
A Disingenuous Introduction to Category
Theory

M. Randall Holmes

6/25/2020
11215pm Boise time– up to coequalizers

1:42 pm Boise time, drafted the universal property of
exponentials.

3:45 pm further abstract description of exponentiation. Made
stratification indices uniformly superscripts.

12 pm 6/16/2020 minor corrections
1 pm 6/16/2020: subobject classifier installed.

10 15 am 6/25/2020 working on internal interpretation of
constructive type theory or constructive NF. still sketchy.

1 Introduction

This is an introduction to basic concepts of category theory. Nothing more.
Of course.

2 Set theoretical preliminaries

We review basics of set theory, the usual foundation for mathematics. Of
course, there are those who think the tables should be turned and category
theory should be used to found set theory. We will come back to that point.

We assume for the moment standard preliminaries of first order logic with
equality, though if we get to foundations of logic in category theory we may
want to insert these above.

1

The basic primitive concept of set theory is membership, a binary relation
written x ∈ y.

A special primitive constant ∅ is provided for convenience.
The axiom of the empty set asserts (∀y : y 6∈ ∅) (where y 6∈ x abbreviates

¬y ∈ x).
We define class(x) (in English, x is a class) as x = ∅ ∨ (∃y : y ∈ x).
The axiom of extensionality asserts

(∀xy : class(x) ∧ class(y) ∧ (∀z : z ∈ x↔ z ∈ y)),

classes with the same elements are equal.
Objects which are not classes are called atoms.
We define element(x) as (∃y : x ∈ y).
We provide the axiom of atoms: (∀x : ¬class(x)→ element(x)).
We define atom(x) as ¬class(x) and set(x) as class(x) ∧ element(x).
The axiom of class comprehension asserts for every formula φ and variable

A not occurring in φ, the universal closure of

(∃A : class(A) ∧ (∀x : element(x)→ (x ∈ A↔ φ))) :

we introduce the notation {x : φ} for the unique value of A that witnesses
this.

Before introducing our next axiom scheme, we decorate our variables a
bit.

From this point on, we reserve bold face upper case variables for classes
(noting that sets are classes but atoms are not) and reserve lower case vari-
ables for elements (whether sets or atoms). Upper case variables which are
not boldface may be used for sets: some upper case letters will be defined
constants which stand for classes which are not sets. Further, we provide
additional series of variables xi adorned with natural number indices, which
are restricted to elements. A superscripted upper case variable Ai might be
used and will represent sets rather than general elements.

We call an atomic formula “well-typed” if both variables in it are element
or set variables and either one of them is unsuperscripted or the formula is of
the form xi = yi or xi ∈ yi+1. A formula is stratified iff all variables in it are
element or set variables, all bound variables are superscripted, and all atomic
formulas in it are well-typed. Note that our theory is not sorted: formulas
which are not well-typed or stratified are nonetheless formulas.

2

The axiom scheme of set comprehension asserts the universal closure of
each formula (∃Ai+1 : xi ∈ Ai+1 ↔ φ), where φ is a stratified formula which
does not contain any occurrence of Ai+1. Note that dropping the superscripts
from all variables in an instance of comprehension does give a theorem by
standard logical considerations of renaming of bound variables (as long as
this doesn’t create identifications between variables), and we do not intend to
adorn all our variables with superscripts in practice. Notice that the axiom
of class comprehension already gives us {xi : φ}: what the axiom scheme of
set comprehension gives us in addition is that this class is a set.1

The typing scheme defends us from the Russell paradox, while preserving
the universal set and complements of sets. {x : x 6∈ x}, the Russell class,
certainly exists by class comprehension, and if it were an element, paradox
would follow. But {x : x = x} and {x : x 6∈ a} are sets by stratified
comprehension. In general, a lot of big collections are sets, but their behavior
may not be quite what we expect from ordinary small collections.

We define the natural numbers, the general idea being that n ∈ N is the
set of all sets with n elements, but of course we cannot say that.

Notice that ∅ = {x : x 6= x} is clearly a set by set comprehension.
We define {x} as {y : y = x} as usual: clearly this is a set. The notation

ι(x) for {x} is also useful.
We define 0 as {∅}. Notice that 0 is the set of all sets with zero elements

in the usual sense.
We define a ∪ b as {x : x ∈ a ∨ x ∈ b} for any sets a, b. Clearly binary

unions of sets are sets. We also provide the usual a∩b for {x : x ∈ a∧x ∈ b},
ac for {x : x 6∈ a}, V for ∅c, and a \ b for a ∩ bc. All of these are sets. All of
these operations can be defined on classes as well: we adopt the convention
that any definition of a set using an instance of comprehension can have a
class substituted for a parameter which does not appear on the left side of ∈
(or otherwise in the role of an element) in the definition: for example, A∪B
is {x : x ∈ A ∨ x ∈ B}

For any set x, we define σ(x) as {u ∪ {v} : u ∈ x ∧ v 6∈ u}. We leave
it as an exercise for the gentle reader to verify that σ(x) is a set by set
comprehension. Notice that if x is the set of all sets with n elements, σ(x)
will be the set of all sets with n+ 1 elements.

1The sense in which we are being disingenuous is of course that this set theory is not
the one we are used to. This is MLU, the second order theory of a model of the version of
Quine’s New Foundations which allows urelements, with the proviso that subcollections
of the model which are extensions of sets in the model are identified with those sets.

3

We define the collection I of inductive sets as

{I : 0 ∈ I ∧ (∀x ∈ I : σ(x) ∈ I)}.

The reader may verify that this is a set.
For any set A we define

⋃
A as {x : (∃a : x ∈ a ∧ a ∈ A)} and

⋂
A =

{x : (∀a : a ∈ A→ x ∈ a)}. Note that this is a set. Unions of classes can be
defined similarly.

We then define N, the collection of natural numbers, as
⋂
I. We define

1 as σ(0), 2 as σ(1) and so forth.
We provide an additional axiom governing the natural numbers (the ax-

iom of mathematical induction):

(∀n ∈ N : (∀I : 0 ∈ I ∧ (∀x : x ∈ I→ σ(x) ∈ I)→ n ∈ I)) :

every inductive class contains all the natural numbers.
Mathematical induction for conditions that define sets is of course pro-

vided by the definition of N: but certain unstratified instances of mathemat-
ical induction are important.

We define {x, y} as {u : u = x ∨ u = y}. More generally, we define
{x1, . . . , xn, xn+1} as {x1, . . . , xn} ∪ {xn+1}.

We could define (x, y) as {{x}, {x, y}} (following Kuratowski). We leave
it as a nontrivial exercise for the reader to verify that (x, y) = (z, w)→ x =
z ∧ y = w.

Hoever, we do not use this definition. We instead introduce a primitive
notion of ordered pair. For any terms a, b of our language, (a, b) is a term.
In instances of stratified comprehension, the correct typing is (ai, bi)i (if we
used the Kuratowski definition the typing would be (ai, bi)i+2).

The axiom of ordered pairs asserts (a, b) = (c, d) ↔ a = c ∧ b = d. This
is not a mere technicality: it is (inessentially) stronger than the axiom of
infinity.

If we assumed that there were no atoms, we could introduce the type-level
pair by a rather baroque definition.

More generally, the definition of stratified comprehension can be extended
to involve term constructions. Each term construction f(t1, . . . , tn) must
have a required type displacement between the type of each input variable
or term and the type of the whole term. Atomic formulas then have the
same required type displacements as in the original definition. These term

4

constructions can be introduced as primitives or by definition (as for example
using an instance of comprehension).

We define A×B as {(a, b) : a ∈ A ∧ b ∈ B}.
We define a relation as a class of ordered pairs. xR y means (x, y) ∈ R.

dom[R] = {x : (∃y : xRy}; R−1 = {(y, x) : xRy}; img[R] = dom[R−1]. Note
that of course a relation can be a set, and the domain, inverse, and image of
a set relation are sets.

We define R“A as {y : (∃x ∈ A : xRy)}. We say that a relation F is a
function iff for every x, either F“{x} = {y} for some y or F“{x} = ∅. We
define F(x) as the unique y such that F“{x} = {y}. We define F : A → B
as holding iff F is a function, dom[F] = A, and img[F] ⊆ B. As was the case
for domain and image above, we will avoid using notation of the form f(x)
for operations which can take classes as inputs. If R is a set relation, we will
be willing to write dom(R), for example, because there is a function (in fact,
a set function) which takes each set relation to its domain. We note that
we do use binary relation notation (as for example x ∈ A) for “relations”
which can obtain between classes: but do bear in mind that a genuine class
relation can only relate elements. Another notational convention which we
occasionally use below (taken from the other document I am working on in
parallel) is F‘x, a notation synonymous with F(x) in this document except
that it signals that F cannot expected to be a set.

A function F is called one-to-one or an injection iff F−1 is a function. A
set function f is a bijection from A to B iff f : A → B and f−1 : B → A.
We define A ∼ B as holding precisely if there is a bijection from A to B.
This similarity relation is easily seen to be an equivalence relation. We define
|A| as {B : B ∼ A}: this is called the cardinality or size of A. We define
|A| ≤ |B| as holding iff there is an injection f : A → B. It is a well-known
theorem that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|, that is, A ∼ B.
It is straightforward to prove that the natural numbers as defined above are
cardinal numbers.

A partition is defined as a pairwise disjoint class of sets. A choice class
for a partition P is a class C such that for each P ∈ P, |P ∩ C| = 1. We
assert the Axiom of Choice in the quite strong form that every partition has
a choice class.

The assertion that the order relation on cardinals satisfies trichotomy is
equivalent to the weaker form of the axiom of choice which asserts that each
set partition has a choice set.

5

3 The definition of a category

A category is determined by a class O of objects and a class M of morphisms ,
with certain additional operations. With each pair (A,B) in O×O we
associate a set Hom(A,B) ⊆M: these sets make up a partition of M so each
morphism f has a uniquely determined source A and target B such that
f ∈ Hom(A,B). We provide an operation ◦ whch is defined for f, g with
g ∈ Hom(A,B), f ∈ Hom(B,C), and which satisfies f ◦ g ∈ Hom(A,C). The
partial operation ◦ is associative. For each A ∈ O we have 1A ∈ M which
satisfies f = f ◦ 1A for all suitable f and 1A ◦ f = f for all suitable f .

We note that the conventional use of capital letters for objects and lower
case letters for morphisms may set up some conflicts with notation for ele-
ments and sets. In any case, note that objects and morphisms are always
elements. We note some technical conditions. O and M might not be sets,
but the function ◦ must be the restriction to M×M of a set function. There
are weaker restrictions on the maps Hom and 1, which require a preliminary
development. Define I as the smallest class which contains every ((0, x), x)
and if it contains ((n, x), y) also contains ((n+ 1, x), {y}). We can profitably
write I(n, x) as ιn‘x. We can then define an n-lateral function: F is n-lateral
iff {(ιk+n‘x, ιk‘(F‘x)) : x ∈ dom[F]} is a set for every k ≥ n. Our further
condition is that both Hom and 1 are subclasses of lateral functions: if 1 is
a subclass of an n-lateral function, Hom is a subclass of an (n + 1)-lateral
function.2

We say that a category is a set category if the partial function ◦ on pairs
of morphisms is a set (whence it follows that O,M are sets). It does not
follow that Hom is a set, but the function sending ({A}, {B}) to Hom(A,B) is
a set. It is worth noting that all the structure of a category is actually coded
into ◦ (the objects A being accessed via their identity morphisms 1A).

We expand on the point that ◦ can be interpreted as carrying the entire
category structure. A composition operation for a category is a function
M×M→M for some M (thus we extract the class of morphisms). For any
f, g, h, if either of f◦(g◦h) or (f◦g)◦h is defined, the other is defined and they
are equal. For any f , there is a unique 1source(f) such that f ◦ 1source(f) = f

2In NF(U) we would have to caution that the exponent in ιn‘x is not a natural number
theory of the theory at all: here it is, but God is not mocked. The class of natural numbers
for which ιn‘x is defined is not necessarily the set of all natural numbers, and this makes
exactly the same point. Certainly we cannot quantify over such an index in an instance
of set comprehension.

6

and for all x for which 1source(f) ◦ x is defined, this is equal to x, and for all
x for which x ◦ 1source(f) is defined, this is x. For any f , there is a unique
1target(f) such that 1target(f) ◦ f = f and for all x for which 1target(f) ◦ x is
defined, this is equal to x, and for all x for which x ◦ 1target(f) is defined,
this is x. We identify objects in O with their identity morphisms, and we
define Hom(A,B) as {f : 1source(f) = A ∧ 1target(f) = B}. A little calculation
will reveal that this adds no information to the description above except for
collapsing reference to objects to reference to their identity functions.

A concrete example of a category is the category of sets and functions: the
objects of this category are all the sets, the morphisms in Hom(A,B) are the
pairs (f,B) where f : A→ B, the composition of morphisms is the obvious
operation induced on such pairs by ordinary composition of functions, and the
identity morphisms are suitably labelled identity maps. In our discussions
of this specific category, we will generally speak as if the morphisms were
literally the functions without the labels.

Many natural examples of categories are presented with the objects the
sets with some structure and the morphisms the functions which respect that
structure in a suitable sense. For example, there is a category of topological
spaces with continuous functions as the morphisms, and a category of groups
with homomorphisms of groups as the morphisms. Not all categories are
naturally presented in this way, though there is a perhaps silly way to present
any category as a system of classes and functions: view A ∈ O as the union
of all classes Hom(C,A) and the functor f ∈ Hom(A,B) as implemented by the
function taking each g ∈ Hom(C,A) to f ◦g ∈ Hom(C,B). It is not necessarily
the case that a small category can be presented as a class with sets as objects
and set functions between those sets as morphisms.

A structure preserving map (called a functor) from one category to an-
other is determined by a map F whose domain is the union of the sets
Hom(A,B) in the first category, with a map FO induced by F(1A) = 1FO(A),
each F“Hom(A,B) ⊆ Hom(FO(A),FO(B)), and F(f ◦g) = F(f)◦F(g) relating
the composition operations of the two categories. There is a category of set
categories (which is itself a set category) whose objects are the set categories
(which can conveniently be coded by their composition operations as func-
tions, identifiying objects with identity morphisms) and whose morphisms
are the functors. The category of set categories is a set (as are the category
of sets and functions, the category of topological spaces, and the category
of groups). We will see examples of categories which are not sets later. We
require that any functor be a subclass of a lateral function.

7

The identification of objects A with their identity arrows 1A does depend
on 1A being uniquely determined by A and vice versa. If we are given 1A,
we immediately are given A as its source and target. Suppose there were
another I ∈ Hom(A,A) such that I ◦ x = x and x ◦ I = x whenever the left
side of each equation is defined. I ◦ 1A is defined, and is equal to both I and
1A by their respective identity map properties, so I = 1A as desired.

Where a specific category C is considered, we call its class of objects
OC, its class of morphisms MC, and label its hom-sets HomC(A,B) We will
normally not label identity maps or the composition function, though we
could. We exhibit use of this notation in the definition of subcategory: C is a
subcategory of D iff OC ⊆ OC, HomC(A,B) ⊆ HomD(A,B), and composition
and identity morphism constructions on C are restrictions of those on D.
A full subcategory is one which satisfies equality rather than inclusion of
homsets of pairs of objects of C in the two categories: a full subcategory of
a given category is determined by any class of objects of the given category,
and includes all morphisms between these objects.

4 Emulating set theoretical constructions in

category theory

In this section we discuss emulation of properties of sets (and of functions
considered as sets) in categories.

Recall that we noted that every category can be considered as a category
of structured classes, with f : A → B implemented as the class function
from the union of all Hom(C,A), mapping each g in a Hom(C,A) to f ◦ g in
Hom(C,B). It should be noted though that the function (g 7→ f ◦ g) is a set
function but is one type higher than f in terms of stratified comprehension:
this issue will turn out to be important.

This does suggest that composition might take over the role of function
application in a category-theoretic formulation of interesting properties of
sets and functions.

For example, a function f is one-to-one or a injection iff for any x, y, if
f(x) = f(y) then x = y. Specify this to for any x, f(g(x)) = f(h(x)) then
g(x) = h(x). It then follows in the category of sets and functions that if
f ◦ g = f ◦ h, then g = h (using extensionality of functions).

From this we can abstract a property of any arrow f in a category C:

8

f : A → B is monic iff for any g, h : C → A, if f ◦ g = f ◦ h then g = h.
This is a purely category theoretic property, in which the internal character
of the various objects and morphisms plays no role.

A set function from A to B is said to be onto B or surjective if its
image is exactly B. In the category of sets and functions, a function comes
decorated with its codomain as an intrinsic feature, so this property is an
absolute property of the function. The usual formulaton of this is that for
every y ∈ B, there is x ∈ A such that f(x) = y. Suppose we have g : A→ C
and h : A → C. If g(f(x)) = h(f(x)) for every x, then g = h, because the
expression f(x) ranges over all values in B. So if g ◦ f = h ◦ f , then g = h.

From this we can abstract a property of any arrow f in a category C:
f : A→ B is epic iff for any g, h : C → A, if g ◦ f = h ◦ f then g = h. This
is a purely category theoretic property, in which the internal character of the
various objects and morphisms plays no role.

These properties are dual in an interesting sense. If we reverse the direc-
tion of all arrows in a category, we get a converse category. Notice that the
monic arrows of a category are the epic arrows of the converse category, and
vice versa.

It is important to note that the category theorist prefers not to identify a
function with its graph alone (as is usual for set theorists and as we have done
in our preamble. The morphisms in the category of sets and functions are at
the very least decorated with a codomain as an extra item of information.

An idea whose motivation in set theoretical terms is obvious is the notion
of the inverse of a morphism: g = f−1 iff f ∈ Hom(A,B), g ∈ Hom(B,A),
f ◦ g = 1B and g ◦f = 1A. That there can be only one inverse of a morphism
(justifying the notation f−1) we show as follows. Suppose f ◦ g = 1B and
g ◦ f = 1A. g = g ◦ 1B = g ◦ f ◦ f−1 = 1A ◦ f−1 = f−1.

A morphism with an inverse is called an isomorphism. It is not in general
the case (as it is in the category of sets and functions) that an arrow which
is monic and epic is an isomorphism. But it will be true in special sorts of
category which provide alternative formulations of set theory, which we will
introduce.

Consider any category in which there is at most one element in each
Hom(A,B) (such a category is easily determined by any quasi-order, with sin-
gletons {A} of domain elements A of the quasi order as objects and Hom(A,B)
neatly definable as the intersection of {(A,B)} with the quasi-order. Every
arrow in such a category is obviously both monic and epic, but only the iden-
tity maps have inverses. The use of singletons of elements of the quasi-order

9

as objects ensures that this is a set category if the quasi-order is a set.
We say that objects A and B in a category are isomorphic iff there is an

invertible morphism from A to B. This ensures an exact correspondence be-
tween arrows from A,B to other objects (in either direction) by composition
with the invertible arrow. In the category of sets and functions, isomor-
phic objects are sets with the same cardinality. In other categories, objects
which are isomorphic have the same structure in the sense appropriate to
that category.

We look for a category theoretical characterization of empty sets in the
realm of sets and functions. The empty set has the property that there is
exactly one function from ∅ to A for any set A. So we define an initial object
in a category as an object A such that for any B, Hom(A,B) has exactly one
element. Notice that any two initial objects are isomorphic: if A and B are
initial, there is exactly one arrow f from A to B and exactly one arrow g
from B to A. Now f ◦ g must be the unique arrow 1B from B to B, and g ◦f
must be the unique arrow 1A from A to A, so f (and g) are invertible. In
set theory there is one empty set, but even in our set theory, we could add
the atoms as additional empty sets. In other categories there may be many
initial objects.

Ain interesting property of singleton sets is that for any singleton {x}
and set A, there is just one function from A to {x} (the constant function).
So we define a terminal object in a category as an object A such that for
any object B, Hom(B,A) has exactly one element. All terminal objects are
isomorphic by a very similar argument to that we gave above for initial
objects. In set theory it is natural for there to be many terminal objects. In
some categories there is only one. It is interesting to note that the notions
of initial and terminal object are dual in a sense mentioned before.

We formalize this notion of duality. For any category C, define Cop as the
category with the same objects and morphisms but with composition f ◦op g
defined as g◦f , and with Hom(A,B) of the new category defined as Hom(B,A)
of the original category. We can then observe that proving a theorem about
a category theoretic concept often immediately proves a theorem about a
dual concept: for example, we showed that all initial objects in a category
C are isomorphic, from which it follows that all terminal objects in Cop are
isomorphic, but every category is a converse category so all terminal objects
in any category are isomorphic.

We now tackle the more complicated construction of Cartesian products
A × B and import it into a category theoretic setting. An important role

10

is played by the projection operations π1 : (A × B) → A and π2 : (A ×
B) → B, which satisfy π1(x, y) = x and π2(x, y) = y. We want to modify
this to use composition instead of application. π1(f(x), g(x)) = f(x) and
π2(f(x), g(x)) = g(x). Define f ⊗ g(x) as (f(x), g(x)). We can then write
this as π1 ◦ (f ⊗ g) = f and π2 ◦ (f ⊗ g) = g. Morever, if π1 ◦ h = f
and π2 ◦ h = g, we have π1(h(x)) = f(x), π2(h(x)) = g(x), and so h(x) =
(f(x), g(x)). So, we say in a general category theory setting that an object
C with arrows π1 ∈ Hom(C,A) and π2 ∈ Hom(C,B) is a product of A,B if
for each f ∈ Hom(D,A), g ∈ Hom(D,B) (for any object D) there is a unique
f ⊗ g ∈ Hom(D,C) such that π1 ◦ (f ⊗ g) = f and π2 ◦ (f ⊗ g) = g.

It should be noted that the object C in the product of A,B is unique
only up to isomorphism. In the category of sets and functions, any set of
the same cardinality as A×B is a product of A,B with different projection
maps. This understood, we can use the notation A× B for C as long as we
understand that this identifies the object only up to isomorphism.

Now we are going to introduce coproducts, proceeding in the opposite di-
rection in our presentation. First we introduce the category theoretic notion
as the dual of product, then we see what we have implemented in the set
theoretic context.

A coproduct of A,B is an object C with arrows k1, k2 in Hom(A,C) and
Hom(B,C) respectively, such that for any f, g in Hom(A,D), Hom(B,D) re-
spectively there is a unique h ∈ Hom(C,D) such that h ◦ k1 = f, h ◦ k2 = g.

The coproduct implements the disjoint union of sets. If A and B are sets,
A⊕ B = (A× {0}) ∪ (B × {1}) with the maps k1(a) = (a, 0) for a ∈ A and
k2(b) = (b, 1) for b ∈ B is a coproduct. We can use the notation A ⊕ B for
the object in a coproduct of A,B as long as we remember that this is defined
only up to isomorphism.

The next concept we implement is the equalizer of two functions f, g :
A → B. The motivation in the category of sets and functions is that the
equalizer of f and g is the inclusion map i from the set E = {f(x) = g(x) :
x ∈ A into A. We immediately have f(i(x) = g(i(x)) for all x ∈ E, so
f ◦ i = g ◦ i. Now suppose f ◦ h = g ◦ h for a map h : C → A. This means
that f(h(x)) = g(h(x)) for all x, so h(x) is always in E, so there is a unique
map k from C into E which we can define informally as i−1 ◦ h, siuch that
i ◦ k = h.

Abstractly, we say that an equalizer of f, g : A→ B is an arrow i : E → A
with the property that f◦i = g◦i and for any h : C → A such that f◦h = g◦h
we find a unique arrow k : C → E such that i ◦ k = h.

11

We now define the concepts of limit and colimit. A diagram D is a
category C is a subcategory of C (finite in the applications we have in mind).
A cone for a diagram in C consists of an object V of C together with an arrow
vd from V to each d ∈ D with the property that for each arrow a : d→ e in
C we have a ◦ vd = vd′ . A limit for the diagram D is a D-cone with vertex V
and arrows vd such that for every D-cone with vertex V ′ and arrows v′d there
is exactly one arrow f from V ′ to V such that for each d ∈ D, vd ◦ f = v′d.

A product is the limit of a subcategory simply consisting of two objects
and no arrows. An equalizer is the limit of a subcategory consisting of two
objects and two arrows with the given pair of objects as source and target.
A limit of the empty diagram is a terminal object.

A colimit for a diagram in a category C is a limit in the category Cop

(which has the same objects, the same arrows, and f ◦Cop g = g ◦C f).
A coproduct is the colimit of a subcategory consisting of two objects and

no arrows. An initial object is a colimit of the empty subcategory.
Note that limits and colimits are unique up to isomorphism (there may

be distinct limits/colimits of the same diagram, but there is an invertible
arrow between them).

Now for coequalizers. A coequalizer is a colimit for a diagram consisting
of two objects A,B and two arrows f, g : A→ B.

In the category of sets, the existence of coequalizers has to do with the
project of identifying objects in equivalence classes under an equivalence
relation R. We remind ourselves that a relation R is an equivalence relation
iff it is reflexive, symmetric, and transitive. With any x ∈ dom(R) we can
associate [x]R (often written [x] if the equivalence relation is understood
from context), defined as {y : y Rx} , the equivalence class of x under R.
We can show that [x]R = [y]R iff xR y, so it might seem that we can simply
represent each object in the domain of R by its equivalence class and effect
the collapse. Unfortunately, [xi]i+1

R is the superscripting rule for this symbol:
the equivalence classes are not ideal as surrogates for the elements of the
domain of R when we collapse them together, because they are at the wrong
relative type. A natural solution is to choose a representative x∗ from each
equivalence class [x]R, which will work but amounts to assuming the axiom of
choice. The axiom of choice is consistent with our set theory, but inconsistent
with the version in which all elements are sets (NF). A weaker statement
which allows us to have coequalizers is the axiom CE which asserts that every
collection of pairwise disjoint sets is the same size as a set of singletons: we
postulate an injective map f such that f([x]R) is a singleton {x∗} for each

12

x, with no presumption that x∗ has any intrinsic relation to [x]R.
We now describe the coequalizer construction in the category of sets and

functions and verify that it works.
Let f and g be maps from A to B. We want to identify f(x) and g(x)

for x ∈ A. Let R be the intersection of all equivalence relations on B which
include {(f(x), g(x)) : x ∈ A} as a subset. Let f be a map sending equiva-
lence classes [b]R to singletons {b∗} (existing by CE). The coequalizer is then
the map eR = (b 7→ b∗).

In abstract terms, the coequalizer is a cone over the subcategory with
objects A,B and arrows f, g in the converse category. This consists in full
generality of arrows va : A → V and vb : B → V such that vb ◦ f = va and
vb ◦ g = va: we can elide all mention of va and simply present the cone as an
arrow vb from B to V such that vb ◦ f = vb ◦ g.

This is a colimit, so for any h : B → V ′ such that h◦f = h◦g (determining
another cone) we have exactly one k : V → V ′ such that h = k ◦ vb.

In the concrete situation with sets and functions, we identify V as {b∗ :
b ∈ B}, the set of representatives of equivalence classes under the relation
R defined as indicated above, define vb as the map (b 7→ b∗) from B to V .
For any h : B → D such that h ◦ f = h ◦ g, we can determine the value of
h at any element of B if we know [h]R: if f(x) = y and g(x) = z we have
h(f(x)) = h(g(x)) so h(y) = h(z): the equivalence class on B of belonging
to the same preimage under h includes R. So we have a unique map k from
V to D such that k ◦ vb = h.

A pullback is the limit of a diagram with objects A,B,C and morphisms
f : A→ C and g : B → C,

In the category of sets and functions, the vertex of the pullback is the set
D = {(x, y) ∈ A × B : f(x) = g(y), with the maps DA and DB being the
appropriate restrictions of the projection maps.

It is a theorem that if a category has a terminal object and all pullbacks,
that it has limits of all finite diagrams.

Now for exponentials. We are designing a category theory implementation
of the construction BA = {f : (f : A → N)} of function spaces. We might
want to introduce a map ev from BA × A to B satisfying ev(f, a) = f(a).
We can’t, because this violates typing rules. We can have a map ev from
BA × ι“A to ι“B satisfying ev(f, {a}) = {b}.

The universal property of ev which we will exploit for our category the-
oretic definition is based on the currying construction: naively one might
suppose that there is an implementation of functions f(c, a) = b of two vari-

13

ables as f̂(c)(a) = f(c, a), f̂ being uniquely determined by f . This first
needs to be corrected for type: we must have f̂({c})(a) = f(c, a) for reasons
of type. This then transforms to ev(f̂({c}, {a}) = {f(c, a)}.

To assist our phrasing we introduce a type raising functor T . T sends each
set A qua object of our category to ι“A, and each function f qua morphism
to f ι (the map sending {a} to {f(a)}). This is clearly not a set map but it
does meet the definition of a functor.

The property of ev phrased in categorical terms is that for each arrow
f : C × A → B there is a unique arrow f̂ : TO‘C → BA such that ev ◦
(f̂ ⊗ 1TO‘A)({c}, {a}) = {f(c, a)}. We have not yet digested {f(c, a)} into
categorical terms.

We express {f(c, a)} as f ι({(c, a)}) and in turn as (f ι◦π)({c}, {a}) where
π = (({c}, {a}) 7→ {(c, a)}).

ev◦(f̂⊗1TO‘A)({c}, {a}) = (f ι◦π)({c}, {a}) doesn’t look very categorical.
But applying π−1 throughout does the trick.
(π−1 ◦ ev) ◦ (f̂ ⊗ 1TO‘A)({c}, {a}) = (π−1 ◦ f ι ◦ π)({c}, {a}) is more cate-

gorical, because there is a functor T ′ = π−1◦f ι◦π = π−1◦T ‘f ◦π and we can
say that there is an arrow ev′[= π−1 ◦ ev] such that for each f : C ×A→ B
we have ev′ ◦ (f̂ ⊗ 1T ′

OA
) = T ′‘f for a unique f̂ : TO‘C → BA.

To make this fully abstract (or at least to commit ourselves to definitely
specified concreteness) we need to give some characterization of the functors
T and T ′ which appear in the statement of this universal property.

Note that BA gets a superscript one greater than that on A or B, and
T, T ′, TO, T

′
O all raise superscript by one.

We state as abstract requirements for a T functor on a category C that
T is the restriction to some class of a set function T ∗ such that {({x}, T ∗‘x) :
x = x} is a set (a 1-lateral function), that T is a functor from C to C, that T
is injective, and that the elementwise image under T of a homset is a homset.

We define an exponential construction for a T functor T , and a fixed
notion of product [noting that a fixed notion of product allows a uniform
choice of πA,B invertible from T ‘A×T ‘B to T ‘(A×B)], as providing for each
A,B an object BA and a map ev such that for each f : C ×A→ B we have
ev ◦ (f̂ ⊗ 1T ′

OA
) = T ′‘f = π−1C,A ◦ T ◦ πC,A for a unique f̂ : TO‘C → BA. [or,

ev ◦ (f̂ ⊗ 1T ′
OA

) = T ◦ πC,A, with something more like the original ev]. The

map (ι(A,B) 7→ BA) should be the restriction of a set function to the class
of objects of our category.

Now for the subobject classifier.

14

Suppose a category C has a terminal object 1.
A subobject classifier is determined by an object Ω and a morphism

τ : 1 → Ω such that for each monic f : a → d there is exactly one arrow
χf : d→ Ω such that a is the vertex of a pullback over the diagram consisting
of 1, d,Ω, τ, χf , the map from a to 1 being unique, and determining the map
from a to Ω, and the map from a to d being f .

Here we are giving the abstract definition first then discovering what it
means in set theory.

What should be happening here is that χf is the characteristic function
of the range of f (thought of as an injective map from a to d).

So, consider a′ with the unique map from a′ to 1 and a map g : a′ → d. We
want to find a uniquely determined map k from a′ to a such that everything
commutes. And in the intended set theory situation, everything will work
correctly: k will send each element x of a′ to the preimage under f of g(x):
this is why we need f to be monic (one-to-one in the set theoretical context).
We know that the range of g actually is a subcollection of the range of f
because χf (g(x)) = τ(!(x)) = true (where ! is the trivial map from a′ to 1)
for every x.

Now a T,×-topos is a category with all finite limits and colimits, expo-
nentials and a subobject classifier. The mention of T,× is required because
of the role of T and a fixed notion of product × in the definition of the
exponential. For the moment I add the additional requirement that there is
an isomorphism from T ‘Ω to Ω, which I need below. I’m hopeful that I can
prove this from the other properties.

Now I am going to try to prove that a topos interprets a certain amount of
set theory. I want to produce an inductive proof of the existence of {x ∈ A :
φ} as an element of ΩA, speaking loosely, where φ is a stratified formula in the
usual language of set theory. I’m going to do this in stream of consciousness
fashion, because my prior understand of how this is going to go is limited. I
am hoping that my experience with finite axiomatizatons of set theory will
guide me as I dive down the rabbit hole.

We work by induction on the structure of the formula φ. Do please note
that this treatment is still very sketchy.

We begin with binary propositional connectives. For each one we want
a suitable arrow Ω × Ω → Ω. The map for ∧ is the characteristic function
associated with the range of the monic τ ⊗ τ . We make a stab at the map for
→. Consider the equalizer of the first projection map Ω×Ω→ Ω and χτ⊗τ ,
the conjunction map just defined. The characteristic map of the equalizer

15

ought to be the map we want for implication. We do need to know that
equalizers are monic (or that this equalizer is monic–check).

We outline the implementation of disjunction and negation, but we need
quantification first: we implement P ∨ Q as (∀R ∈ Ω : (P → R) ∧ (Q →
R)→ R). We can implement ¬P as (∀R ∈ Ω : P → R).

A predicate of arguments with types represented by objects A1, . . . , An
is an arrow from A1 × . . . × An to Ω. Because we have products and pro-
jection maps explicitly, reordering arguments and padding with additional
arguments is not an issue.

A specific object a in A is represented by an arrow from a terminal object
1 to A. If we have an arrow representing φ(a1, . . . , an) (ai ∈ Ai), its compo-
sition with a product of the arrow representing a ∈ A1 with identities on the
other component types represents φ(a1, . . . , an)∧ a1 = a. Quanitfication can
eliminate the extra variable.

If we have φ : A1× . . .×An → Ω, we have φ∗ : TA2× . . .×TAn → ΩA
1 be-

cause we have exponentials. We can consider in particular the arrow ψ∗ where
ψ = τ ◦ 1A1×...×An . The inverse image under T of the characteristic function
of the equalizer of φ∗ and ψ∗ represents (∀a1 : φ(a1, a2, . . . , an)). The inverse
image under T in question exists (mod suitable quibbles) because TΩ is iso-
morphic to Ω (if this is not provable, it needs to be an additional requirement
for a T,×-topos; I am working on whether I can demonstrate this). Notice
that now that we have the universal quantifier, we can implement disjunction
and negation as indicated above.

We can then (quite wickedly, from a genuinely constructive standpoint)
implement (∃a1 : φ(a1, . . . , an)) as (∀R ∈ Ω : (∀a1 ∈ A1 : φ(a1, . . . , an) →
R)).

It is interesting how the disjunctive components of constructive logic are
implemented here in terms of the conjunctive.

This handles logic. Now we need equality and membership. Equality is
definable in terms of membership, so we just do membership. In fact, we
actually want to implement the unit subset relation {({x}, y) : x ∈ y}. If we
have a ∈ TA and b ∈ ΩA, an evaluation arrow implements the unit subset
relation, which can be used in effect to implement membership. Member-
ship relations at different types are handled by images of this membership
(actually unit subset) relation under enough applications of T.

This needs to be further refined. When interpreting constructive NF, use
an object V ∼ ΩV and its images under T as the only “types” in constructing
representations of predicates. The unit subset relation is handled thus: we

16

have the evaluation arrow from BA × TA to TB in general. This specializes
to an arrow from ΣA × T ‘A to T ‘Ω. The converse of this implements for
us the relation {({x}, y) : x ∈ y}. This needs the observation that T ‘Ω is
isomorphic to Ω, which needs comment. Now we get the same relation from
T ‘V to V using the isomorphism between V and ΩV . All types that we use
in a representation of NF will be iterated images of V under T . The only
atomic relations we need are type shifted versions of the unit subset relation,
implementing membership (equality can be defined in terms of membership)
which we clearly can define.

17

