examples like
the one above is that they involve circular definition, and that a circular defi-
nition does not need to be satisfied. It is more usual to assert that a “circular
definition” is not a definition at all, but given that Finsler allows such things to
be called definitions, what he has to say about them is unexceptionable. A trio
of examples taken from his paper “Are there contradictions in mathematics”
(presented in this volume) should make this clear:

x = a− b,

where a and b are previously given numbers not depending on x, defines a
number x.

x = a− x

is “circular”, and is not a definition in the usual sense, but it is nonetheless
successful in specifying a unique value a

2 for x. In the final example

x = a+ x,

in which a is understood to be nonzero, we see a “circular definition” which is
not satisfiable. Notice that Ziegler’s treatment would entirely destroy the sense
of either of the last two equations.

To see how Finsler approaches an example more similar to Ziegler’s, of a
circularly defined proposition, consider his treatment of the Liar in the paper
“Are there undecidable propositions?” His conclusion is that the Liar sentence
“This sentence is false”, which in Ziegler’s notation might be presented as

4



s: The sentence s is false

is actually non-paradoxically false. For he notes that s has not only an
explicit content “sentence s is false” but an implicit content “sentence s is
true” deriving from the fact that it is sentence s. The assertion “sentence s
is false” is true, if it is written anywhere but next to the label s, where it
has an implicit conjunct “s is true” which renders it contradictory. We are
actually paraphrasing his argument, because we are using the labelling idiom
from Ziegler, but we believe, and the reader may check to his own satisfaction,
that we are much closer to Finsler’s own assertion.

Another example, taken from the paper “Are there contradictions in math-
ematics”, is that of a blackboard on which are written the symbols 1, 2, 3, and
“the smallest natural number not represented on this blackboard”. If we call
the blackboard B, Finsler’s conclusion is that the smallest natural number not
represented on blackboard B is 4, but that the occurrence of the string “the
smallest natural number not represented on this blackboard” actually written
on B does not represent any natural number; the naive argument that it rep-
resents 4 (which leads to a paradox!) disregards the implicit content “I am a
number written on B” of the string, which contradicts the explicit content and
causes the string to fail to refer.

The idea of implicit content which Finsler uses here seems to be supplemen-
tary to his argument that circular definitions are not necessarily satisfied; the
notion that circular definitions are not necessarily satisfied can be used by itself
to conclude that the labels a and b in Ziegler’s example do not necessarily refer
to any sentences, and the same for the Liar sentence and the purported number
on Finsler’s blackboard. The occurrence of paradoxes if they are understood as
referring can be used to draw the stronger conclusion that they actually do not
refer. Notice that our conclusion with regard to the Liar differs from Finsler’s:
we would prefer to regard the Liar sentence as not being a sentence rather than
as being false.

Now we consider Finsler’s application of these ideas to the paradoxes of set
theory. He asserts that the Russell paradox of “the set of all sets which are not
elements of themselves” is in fact a circular definition. The reason for this is
that Cantor’s original definition of the notion of a set is understood by Finsler
to be a circular definition. He says that there would be no such problem with
Cantor’s definition if it spoke of collections of e.g., concrete material things,
which are themselves understood without reference to the notion of “set”, but
as soon as we allow sets themselves and the relation of membership to enter into
the definitions of further sets, we are in the realm of circular definition.

We clarify this point by considering two examples. We consider a set A,
the set of all stars in the Milky Way Galaxy which are brighter than our Sun.
The stars in our Galaxy are objects which we understand without any reference
to sets. We may consider sets of stars (collections of stars considered as one
thing) without fear of circularity. For any star s, we have s ∈ A (s is an element
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of A) defined as “s is a star in the Milky Way brighter than the Sun”; note
that the definition of s ∈ A eliminates all reference to set theoretical concepts.
Now consider a set R, defined as “the set of all sets which are not elements of
themselves”: for any set x, x ∈ R is defined as “x is not an element of x”, or,
more briefly, x ̸∈ x. Notice that the set theoretical relation ∈ is not eliminated
here; membership in the set R is defined in terms of further information about
membership in sets. Now observe that the sentence R ∈ R is defined as R ̸∈ R,
a contradiction!

Finsler does not believe that the solution to the paradoxes is to be found in
an attempt to eliminate the circular definitions; he thinks, and mathematical
experience reveals as well, that the “circularity” here (the dependence of some
assertions about membership in sets on further assertions about membership
in sets) is essential . For example, the set N of natural numbers is defined as
the intersection of all sets which contain 0 and are closed under the successor
operation (in the usual set theory ZFC , 0 is defined as the empty set and the
successor operation applied to a general set x is x ∪ {x}). The assertion that
a given object n is a natural number is expanded via the definition of N into
the assertion that n belongs to each of a very large class of further sets (and,
even worse, this class includes N itself!) The viewpoint adopted in modern set
theory is that comprehension axioms which assert the existence of sets defined
by properties of their elements are not definitions at all; Finsler’s view was that
they are definitions, but, since they are circular, only some of them will succeed;
this may ultimately be no more than a difference in terminology.

We have now summarized Finsler’s view of the nature of the paradoxes of
self-reference. Equally worthy of note is his attitude toward the paradoxes.
He is confident that the paradoxes represent, not some essential deficiency in
human understanding, but an error in reasoning that can be identified and
corrected. He dislikes solutions to the paradoxes along the lines of type theory,
which seem to him only to avoid the contradictions, not to explain them. The
reviewer finds this attitude entirely congenial. His confidence that the paradoxes
represent mistakes which can be corrected rather than fundamental limitations
of reason goes along with his Platonist philosophy of mathematics. We also
think that he correctly identifies the nature of the mistake, in the case of the
paradoxes of set theory, as having to do with the distinction between a class (an
arbitrary collection of objects) and a set (a particular single object which we
have associated with some collection); in fact, the reviewer has independently
articulated an explanation of the paradoxes resting on the same distinction. A
further discussion of this distinction belongs to the “foundational part” of the
review.
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4 Formally Undecidable Propositions

Two papers by Finsler on undecidable propositions are included. One of these
predates Gödel’s first paper on the subject. We briefly describe Finsler’s con-
struction of a sentence which is formally undecidable. We are given a fixed lan-
guage L consisting of finitely (or countably) many symbols. A fixed alphabetical
order on these symbols is also given. A fixed dictionary D giving meanings for
finite combinations of the symbols taken from L is also given. An object will
be called “finitely definable” if there is a finite collection of symbols from L
with which it is associated in D. Finsler now reasons about binary sequences
(countable sequences of 0’s and 1’s); he points out that diagonalization over the
finitely definable binary sequences gives a binary sequence which can have no
definition in D.

Finsler defines a formal proof as a finite combination of symbols of L whose
translation via D is a correct proof. We consider all formal proofs for the fact
that the number 0 occurs infinitely often in a given binary sequence or for the
fact that it does not occur infinitely often. We list these proofs lexicographically.
Each such proof determines a binary sequence (the one in which it proves that
there are infinitely many 0’s); we form the sequence whose nth term is different
from the nth term of the binary sequence associated with the nth proof for each
n. Call this sequence s. We now consider the statement “the number 0 does not
occur infinitely often in s” (or its negation!) This sentence cannot be decided by
any formal proof (by construction). It is, though, clearly the case that 0 occurs
infinitely many times in the sequence s (there are, for example, infinitely many
proofs that the sequence consistning entirely of 1’s does not contain infinitely
many 0’s), so the statement we have given is false, though formally undecidable
– and we have given a “proof” that it is false!

Finsler has not anticipated Gödel here; the contribution that Gödel made
was to provide a completely formal definition of the notion of a proof, and to see
what really could be done formally with this notion. We can formally define the
predicate of strings “is a proof of a sentence of the form “b is a binary sequence
and there are infinitely many n such that b(n) = 0” or of the negation of such
a sentence”. Given this, we can try formally defining the notion “if the nth
string satisfying the predicate above has b(n) = 0, where b is the sequence to
which the nth proof refers, then 1 else 0”. This would be Finsler’s s. But this
definition does not succeed, because it requires a truth predicate: we need to be
able to determine whether the sentence b(n) = 0 holds. Tarski’s theorem tells
us that it is not possible to define the truth predicate of a language inside that
language. Finsler has not achieved what Gödel achieved, because the sequence
s cannot actually be defined in his language, and so his “formally undecidable
sentence” is not a sentence expressible in his language at all.

We outline a correct development of a formally undecidable sentence along
similar lines. Define Pn as the nth proof deciding a sentence “b is a binary
sequence and there are infinitely many n such that b(n) = 0”. Define bn as the
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name of the sequence referred to in Pn. Define S as the sequence whose nth
term is 1 if we can prove that bn(n) = 0 and 0 otherwise. Certainly S is a binary
sequence (this can be proven). Further, we can prove that there are infinitely
many n such that S(n) = 0; consider n such that Pn proves that the constant
sequence 1 does not have infinitely many 0’s: there are infinitely many such
n, in each case we can prove that bn(n) = 1, so S(n) = 0. This proof can be
carried out (details omitted). This proof Pm has bm = S. Now consider S(m):
this is 1 if we can prove that bm(m) = 0 and 0 otherwise; but bm = S! We can
see that the sentence S(m) = 0 is formally undecidable; S(m) = 0 exactly if we
cannot prove S(m) = 0! We can also see that S(m) = 0 is true; if it were false,
that is, if S(m) = 1, we would be able to prove S(m) = 0, which is absurd. But
S(m) = 0 is not the analogue to Finsler’s sentence: the analogue to Finsler’s
sentence is “S(n) = 0 does not hold for infinitely many n”, which is both false
and provably false.

The editors of the book are clearly aware that the distinction between
Finsler’s and Gödel’s approach is that Gödel has expended more effort on the
“arithmetization of syntax”. They do not appreciate the fact that Finsler’s ap-
proach, though more cursory in the area of formal syntax, does require a correct
understanding of what can be referred to in the dictionary D. Finsler is wrong
when he asserts (p. 54) that the formal proof he gives there can be expressed
in words taken from D; the truth predicate for his language is required in a full
definition of his “anti-diagonal sequence”, and this predicate cannot be defined
in D. It is necessary, even from Finsler’s more philosophical standpoint, to con-
cern oneself with what one really can express in one’s language and what one
cannot. A modern editorial treatment should have included a formal analysis
of what Finsler actually did prove.

5 Finsler set theory

5.1 Naive set theory; paradoxes; sets and classes

We now turn to Finsler’s development of the foundations of mathematics. We
review his development at the beginning of the paper “On the foundations of set
theory, part 1”. He begins by remarking that the assumption that arbitrarily
specified things can always be combined into a set is the foundation of naive set
theory, and that it inevitably leads to contradiction. He gives the definition of
the Russell class as an example of why the naive assumption is false.

He gives two reasons why the naive approach is in error. The first is the
same consideration as above: the assumption that we can collect arbitrary ob-
jects together is safe as long as it is made in a “circle-free” context, that is, as
long as we do not admit (or at least somehow restrict) the formation of col-
lections whose elements are collections in their turn. Definitions of collections
like the universe, which must contain themselves, and of other collections whose
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definitions depend in more complicated ways on their own presence, are “cir-
cular definitions” which can sometimes be satisfied and sometimes cannot be
satisfied.

The second reason he gives is that the naive approach fails to distinguish be-
tween “sets” and “classes”. In the definition of a set, there are two components:
the specification of a collection of objects and the association of a unique single
object with that collection. What Finsler suggests (quite in line with modern
thinking) is that it is always admissable to discuss a collection of objects (a
“class”) of objects of our universe of discourse defined in whatever manner (as
long as it is defined precisely) but that it is a further step to assert that there
is a unique object in our universe of discourse (a “set”) which we can iden-
tify with this collection, and which can itself participate in further collections.
Finsler says “. . .sets are things which correspond to collections, in so far as this
is consistent. It is in general better not to refer to collections as ‘things’ ”. We
can then say that the error of the naive approach is that it confuses class and
set: we can define a collection of sets (or other objects) freely (this much of the
naive approach is sound) but we cannot then freely assume that the collection
(a class) is associated with an object in our universe of discourse (a set). As in
Russell’s paradox, we can define a collection of sets in such a way as to frustrate
the possibility of this collection being identified with any of the sets we have
available.

Finsler suggests (again in line with modern thinking) that we should consider
only “pure sets”, those whose elements, elements of elements, etc. include only
sets. He observes (in line with the discussion of the previous paragraph) that
we can freely construct classes or “systems” of sets, but that we cannot assume
without restriction that these will be sets in their turn. Systems are not really
objects of our universe of discourse, so we do not investigate the possibility of
forming systems of systems, or higher iterations.

5.2 Finsler’s axioms

We now state Finsler’s axioms. We must at this point note Finsler’s preference
for the converse of the usual membership relation: he writes xβy where we
would usually write y ∈ x, and β is primitive for him.

“We consider a system of things, which we call sets, and a relation, which we
symbolize by β. The exact and complete description is achieved by means
of the following axioms.

I. Axiom of Relation: For arbitrary sets M and N it is always uniquely de-
termined whether M possesses the relation β to N or not.

II. Axiom of Identity: Isomorphic sets are identical.

III. Axiom of Completeness: The sets form a system of things which, by
strict adherence to the axioms I and II, is no longer capable of extension.
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That is, it is not possible to adjoin further things in such a way that the
axioms I and II are satisfied.”

Finsler’s axiom I asserts that sets are well-defined collections: everything is
either in a given set or not in it.

Finsler’s axiom II (which appears in various forms) needs explanation. To
understand its place in his theory, it is sufficient to understand it as saying that
the identity of a set is determined by the isomorphism type of the relation β
restricted to the transitive closure of the set under the relation. One of the
consequences of axiom II is extensionality: sets with the same elements are the
same. But it is stronger than that: it is easy to see, for example, that any two
sets which are their own sole elements will have isomorphic transitive closures
and so will be the same. Axiom II is an “anti-foundation axiom” in the sense
of Aczel. The precise form of isomorphism needed is a subject for technical
adjustment, and Finsler did have occasion to change it.

The reviewer (and many earlier workers) have serious difficulties with axiom
III. We have struggled to understand what is meant by this axiom and how
Finsler could draw his stated conclusions from it, and we have been unable to
come up with a coherent explanation.

Finsler claims that the following are consequences of axiom III:

Proposition 6: For any well-defined class of sets, there exists a set which con-
tains each member of the class, if and only if the assumption that such a
set exists does not contradict axiom I.

Finsler asserts that proposition 6 is a consequence of axiom III but not
equivalent to it; he points out that a set which is its own sole element is
not provided by proposition 6 alone.

Proposition 7: An arbitrarily defined set M exists. . .if the assumption that
such a set M exists does not contradict the first two axioms.

Finsler asserts that proposition 7 is equivalent to axiom III.

An objection to Finsler’s theory expressed by Specker is that proposition 7
can clearly be seen to be false if “arbitrarily defined” really means what it says.
It is possible to have the universe, the set of all x such that x = x, in a model
of Finsler’s axioms I and II (consider a system considering only of a set and
its own sole element). In fact, Finsler claims that the existence of the universe
follows from his axioms. It is also possible to have the set of all x such that x
is an element of some set y and x is not an element of x: consider the system
of all sets of hereditarily finite sets–the set of all hereditarily finite sets is the
collection of all elements which are not elements of themselves in this system.
No model of axioms I and II can contain both of these sets, so proposition
7, naively understood, cannot be true in any system. Finsler and the editors
of this volume articulate objections to Specker’s counterexample, but I do not
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understand the objections. They can only be understood if there is some kind
of restriction to be placed on acceptable definitions of sets M which has not
been made clear.

We must observe in this context that the example the editors give on p. 97,
the set W = {x | x = 0 and x = y for every set y} does not have the properties
they ascribe to it (they claim that it is paradoxical). W is the empty set, pure
and simple (if it exists); there can be an x with the properties ascribed to an
element of W only if 0 is the only set (we assume that the authors follow the
usual convention that 0 is the empty set), in which case W could not exist, but
nothing precludes W existing, being empty, and there being other sets than the
empty set (which we think is the actual situation). Note that the definition of
W clearly succeeds in defining a set in Zermelo set theory, since it is a subset
of the natural numbers defined by a first-order formula!

5.3 Model theory of Finsler’s axioms

Finsler seems to believe (reading the preamble to his axioms) that they are
categorical. They are not. We state some definitions of our own:

Definition: A Finsler premodel is a (class) relation R the union of whose do-
main and range is a class X with the property that for all x and y in X, if
the restriction of R to the transitive closure of x under R and the restric-
tion of R to the transitive closure of y under R are isomorphic relations
(in a suitable sense whose details do not matter here) then x = y.

A Finsler premodel is a model of axioms I and II.

Theorem (Baer): If the union X of the domain and range of the defining
relation R of a Finsler premodel is not the universal class, then the Finsler
premodel can be properly extended.

Proof of Baer’s Theorem: Choose an object y not an element of X and ex-
tend R to a relation R′ by stipulating that yR′x holds precisely if xRx
does not hold, for each x in X. If the restriction of R′ to the transitive
closure of y were isomorphic to the restriction of R to any x in X, that el-
ement x would be the Russell class in the original Finsler premodel, which
is impossible.

Finsler (and the editors) object to Baer’s assumption that he can introduce
a new object. This is fine; Baer’s theorem is understood by us as well as by
them to require that a maximal Finsler premodel must have the union of the
domain and range of its membership relation be the universal class. It is quite
easy to believe that there are Finsler premodels in which the entire universe
participates; but these fail to be extendible only in the quite trivial sense that
there is no new object which can be adjoined to them.
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Theorem (ours): Given a maximal Finsler premodel in which the universal
set does exist, it is possible to construct a maximal Finsler premodel in
which the universe does not exist.

Proof: Take the object v such that vRx holds for all x, and modify the defini-
tion of R to R′: “xR′y iff either x ̸= v and xRy or x = v and R restricted
to the transitive closure of y with respect to R is well-founded”. This
amounts to replacing the extension of the erstwhile universal set with the
extension of the erstwhile class of well-founded sets (which cannot be a
set). It is straightforward to check that this is still a maximal Finsler
premodel but no longer has a universal set.

The last theorem is sufficient to establish that Propositions 6 and 7 do not
follow from axioms I-III. This establishes that Finsler’s treatment of set theory
is basically incoherent.

Having given our own development of the model theory of Finsler’s axioms
I-III, we turn to Finsler’s own.

Finlser proposes to construct a model of his theory in the following way:
given any collection (however large) of models of axioms I-II, we can take their
union, identifying those elements of distinct models which have isomorphic tran-
sitive closures under the local membership relation. He proposes to construct
a maximal model of axioms I-III by carrying this out for all models of axioms
I-II. An objection which he notes to this is that he is not restricting his models
of axioms I-II to be sets, so he is considering the union of a system of proper
classes! I will allow him this construction for the sake of argument, however.
The punchline is that this construction can “almost” be carried out in stan-
dard set theory with proper classes (as, for example, by Aczel), and it gives
what we would call a maximal Finsler premodel with rather nice properties,
but without a universal set (and so not satisfying his propositions 6 or 7). The
object produced by this construction is an extension of the model of ZFC- with
Finsler’s anti-foundation axiom that Aczel constructs; it is an extension because
the class of relations that are used is larger. The reason I say “almost” above
is that there is a technical problem: the construction of this model appears to
require superclasses – it will be larger than the original model of the theory of
sets and classes one started with.

5.4 Finsler’s mistake

We discuss the error in reasoning behind Finsler’s axiom III. Finsler states that
the criterion for mathematical existence is consistency, which is a reasonable
criterion for a Platonist. On p. 169: “consistent things can always be taken to
exist; in pure mathematics, existence means nothing more than freedom from
contradiction”. We agree with this criterion, on the whole; we agree that every
structure that we can describe consistently is a legitimate object of mathematical
study and must be taken to exist from a Platonist standpoint. But we do not
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agree that it follows from this that every consistently satisfiable set definition
can be satisfied at once (Finsler’s axiom III). Moreover, we believe that we can
identify the mistake. The set of all sets is a satisfiable object; we can present a
model with a relation β1 of converse membership in which this object is found.
The set of all elements which are not elements of themselves is also a satisfiable
object; we can present a model with a relation β2 of converse membership in
which this object is found. The illicit further step which Finsler takes is to
think that we can identify the membership relations on these two structures.
The reason that we cannot identify them is that each of these set definitions
places restrictions on what other sets there can be in the model which includes
it. Each of these definitions has consequences for the kinds of sets there must
be which preclude the satisfaction of the other definition. Each “set” must be
possible to discover in the Platonist universe, but they will not be found in the
same set theory. Another point against the intelligibility of axiom III is that we
can at least entertain doubts that the totality of all consistent definitions is a
consistent totality.

A corrective to the reasoning behind axiom III would be to say that all those
sets can be taken to exist simultaneously whose definitions do not depend on
the question of what sets exist in general; it is reasonable to suppose that such
definitions would be compatible with one another. This is a vague idea, but it
is made much more precise in the motivation for the set theory of Ackermann
which I will quote later. In Ackermann’s theory, there are sets and classes–a
class of sets is defined by any condition, and a class all of whose elements are
sets is itself a set if it can be defined by a condition which does not depend on the
notion of sethood . Curiously, the set theory of Ackermann can be understood
as an implementation of Finsler’s notion of “circle-free” sets, our next topic!

5.5 Circle-free sets and the set theory of Ackermann

We now discuss Finsler’s concept of “circle-free” sets. Certainly a set which
is included in its own transitive closure is “circular”; all circle-free sets must
be well-founded. Finsler assumes further that any set whose definition leads to
paradox is “circular” (in the sense of being “circularly defined”). The set of all
well-founded sets, for example, is a paradoxical object; since it is a collection of
sets none of which are contained in their own transitive closures, it should not
appear in its own transitive closure – but then it should belong to itself, and so
to its own transitive closure!

Finsler is led to the conclusion that the correctly defined class of circle-free
sets is itself a circular set (in the sense of “circularly defined”).

Definition: A set M which is said to be circle-free if M together with every set
in the transitive closure of M is independent of the concept “circle-free”.

This definition is somewhat paraphrased from the original paper.
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Sets not in their own transitive closures which are not circle-free are said to
be “circular”.

Finsler asserts the following propositions about circle-free sets:

Proposition 9: If M is circle-free then every set in the transitive closure of M
is circle-free and distinct from M .

Proposition 10: Every well-defined class of circle-free sets forms a set. This
can be either cirlce-free or circular, but it is disinct from every set which
is contained in it.

Proposition 12: A well-defined class of circle-free sets forms a circle-free set
iff it is independent of the concept “circle-free”, i.e., iff it can be so defined
that the definition always yields the same class regardless of which sets
are classified as being circle-free.

Proposition 16: Each well-defined class of elements of a circle-free set M
forms a circle-free subsetof M .

The editors seem to believe that the axiom that every subclass of a circle-
free set is a set is not found in Finsler (p. 101)! It is found, as we indicate
here, and essential use of it is made (as in Ackermann’s later work) to
prove the existence of power sets.

It should be noted that Finsler merely asserts the basic propositions about
circle-free sets; he does not attempt to deduce them from axioms I-III.

Compare this to a subtheory of the set theory of Ackermann, which we
present as a theory with sets and classes. We warn the reader that “set” does not
coincide with “element” in Ackermann’s system; it is a theorem of Ackermann’s
system that there are non-sets which are elements of classes.

1. Any condition whatever on sets defines a class (not necessarily a set). Note
that we do not require that all elements of classes are sets.

3. Any element of a set is a set.

4. Any subclass of a set is a set.

5. Any class all of whose elements are sets is a set if the class can be defined
without reference to the property of being a set or to any non-set param-
eter.

All of the axioms we give are found in Finsler, if we interpret the class of
“sets” as Finsler’s class of circle-free sets. It is known that Ackermann’s theory is
essentially equivalent to Zermelo-Frankel set theory (with all sets of ZFC being
understood to be sets in Ackermann’s sense, and classes of sets being understood
to be proper classes). The mathematically interesting work in Finsler’s paper
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is all derived from these axioms (not from Axioms I-III), and in essentially the
same way that Ackermann later derived the same propositions from his axioms.
The axiom of foundation is sometimes added to Ackermann’s axioms (as for
instance by Levy), and certainly holds for circle-free sets. The axiom of infinity
is provable from these axioms; an analogue of Ackermann’s proof was given
earlier by Finsler (in the paper “The existence of the natural numbers and the
continuum”).

Just for fun, we prove that there must be an ordinal in Ackermann’s system
which contains a non-set ordinal as an element. The class of set ordinals exists
by Ackermann’s axioms; it is itself an ordinal, which we will call Ω, and cannot
be a set. If all elements of ordinals were sets, then we could use the predicate
“is an element of some ordinal”, which does not mention sethood, to define Ω,
and, since all of its elements are sets, it would then be a set by axiom 5, which
is absurd. Thus, there must be an ordinal which has non-set elements, which
implies in particular that Ω + 1 must exist.

Finsler asserts that the theory of circle-free sets is adequate for applications
(e.g., on pp. 49, 150). This is fortunate; for this means that Finsler’s work in
applied areas can be understood as work in a correct theory. One can then leave
aside his claims that the universal set, the set of all singletons of ordinals, or a
largest ordinal must exist; these assertions are based on an unsound intuition,
whereas his proof of the axiom of infinity and the existence of the continuum,
for example, can be regarded as being based on an intuition as sound as that
on which the usual set theory is based, given what we now know about the set
theory of Ackermann.

It is worth describing the motivation for axiom 5 of Ackermann’s system as
reported by Azriel Levy: “Let us consider the sets to be the “real” objects of set
theory. Not all the sets are given at once when one starts to handle set theory–
the sets are to be thought of as obtained in some constructive process. Thus
at no moment during this process can one consider the predicate [of sethood]
as a “well-defined”predicate, since the process of constructing the sets still goes
on and it is not yet determined whether a given class X will eventually be
constructed as a set or not. As a consequence, a condition. . . can be regarded as
“well-defined” only if it avoids using the predicate [of sethood]. Also, parameters
are allowed in such a definition only to the extent that they stand for “well-
defined” objects, i.e. sets.” Finsler would not agree with the idea that the sets
are “constructed” in quite the sense that Ackermann thinks they are, but there
seems to be some relation between Ackermann’s idea that the sethood predicate
is not “well-defined” and Finsler’s assertion that it is “circular”. It is interesting
to see how quite different intuitions on the surface can lead to an axiomatization
of basically the same form.
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6 Conclusion

In conclusion, I find Finsler’s papers extremely interesting. Finsler’s intuition
is clearly profound, though the notion behind Axiom III does not work out. A
presentation of Finsler’s papers is a contribution at least to historical scholarship
about set theory. The editorial apparatus with which the papers are encumbered
has serious deficiencies. The papers could have used the services of editors
who understood the relevant mathematics better themselves. This is painfully
evident in the treatment of Finsler’s axioms, which cannot be defended as the
editors have attempted here, and it is unfortunate that the editors were not able
to bring out the actual nature of Finsler’s derivation of a “formally undecidable
proposition”.
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cularity , Birkäuser-Verlag, Basel, 1996.
Holmes, M. Randall, “Review of “Finsler Set Theory: Platonism and Cir-

cularity”, David Booth and Renatus Ziegler, eds.”, unpublished, available at
http://math.idbsu.edu/faculty/holmes.html

Levy, Azriel, “The role of classes in set theory”, in Müller, Gert, ed., Sets and
Classes, North Holland, Amsterdam, 1976. See pp. 207-212 on Ackermann’s
theory.

16


