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1 Introduction

As with many of my writings, this is an experimental math textbook, which
may never be used as a textbook. The format is good for foundational
exposition.

Of course, there is malice here. The theory we discuss is an unsorted first
order theory with equality and membership, but it is actually the simple
typed theory of sets presented as an unsorted theory, following a suggestion
of Quine. In many ways this is like set theory as usually presented, and in
many ways it is different.
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2 A first pass at logic

Statements are either true or false.
If A is a statement, ¬A (it is not the case that A) is false if A is true and

true if A is false.
If A and B are statements, A∧B (A and B) is a statement which is true

if A is true and B is true, and otherwise false.
We define A ∨ B (A or B) as ¬(¬A ∧ ¬B). This is false if A and B are

both false, and otherwise true.
We define A → B (if A then B) as ¬(A ∧ ¬B). This is false exactly if A

is true and B is false.
We define A ↔ B (A if and only if B) as (A → B) ∧ (B → A).
Basic statements of our mathematical language are x = y (x is the same

object as y) and x ∈ y (x is an element of y). We write x ̸= y for ̸= x = y
and x ̸∈ y for ¬x ∈ y.

If P (x) is a statement, x being a variable, (∀x : P (x)) is a statement,
which is true iff P (a) is true for every choice of object a, and (∃x : P (x)) is
a statement, which is true precisely if there is an object a such that P (a) is
true.

If P (x) is a statement in which no variable appears which is bound in a
larger context (a qualification which may surprise the knowledgeable reader),
we use the notation (ϵx : P (x)) to represent an object a such that P (a). Such
an expression is called a Hilbert symbol. Note that

(∃x : P (x)) ↔ P ((ϵx : P (x))),

when both sides are defined. This does not mean that the existential quanti-
fier is eliminable in favor of the Hilbert symbol: the fact that variable binding
into Hilbert symbols is not allowed obstructs this. It is true that all quan-
tifiers (existential and universal) in a statement which are not inside Hilbert
symbols can be systematically eliminated by a top down procedure in favor
of Hilbert symbols. However, the quantifiers are still needed as primitive
because they have syntactical privileges that the Hilbert symbol does not,
and in fact quantifiers may still appear in the Hilbert symbols after the top
down procedure. They are also needed in practice because the expansion
to Hilbert symbols causes an explosion in length. Allowing variable binding
into Hilbert symbols would amount to assuming the axiom of choice.

4



3 Nonempty sets

We give our first

Definition: An object x is a nonempty set if and only if (∃y : y ∈ x). We
write Set(x) for “x is a nonempty set”. For the moment, when we say
“set”, we mean nonempty set.

Definition: An object is empty iff it has no elements. We may choose to
call certain empty objects empty sets (and if we do, set(x) will mean
that x is either a nonempty set or an empty set); empty objects which
are not empty sets we call atoms .

Sets are abstract objects, not part of the ordinary furniture of the world
(though in the approach to mathematics we take here, we preserve the possi-
bility that all objects in the ordinary furniture of the world are in the domain
of discourse), and we must be very clear about their characteristics (as with
any mathematical objects).

Clarity about a class of objects is enhanced if we can tell when objects
of this class are the same and when they are different. This is the subject of
our first

Axiom (extensionality): If A and B are nonempty sets, A = B iff A and
B have the same elements. In symbols,

(Set(A) ∧ Set(B)) → (A = B ↔ (∀x : x ∈ A ↔ x ∈ B)).

This is enough about nonempty sets for a first section.
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4 Sets, kinds, and properties

We have said when two sets are the same. But we have not said what sets
there are. Our basic intuitive idea is that if we have a kind K of objects we
can for every property P (x) of a variable x ranging over kind K define a set
containing exactly the objects of that kind with that property.

We will express everything in this intuition in a series of definitions and
axioms. First, we give a definition of the notion that two objects are of a
kind.

Definition (of a kind): We say that objects x and y are “of a kind” (writ-
ten x ∼ y) just in case (∃z : x ∈ z ∧ y ∈ z).

From our intuition we can see that if a and b are of the same kind K, they
belong to a common set: for example, they both belong to the set of objects
x of kind K such that x = a ∨ x = b, for which we will later introduce the
notation {a, b}. The idea that if two objects belong to the same set they are
of the same kind is not as evident, but can be viewed as part of the firming
up of our understanding of the abstraction we are developing1.

We then introduce an axiom providing for kinds.

Axiom of Kinds: For each object x there is an object K such that x ∈ K
and (∀y : y ∈ K ↔ y ∼ x).

Observation and Definition: Notice that for any x, an object K provided
by the axiom is a nonempty set (since it contains x) and there is only
one such object by extensionality, since its members are exactly deter-
mined. This justifies the definition of κ(x), the kind of x, as the unique
object K such that x ∈ K and (∀y : y ∈ K ↔ y ∼ x).

Theorem (∼ is an equivalence relation): For any x, y, z, (1) x ∼ x,
(2) x ∼ y → y ∼ x, and (3) (x ∼ y) ∧ (y ∼ z) → x ∼ z.

Proof: x ∈ κ(x) and x ∈ κ(x), so x ∼ x.

If x ∼ y, choose z such that x ∈ z and y ∈ z: it follows that y ∈ z and
x ∈ z so y ∼ z.

If x ∼ y and y ∼ z, then x ∼ y and z ∼ y, so x ∈ κ(y) and z ∈ κ(y),
so x ∼ z.

1In fact, this is the profound difference between the set theory presented here and more
usual treatments.
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This justifies reading x ∼ y as “x and y are of the same kind”.
Reference to kinds of kinds is not unusual and motivates a

Definition: For any object x, we define κ1(x) as κ(x), and for any positive
integer constant n define κn+1(x) as κ(κn(x)). The superscript n cannot
be quantified over2: this is an independent definition for each n.

Now we introduce the formalization of our intuition as to what sets there
are.

Axiom (separation): For each sentence P (x) about an object x, we assert

(∀u : (∃A ∈ κ2(u) : (∀x : x ∈ A ↔ x ∈ κ(u) ∧ P (x)).

Definition: If (∃x ∈ κ(u) : P (x)), the witness A to

(∀u : (∃A ∈ κ2(u) : (∀x : x ∈ A ↔ x ∈ κ(u) ∧ P (x))

is uniquely determined by extensionality and we call it

{x ∈ κ(u) : P (x)}.

Note that Separation also implies that there are objects without ele-
ments in each kind κ2(u), but it doesn’t allow us to pick out a unique
one. It is important to notice that to use a notation {x ∈ κ(u) : P (x)}
requires a demonstration that the intended extension is nonempty [un-
less we provide for empty sets, as discussed under the next heading].

Empty sets, an option: We reserve the right to stipulate that there is a
distinguished empty object ∅κ(x) ∈ κ2(x) for each kind κ(x). These
objects we call empty sets and we define set(x) as above, and note
that we get the following generalization of extensionality:

(∀xy : x ∼ y ∧ set(x) ∧ set(y) ∧ (∀z : z ∈ x ↔ z ∈ y) → x = y),

and if P (x) is uniformly false for x in κ(u), we can define
{x ∈ κ(u) : P (x)} as ∅κ(u).
This is an option. We do not officially choose this option; we do note
its consequences where relevant. The reason that we are reluctant to

2We explore the possibility of doing this in a much later section.
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officially adopt it is that the ability to choose a specific empty set
from each kind looks like an external process of making infinitely many
arbitrary choices; we will show below that our basic theory without
empty sets interprets the theory with empty sets without difficulty.

We are also interested in what foundations look like without an empty
set. Our impression is that the advantages of having empty sets are
clear, but the overhead of not allowing them is not very great.

One could introduce an empty set in a given type κ2(a) as

(ϵx : x ∈ κ2(a) ∧ (∀y : y ̸∈ x)),

using the Hilbert symbol, but there is less to this than meets the eye:
the variable a here could not be quantified over: one could not use
this definition to make general statements about empty sets. Similar
problems would arise if one tried to define set builder notation using
the Hilbert symbol.

We introduce some specific very simple sets.

Definition: We define {x} or ι(x), the singleton set of x, as

{y ∈ κ(x) : y = x}.

We define ι0(x) as x and ιn+1(x) for each nonnegative integer x as
ι(ιn(x)). This is a separate definition for each natural number n.

If x ∼ y we define {x, y}, the unordered pair of x and y, as
{u ∈ κ(x) : u = x ∨ u = y}. Notice that {x, y} ∈ κ2(x) = κ2(y).

If x ∼ y, we define (x, y), the ordered pair of x and y, as {{x}, {x, y}}.
This is well defined because κ({x}) = κ({x, y}) = κ2(x) = κ2(y).
Notice that (x, y) ∈ κ3(x) = κ3(y).

Observations: It should be clear from repeated applications of the second
clause of the axiom of separation that κ(ιn(x)) = κn+1(x).

It should be noted that x ∼ y is a prerequisite for {x, y} or (x, y) to be
defined.3

3This is a distinct difference from set theory as you might have learned it on another
occasion.
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Note that x is the only object which belongs to every element of
{{x}, {x, y}}, and y is the only object which belongs to exactly one
element of {{x}, {x, y}}. From this it follows readily that

(x, y) = (z, w) → x = z ∧ y = w.

We introduce a technical axiom, for the moment having no new content.

Axiom of Ordered Pairs: We postulate a concrete natural number con-
stant ∆ and for each x ∼ y an object (x, y) ∈ κ1+∆(x) = κ1+∆(y).
We assert that for all x, y, z, w, (x, y) = (z, w) → x = z ∧ y = w.
For the moment, this axiom is satisfied without taking any additional
measures, setting ∆ = 2 and defining (x, y) as above. However, we will
consider redefining the ordered pair and want to present everything
about it at a suitable level of abstraction so we can shift definitions.

To make this work, it is necessary to note that we do nothing with
ordered pairs except what is justified by this axiom, in what follows.

Example: The first definition of the ordered pair as a set that was given
was (x, y) = {{{x}, ∅κ(x)}, {{y}}}, for which ∆ = 3.
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5 Hierarchies

We introduce the final axiom of our preamble and an extension of the defi-
nition above. The motivation for this axiom will become clear.

Axiom (diversity): For any x, y, if κ(x) ∼ κ(y) then κ(x) = κ(y). Kinds
of the same kind are equal.

Definition: For any integer n for which κn(u) is defined, we define κn−1(u)
as the unique kind which belongs to κn(u), if there is one. The ax-
iom of diversity tells us there can be at most one such kind. Clearly
this definition will not conflict with the definition already given for n
nonnegative.

We establish that there are many kinds.

Theorem: For any x, κ2(x) ̸= κ(x).

Proof: Suppose that we have an x such that κ(x) = κ2(x).

Define R as {y ∈ κ(x) : y ̸∈ y}. R ∼ κ(x) so R ∈ κ2(x) = κ(x).

This requires one further remark: we need to show that R exists (that
its intended extension is not empty). If κ2(x) = κ(x), we know that
κ2(x) has at least two elements (κ(x) and at least one atom) so κ(x)
has at least two elements, one of which would be κ(x) if the kinds were
equal, and we would have {κ(x)} an element of κ2(x) (and so of κ(x))
and not an element of itself (because κ(x) has at least two distinct
elements), so R would be nonempty. This paragraph is not needed if
we provide empty sets.

So R ∈ R iff R ∈ κ(x) [just shown to be true] and R ̸∈ R. This is a
contradiction.

Theorem: For each concrete n > 1, κn(x) ̸= κ(x).

Proof: The argument is very similar to the argument above but with some
devious use of iteration of the singleton operation. Suppose κn(x) =
κ(x).

Let Rn,x = {ιn−2(y) ∈ κn−1(x) : ιn−2(y) ̸∈ y}. To make it entirely
clear that the existence of this set follows from Separation, rewrite it
as {u ∈ κn−1(x) : (∃y : u = ιn−2(y) ∧ ιn−2(y) ̸∈ y)}
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We also need to show that Rn,x is nonempty: let y be any set all
of whose elements are not singletons and it will belong to Rn,x; the
singleton of the suitably indexed kind will work: y = {κn−1(x)} works
under the tortured counterfactual hypotheses of the argument. Again,
this paragraph is not needed if we have empty sets.

Notice that for any y ∈ κ(x), ιn−2(y) ∈ κn−1(x). Notice that Rn,x ∈
κn(x) = κ(x). It follows that ιn−2(Rn,x) ∈ κn−1(Rn,x). It then follows
that

ιn−2(Rn,x) ∈ Rn,x ↔ ιn−2(Rn,x) ̸∈ Rn,x,

which is impossible.

Observation: This tells us that there are as many distinct kinds as we like
(up to any concrete finite number). We will see that we cannot talk
about an infinite sequence of types (all terms of a sequence are of the
same kind, and the axiom of diversity tells us that there cannot be two
distinct kinds of the same kind), and we cannot even express the idea
that all kinds belong to one sequence of iterated kinds, though this
might be a natural supposition.

A situation which we might contemplate though we cannot even express
it formally is the possible existence of a kind κ(x) such that κi(x) exists
for each integer i, positive and negative.

We prove some useful lemmas about kinds.

Lemmas: If x ∈ y and x ∈ κn(u) then y ∈ κn+1(u). If x ∈ y and y ∈ κn(u)
then x ∈ κn−1(u).

Proof: If x ∈ y then any u ∈ y is an element of κ(x) = κn(u), so

y = {u ∈ κn(u) : u ∈ y}

because both are nonempty sets and they have the same extension, and
by separation,

y = {u ∈ κn(u) : u ∈ y} ∈ κn+1(u).

If x ∈ y and y ∈ κn(u), by the first part of this argument y ∈ κ2(x), so
κn(u) = κ2(x), so by diversity κn−1(u) exists and is equal to κ(x).
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6 Sets, atoms, and individuals: some taxon-

omy

Sets have already been defined as objects with elements (with the additional
option of empty sets if we choose).

Objects can fail to be sets in two different ways.

Definition (individual): An object x is an individual if it is not of the
same kind as a kind. This is equivalent to saying that κ0(x) does not
exist, which precludes the object being a set (empty or inhabited).
Anything of the same kind as an individual is an individual. There is
nothing in our theory which requires two distinct individuals to be of
the same kind.

Definition (atom): An object x is an atom if it is of the same kind as a
kind and is not a set (empty sets are not atoms if we provide them).
There is nothing in our theory which requires empty objects of the
same kind to be equal.

Observation: Our theory does not prove the existence of either individuals
or atoms, but they are important formal possibilities.
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7 Introducing empty sets if desired

We could have introduced empty sets by a stipulation that each type κ2(x)
contains a specific object ∅κ(x) with no elements, then defining a set as an
object which belongs to a kind κ2(x) and either is a nonempty set or is equal
to ∅κ(x). It is then possible to define {x ∈ κ(u) : P (x)} as ∅κ(x) when P (x)
is uniformly false, and to note that sets of the same kind with the same
(possibly empty) extension are equal.

We remarked on this above, and we will continue to comment on its
consequences as we continue with our development.

We prefer not to arrange this by stipulation: the reader might feel that
we are appealing to something like choice in an external sense by selecting
one atom from each kind to be the empty set of that kind.

Instead, we demonstrate that the theory modified to allow empty sets
can be interpreted in the basic theory (and we will continue to work in the
basic theory, commenting when the presence of empty sets would make a
difference).

We redefine membership and equality deviously.

Definition: We define x =new y as holding if x and y are individuals and
x = y, and otherwise iff x ∼ y and (∀z : z ∈ x ↔ z ∈ y). The atoms in
each type κ2(u) are identified, and otherwise the new equality relation
coincides with the old one.

We define set(x) as false if x is an individual, and otherwise as

(∀zw ∈ κ0(x) : z =new w → (z ∈ x ↔ w ∈ x)).

Something is a set if membership in it respects the new equality rela-
tion. Notice that the atoms are sets in this new sense (and the atoms
in any kind are all the same empty set in the new sense of equality). A
nonempty set in the old sense is a set in the new sense iff it either con-
tains all of the old sense atoms or excludes all of the old sense atoms;
the atoms in the new sense (empty but not the empty set) are the
nonempty sets which “cut” the set of atoms in the original sense.

We define x ∈new y as x ∈ y ∧ set(y).

Clearly any new sense sets which have the same elements in the new
sense are equal.
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Verifying that the axioms of our original theory (as modified when
empty sets are provided) hold in this theory is an extensive exercise.

We do not dispute the proposition that mathematics with the empty set
is cleaner. But we think it is interesting to see that even in practice,
the empty set is not indispensible, and there is a strong difference
between the treatment of empty and nonempty extensions in this theory
which suggests that strange though it may be, the view that all sets
are nonempty may be more appropriate here.
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8 Basic constructions of set theory

We begin by describing the operations of Boolean algebra of sets, the basis
for the parlor game of Venn diagrams.

Definition: If A is a set, we define Ac, the complement4 of A, as

{a ∈ κ0(A) : a ̸∈ A}.

If A and B are sets and A ∼ B, we define A∩B, the intersection of A
and B, as {c ∈ κ0(A) : c ∈ A ∧ c ∈ B}, A ∪ B, the union of A and B,
as {c ∈ κ0(A) : c ∈ A ∨ c ∈ B}, and A− B (often written A \ B), the
set difference of A and B, as {c ∈ κ0(A) : c ∈ A ∧ c ̸∈ B} = A ∩Bc.

Note that κ0(A)c is undefined, A−B is undefined if A ⊆ B, and A∩B
is undefined if A and B have no common elements. We say that A and
B are disjoint , written A#B, iff A ∼ B and there is no x belonging
to both A and B. If we provide empty sets, these operations become
total and A#B becomes equivalent to A ∩B = ∅κ0(A) = ∅κ0(B).

Notice that any element of A or of B ∼ A belongs to κ0(A), so the
bounds of the set abstracts here do nothing to restrict the extensions
of these sets.

Observation: Note that each of these sets is bounded in κ0(A), whose
uniqueness is a consequence of the axiom of diversity. It is worth not-
ing that an axiom asserting the existence of A ∪ B [defined simply as
a set containing exactly the elements of A and the elements of B] for
sets A ∼ B, in the presence of the other axioms, implies the axiom of
diversity: if κ(x) ∼ κ(y), then κ(x)∪κ(y) would exist and contain both
x and y as elements, whence x ∼ y, whence κ(x) = κ(y).

The axiom of diversity is precisely equivalent to the axiom of binary
union in the presence of the other axioms: both are basic to our under-
standing of sets, but diversity is more closely tied to the exact concepts
of this theory, and the order of exposition needs to be slightly tortured
if binary union is used as the axiom.

4More usual treatments of set theory actually do not support complement as a con-
struction, though texts like to talk about complements anyway.

15



Definition: If A is a set of sets (whence κ−1(A) exists) we define
⋃
A as

{x ∈ κ−1(A) : (∃a ∈ κ0(A) : x ∈ a ∧ a ∈ A)}.
Since every element of A is in κ0(A) and every element of an element of
A is in κ−1(A), this is simply the collection of all elements of elements
of A. If a set does not have a union, it is a set of individuals.

Similarly, we define
⋂

A as

{x ∈ κ−1(A) : (∀a ∈ κ0(A) : a ∈ A → x ∈ a)}.

Notice that
⋃

A and
⋂

A both belong to κ0(A).

We define an important relation on sets which should already be familiar.
The definition is a little more baroque than the version you might have
encountered before.

Definition: We define A ⊆ B (A is a subset of B) as holding iff

A ∼ B ∧ Set(A) ∧ Set(B) ∧ (∀x ∈ κ0(A) : x ∈ A → x ∈ B).

If we provide empty sets, we modify this to

A ∼ B ∧ set(A) ∧ set(B) ∧ (∀x ∈ κ0(A) : x ∈ A → x ∈ B).

Definition: We define P(A) as {B ∈ κ(A) : B ⊆ A}. This is called the
power set of A and is the set of all subsets of A. Notice that P(A) ∈
κ2(A).

If we provide empty sets, this definition is materially changed, because
P(A) acquires an additional element ∅κ0(A). This is a real mathematical
difference: the power set of a set with three elements has 7 elements in
our base theory and 8 in the theory with empty sets.

We extend our set builder notation.

Definition: We define {x ∈ A : P (x)} as {x ∈ κ0(A) : x ∈ A ∧ P (x)}.
Where F (t1, . . . , tn) is any complicated term representing an object, we
define {F (t1, . . . , tn) ∈ κ(x) : P (t1, . . . , tn)} as

{u ∈ κ(x) : (∃t1, . . . , tn : u = F (t1, . . . , tn) ∧ P (t1, . . . , tn))}.

Definition: If A and B are sets with A ∼ B, we define A×B as

{(a, b) ∈ κ∆(A) : a ∈ A ∧ b ∈ B}.
Note that A×B ∈ κ1+∆(A) = κ1+∆(B).
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9 Relations, functions, and cardinality

In this section we talk about the theory of binary relations, functions, and
basics of cardinal arithmetic over not necessarily finite sets.

Definition: A relation is a set of ordered pairs. If R is a relation, we write
xR y to mean (x, y) ∈ R. Notice that if xR y we must have x ∼ y and
R ∈ κ2+∆(x) = κ2+∆(y).

Observation: We use binary relation symbols ∈, =, ∼, ⊆ in ways which
look similar to this, but these are not relations. We might refer to these
as “logical relations” as opposed to the “set relations” just introduced.
The problem is that a set relation must relate items both of the same
kind.

Definitions: If R is a relation, we define dom(R) (the domain of R) as
{x ∈ κ−∆(R) : (∃y : xR y)}. We define R−1 (the converse of R)
as {(y, x) ∈ κ0(R) : xR y}. We define rng(R) (the range of R) as
dom(R−1). For any set A ∈ κ1−∆(R), we define R⌈A (R restricted to
A) as R∩(A×κ0(A)) and R“A (the image of A under R) as rng(R⌈A).

Definition: If F is a relation, we say that F is a function iff F“{x} has
exactly one element for each x ∈ dom(F ). If F is a function, we define
F (x) implicitly by F“{x} = {F (x)}. If F is a function and A and
B are sets, we say F : A → B (F is a function from A into B) iff
dom(F ) = A and rng(F ) ⊆ B. We say that F is a function from A
onto B iff dom(F ) = A and rng(F ) = B. We say that F is injective or
one-to-one iff F−1 is a function, and in this case we call F the inverse of
F . A function from A onto B which is an injection is called a bijection
from A to B.

Observation: We make the choice here of defining relations and functions
as sets of ordered pairs. This means that there is no notion of surjection
or onto function without specific reference to the intended codomain.
The alternative would be to add the domain and codomain as features
of a relation. This has its advantages, but as objects of set theory, sets
of ordered pairs are much simpler than sets of ordered pairs adorned
with intended domains and codomains.
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Definition: If F : A → B and G : B → C, then G ◦ F : A → C is defined
by (G ◦ F )(x) = G(F (x)). This is called the composition of G and F .
Note that compositions of injections are injections.

Definition: We define |A|, the cardinality of A, as the set of all sets B such
that there is an injection from A to B and there is an injection from B
to A. Note that |A| ∈ κ2(A). |A| = |B| is clearly equivalent to B ∈ |A|.
We further define |A| ≤ |B| as holding iff there is an injection from A
to B (noting that this does not depend on the choice of representatives
of the cardinals), and define |A| < |B| as |A| ≤ |B| ∧ |A| ≠ |B|.
It should also be noted that a change in the definition of the ordered
pair (for which we have provided the abstract framework) will have no
effect on cardinals.

Of course the existence of a bijection from A to B implies that |A| =
|B|, and we have the following

Theorem: It is a well-known theorem (expressing a more usual definition of
cardinality of sets) that |A| = |B| (as we have defined it) implies that
there is a bijection from A to B, and so existence of a bijection from
A to B is equivalent to |A| = |B|. The expository need to prove this
theorem is less with our definition, but we will still do it presently.

Definition: A relation R is said to be an equivalence relation iff it is

reflexive: xRx for every x ∈ dom(R) = rng(R)

symmetric: xR y → y Rx for every x, y.

transitive: (xR y ∧ y R z) → xR z for every x, y, z.

We say that R is an equivalence relation on A if it is an equivalence
relation and has domain A.

For each x ∈ dom(R), we define [x]R as {y : y Rx}. This is called the
equivalence class of x under R.

Definition: A set of sets P is said to be a partition iff each A ∈ P is a
nonempty set and any two distinct A,B in P are disjoint. A partition
of A is a partition P such that

⋃
P = A.
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Theorem: The equivalence classes under an equivalence relation R on A
make up a partition of A. Each partition P of A determines an equiv-
alence relation on A holding between x, y iff they belong to the same
element of P . These two concepts are thus exactly correlated.

Axiom (choice): For each partition P there is a set C such that the inter-
section of C with each element of P is a singleton set. This is called a
choice set for P . This axiom expresses the idea that we can choose one
element of each compartment in P , which is a theorem if P is finite,
but much less obvious if P is infinite.
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10 Introduction to cardinal arithmetic

We define some familiar ideas in this new context. (We intend to add selected
proofs later, but all are suitable as exercises).

Definition: We define 1κ2(x) as |{x}|. If we provide empty sets, we define
0κ2(x) = |∅κ(x)| = {∅κ(x)}.

Definition: We define ι“A as {{x} : x ∈ A} and more generally ιn“A as
{ιn(x) : x ∈ A}. We define T (|A|) as |ι“A| and T n(|A|) as |ιn“A| (it
is straightforward to show that these definitions do not depend on the
choice of the representative A of the cardinal). These are cardinals
which externally seem to be the same as |A|. T and T n are injective
operations, so they have partial inverse operations T−1 and T−n.

Definition: We define |A| + |B| as |A ∪ B| when A and B are disjoint.
Note that this does not depend on the choice of representatives of the
cardinals. If |A| and |B| do not have disjoint representatives, this is
undefined. We define |A| · |B| as T−∆(A×B). We define BA as the set
of functions from A to B, and |B||A| as T−1−∆(|BA|). 2|A| can also be
defined as T−1(|P(A)|), noting that characteristic functions on a given
domain are two iterated kinds higher than subsets of the given domain.

Addition and multiplication will be total if a suitable axiom of infinity is
assumed (or if ∆ = 0). We will see below that cardinal exponentiation
is provably not total.

Alternative Definitions: Each of addition and multiplication has a defi-
nition more in the style of the definition we have chosen for the other.

|A|+ |B| can be defined as

T−∆(|(A× {x}) ∪ (B × {y}|),

where x ̸= y.

|A| · |B| can be defined as the cardinality of the union of a partition
P ∈ T (|A|) each of whose elements is in |B|.
Proofs that these definitions are equivalent to the ones given above
would be nice exercises.
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Definition: For any cardinal |A| we define σ(|A|), the successor of |A|, as
|A|+ 1κ2(A). This is the same as {B ∪ {x} : B ∈ |A| ∧ x ̸∈ B}.

Theorem: For all sets A, σ(|A|) = σ(|B|) implies |A| = |B|.

Proof: If σ(|A|) = σ(|B|) then for any x ̸∈ A and any y ̸∈ B, there is an
injection f from A ∪ {x} to B ∪ {y}. Define f ∗ : A → B as

{(u, v) : ((u, v) ∈ f ∧ v ̸= y) ∨ ((u, y) ∈ f ∧ (x, v) ∈ f)}.

This is clearly an injection from A to B, and an injection from B to A
can be defined in the same way.

Definition: We say that a set I is inductive if it contains 1κ2(x) (for some
x) [0κ2(x) (for some x) instead, if we provide empty sets and so 0] and
(∀y ∈ I : σ(y) ∈ I). We define Nκ3(x), the set of natural numbers
which is of a kind with κ3(x), as the intersection of all inductive sets
belonging to κ4(x).

To be a finite set is to belong to a natural number.

Axiom of Infinity (1): The Axiom of Infinity may be phrased as

(∀x : |κ(x)| ̸∈ Nκ2x)).

This is not our final axiom of infinity: we will adopt a slightly stronger
statement as the axiom of infinity below.

Definition: (ℵ0)κ4(x) is defined as |Nκ3(x)|, if Infinity is assumed.

Enough examples have been given to motivate a

Convention: When we define a notion depending on the kind of a single
variable x, we have been writing it with a subscript κn(x), which is of
the same kind as the defined notion. We introduce an abbreviation:
when we define a notion with a single parameter x, the notion being of
the same kind as κn(x), we give the parameter the shape x (which we
will use only for this purpose) and we abbreviate the subscript κn(x)
as n. So 15 is the natural number 2 of the version of the same kind as
κ5(x), belonging to κ6(x). These subscripts might be omitted if they
can be deduced from context: defining σ(|x|) = |x|+1, we deduce that
since 1 is of kind κ2(x) for some x. |x| and σ(|x|) must be of the same
kind κ2(x) and also of type κ(x), so we deduce that κ(x) is in this
context κ0(x).
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Thoerems of cardinal arithmetic :

1. T n(|A|) + T n(|B|) = T n(|A|+ |B|); T n(|A|) · T n(|B|) = T n(|A|+
|B|)

2. |A|+ |B| = |B|+ |A|; |A| · |B| = |B| · |A.
3. (|A|+ |B|)+ |C| = |A|+(|B|+ |C|); (|A| · |B|) · |C| = |A| ·(|B| · |C|).
4. |A| · (|B|+ |C|) = |A| · |B|+ |A| · |C|
5. |A| · 1 = |A|; [|A|+ 0 = |A|; |A| · 0 = 0]

6. |A||B|+|C| = |A||B| · |A||C|; (|A||B|)|C| = |A||B|·|C|); (|A||C|) ·(|B||C|) =
(|A|·|B|)|C|. Exponentiation is partial: if either side of one of these
equations is defined, so is the other.

7. 1|A| = 1; |A|1 = |A|; [0|A| = 0; |A|0 = 1]

These all look like familiar algebraic principles (and they specialize to
familiar algebraic principles on the natural numbers). They can be
proved by explicit constructions of bijections between appropriate sets.
Some statements in brackets are provided which hold if we provide
empty sets and so the cardinal 0. The principles of additive and mul-
tiplicative cancellation do not hold for general cardinal numbers. We
do have

Theorem: |A|+ n = |B|+ n → |A| = |B| if n ∈ N.

There is a certain scandal about infinite cardinals. These facts will
witness the failure of general cancellation laws.

Theorem: |N|+ n = |N| (for n ∈ N); |N|+ |N| = |N|; |N| · |N| = N

11 An alternative approach to Infinity and

an improvement to the ordered pair

We adopt a slightly stronger

Axiom of Infinity (2): For every cardinal |A|, σ(|A|) = |A|+ 1 exists.
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This is not quite equivalent to the axiom of infinity stated above5 but
certainly implies it. For any kind κ(x), |κ(x)|+ 1, if it exists, is less than or
equal to |κ(x)|, and it is easy to prove by mathematical induction that n+1
is not less than or equal to n for any natural number n.

It is a theorem noted above that σ(|A|) = σ(|B|) → |A| = |B|.
For any set A, define σ1(A) as σ“(A) and σ2(A) = σ“(A) ∪ {1}. These

operations are defined for sets A which are of the same kind as a set of
cardinals. These operations are injective and have disjoint ranges.

This allows the definition of ⟨A,B⟩ for any sets A,B of the same kind as
a set of sets of cardinals as σ1“A ∪ σ2“B. This is an ordered pair, since we
can recover A as σ−1

1 “ ⟨A,B⟩ and B as σ−1
2 “ ⟨A,B⟩.

The pair ⟨A,B⟩ is of the same kind as A andB, which is a serious technical
advantage6. But it is only defined for sets of sets of elements of kinds κ2(x).

But we can arrange our universe so that this type level pair exists in all
types, by apparently cutting it down (though we will argue that the change
can also be viewed as an expansion).

Define subworld(x) (read “x is in the subworld”) as (∃u : x ∈ P2(κ2(u))).
Notice that if x and y are in the subworld and x ∼ y, ⟨x, y⟩ exists.

Define xεy as subworld(x) ∧ (∀z ∈ y : subworld(z)) ∧ x ∈ y.
We claim that all of our axioms are true in the subworld with ε replacing

∈.
Extensionality is true because nonempty sets with the same ε-extension

are actually also nonempty sets with the same ∈-extension.
Kinds is true because for each x in the subworld, the intersection κε(x)

of κ(x) with the subworld has the same ε-extension as its ∈-extension, x
belongs to it, and any y which belongs to it belongs to a common set with
x in the sense of ε, namely κε(x), and any y which belongs in the sense of ε
to a common set A with x also cohabits in the ∈ sense with x, so belongs to
κ(x), and so also to κε(x) because it is in the subworld.

The axiom of separation is true because {x ∈ κε(u) : P (x)} exists for
any formula P (x), so certainly one in ε-language, belongs to the subworld
because all of its elements do, and has the same ε extension as its ∈ extension
because all its elements are in the subworld. Moreover, it is of the same kind

5For the knowledegeable, it rules out the possibility that a kind is Dedekind-finite but
infinite.

6For the knowledgeable, this pair was originally defined by Quine, using natural num-
bers instead of cardinals. The author introduced this way of defining the Quine pair,
preferring it because it is predicative.
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as its bounding set in the subworld, because it is of the same kind as its
bounding set in the actual world.

The axiom of diversity again clearly holds in the subworld.
Now the subworld satisfies the additional feature that there is an ordered

pair ⟨x, y⟩ (defined in the language of the entire world as above, but a primi-
tive operation in the subworld; notice that a pair of two nonsets in the sense
of the subworld will be a nonset) which is of the same kind as x and y. Note
that any kind in the subworld has at least two elements.

What we have shown is that it would be safe to adopt as an additional
axiom of our theory

Axiom of Ordered Pairs: For each x ∼ y we postulate an object (x, y) ∼
x. For any x, y, z, w, if (x, y) = (z, w) then x = z and y = w. Further,
each kind has at least two elements. This is the same as the axiom of
ordered pairs above, but with ∆ = 0; the proviso that each kind has at
least two elements ensures that kinds of individuals are infinite.

We adopt this axiom, and redefine all notions involving relations and
functions in terms of this pair, with resulting changes in kinds of relevant
objects (which are effected by setting ∆ = 0 instead of 2). We have shown
that this axiom is no more dangerous than the axiom of infinity in the form
given in this section, by showing that we can cut down the world of our
theory to a subworld in which all axioms of our theory hold and the axiom
of ordered pairs holds.

We note that in the subworld as described, every object is a pair (because
every set of sets of objects of a kind including natural numbers is a pair ⟨x, y⟩)
but the claim we make in our axiom is more modest. We are no more inclined
to assert that everything is a pair than to assert that everything is a set.

We have already noted that if ∆ = 0, the operations of cardinal addition
and multiplication become total (but exponentiation does not). In particular,
this implies that the Axiom of Infinity (in either version) is a theorem, so we
do not need to assert either form of Infinity as an axiom.

We have a further remark about the subworld construction. It can be
viewed as removing all kinds which are not of the form κ4(x) and cutting
κ4(x) down to P2(κ2(x)). But it can also be viewed as preserving all kinds
and fattening up κ(x) to P2(κ2(x)), noting that this includes ι4“κ(x) as a
subset, which is an isomorphic copy of κ(x) and can be viewed as covertly
the original κ(x). We think that it is important to notice that we are not
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eliminating any combinatorial possibilities in passing to the subworld: every
set in the larger world is externally the same size as a set in the subworld.

Notice that if we assume infinity and assume that all objects of all kinds
are sets (there are no atoms and no individuals: of course this requires us
to provide empty sets) then ⟨x, y⟩ is always defined to begin with, because
all objects are then sets of sets (and certainly there are at least two ob-
jects of each kind). This assumption has some charm but also some odd
consequences, as we will see.

A final remark is that it should be clear that this modification of our world
can be carried out if empty sets are provided. The passage from the basic
theory to the theory with empty sets must be executed before the passage
to the subworld with the pair with ∆ = 0, because the maneuver providing
empty sets would not preserve the properties of the pair.
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12 The natural numbers; iteration of func-

tions; cardinality definable in terms of bi-

jections

The following five principles have been shown or follow readily from things
that have been shown. We give alternative versions in brackets: we start the
natural numbers with 0 if we provide empty sets.

1. 1 ∈ N [0 ∈ N]

2. if n ∈ N, then σ(n) ∈ N

3. if n ∈ N, σ(n) ̸= 1 [if n ∈ N, σ(n) ̸= 0]

4. if m,n ∈ N, σ(m) = σ(n) → m = n

5. if A ⊆ N and 1 ∈ A [0 ∈ A]and σ“A = {σ(n) : n ∈ A} ⊆ A, then
A = N (this is the familiar principle of mathematical induction, and is
built into the definition of N).

The following additional principles, now usually also presented as axioms
of Peano arithmetic, are readily provable.

6: if m,n ∈ N, then m+ n and m · n belong to N.

7: for any m ∈ N, m+ 1 = σ(m) [for any m ∈ N, m+ 0 = m)]

8: for any m,n ∈ N, m+ σ(n) = σ(m+ n)

9: for any m ∈ N, m · 1 = m [for any m ∈ N, m · 0 = 0]

10: for any m,n ∈ N, m · σ(n) = m · n+m

Principles 7-10 follow directly from cardinal arithmetic theorems in the
previous section, and they provide the basis for a straightforward proof by
induction of principle 6.

An important tool for our nefarious purposes is the

Iteration Theorem: Let A be a set, let a ∈ A and let f : A → A be a
function. Then there is a unique function g : N → A such that g(1) =
f(a) [g(0) = a if we have empty sets and 0] and g(σ(n)) = f(g(n)) for
every n ∈ N. We define fn(a) = g(n).
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Indication of Proof: g is the smallest set of ordered pairs which contains
(1, f(a)) [(0, a)] and for each n, x, contains (σ(n), f(x)) if it contains
(n, x). There is actual work to do to show that this is a function and
the unique function with the properties stated.

Of course the kind of the natural numbers used and every other object
here depends on the kind of a. Further the exact definition here would
not work if a were an individual or set of individuals: a has to be of
the same type as a natural number.

We outline a method of adapting this to any type. For any relation
R, define Rιn as {(ιn(x), ιn(y)) : xR y}. It is then always possible to
define (f ι2)n(ι2(a)), as above, and define fn

∗ (a) as the sole element of
an element of (f ι2)n(ι2(a)). Note that in this definition, n ∈ κ3(a), and
fn
∗ (a) = fT−2(n)(a) when the latter is defined.

This is a good point to remind the gentle reader that iterated applications
of operations taking objects of one kind to objects of another, such as κn or
ιn, cannot be defined via the definition in the Iteration Theorem, because κ
and ι are not functions.

We do not have a single system of natural numbers, but a different system
for counting elements of each kind. There is an intimate connection between
the natural numbers of kinds which are connected.

Theorem: For every n ∈ Ni+1, T (n) ∈ Ni+2.

Similarly, Tm(n) ∈ Ni+m+1.

Given the axiom of infinity and i > 2, T−1(n)i−1 ∈ Ni, and if i > m+1,
T−m(n) ∈ Ni−m+1

We have already noted that all these operations are injective: if T i(m) =
T i(n) for i an integer, then m = n.

Counting principles involving sets need to be approached with care. For
example, the cardinality of {1, . . . , n} is not n, but T 2(n), because the nu-
merals used to count objects of a kind are not of the same kind as the objects
counted, but “two higher”.

Another example: it is usual to define nCr as the cardinality of the col-
lection of r-element subsets of an n-element set: however, we really would
like it to be of the same kind as n and r. A set we might think of as being
of this size is {|B| : B ⊆ {1, . . . , n} ∧ B ∈ r} but in fact nCr should be
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defined as T−2|{|B| ∈ κ3(n) : B ⊆ {1, . . . , n} ∧ B ∈ T 2(r)}|. We leave it as
an exercise to track down the details. If A ∈ n (A is an n element set), then
{B ∈ P(A) : B ∈ r} is a set we think of as of size nCr, and it is of kind κ2(r).
So “|A|C|B| = T−1(|{C ∈ P(A) : C ∈ |B|}|)” is the more natural definition.
This is nicer than the previous one because we choose a set actually of size n
to take our subsets from. The shift of kind seems inevitable because we are
counting sets of objects of the kinds counted by n and r (then using T−1 to
shift numbers back down in kind).

A meditation on number systems: The Iteration Theorem suggests a
different approach to implementing the natural numbers. For any func-
tion we could define 0(f)(x) = x [zero does make sense here, even in
the basic theory], and for any function g on functions define σ(g)(f)(x)
as f(g(f)(x)), and then define N as the minimal set containing 0 and
closed under σ. For n ∈ N thus defined we would write fn(x) for
n(f)(x). We further remark that if we restrict the natural numbers
thus defined to invertible functions, we have also implemented the
integers: (−n)(f)(x) = (fn)−1(x). Addition and multiplication are
definable: fm+n(x) = fm(fn(x)) and fm·n(x) = (fm)n(x) give im-
plicit definitions of these operations for natural numbers thus defined
or for integers. We further note that for natural numbers n(m) acts
as mT (n), defining exponentiation, but extending this to allow integer
exponents, thus implementing the rational numbers, would require re-
stricting the functions on which the natural numbers, integers, and
implemented rationals are taken to act to a very carefully chosen fam-
ily (defining such a family might require in effect implementing the
rationals already), a family of functions closed under composition and
inverse on which each natural number (considered as an iteration op-
erator) is invertible. Once one shows that one can produce such a
family of functions, we have an implementation of the rationals with
the natural numbers and integers as subsets in the way we expect,
which is not the case in usual implementations of the number sys-
tems in set theory. The easiest way to produce such a family of func-
tions is to code fractions m

n
as pairs (m,n) of natural numbers with

gcd(m,n) = 1, for convenience define simp(x, y) = ( x
gcd(x,y)

, x
gcd(x,y)

),

and define (m,n) ⊕ (p, q) = simp(mq + np, nq). Then the family of
functions (x 7→ x⊕ r) has the desired characteristics: it supports itera-
tion by rational values. Note that the rationals support integer powers,
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but not rational powers: in n(m) the two iterators are acting on differ-
ent families of functions.

There is a perhaps unexpected application of the Iteration Theorem to
general cardinal arithmetic.

Theorem: If |A| = |B|, there is a bijection from A to B (the converse is
obvious from the definition of cardinal number).

Proof: If |A| = |B|, then A ∈ |B|, so there is an injection f : A → B and
an injection g : B → A.

For each a ∈ A, define a (possibly partial) integer indexed sequence
by a0 = a; a2i+1 = f(a2i); a2i+2 = g(a2i+1); a2i−1 = g−1(a2i); a2i−2 =
f−1(a2i). This can be firmed up as an elaborate consequence of the
Iteration Theorem. These terms may have all integer terms defined
or they may have a first term (with a possibly negative index). Note
that every element of A will appear as an even indexed term of some
sequence and every element of B will appear as an odd-indexed term
of some sequence. The same sequence in effect appears with many
indexings, but we will see this will not be a problem for us. Our strategy
is then to define h(a2i) as f(a2i) = a2i+1 for all terms of each sequence
{a2i} in which the lowest indexed term is an element of A, and to
define h(a2i) as g−1(a2i) = a2i−1 in all other cases. This procedure
clearly defines an injection, determines a value at every element of A
and also clearly produces every value in B.

So there is a bijection h from A to B as desired.

The description above used a rather elaborate recursive definition and
talked about integers. It is equivalent to the following definition of h,
which is entirely justified in terms we have used.

h = (f⌈
⋃

i∈N(g ◦ f)i∗“(A \ g“B)) ∪ (g−1⌈(A−
⋃

i∈N(g ◦ f)i∗“(A \ g“B)))

29



13 There are many infinite cardinals: Can-

tor’s theorem, infinite sums and products,

König’s Lemma

So far we have not established that there is more than one infinite cardinal.
We do this rapidly. It is important to note that we are assuming ∆ = 0 from
here on in the text. In this section in particular, the iteration of kinds would
be a bit more complex if we did not assume this, though everything would
work.

Theorem: For any set A with |A| > 1, |ι“A| < |P(A)|. An interesting
corollary is that |ι“(κ(x))| < |P(κ(x))| ≤ |κ2(x)| (The kind of a kind
is larger than the kind in an external sense, the local resolution of the
Cantor paradox).

Proof: Clearly |ι“A| ≤ |P(A)|: the identity map on ι“A witnesses this.

Suppose for the sake of a contradiction that |ι“A| = |P(A)|. Thus
there would be an injection f from P(A) to ι“A. Now consider the set
R = {x ∈

⋃
rng(f) : x ̸∈ f−1({x})}. Let r ∈ f(R). Then r ∈ R iff

r ∈
⋃
rng(f) [this is true] and r ̸∈ f−1({r}) = R. This is a contradic-

tion, as long as R exists (is nonempty). If |A| = 1, R does not exist
(the intended extension has no elements) and there is no contradiction;
if |A| > 1, let f(A) = {v} and let f({v}) = {w}: w ̸∈ f−1({w}),
so w ∈ R and the argument for a contradiction goes through. If we
provide empty sets, the argument works for |A| ≤ 1 as well.

Corollary: (ℵ0)κ5(x) = |ι“Nκ3(x)| < |P(N)κ3(x)|. We define cκ5(x) as |P(Nκ3(x))|.
Thus, at least in some kinds, there is more than one infinite cardinal.

Theorem: |A| < 2|A| if the latter is defined. Note that 2|A| = |P(A)|+1 (one
of the two constant functions corresponds to the nonexistent empty
set). [2|A| = |P(A)| if empty sets are provided].

Proof: 2|A| = T−1|{x, y}A| (where x ̸= y) [one of the two constant functions
corresponds to the nonexistent empty set]. |A| ≤ 2|A| because there is
an injection from ι“A taking {a} (for a ∈ A) to

(b ∈ A 7→ x) ∪ (b ∈ Ac 7→ y).
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Suppose |A| = T−1|{x, y}A|. So there would be an injection f from
|{x, y}A| to ι“A. We could then define a map R :

⋃
rng(f) → {x, y}

taking a to {x, y} − f−1({a})(a). Now consider r, the sole element of
f(R): R(r) = {x, y} −R(r) would follow, which is absurd.

This might seem redundant but in fact it has a little more extent: it is
not a consequence of {x, y}A being the same size as a set of singletons
that A is the same size as a set of singletons.

Corollary: |A| < |B||A| if the latter cardinal exists and |B| > 1.

Observation: the two theorems proved just above are related by the device
of characteristic functions : define χA, for A a set, as the function taking
x ∈ κ0(A) to t if x ∈ A and to f if x ̸∈ A, where t and f are objects
chosen to represent the truth values: it is usual to use 1 and 0, but
these do not exist in all kinds. Now the oddity in the basic theory is
that (A 7→ χA) is not onto {t, f}A: the constant function with value
f corresponds to the absent empty set. This is fixed if empty sets are
provided.

Power sets and function spaces over a kind can be larger than the kind
(in a suitable external sense), but are represented in the kind of the kind. Of
course P(A) and BA exist for all sets A ∼ B, but they are in κ2(A) = κ2(B)
and may fail to be the same size (via projection using singletons) as any set
in κ(A) = κ(B).

We now consider more complex operations on possibly infinite indexed
families of sets and cardinals. Material in this part depends on the axiom of
choice in ways that we point out.

Definition: An indexed family of sets is a function A with domain an index
set I. We write Ai instead of A(i).

Definition: The infinite cartesian product of a family A with index set
I = ι“J , written

∏
i∈I Ai or just

∏
A, is defined as

{f ∈ (
⋃

rng(A))J : (∀j ∈ J : f(j) ∈ A{j}}.

Note that this is of the same kind as (
⋃
rng(A))J , which belongs to

κ2(J) = κ(I) = κ(A).
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Note also that it is a consequence of the axiom of choice (in fact, an
equivalent statement to the axiom of choice) that the product of a
family of nonempty sets is in all cases nonempty. Note that the set of
sets

{{(j, x) : x ∈ A{j}} ∈ J ×
⋃

rngA : j ∈ J}

is a partition: a choice set for this partition is an element of the infinite
product.

We note an alternative definition of the infinite cartesian product:

{f ∈ (ι“(
⋃

rng(A)))I : (∀i ∈ I : f(i) ⊆ Ai}.

This set belongs to κ2(A). This definition supports products of larger
(but not much larger) families of sets.

Definition: The infinite disjoint union of a family A with domain an index
set I, written

∑
i∈I Ai or just

∑
A, is defined as

{({x}, i) ∈ ι“
⋃

(rngA)× I : x ∈ Ai}.

Note that this belongs to κ(I) = κ(A).

Now we define associated operations on families of cardinals, using the
same symbols. This overloading is traditional and in practice should not lead
to confusion.

Definition: An indexed family of cardinals will be a function κ : I → κ2(u)
where I = ι2“J and κi = κ(i) = κ({{j}}) = |Aj| for some indexed
family of sets A : j → κ(u) (the existence of a such a family of sets is
a consequence of the axiom of choice).

Definition: The infinite product
∏

κ =
∏

i∈I κi =
∏

j∈J |Aj| (where a
family of sets is chosen as in the previous definition) is defined as
T−1(|

∏
j∈J Aj|).

We discuss the application of T−1. The kind of the product of cardinals
should be the same as the kind of the κi’s. The kind of a κi has index
two higher than that of the kind of an Ai, so index one higher than
that of the kind of A, which is the kind of the product of sets. So the
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cardinality of the product of sets has kind with index one higher than
that of the cardinality of the κi’s, so we apply T−1 to get the product
of cardinals. The same analysis applies to infinite sums of cardinals
below.

One can show that the cardinality does not depend on the indexed
family of representatives chosen. If another family A′ is used, choose a
bijection fi : Ai → A′

i for each i ∈ I, and these can be used to show
that |

∏
j∈J |Aj|| = |

∏
j∈J |A′

j||.
Notice that I here is a set of triple singletons.

If the alternative definition were used, the infinite product
∏

κ =∏
i∈I κi =

∏
j∈J |Aj| (where a family of sets is chosen as in the pre-

vious definition) would be defined as T−2(|
∏

j∈J Aj|). The alternative
definition might allow products of somewhat larger sets of cardinals,
but not much larger. The index set I would in this case be a set of
double singletons.

Definition: The infinite sum
∑

κ =
∑

i∈I κi =
∑

j∈J |Aj| (where a family of

sets is chosen as in the previous definition) is defined as T−1(|
∑

j∈J Aj|).
One can show that the cardinality does not depend on the indexed
family of representatives chosen. If another family A′ is used, choose a
bijection fi : Ai → A′

i for each i ∈ I, and these can be used to show
that |

∑
j∈J |Aj|| = |

∑
j∈J |A′

j||.

Theorem: If |Ai| < |Bi| for all indices i in a suitable index set I, then∑
i∈I |Ai| <

∏
i∈I |Bi|. Notice that I = ι“J is required by the statement

to be proved: this is part of suitability.

Proof:
∑

i∈I |Ai| ≤
∏

i∈I |Bi|: Choose injections gi : Ai → Bi. Choose
an element bj from each B{j} which does not belong to gi“A{j}. The
cardinality conditions (and the axiom of choice) ensure that we can
do this. Then map each element ({x}, {j}) of

∑
i∈I Ai to the function

f ∈
∏

i∈I Bi sending each k to g{j}(x) if j = k and otherwise to bk.
This is clearly an injection: find the projection of a product element in
its range which is in an Ai and you can determine the element of the
sum from which it came.

Suppose for the sake of a contradiction that there is a bijection f from∑
i∈I Ai to

∏
i∈I Bi. Construct a function h in the product of the Bi’s
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such that the image h(j) of each j is chosen to be distinct from all
values f({{x}, {j})(j) for x ∈ A{j}, which can be done because there
are fewer possible values for this expression than there are elements of
B{j}. But this means that h differs in its value at some j from every
image of an element of the product of the Ai’s under f , so it cannot
be such an image. f−1(h) is of the form ({x}, {j}) for some x ∈ A{j}.
Now h(j) was chosen so that for any j (including this one!), for every
x ∈ A{j} (including this one!) it is distinct from f({{x}, {j})(j), that
is in this case h(j) itself, which is absurd.

This proof could be adapted to use the alternative definition of infinite
cartesian product with somewhat more elaborate discussion of iterated
kinds. The basic argument would be the same.

Observation: Something which may be perceived as a difficulty which does
not happen in other presentations of set theory is the need to index
correlated families of different kinds with indices of different kinds.
However, the singleton operation provides a natural correlation.
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14 Well-orderings, ordinals, aleph and beth

numbers, the Well-Ordering Theorem

We define some special kinds of relation.

Definition: A partial order on a set A is a subset ≤ of A× A which is

reflexive: (a ≤ a for every a ∈ A),

antisymmetric: (for any a, b, a ≤ b ∧ b ≤ a → a = b) and

transitive: (for any a, b, c, a ≤ b and b ≤ c implies a ≤ c).

By convention, when we denote a partial order as ≤ (possibly adorned
in some way), we use the symbol < (adorned in the same way, if
applicable) to denote the correlated strict partial order, defined as
a ≤ b ∧ a ̸= b. We will also by convention use ≤, >, for ≤−1, <−1.

Definition: A linear order on A is a partial order≤ on A with the additional
property that it is total: (∀a, b ∈ A : a ≤ b ∨ b ≤ A)).

Definition: A well-founded relation on a set A is a relation W on A with
the property that for every nonempty B ⊆ A there is m ∈ B (referred
to as a W -minimal element of B) such that for all b ∈ B, if bW m then
b = m. We say that a well-founded relation is strictly well-founded if
in addition it is irreflexive (it relates no element of its domain to itself).

Definition: A well-ordering on A is a well-founded linear order ≤ on A.
Notice that a ≤-minimal element m of B ⊆ A will satisfy m ≤ b for
all elements b of B (it will be minimum, not just minimal), because a
linear order is total.

Definition: For any relation R, we define fld(R) as dom(R) ∪ rng(R). For
any relations R, S, we define R ≈ S (R is isomorphic to S) as “there
exists a bijection f from fld(R) to fld(S) such that for all x, y, xR y ↔
f(x)S f(y).” Isomorphism is an equivalence relation on relations (on
any particular kind).

Definition: For any well-ordering ≤, we define the order type of ≤, written
ot(≤), as [≤]≈, the set of all relations isomorphic to ≤ (these will all
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be well-orderings). A set which is the order type of some well-ordering
is called an ordinal number .

Note that if empty sets are provided, the empty set is a well-ordering
and has an order type 0. Otherwise the first ordinal is the order type
of a well-ordering whose domain has one element, which we call 1.7

Definition: If ≤ is a well-ordering and x ∈ dom(≤), we define seg≤(x) as
{y : y ≤ x} and define [≤]x as ≤ ∩((κ(x) × seg≤(x))) (this is a well-
ordering). We define ≤α, where α is an ordinal number, as the x (if
there is one) such that ot([≤]x) = α. Notice that if ≤∈ κ2(x), then the
ordinal index in ≤α belongs to κ3(x).

Definition and Theorem: The natural order on ordinals is defined thus:
α ≤ β iff α = β ∨ (∃ ≤0∈ β : (∃x : [≤0]x ∈ α)). The Theorem is that
this is a well-ordering on the ordinal numbers.

Definition: For any set A such that there is a well-ordering on A, we define
init(|A|) as the minimum order type of a well-ordering of A. This
clearly does not depend on the choice of representative from the cardi-
nal |A| (if A is finite there is only one such order type, but otherwise
there are many). Such objects are referred to as initial ordinals : they
are in exact correspondence with cardinals; initial ordinals and cardi-
nals are not identified here as they are in other treatments of set theory.
We define ω as init(ℵ0): this is the smallest infinite ordinal.

Definition: For any relation R, we define Rι as {({x}, {y}) : (x, y) ∈ R} and
T ([R]≈) as [R

ι]≈. We define Rιn and T n([R]≈) similarly. Note that the
·ι operation is applicable to well-orderings (producing well-orderings)
and the T operation is applicable to ordinal numbers (producing ordinal
numbers).

Definition: We define an order <∗ on ordinals: α <∗ β is defined as α ≤ β
if β is finite, and otherwise as α < β. If empty sets are provided, <∗

coincides with ≤.

7There is more to say on this. If we use isomorphism classes of strict well-orderings
instead of isomorphism classes of (reflexive) well-orderings as order types, then the order
types of 0 and 1 are not distinguishable if we have empty sets (because both are empty)
and both fail to exist if we do not provide empty sets, so the first ordinal number turns
out to be 2, which did happen in the treatment in Principia Mathematics.
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Lemma: For any ordinal α, the order type of the natural order on ordi-
nals restricted to the ordinals <∗ α is T 2(α). The isomorphism is the
bijection taking {{β}} (for β < α) to ot(≤ ⌈{γ ∈ κ(β) : γ <∗ β}).
That this is a welldefined function is clear: that it is a bijection re-
quires the fact that no two distinct initial segments of a well-ordering
are isomorphic.

Definition: Let A be an infinite set. We define Ω(|A|) as the order type
of the natural order on the ordinals restricted to order types of well-
orderings of subsets of A. A well-ordering of a subset of A is in κ(A);
its order type is in κ2(A); the natural order on these is in κ3(A); the
order type of the natural order on all of these is in κ4(A).

Theorem: For every order type α of a well-ordering on a subset of A,
T 2(α) < Ω(|A|).
A corollary of this is that T−2(Ω(|κ(x)|)) cannot exist. If it did, it
would be of the same kind as the order type of well-orderings of κ(x),
but it would then have to be the order type of a well-ordering of κ(x)
and by the inequality just shown its image under T 2 would be less than
itself. This is the local version of the Burali-Forti paradox.

Proof: The order type of the ordinals <∗ such an α is T 2(α), and this is a
proper initial segment of the order types of well-orderings of subsets of
A under the natural order. We do appeal implicitly here to the fact
that A is infinite (in a way which is not necessary if empty sets are
provided).

Definition: For an ordinal α, define card(α) as the cardinality of the do-
main of any well-ordering belonging to A. Note that card(α) ∈ κ0(α).

Theorem: Ω(|A|) is an initial ordinal.

Proof: An ordinal α < Ω(|A|) is an ordinal T 2(β) where β is the order type
of a well-ordering of a subset of A. Now any ordinal γ with card(γ) =
card(T 2(α)) contains well-orderings W with size T 2(card(α)): W will
be isomorphic to an V ι2 with card(V ) = card(α). But then it is clear
that V is isomorphic to a well-ordering of a subset of A with some
order type δ and γ = T 2(δ) < Ω(|A|), which establishes that Ω(|A|) is
an initial ordinal.
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Definition: We define ℵ(|A|) as T−2(init−1(Ω(|A|))). Note that init−1(Ω(|A|)) ∈
κ4(A): we apply T−2 to bring the output to the same kind κ2(A) as
|A|. The notation |A|+ is also used for ℵ(|A|), usually when A is itself
well-orderable.

Theorem: ℵ(|A|) ̸≤ |A|. A corollary of this is that ℵ(|κ(x)|) does not exist.

Proof: If ℵ(|A|) ≤ |A|, then there is a well-ordering of A with field of size
ℵ(|A|), and so there is a well-ordering ofA with order type init(ℵ(|A|) =
T−2(Ω(|A|)) and we have already seen that this is impossible.

Discussion: The order types of well-orderings of subsets of A all belong to
P2(A × A). So among the well-orderings of subsets of P2(A × A) we
find the actual well ordering on the ordinals less than Ω(|A|), which
is of order type T 2(Ω(|A|)), so we have T 2(Ω(|A|)) < Ω(|P2(A× A)|).
If we use exp(|A|) to denote 2|A|, we can conveniently remark that
Ω(|A|) < Ω(| exp2(|A| · |A|) and that ℵ(|A|) < ℵ(exp2(|A| · |A|), which
will turn out to be a result of interest.

Transfinite Induction and Recursion: Any set S of ordinals which con-
tains 1 and is closed under strict suprema contains all ordinals. If A is
a set of ordinals, sup+(A) is the smallest ordinal in the set {α : (∀β ∈
S : β > α)} of strict upper bounds of A. S is said to be closed under
strict suprema iff it contains 1 [this clause not needed if empty sets are
provided] and for every A ⊆ S, sup+(A) ∈ S if sup(A) exists. To see
that this is true, consider the smallest α ̸∈ S. The ordinal α cannot be
1, and if it is not 1, then α = sup+{β : β < α}, the strict supremum
of a subset of S!

This is often broken into subcases: if S contains 1 [0, (sup+(∅))] and
contains α + 1 (sup+({α})) for each α ∈ S, and contains each limit
ordinal λ (λ = sup+({β : β < λ}) when every ordinal less than λ
belongs to S, then S contains all ordinals.

Recursion goes hand in hand with induction as always. For any object
x and function G sending functions on initial segments of the ordinals
to singletons, there is a unique function F such that F (1) = x and
otherwise F (α) is the sole element of G(F ⌈{β : β < α}). The special
treatment of 1 would not be required if we provided empty sets (and
the ordinal 0).
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This can be broken into subcases: the function might have separate
definitions stated for 1 [0], for successors, and for limit ordinals.

The results above do not involve choice. The following results do.

Theorem (Zorn’s Lemma): Any partial order ≤ with the property that
each linear suborder has an upper bound has a maximal element.

Proof: Let ≤ be a partial order in which each linear suborder has a maximal
element. Let P be the collection of all pairs (rng(≤0), {b}) where ≤0

is a linear suborder of ≤ and b is an upper bound in ≤ for the domain
of ≤0, and a strict upper bound if there is one. Let C be a choice set
for P . C is a function sending the range of each ≤0 to the singleton
of an upper bound for its domain which is strict if possible. Define
θ({x}) as x. Define a map F from ordinals to double singletons of
elements of the domain of ≤ as follows: choose F (1) an arbitrary double
singleton of an element of the domain of ≤ and otherwise define F (α) =
ι(C({θ2(F (β))) : β < α})), if the value of C computed is a strict
upper bound, and otherwise undefined. The range of F (and of any
restriction of F to an initial segment of the ordinals) is the range of
a linear suborder (in fact, a sub-well-order) of ≤ι2 , as is evident by
transfinite induction (and this linear suborder is the result of applying
T 2 to a linear suborder of ≤). There must be a largest element ν in
the range of F because application of C to the union of the union of
the range of F must give an object which is an element of the range
of F already computed (as F (ν), F (ν + 1) thus being undefined) and
θ2(F (ν)) must be a maximal element in ≤. Note that the kind of α here
is the kind of an order type of a subset of κ0(≤), and in fact in each
instance of the recursive definition, the order type of the restriction of
≤ to {θ2(F (β)) : β <∗ α} is α, so we are not going to have a failure of
definition because we run out of ordinals.

Definition: We refer to a set which is not finite (whose cardinality is not a
natural number) as infinite. We refer to a set with the cardinality of
the set of natural numbers as countably infinite or just countable.

Theorem: Every set can be well-ordered.

Proof: Let A be a set. Apply Zorn’s Lemma to the end extension order on
well-orderings of subsets of A (an order is less than another order if
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it is an initial segment of that order): a linear suborder of this order
has the union of its domain a well-ordering end extending all elements
of the domain of the linear suborder, which can be extended with one
more element if the union of its domain is not A. A maximal element
in this order is a well-ordering of A.

Theorem: Every infinite set has a countable subset.

Proof: Consider the inclusion order on finite subsets of an infinite set A.
Every linear suborder of this order is either infinite (but no more than
countably infinite) and will have countably infinite union, or finite,
and can be extended by adding another element to its maximum, if it
is finite. Apply Zorn’s Lemma.

Corollary: κ = κ + n for each infinite cardinal κ and natural number n.
This follows by considering a bijection fixing everything but a countable
subset of a set of size κ. κ + ℵ0 = κ: this follows from the fact that
a countable set has the same cardinality as the union of two disjoint
countable sets.

Theorem: κ+ κ = κ for each infinite cardinal κ.

Proof: Let A be a set of size κ. Consider the inclusion order on bijections
from (B×{x})∪ (B×{y}) [for fixed, distanct x, y] to B where B ⊆ A.
The union of a linear suborder in this order is an element of the domain
of the order: moreover, when A \ B is infinite, this can be properly
extended by exploiting the fact that a countably infinite subset C of
A\B can be placed in bijection with (C×{x})∪(C×{y}). A maximal
element in this order gives a bijection between (B × {x}) ∪ (B × {y})
and B when A \B is finite, witnessing κ+ κ = κ.

Corollary: For infinite cardinals κ, λ, κ+ λ = max(κ, λ).

Proof: If λ ≤ κ, κ ≤ κ+ λ ≤ κ+ κ = κ.

Theorem: κ · κ = κ, for each infinite cardinal κ.

Proof: Let A ∈ κ. Apply Zorn’s Lemma to the inclusion order on bijec-
tions from B × B to B where B ⊆ A. The union of the domain of a
linear suborder of this order is an element of the domain of the order.
Moreover, if A \B is infinite we can properly extend an element of the
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domain of this order by considering a countable subset C of A \ B.
B ∪ C × B ∪ C breaks into four parts, B × B, for which we have a
bijection to B, B × C and C × B, for which we can construct bijec-
tions because B × C injects to B × B, but also B × B injects to B
which injects to B×C, and C×C is countable. We already know that
|B|+ |B|+ |B|+ ℵ0 = |B|, so we can in fact contruct a bijection from
(B ∪C)× (B ∪C) to B ∪C by previous results. A maximal element in
the order will be a bijection from B ×B to B with A \B finite, which
witnesses κ · κ = κ.

Corollary: For infinite cardinals κ, λ, κ · λ = max(κ, λ).

Proof: If λ ≤ κ, κ ≤ κ · λ ≤ κ · κ = κ.

The arithmetic of addition and multiplication is vastly simplified by the
assumption of choice. It is worth noting that the arithmetic results stated
above hold for cardinals of well-orderable sets in any case. In our final re-
marks in this section we are not assuming choice, though we comment on its
consequences.

Theorem: The order on cardinals of well-orderable sets is a well-ordering.
Of course, if the axiom of choice holds, the order on all cardinals is a
well-ordering.

Proof: |A| ≤ |B| ↔ init(|A|) ≤ init(|B|).

Definition: Define ℵ as the natural order on infinite cardinals of well-orderable
sets. Then ℵα is defined for any (not too large) ordinal α by the ordinal
indexing convention. Let ℶ be the order on cardinals in the smallest
set of cardinals containing ℵ0 and closed under (κ 7→ κ+) and suprema.
Again, ℶα is defined for any (not too large) α by the ordinal index-
ing convention. The cardinals in the domain of ℶ are not necessarily
cardinals of well-orderable sets, but it should be clear that they are
well-ordered by the natural order on cardinals, so the indexing works.
We do not have strong assumptions about how long these orders are.
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15 Modelling our set theory in itself; a par-

allel consideration of ways to strengthen

the theory; ambiguity considered

In this section, we first discuss modelling the theory in itself, and conse-
quences which seem to follow in the most natural such models which are not
provable in our theory, then we discuss two incompatible ways in which the
theory can be extended.

15.1 Natural models

We discuss the project of building a structure in our theory which is a model
of the theory. Such a structure would have to have a domain (which we call
M for model) and support equality (which we allow equality restricted to M
to interpret) and membership, which we suppose interpreted by a relation
E. Though conceptually it is nice to have a name M for the domain of
the model, in fact it is definable as dom(E): every object is a member of
something.

Definition: We call a relation E extensional iff for any elements x, y of
rng(E) with the property that E−1“x = E−1“y we have x = y.

This amounts to a description of what has to be true of E if it is to model
the axiom of extensionality for nonempty sets.

Definition: We call a sorted extensional relation E sorted iff for every x ∈
dom(E) there is a K(x) ∈ E“{x} such that

E−1“K(x) = {y ∈ dom(E) : E“{x} ∩ E“{y} ≠ ∅};

further, for any x, y ∈ dom(E), if K(K(x)) = K(K(y)) then K(x) =
K(y).

This expresses the axiom of kinds and the axiom of diversity in internal
terms.

We provide for the axiom of separation in internal terms by making a very
strong assumption. The models we describe in this way are called natural
models. The idea of a natural model is that every subset of what the model
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thinks of as a kind is implemented in the model. A more careful analysis of
what is needed for a model of separation, which is much less, will be given
below.

Definition: We call an extensional relation E complete iff for each a ∈
rng(A), and for each nonempty B ⊆ E−1“A, there is b such that
bE K(a) and E−1“b = B. We further provide that every K(a) con-
tains at least one element c such that there is no dE c.

We could in addition provide a functionN such thatN(K(x))EK(K(x))
and for all y,¬y E N(K(x)). This would implement empty sets in each
appropriate kind.

Finally, we provide for pairing in the model.

Definition: We call a sorted extensional relation E coupled iff eachK(a) has
at least two elements and there is an injective map P whose domain is
the union of all K(a)×K(a) for a ∈ dom(E) such that

P“(K(a)×K(a)) ⊆ K(a)

for each a ∈ dom(E).

A natural model of our theory in our theory is determined by a coupled
complete sorted extensional relation. It should be clear that all primitive
notions and axioms of our theory translate into terms of these models. We
haven’t provided for choice but it could easily be expressed (and will in fact
hold in natural models if assumed in the theory itself).

Our theory does not prove that there are natural models of itself. An
elegant argument for this is to show that if there is a natural model of the
theory, there is a natural model which itself thinks there are no natural
models.

Notice that for any a ∈ M = dom(E), |K(K(a))| ≥ 2|K(a)| by com-
pleteness. So the existence of a natural model of our theory implies the
existence of a sequence of infinite cardinals κi such that κi+1 ≥ 2κi . This
implies that each ℶi for i a natural number exists. Choose an element Ai

of each ℶi (in such a way that these sets are pairwise disjoint) and choose
an injection fi : P(Ai) → ι“Ai+1. Define a relation E on

⋃
i∈N Ai: xE y iff

(∃i : x ∈ f−1
i ({y}). It is straightforward to see that this models our theory

(showing that this E is a coupled relation is an exercise) and evident that
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in this model of our theory there is no natural model of our theory, because
any kind in the sense of this model is of size ℶn for a natural number n and
so cannot support a sequence of infinite cardinals κi such that κi+1 ≥ 2κi .

Intuitively, the reason that our theory cannot see natural models of itself
in general is that all sets in a natural model must be in the same kind in the
theory we are working in, and there is no guaranteed that a single kind in
our world holds large enough sets to serve as kinds in the sense of a natural
model.

Our theory does not prove that there are individuals (showing this will
require extra work). But every natural model contains at least one kind of
individuals. The reason for this is that ℵ(|K(a)|) ≤ ℵ(exp2(|K(a)|·K(a)|)) ≤
ℵ(|K3(a)|). There must be a smallest cardinal ℵ(|K(a)|) even if choice is not
assumed, and by the inequality this K(a) cannot be a K3(a), so there must
be a type of individuals in the natural model.

It is impossible to express in the language of our theory the idea that there
is a single sequence {κi(x)}i≥1 containing all kinds, but the most natural
construction of a natural model leads to this picture. Choose a sequence of
infinite cardinals κi such that κi+1 ≥ 2κi and κ2

i = κi. Choose an element
Ai of each κi (in such a way that these sets are pairwise disjoint) and choose
an injection fi : P(Ai) → ι“Ai+1 (and choose pairing functions on each
Ai). Define a relation E on

⋃
i∈N Ai: xE y iff (∃i : x ∈ f−1

i ({y}). Nothing
prevents us from choosing many such sequences and having disjoint indexed
hierarchies of kinds, but nothing is gained by it in terms of the mathematics
we can do.

15.2 Extending the theory to internalize the hierarchy
of kinds

The simplest axioms which give the theory the ability to talk about the
iterated hierarchy of kinds are motivated by things we have actually done in
our mathematical development.

Axiom of Iterated Singletons: We postulate for each object x and for
each natural number n (not necessarily of the same kind as x) an ob-
ject ιn(x), with ι0(x) = x and ιn+1(x) = {ιn(x)}. This internalizes a
definition we are already using as an axiom. The power of introducing
this is that it can be used in comprehension.
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Definition: κn+1(x) = κ(ιn(x)) [it is provable by induction on n that κn+1(x) =
κn+1(y) for x ∼ y.] ιn“A = {ιn(a) ∈ κn(A) : a ∈ A}. T n(x) = |ιn“A|.
Of course we have already established these facts, but we are now able
to prove by induction statements we could only give metatheoretical
arguments for beforehand.

Discussion: Some other iterations such as Pn(A) and
⋃n(A) seem to present

more difficulties, but can be defined cleverly in terms of these opera-
tions. In fact, iteration can be managed. For example if F (x) is a
definable object in κ2(x), we can define F n(x) as the term an of a finite
sequence a such that a0 = ιn(x) and for each i, for some u, ai = ιn−i(u)
and ai+1 = ιn−(i+1)(F (u)). Other differentials in kind between input
and output of an operation can be handled similarly, and certainly the
iterations just mentioned are manageable in this way.

Axiom of Hierarchy: There is an x such that for every y there is an n
such that y ∈ κn(x). This axiom neatly confines the hierarchy to the
minimal configuration, an iterated construction of kinds over a kind of
individuals.

Observation: It is worth noting that this theory with the Axiom of Iter-
ated Singletons and without Hierarchy proves that there is a type of
individuals, using the same argument that T 2(ℵ(|κ(x)|)) < ℵ(|κ3(x)|)
indicated above, and then remarking that for any x there must be a
smallest cardinal of the form T−n(ℵ(κ1−n(x))), so there must be a type
of individuals κ(u) and a natural number m so that κm(u) = x.

Discussion: The key thing here is actually being able to express general
statements about the relationships between kinds in a hierarchy, which
the basic language of our theory cannot do. The extension of our lan-
guage described here is very natural and true to the mathematics as we
have actually developed it. It allows some simplifications of mathemat-
ical terminology. For example, natural numbers can be taken to be the
natural numbers of the lowest kind in which there are natural numbers
in the general sense. We can say that two sets A,B are equinumerous
iff there is a bijection from ιm“A to ιn“B for some natural numbers
m,n and define |A| as the set of all sets B equinumerous with A in this
sense and not equinumerous with any set in a kind of lower index than
κ(B). In this way sets in all kinds are counted by the same cardinals.
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Something similar can be done with ordinals. For many purposes one
would still want to talk about cardinals and ordinals of a fixed kind,
but this device is amusing and philosophically satisfying.

It is still impossible to say anything about the relationship between
kinds which are not in a hierarchy with each other using the iterated
singleton approach.

We outline a quite different seeming structural axiom with similar conse-
quences.

Axiom of Ordered Pairs (2): We postulate for any objects x, y whatso-
ever an object (x, y): we postulate the axioms (x, y) = (z, w) → x =
z ∧ y = w and x ∼ z ∧ y ∼ w → (x, y) ∼ (z, w).

Discussion: This axiom allows definition of equinumerousness between sets
of any kinds, and implies the existence of a kind of individuals for the
usual cardinality reasons. A further refinement of this which allows a
limited amount of dependent typing is to assert that y ∈ z → (x, y) ∼
(x, z).
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15.3 The temptation of ambiguity

In the main development of this theory, except in the previous subsection,
there is a good deal of relativity of kinds. Mathematical objects are defined
relative to a base kind κ(x) to the extent that we felt the need for a spe-
cial convention to simplify references to the base kind. The set of natural
numbers, for example, is defined in each type κ2(x). Anything that we can
actually prove about a kind κ(x) or define over κ(x) [often in some κn(x) for
n > 1] we can prove or define over any other kind.

This suggests the following

Axiom of Ambiguity: For any statement P (x) in which x is the only free
variable, (∀xy : P (κ(x)) ↔ P (κ(y))) holds.

This says that all the kinds look the same in any way we can express.
Notice that it implies immediately that there are no individuals, so it is not
consistent with the axiom of iterated singletons.

The theory still proves that the kinds are distinct, but it makes us quite
indifferent to what kind we are talking about. It encourages our use of
notations with bold face numeral subscripts replacing kind subscripts, as
long as [as the convention requires in any case] all the boldface subscripts
hide reference to the same kind.

With some logical finesse, we can further use our theory with the axiom
of ambiguity to describe a world in which the kinds are all the same.
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