
Noname manuscript No.
(will be inserted by the editor)

Representation of Functions and Total Antisymmetric
Relations in Monadic Third Order Logic

M. Randall Holmes

M. Randall Holmes
Department of Mathematics, Boise State University, 1910 University Dr, Boise ID USA
83725 Tel: 1-208-426-3011 E-mail: rholmes@boisestate.edu



2 M. Randall Holmes

1 Higher order logics TT and TT3

We start by formalizing higher order logic in order to
carefully formulate the question we are addressing.

The theory we present initially is the simply typed
theory of sets, equivalently higher order monadic pred-
icate logic of order ω, which we call TT (for “theory
of types”). This theory is often confused with the type
theory of Russell and Whitehead’s [14], but is far sim-
pler: before TT could be formulated, it had to be noted
that n-ary relations could be implemented as sets via
a representation of ordered pair (first done by Wiener
in [16]) and the ramifications of the type theory of [14],
motivated by predicativist scruples, had to be stripped
out, as by Ramsey ([12]). The history of this theory
is outlined in [15]: it seems to actually first appear in
print about 1930, long after [14]. We are specifically
concerned with an initial segment TT3 of this theory.
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TT is a first-order theory with sorts indexed by the
natural numbers. Its primitive predicates are equality
and membership. Atomic sentences x = y are well-
formed iff the sorts of the variables x and y are the
same. Atomic sentences x ∈ y are well-formed iff the
sort of y is the successor of the sort of x. The axiom
schemes of TT are extensionality:

(∀xy : (∀z : z ∈ x↔ z ∈ y)→ x = y),

for each assignment of sorts to x, y, z which yields a
well-formed sentence, and comprehension:

(∃A : (∀x : x ∈ A↔ φ)),

for each formula φ in which A does not occur free, and
for each assignment of sorts to variables which makes
sense. The witness to the instance of comprehension
associated with a formula φ, which is unique by exten-
sionality, is denoted by {x : φ}, a term whose sort is
the successor of the sort of x.
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For each natural number n, the theory TTn is the
subtheory of TT using only the n sorts indexed by m
with 0 ≤ m < n. TTn is a formalization of nth order
monadic predicate logic (the logic of unary predicates,
that is, properties). Sort 0 is inhabited by individuals;
sort m + 1 < n is inhabited by sets of sort m objects
representing properties of sort m objects: the axiom of
extensionality gives us an identity condition for proper-
ties which is defensible though not uncontroversial, and
the axiom of comprehension ensures that all properties
of a parameter x of sort m which we can represent by a
formula of first order logic φ(x) are in fact represented
by sort m+ 1 objects.
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We are interested here in the representation of bi-
nary relations and functions in fragments of TT. The
existence of the standard Kuratowski pair (for which
the index reference is [7]) shows that TT4 contains a
full implementation of second order logic of binary re-
lations on sort 0: a relation represented by a formula
φ(x, y) with sort 0 parameters x, y is represented by
{{{x}, {x, y}} : φ(x, y)}, an object of sort 3.
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It is useful to note that there is an internal notion
of finite set in TT3. A sort 2 collection F is said to be
inductive iff ∅1 ∈ A and for each A ∈ F and x 6∈ A,
A ∪ {x} ∈ F . A finite set (of sort 1) is a set belonging
to every inductive set (of sort 2).
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The precise question that concerns us here is the rep-
resentability of binary relations and functions in TT3,
where the ordered pair of Kuratowski is not available.

It is worth noting that TT3, that is, monadic third
order logic, is essentially the logical framework used by
David Lewis in his Parts of Classes ([8]), so this investi-
gation is relevant to the capabilities of that system.1 In
particular, it is applicable to an inquiry into the extent
to which that framework can express quantification over
relations. More generally, our investigation fits into a
program of justifying logically and mathematically use-
ful concepts with minimal ontological assumptions. It
is worth noting in particular that it is known that in
the presence of Lewis’s framework, various systems of
set theory are equivalent to assertions about the cardi-
nality of the universe, which might be thought to give
interest to the fact that we investigate definitions of
cardinality in monadic third order logic below.

1 Lewis’s framework is articulated in terms of plural quantification and mereology in a
way which might make it hard to recognize this. One would interpret sort 2 as inhabited
by (singularized) referents of plurally quantified variables, sort 1 as inhabited by fusions of
atoms and sort 0 as inhabited by atoms. There are some quibbles about the empty set in
either of the sorts of positive index, which admit straightforward resolutions.
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2 Representation of binary relations in TT3

To begin with, a fact known from the beginnings of
set theory is that reflexive, transitive relations (and
so in particular equivalence relations and partial or-
ders) are representable in TT3. The basic idea is that
an order is representable by the collection of its seg-
ments. If xR y represents a formula φ(x, y) with x, y
of sort 0, and this relation is symmetric and transitive
in the obvious sense, then R is represented by the set
[R] = {{y : y Rx} : xRx} of sort 2. The assertion xR y
is equivalent to y ∈

⋃
[R] ∧ (∀z ∈ [R] : y ∈ z → x ∈ z).

This fact allows us to note that the assertion that there
is a linear order on sort 0 can be formulated in TT3. For
any set A, we can define a reflexive transitive relation
RA on

⋃
A: xRA y iff (∀z ∈ A : y ∈ z → x ∈ z). It is

the case that R[RA] is the same relation as RA, though
[RA] will not as a rule be the same set as A. Zermelo
used this technique to represent well-orderings as sets in
his 1908 proof of the Well-Ordering Theorem ([17]): this
was important because at that time it was not known
how to represent ordered pairs as sets.
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Symmetric relations on sort 0 are obviously repre-
sentable in TT3 as sort 2 sets of unordered pairs.

If there is a linear order on sort 0 in a model of TT3

with at least ten individuals (we do not know whether
10 is minimal), then there is a method of defining for
sort 0 objects x, y an ordered pair in sort 1, and so
all binary relations are representable in sort 2, com-
pletely solving the problem of representability of bi-
nary relations and functions in TT3 in this case. Let
≤ be a linear order on the universe, represeented in-
ternally by the set of its segments as indicated above.
Let a, b, c, d, e, f, g, h, i, j be ten distinct sort 0 objects.
Define (x, y) as {x, y}∆{a, b, c, d, e} if x ≤ y and as
{x, y}∆{f, g, h, i, j} otherwise.
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The situation described in the previous paragraph
can be obtained under a weaker hypothesis. If there is a
total antisymmetric relation C(x, y) on sort 0 (a relation
C such that C(x, x) is always true, and if x and y are dis-
tinct, exactly one of C(x, y) and C(y, x) is true; C(x, y)
may be read “x is chosen over y”) and this relation may
be used in instances of comprehension, then a sort 1 or-
dered pair (x, y) may be defined as {x, y}∆{a, b, c, d, e}
if C(x, y) and as {x, y}∆{f, g, h, i, j} otherwise, and all
binary relations on sort 0 may be represented as sort 2
sets of ordered pairs in the usual way as in the previ-
ous paragraph. If we were in TT or even TT5, we could
understand existence of a total antisymmetric relation
as a choice principle, the existence of a choice function
from all pairs.
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We show that total antisymmetric relations can be
represented in TT3 if they satisfy a technical condition
weaker than transitivity.

For each x, let Cx be defined as {y : C(y, x)}. Let C1

be defined as
{Cx : x = x}. Let C2 be defined as {Cx \ {x} : x = x}.

We would like to claim that for each x, we can define
Cx as the unique element A of C1 such that x ∈ A
and A \ {x} belongs to C2. Certainly A = Cx has this
property. Suppose that for some other set B = Cu ∈ C1,
we also have x ∈ B and B \ {x} = Cv \ {v} ∈ C2. By
hypothesis, A 6= B, so x 6= u. Thus u ∈ Cu \ {x} =
Cv \ {v}, so C(u, v) and u 6= v. We have Cu = (Cv \
{v})∪ {x}. If v = x we would then have Cu = Cv = Cx
which we know is false.
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So we have a bad case in which there are u and v
such that

Cu = (Cv \ {v}) ∪ {x}
and x 6∈ Cv.

This motives the following definition.

Definition 1 Let C be a total antisymmetric relation
on sort 0 of a model of TT3 understood from context.
We define Cx as {y : C(y, x)} (as above) for any sort 0
object x, For any sort 0 object x, a pair {u, v} is called
a bad pair (in C) with respect to x if we have u 6= v,
uC v, x 6∈ Cv, and Cu = (Cv\{v})∪{x}. We summarize
some consequences: this gives us ¬xC v, so v C x, xC u,
so ¬uC x. All w not in {u, v, x} satisfy wC u↔ wC v.
A pair {u, v} is simply called a bad pair iff there is an
x such that {u, v} is a bad pair with respect to x.
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We can then rule out this bad case by modifying our
attempt to define Cx: Cx is the unique element A of C1

such that x ∈ A and A \ {x} ∈ C2, and further there
is no B ∈ C1 and v of sort 0 such that x 6∈ B and
(B \{v})∪{x} = A. The additional condition rules out
the alternative possibility that A = Cu where {u, v} is
a bad pair for x.
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With the new definition, the only way that Cx can
fail to be defined is if there is a bad pair {u, v} with
respect to x and x itself is a member of a bad pair
{x, s} with respect to some t. Note that if {u, v} is a
bad pair, u and v have the same C relations to every
object other than u, v, x. Thus if there is a bad pair
{u, v} with respect to x and x itself is a member of a
bad pair {x, s} with respect to some t, we have that
either s is one of u, v or that x and s have the same C
relations to u, v, and the latter is impossible, since this
would mean that s had different C relations to u, v. If
s = u, we know that x ∈ Cu, so it is {x, u} that is
the bad pair, and Cx = Cu \ {u} ∪ {t}. The only thing
that t can be is v, as we know that v ∈ Cx (as x 6∈ Cv)
and v 6∈ Cu. It further follows that Cx \ {x} ∪ {u} =
(Cu \ {u} ∪ {v}) \ {x} ∪ {u} = Cu \ {x} ∪ {v} = Cv, so
{v, x} is also a bad pair. Similar reasoning shows that
if s = v we also have {v, x} and {x, u} bad pairs with
respect to u and v respectively.
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This motivates a definition.

Definition 2 Let C be a total antisymmetric relation
on sort 0 of a model of TT3 given in the context. For
any u, v, x of sort 0, we say that {u, v, x} is a bad triple
(in C) iff {u, v} is a bad pair in C with respect to x and
{v, x} is a bad pair in C with respect to u and {x, u} is
a bad pair in C with respect to v. The discussion above
implies that any two of these conditions imply the third.
Note that we have uC v, v C x and xC u and further
that for any w 6∈ {u, v, x} we must have that wC x,
wC u, wC v all have the same truth value (from which
it follows that distinct bad triples must be disjoint).
We further define the circulation of C as the relation
C◦ such that xC◦ y holds iff either x = y and x is not
an element of any bad triple in C, or x, y are two of the
elements of some bad triple in C and xC y. Note that
the circulation of C is in every case a function (in fact
a bijection), permuting the elements of each bad triple
and fixing all other sort 0 objects.
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Thus we can assert the existence of a particular kind
of total antisymmetric relation (one which has no bad
triples) in the language of TT3 by asserting the exis-
tence of sets D and E such that for each x of sort
0 there is a unique Dx ∈ D such that x ∈ Dx and
Dx \ {x} ∈ E, and no B ∈ D and v satisfy x 6∈ B
and Dx = (B \{v})∪{x}, and satisfying the additional
condition that for each x and y distinct, exactly one of
x ∈ Dy and y ∈ Dx holds: one can then define C(x, y),
a total antisymmetric relation, as x ∈ Dy, and define an
ordered pair of sort 0 objects in sort 1 and so a complete
representation of binary relations on sort 0 in sort 2 as
above. The technical condition on the relation that it
has no bad triples follows from the claimed conditions
on D and E as above; it does not need to appear in
the claimed conditions. That the existence of a total
antisymmetric relation with no bad triples implies the
existence of such sets representing it is shown above.
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3 Representation of a large class of functions in TT3

In the absence of any choice principles, we present a re-
sult about representability of a wide class of functions.
We state to begin with that we will focus on repre-
senting functions taking sort 0 objects to sort 0 objects
which are of universal domain (defined on all of sort 0).
When we do want to represent partial functions with a
given domain, each function f with domain D a proper
subset of sort 0 will be identified with the extension of
f which agrees with f on D and acts as the identity
function on the complement of D.
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Definition 3 We fix a sort 0 variable x and a sort 0
variable y. We call a formula φ functional iff (∀x : (∃y :
φ) ∧ (∀xyz : φ ∧ φ[z/y] → y = z) holds. When φ is
functional, we will usually write φ(u, v) for φ[u/x][v/y],
the result of substituting u for x and v for y in φ, so
the condition already stated can be written

(∀x : (∃y : φ(x, y))∧ (∀xyz : φ(x, y)∧ φ(x, z)→ y = z).

We write fφ(x) for the unique y such that φ(x, y). For
any set A, we let fφdA abbreviate f(x∈A∧φ)∨(x 6∈A∧y=x)
[this is an example of the treatment of partial functions
announced above].
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Definition 4 If φ is a functional formula and A is a
sort 1 set, we say that A is closed under fφ iff (∀x ∈ A :
φ(x, y) → y ∈ A). If x ∈ dom(φ) we define orbitφ(x),
the forward orbit of x in fφ, as the intersection of all sets
which are closed under fφ and contain x as an element.
We define a finite cycle in fφ as a finite set orbitφ(x)
such that for each y ∈ orbitφ(x), orbitφ(x) = orbitφ(y).
We are interested in finite cycles of cardinality greater
than two: by this we simply mean finite cycles which
are not singletons or unordered pairs (we do not pre-
suppose a development of the notion of cardinality by
using this phrase).
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Theorem 1 We work in an arbitrary model of TT3.
There is a uniform way to represent functional formulas
φ by sets [fφ] for each φ for which there is a choice set
Cφ for finite cycles in fφ of cardinality greater than 2.

Proof The set [fφ] which we take as representing the
function fφ is the set of all items of the following kinds:

1. forward orbits in the restriction fφd(V 1\Cφ). (V 1 be-
ing the sort 1 set of all sort 0 objects). It is important
to note that in accordance with our convention about
partial functions, fφd(V 1 \ Cφ) fixes each element of
Cφ. It is also important to note that every forward
orbit in fφ is also a forward orbit of this restriction.

2. singletons of elements of Cφ
3. singletons of elements of fφ“Cφ = {y : (∃x ∈ Cφ :
φ(x, y)))}.
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Given a set F , we indicate how to reverse engineer a
functional formula φ such that F = [fφ] if there is one,
and how to recognize when there is no such formula.

Note first that if F = [fφ], then
⋃
F = V 1.

Notice next that in any function representation F =
[fφ], an element A includes a finite cycle in fφ of cardi-
nality > 2 as a subset if and only if it includes exactly
two singletons belonging to F as subsets. The element
A is a finite cycle in fφ of cardinality > 2 iff it has the
previous property and in addition no proper subset of
A which belongs to F includes two singletons belonging
to F as subsets. Further, if A is a finite cycle in fφ, each
of its proper subsets which belongs to F and is not a
singleton will include the singleton of the element of A
which belongs to Cφ as a subset and no proper subset
of A which belongs to F and is not a singleton will in-
clude the singleton of the element of A which belongs
to fφ“Cφ as a subset.
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This motivates the following

Definition 5 Let F be an arbitary sort 2 set such that⋃
F = V 1. The collection of supercycles of F is defined

as the collection of all elements of F which include ex-
actly two singletons belonging to F as subsets. The col-
lection of cycles of F is defined as the collection of all
supercycles of F which have no proper subsets which
are supercycles of F . We define CF as the collection of
all x such that {x} ∈ F and for some cycle A in F of
cardinality > 2, x ∈ A and every proper subset B ∈ F
of A has x as an element. We define DF as the collec-
tion of all x such that {x} ∈ F and for some cycle A
in F , x ∈ A and {x} is disjoint from each proper sub-
set of A belonging to F other than {x}. We say that
F is C-good if

⋃
F = V 1 and each cycle of F is finite

and contains as elements exactly one element of CF and
exactly one element of DF .
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Further note if F = [fφ], the forward orbits in fφ
are exactly those sets which are either supercycles in
F or not included in any supercycle in F . The forward
orbit of any sort 0 object x is the intersection of all
forward orbits containing x. Further, the forward orbits
in fφd(V 1 \ Cφ) are exactly those elements of F which
are not singletons of elements of DF . This motivates the
following

Definition 6 Let F be any C-good sort 2 set. Define
F ∗ as the set of all elements of F which are either super-
cycles of F or not included in any supercycle of F . For
any sort 0 object x, define OrbitF (x) as the intersection
of all elements of F ∗ which contain x. Define F ∗∗ as the
set of all elements of F which are not singletons of ele-
ments of DF . Define Orbit∗F (x) as the intersection of all
elements of F ∗∗ which contain x. We say that a C-good
set F is orbit-good iff each OrbitF (x) is an element of
F , each Orbit∗F (x) is an element of F , and all elements
of F are either OrbitF (x)’s, Orbit∗F (x)’s, singletons of
elements of CF or singletons of elements of DF .
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Further, note that for any element x of V 1\Cφ, fφ(x)
is the unique y in the forward orbitO of x in fφd(V 1\Cφ)
such that the forward orbit of y in fφd(V 1\Cφ) is either
O \ {x}, or is equal to O which is equal to {x, y} (this
last case does not exclude the possibility that x = y).
For each element x of Cφ, fφ(x) is the element of fφ“Cφ
contained in the same finite cycle in fφ. This motivates
the following

Definition 7 For any orbit-good F and x of sort 0, we
define F [x] as follows:

1. If x belongs to CF , define F [x] as the element of DF

belonging to the same cycle in F .
2. If x does not belong to CF , define F [x] as the unique
y such that either Orbit∗F (y) = Orbit∗F (x) \ {x} or
Orbit∗F (y) = Orbit∗F (x) = {x, y} (which does not
rule out y = x, note).

We say that F is value-good iff F is orbit-good, F [x]
is defined for every x and further for each x the minimal
set O(x) such that x ∈ O(x) and (∀y : y ∈ O(x) →
F [y] ∈ O(x)) satisfies O(x) = OrbitF (x).2

2 An example of a value-good F which would not be orbit-good would be the collection
of final segments of an infinite well-ordering with order type > ω).
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We have now described precisely how to determine
for any F whether it represents a function and what the
extension of the represented function is. The value-good
sets are the sets which represent functions, and for each
value-good F we have F = [fy=F [x]], where of course
y = F [x] abbreviates a very complicated formula.

Notice that under the hypothesis ACfin = “every col-
lection of pairwise disjoint finite sets has a choice set”,
every function is representable in this sense.
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4 Applications: cardinality can be represented in TT3 and NF3;
more about total antisymmetric functions

An immediate application of this partial representation
of functions is a demonstration that the notion of car-
dinality is definable in TT3 (for sets of sort 1). It is
not the case that every bijection is representable in this
way. However, if there is a bijection fφ from a set A
to a set B which is represented by a formula φ(x, y) as
discussed above (extended to act as the identity func-
tion on non-elements of A), there is also a representable
function f ∗ whose restriction to A is a bijection from
A to B and which acts outside A as the identity. The
value f ∗(x) for x ∈ A is defined as x if x belongs to
a finite cycle of cardinality greater than 2 in fφ (which
will be a subset of A ∩B) and otherwise as fφ(x). The
function f ∗ is clearly both representable by a formula
and representable by a set [f ∗] defined as above. An
application of this is the observation that the notion of
cardinality is definable in the fragment NF3 of Quine’s
New Foundations (the set theory described in [11], usu-
ally abbreviated NF) shown to be consistent by Grishin
([4]). This was shown by somewhat different methods
in unpublished work by Henrard (discussed in [9], [3]).
That cardinality is definable in NF3 is not obvious, as
there is no notion of ordered pair definable in this the-
ory. It is elegant that the notion of cardinality that we
are able to define is such that the domain and range of
any bijective functional relation defined by a formula
will be of the same cardinality, even if we cannot rep-
resent the function by a set. Since we have defined the
notion of sets A and B (of sort 1 in TT3) having the
same cardinality, we do have the ability to define the
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cardinal |A| as the (sort 2 in TT3) collection of all sets
B which are of the same cardinality as A.

We regard it as worth noting that considerations about
NF3 are actually very general considerations about third
order logic. We outline the reasons for this. NF can
briefly be described as the one-sorted first order theory
with equality and membership whose axioms are the
axioms of TT with distinctions of sort between vari-
ables dropped (without creating identifications between
variables); NFn has the same relationship to TTn. NF4

was shown in [4] to be the same theory as NF. Any
two externally infinite models of TT2 with the splitting
property (any set which is externally infinite can be
partitioned into two externally infinite sets) which have
the same cardinality are isomorphic by a back-and-forth
construction. Any model of TT3 which is externally in-
finite3 is readily shown to be elementarily equivalent to
a countable model of TT3 which is externally infinite
and has the splitting property. A countable model of
TT3 which is externally infinite and has the splitting
property possesses an isomorphism from the substruc-
ture consising of sorts 0 and 1 to the substructure con-
sisting of sorts 1 and 2, by the observation about TT2

above, and so can be made into a model of NF3 by us-
ing the isomorphism to identify the sorts, by results of
Specker in [13]. The net effect of this is that the strat-
ified theorems of NF3 (the ones which can be read as
theorems of TT3 by assigning sorts to variables) are in
fact the theorems which hold in all externally infinite
models of TT3 (including externally infinite models of

3 By “externally infinite” we simply mean that the model is infinite in terms of the
metatheory. We emphasize this because an externally infinite model of TT3 may satisfy the
negation of the Axiom of Infinity: it may believe internally that all sets are finite.
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TT3 in which the axiom of infinity is false): NF3 is in
effect a very general system of third order logic. The
original reference for this fact is [1]. NF4, on the other
hand can be viewed as a very odd system of fourth order
logic, and NF can be viewed as a similarly odd system
of higher order logic of order ω. It is well-known that
NF is strange and presents vexed problems: the point of
this paragraph is that NF3, though perhaps unfamiliar
to the reader, is not particularly strange and in fact is
rather generic. The results of this paper show something
about the mathematical competence of this system. It
is worth mentioning the result of Pabion ([10]) that NF3

with the Axiom of Infinity is equivalent in strength to
second order arithmetic.

Another application of the partial representation of
functions is a stronger representation of total antisym-
metric relations: let C be a total antisymmetric relation
such that there is a choice set from its bad triples: rep-
resent C by three sets, C1 defined as above, C2 defined
as above, and C3 the set representing the circulation C◦

of C (defined above) as a function in the way just de-
scribed, using the given choice set to handle its nontriv-
ial cycles, the bad triples of C. Cx can then be defined
as in the partial represention of total antisymmetric re-
lations given above, when x does not participate in a
bad triple: when x belongs to a bad triple, C3 provides
the needed additional information.

The condition asserting the existence of such a rep-
resentation of a total antisymmetric relation follows:
there are sets D, E, and F such that for each x we
are given either a unique Dx ∈ D such that x ∈ Dx and
Dx \ {x} ∈ E, and no B ∈ D and v satisfy x 6∈ B and
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Dx = (B \ {v}) ∪ {x}, or a unique set D−x and pair of
sort 0 objects u, v distinct from x and from each other
such that each union of D−x with a two element subset
of {x, u, v} belongs to D and each union of D−x with
a one-element subset of {x, u, v} belongs to E. We re-
fer to {x, u, v} as a bad triple in the latter case. The
additional conditions are asserted to hold that for any
distinct x, y, exactly one of x ∈ Dy and y ∈ Dx holds
(if Dx and Dy are defined): if Dx and/or Dy are not
defined, the same statement holds with D−x and/or D−y
in place of Dx and/or Dy, respectively, if it is not the
case that both D−x and D−y are both defined and are the
same set (that is, if x and y do not belong to the same
bad triple). F is the set representation of a bijection
whose domain is the union of the bad triples and which
has each bad triple as a cycle. The relation C(x, y) is
defined as “x ∈ Dy ∨ x ∈ D−y ∨ y = F [x] ∨ y = x”. Of
course, if this condition holds we can define a complete
implementation of binary relations.

Note that under the hypothesis AC3 = “every pair-
wise disjoint collection of three-element sets has a choice
set”, any total antisymmetric relation has such a set
implementation, and we can express in the language of
TT3 the assertion that there is a total antisymmetric
relation. We are not saying that AC3 implies that there
is such a relation; we see no reason to believe this to be
true.

5 There is no uniform representation of functions or of total
antisymmetric relations in TT3

We now present the negative result that there is no uni-
form way in which all functions representable by func-
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tional formulas can be represented by sets in TT3, nor
is there any uniform way to represent total antisymmet-
ric relations representable by formulas as sets. First we
state precisely what we mean.

Definition 8 We say that a formal implementation of
functions in TT3 is constituted by two formulas funF
and app satisfying conditions which we describe. funF is
a formula in a language extending the language of TT3

with a new primitive binary function symbol F (x, y) for
a binary relation with parameters of sort 0. The vari-
able f (of a sort we choose not to specify) is the only
variable free in funF : we will usually write it funF (f)
in order to signal this. app is a formula in the language
of TT3 without F in which the sort 0 variables x and
y and the same variable f of sort not stated are the
only free variables: we will usually write app(f, x, y) to
signal this. In the extension of TT3 with the addition of
axioms that F (x, y) is a functional formula and that all
instances of the comprehension scheme for TT3 involv-
ing the new primitive relation F hold, with no other
additional axioms, we require that (∃f : funF (f)) is a
theorem and that funF (f) → (app(f, x, y) ↔ F (x, y))
is a theorem.4

Definition 9 Similarly, we say that a formal imple-
mentation of total antisymmetric relations in TT3 is
constituted by two formulas tarelR and tarelapp sat-
isfying conditions which we describe. tarelR is a for-
mula in a language extending the language of TT3 with

4 The single variable f may be replaced throughout by a finite vector f1, . . . , fn, if the
representation uses more than one object: for example, the representation of functions we
would obtain if we had a total antisymmetric relation would consist of the usual collection
of ordered pairs representing the function, but also the three sets coding the total antisym-
metric relation and the ten sort 0 objects used in the definition of the ordered pair.
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a new primitive binary function symbol R(x, y) for a
binary relation with parameters of sort 0. The variable
r (of a sort we choose not to specify) is the only variable
free in tarelR: we will usually write it tarelR(r) in or-
der to signal this. tarelapp is a formula in the language
of TT3 without R in which the sort 0 variables x and y
and the same variable r of sort not stated are the only
free variables: we will usually write tarelapp(r, x, y)
to signal this. In the extension of TT3 with the ad-
dition of axioms that R(x, y) is a total antisymmet-
ric relation and that all instances of the comprehension
scheme for TT3 involving the new primitive relation R
hold, with no other additional axioms, we require that
(∃r : tarelR(r)) is a theorem and that tarelR(r) →
(tarelapp(r, x, y)↔ R(x, y)) is a theorem.5

We leave it to the reader to evaluate our assertion
that this formalizes exactly what we mean by saying
that there is a uniform implementation of functions or
of total antisymmetric relations as sets in TT3. The
intended sense of funF (f) is “f is the set implementa-
tion of the functional binary relation F”; the intended
sense of app(f, x, y) is “y is the result of applying the
function represented by the set f to x”. The intended
sense of tarelR(r) is “r is the set implementation of
the total antisymmetric relation R”; the intended sense
of tarelapp(r, x, y) is “xR y, where R is the total an-
tisymmetric relation represented by r”.

We use a Fraenkel-Mostowski permutation model to
demonstrate our negative result (a textbook reference
for this method is [6]). At this point we stipulate that

5 As above, the single variable r may be replaced with a finite vector of variables r1, . . . , rn:
for example, the partial representation of total antisymmetric relations already given has
three components.
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our metatheory is ZFA (the usual set theory ZFC with
extensionality weakened to allow atoms) and that we
assume the existence of infinitely many atoms. It is well-
known that ZFA with a collection of atoms of any de-
sired size is mutually interpretable with ZFC. A much
weaker metatheory could be used, but this one is con-
ventional.

We also note that any model of TT3 in which the set
implementing sort 0 is not larger than the collection of
atoms is isomorphic to a model of TT3 in which sort 0
is implemented by a set of atoms, sort 1 is implemented
by a subset of the power set of the set implementing
sort 0, sort 2 is implemented by a subset of the power
set of the set implementing sort 1, and the membership
relations of the model are subrelations of the member-
ship relation of the metatheory. We call such a model of
TT3 a “natural model” of TT3 in ZFA. Natural models
of TTn for any finite n can be defined similarly.

Theorem 2 There is no formal implementation of func-
tions in TT3, nor is there any formal representation of
total antisymmetric relations in TT3.

Proof We set out to construct a natural model of TT4

in ZFA in which the set of atoms implementing sort 0 is
infinite and partitioned into three element sets, which
are orbits under a bijection f from sort 0 to sort 0 in
the metatheory. We add a new predicate F (x, y) to our
language, with the meaning y = f(x). We will allow the
predicate F to be used in instances of comprehension.
We use the convention that any permutation π of the
atoms is extended to all sets by the rule π(A) = π“A.
The group G of permutations defining the FM model
will be the permutations of sort 0 which act on each
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orbit in f independently as either the identity, f or
f 2 = f−1. A set or atom A is said to be symmetric
iff there is a finite set S of atoms such that for any
permutation π ∈ G such that π(s) = s for each s ∈ S,
we also have π(A) = A: it is obvious that each atom
is symmetric. A set belongs to the FM model iff it is
hereditarily symmetric in this sense; all atoms belong
to the FM model. Standard results about FM models
tell us that we obtain an interpretation of ZFA (without
Choice) in our original ZFA in this way. Sort 0 of our
model of TT4 will consist of the set of atoms already
mentioned. Sort 1 of our model of TT4 will be the power
set of the set implementing sort 0 in the sense of the
FM interpretation. Sort 2 of our model of TT4 will be
the power set of the set implementing sort 1 in the sense
of the FM interpretation. Sort 3 of our model of TT4

will be the power set of the set implementing sort 2
in the sense of the FM interpretation. This is clearly a
model of TT4 both in the FM interpretation and in our
original ZFA metatheory, also satisfying the assertion
that F (x, y) is a functional formula and satisfying all
instances of comprehension mentioning F : we can see
this because the usual Kuratowski implementation of f
is a set in the model of TT4.

A set of sort 1 in this model is of the form S ∪ T
where S is a finite set and T is a union of orbits in f .
The closure of S under f is a support of this set. A set of
sort 2 with support S, a finite set closed under f , is an
arbitrary union of basis sets, each one determined by a
finite subset A of S and a function g from the orbits of f
not included in S to {0, 1, 2, 3} which has only finitely
many domain elements mapped to 1 or 2. The basis
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element determined by A and g is the collection of all
sets A∪B where B does not meet S and for each orbit o
in f which does not meet S we have |B∩o| = g(o). These
descriptions of sort 1 and sort 2 sets follow directly from
the criterion that a set of a given sort in our model with
a given support S is an arbitrary union of orbits of
permutations in our group which fix the given support.

Now observe (it is evident from the descriptions of
sort 1 and sort 2 sets) that the model of TT3 consisting
of sorts 0,1,2 of the model of TT4 which we have con-
structed has the property that all of its sets are heredi-
tarily symmetric with respect to the larger group G∗ of
permutations which fix each orbit of f and act within
each orbit entirely arbitarily. But it is still the case that
all instances of comprehension mentioning F hold in
this model: this property is inherited from the model of
TT4 defined with the smaller group G.

By examination of the model of TT3 just described as
an initial segment of the model of TT4 we started with,
we can show that in fact there can be no formal imple-
mentation of functions as sets. For if there were such
an implementation based on given formulas funF and
app, we would be able to identify f such that funF (f)
(letting F denote the specific functional relation we in-
troduced in the model construction). Now the object f
would have to have a finite support set S: for any per-
mutation π ∈ G∗ fixing each element of this finite set
S, we would have π(f) = f .

It is straightforward to show that for any permutation
π ∈ G∗ we will have app(f, x, y)↔ app(π(f), π(x), π(y)).
This follows from the fact that each atomic formula
u = v or u ∈ v (F will not appear in app) is invariant
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under application of any π ∈ G∗ to both sides, and in-
duction on the structure of formulas. And this cannot
be true. Choose any x, y which are not in S such that
y = f(x) and choose π ∈ G∗ such that π(y) = f−1(π(z))
(we can do this because each orbit in F can be per-
muted in any arbitrary way by elements of G∗), and this
falsifies the theorem relating app and funF : we would
have funF (f)∧app(f, x, y), from which we could deduce
funF (π(f))∧app(π(f), π(x), π(y)) (noting that we have
π(f) = f), from which we have both F (π(x), π(y)), by
the fact that this is supposed to be a formal represen-
tation of functions, and F (π(y), π(x)) by the choice of
π, which is impossible.6

We can further show that there can be no representa-
tion of total antisymmetric relations in the same sense.
The exact model we are considering supports a total
antisymmetric relation (representable in the usual way
as a set of sort 3). There is a linear ordering ≤ of the
orbits under f because we are in ZFA with Choice.
The total antisymmetric relation defined by “the or-
bit of x in f is strictly less than the orbit of y in f
or y = f(x) or y = x” is invariant under permuta-
tions in G and so is present in the FM interpretation. If
we add a primitive predicate representing this relation,
all instances of comprehension mentioning this predi-
cate will hold in the model of TT4 and in the model of
TT3 which is its initial segment. No formulas tarelR(r)
and tarelapp(R, x, y) in the language of TT3 (in the
first formula augmented with a total antisymmetric re-
lation R) can constitute a formal representation of total
antisymmetric relations by a very similar argument to

6 Note that the argument goes in exactly the same way if the single variable f representing
the function is replaced by a finite vector f1 . . . , fn.
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that given above. Let r satisfy tarelR(r) where R de-
notes the total antisymmetric relation defined above in
terms of f . Let S be a support of r with respect to
G∗. Let x, y be chosen such that neither belongs to S
and y = f(x). Let π ∈ G∗ fix each element of the sup-
port S and satisfy π(y) = f−1(π(x)). We would have
tarelR(r)∧tarelapp(r, x, y), from which we could de-
duce tarelR(π(r))∧tarelapp(π(r), π(x), π(y)) (noting
that we have π(f) = f , and that tarelapp(r, x, y) ↔
tarelapp(π(r), π(x), π(y)) for reasons already discussed
in connection with app), from which we have bothR(π(x), π(y)),
by the fact that this is supposed to be a formal repre-
sentation of functions, and R(π(y), π(x)) by the choice
of π, which is impossible.7

This has a corollary with an ironic flavor: if we pro-
vide a predicate R representing the total antisymmetric
relation described above, we do obtain an ordered pair
on sort 0 in sort 1 and a representation of binary re-
lations and so of functions in this model: this does not
contradict our results here because the definition of or-
dered pair and so the definition of a relation holding
between two objects or application of a function to an
object depend essentially on R. This unintended rep-
resentation of relations and functions can be killed by
allowing permutations in G to exchange orbits as well as
permute objects independently in each orbit. We do not
know whether we can express the assertion that there is
some total antisymmetric relation on sort 0 in the lan-
guage of TT3: we have shown above that we can express
the assertion that there is some total antisymmetric re-
lation on sort 0 if we have the additional hypothesis

7 Note that the argument goes in exactly the same way if the single variable r representing
the total antisymmetric relation is replaced by a vector r1, . . . , rn.
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AC3 that each collection of disjoint three-element sets
has a choice set.

We make a final (cautionary) remark about choice
principles in these truncated models of type theory. The
choice principle AC2 = “every disjoint collection of pairs
has a choice set” holds in the model of TT3 under con-
sideration, because all hereditarily symmetric pairwise
disjoint collections of sort 1 (unordered) pairs of sort 0
objects are finite. However, if we build a model of TT5

in the same way in the FM interpretation using G∗, we
will find that AC2 fails for sort 2 objects: the existence
of a choice function for pairs can be proved from the
existence of a choice set for the collection of unordered
pairs of the form {(x, y), (y, x)} where x, y are of sort
0 and the ordered pairs are Kuratowski pairs, and it
is straightforward to argue that the FM interpretation
using G∗ cannot enjoy a choice function for pairs.

This shows that the result on representability of func-
tions above is something like the best possible: the limi-
tation that one must be able to choose an element from
each finite cycle of length greater than two has some-
thing to do with actual obstructions that can prevent
representability of functions in the absence of choice.

It is also worth noting the corollary of the negative
result that there is no ordered pair of sort 0 objects de-
finable in sort 1 in TT3 without additional hypotheses,
as otherwise there would clearly be a formal represen-
tation of functions as sets along standard lines.
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6 Related work

We have already noted the unpublished work of Hen-
rard on the definability of cardinality in NF3, which was
the original inspiration of this work. The only accessi-
ble sources known to us which discuss this work are the
master’s theses [9], [3]. Henrard’s aim was to represent
cardinality, not functions per se, in the theory NF3 in
which no ordered pair is available. He represented or-
bits in a bijection f as sets of pairs {x, f(x)}: an orbit
would be a minimal set of such pairs closed under the
relation of having nonempty intersection, in which each
pair {x, y} intersected no more than two pairs {u, x}
and {y, v} (and might intersect one pair or none). No-
tice that the representations of the orbits of f and f−1

are indistinguishable. It is then reasonably straightfor-
ward to give a definition of the conditions under which
a set of pairs would be the union of the representations
of the orbits in a bijection from a set A to a set B, thus
allowing the definition of the notion of sets A and B
having the same cardinality, though without actually
providing a formal representation of a bijection from
A to B: we do not give the details. Our approach was
developed with prior knowledge of his, and betters it
by providing an actual representation of some bijection
from A to B when there is any bijection from A to B
(though not of all such bijections), and providing repre-
sentations of many functions which are not bijections.
Our results give more information about the mathe-
matical competence of TT3 and NF3 than Henrard’s
methods: we acknowledge that we are indebted to his
work. We believe that it is important to note (as we do
at length above) that NF3 is not a special case: every
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externally infinite model of TT3 is elementarily equiva-
lent to a model of NF3 (in the sense that the stratified
assertions true in the model of NF3 correspond exactly
to the assertions true in the model of TT3).

We further need to discuss the relationship between
the results of our paper and the entirely independent
work of Hazen in [5], of which we became aware after we
had already obtained the results on functions described
here. Hazen argues that there cannot be a general rep-
resentation of binary relations in TT3 (which he calls
“monadic third-order logic”, terminology we adopted
in our title) for reasons essentially similar to reasons
given in our analysis. He certainly gives an accurate
general description of the reasons for this fact, using
the same approach of partitioning sort 0 into three-
element sets and considering a function with these sets
as its orbits. We are not sure that his argument is com-
pletely rigorous (it may actually be, but the style is
unfamiliar to us); Hazen himself says (personal com-
munication, quoted with his permission) that his ar-
gument looks like a Fraenkel-Mostowski construction
argument for his result framed by someone who had
never heard of Fraenkel-Mostowski constructions. We
note that Hazen also has shown in prior work ([2]) that
existence of a linear order on sort 0 is sufficient to yield
a representation of binary relations in monadic third
order logic.8 We believe that we should in justice grant
that Hazen has given a very similar argument for non-
representability of binary relations in general prior to
ours; we have made the further contributions however,

8 And his representation of relations using a linear order does not require ten distinct sort
0 objects, but we do not regard this as a strong assumption: ours is more economical to
state.
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of a more rigorous presentation of a similar argument
using FM model techniques, positive results concern-
ing representation of large classes of functions and total
antisymmetric relations in monadic third order logic,
and proofs of non-representability in the specific cases
of functions and total antisymmetric relations. Our de-
tailed analysis of the case of total antisymmetric rela-
tions is new. Hazen has pointed out to us the relevance
of our results to evaluation of the capabilities of David
Lewis’s logical framework exhibited in Parts of Classes
([8]).

We wish to acknowledge very useful conversations
with Allen Hazen in the course of this work.
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17. Zermelo, E., Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathematische An-
nalen 65 (1908): 107–128.


