
1. How NFU evades the

paradoxes and what if anything

this explains

2. Why we have confidence in

NFU

3. The axiom of cantorian sets

in NFU and n-Mahlo cardinals!

M. Randall Holmes

Boise State Math Department

Logic and Set Theory Seminar

10/29/2019 and onward

1



Abstract: I’ll present the formal definition of
the set theory NFU (New Foundations with
urelements) proposed by R.B. Jensen in 1969
as a weakening of Quine’s New Foundations
(NF) and shown by Jensen to be consistent.

I’ll present enough basic implementation of math-
ematics in NFU to explain why the usual ar-
guments for the paradoxes of Russell, Cantor,
and Burali-Forti do not go through in NFU.

The question then presents itself, in the light
of the previous talk...in what sense and to what
extent can we be taken to be thereby explain-
ing why we can take NFU to be consistent (or
NF, which avoids the paradoxes in the same
way, and yet remains dubious)?

The exposition might include a discussion of
why we actually do believe that NFU is con-
sistent (Jensen did prove this) and why NF
remains doubtful.



The definition of NFU

NFU is a first order unsorted theory whose

primitive notions are a sethood predicate, equal-

ity, and membership. We provide in addition

to the usual countable supply of variables a

countable supply of variables xi with a natu-

ral number superscript i for each i ∈ N. An

atomic formula will be said to be well-typed

iff either one of the variables in it is unsuper-

scripted or if it is of a shape set(xi+1), xi = yi,

or xi ∈ yi+1. A formula will be well-typed iff

each of its atomic subformulas is well-typed.

Please note that a formula which is not well-

typed is well-formed and has the same logi-

cal privileges as any other formula; we will see

what this notion is for in a moment.
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The axiom schemes of NFU are three:

sethood: (∀xy : x ∈ y → set(y)): objects with

elements are sets.

extensionality:

(∀xy : set(x)∧set(y)∧(∀z : z ∈ x↔ z ∈ y)→ x = y) :

sets with the same elements are equal.

comprehension:

(∃A : set(A) ∧ (∀xi : xi ∈ A↔ φ)),

for any well-typed formula φ in which A

does not appear and in which each bound

variable is superscripted (note that xi is

stipulated to be superscripted by the form

of the axiom): for each such formula φ,

the set {xi : φ} exists.
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The original theory NF did not have a sethood

predicate (and neither did NFU as originally

proposed by Jensen), but it is very convenient.

Notice that extensionality and comprehension

together imply the existence of a unique empty

set ∅ = {xi : xi 6= xi}, and that we could equally

well (as has been done) taken the empty set as

a primitive constant, provided an axiom assert-

ing (∀x : x 6∈ ∅) and defined set(x) as asserting

x = ∅∨ (∃y : y ∈ x}. We refer to empty objects

which are not sets as urelements or atoms: in

the original theory NF there were no atoms

and the axioms were stated without mention

of sethood. The presence or absence of atoms

will not often make an obvious difference in

our discussion (it does obtrude at one point in

the discussion of Cantor’s paradox).
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The way in which we state comprehension is

designed to minimize metamathematical ma-

chinery. Notice that as superscripted variables

have no special logical status, we can assert

the existence of any set {x : φ} for which we

can replace x and each bound variable in φ

with a superscripted variable in such a way as

to make the formula well-typed. With a little

thought, this can be seen to express exactly the

usual criterion of “weak stratification” (weak

because we do not require assignment of types

to parameters), which might be thought meta-

mathematically burdensome as it involves dis-

cussing the existence of a function from vari-

ables to natural numbers having a particular

relationship to the syntax of φ.
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Some mathematics in NFU

The existence of {x, y} = {z0 : z0 = x∨z0 = y}
is a theorem of NFU. Thus the ordered pair

(x, y) = {{x}, {x, y}} exists for any x, y. This

can be proved to have the essential properties

of an ordered pair exactly as in ordinary set

theory.

We can then define functions and relations as

sets of ordered pairs just as in ordinary set the-

ory. Usual properties and classifications of rela-

tions and functions will be taken to be familiar

in this talk.
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Paradox the first: the paradox of
Russell

It is a theorem of first order logic that

¬(∃R : (∀x : x ∈ R↔ x 6∈ x)).

(∃R : (∀x : x ∈ R ↔ x 6∈ x)) cannot be turned

into an instance of the axiom of comprehen-

sion of NFU, because at the very least x must

be replaced with xi for some superscript i, and

(∃R : (∀x : x ∈ R ↔ xi 6∈ xi)) has the would-be

embedded subformula φ = xi 6∈ xi quite irre-

trievably ill-typed.

NFU cannot be convicted of paradox at the

tribunal of Russell. The other paradoxes have

more mathematical prerequisites.
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Paradox the second: the Cantor
paradox of the largest cardinal

The Cantor paradox of the largest cardinal goes
as follows. The Cantor theorem asserts that
|A| < |P(A)| The largest cardinal is of course
the cardinality |V | of the universal set. Now
P(V ) ⊆ V (there might be urelements!) so
|P(V )| ≤ |V |, which contradicts the case |V | <
|P(V )| of Cantor’s theorem.

We need to do some work to set up the ma-
chinery to evaluate this argument in NFU.

We define Ai ∼ Bi as asserting the existence
of a function f i+3 which is a bijection from Ai

to Bi.

We define |Ai| as {Bi : Ai ∼ Bi}. This is the
original Frege-Russell-Whitehead definition of
cardinal number. We define |Ai| ≤ |Bi| as hold-
ing iff (∃Ci : Ci ⊆ Bi ∧ Ai ∼ Ci). We define
|Ai| < |Bi| as holding iff |A| ≤ |B| ∧ |Ai| 6= |Bi|.
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We define ι“Ai as {{xi} : xi ∈ Ai+1}. We define

T (|Ai|) as |ι“Ai| (leaving it as an exercise to

verify that this does not depend on the choice

of A).

Theorem (Cantor): T (|A|) < |P(A)|

Proof: Clearly T (|A|) = |ι“A| ≤ |P(A)|, since

ι“A ⊆ P(A). Now suppose for the sake of

a contradiction that |ι“A| = |P(A)|, that

is, ι“A ∼ P(A), that is, there is a bijection

f from ι“A to P(A).

Consider the set R = {x0 : x0 ∈ A1 ∧ x0 6∈
f4({x0}1)}. This is a subset of A, so there

is a singleton {r} such that f({r}) = R.

Now r ∈ R iff r ∈ A ∧ r 6∈ f({r}), which is a

contradiction, since r ∈ A is true under the

hypotheses, so we are asserting that r ∈ R
if and only if r 6∈ f({r}) = R.
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We provide a little explanation of the reason

why R is a set.

R = {x0 : x0 ∈ A1 ∧ x0 6∈ f4({x0}1)} can be

expressed at more length as

{x0 : x0 ∈ A1 ∧ (∃y1 : x0 ∈ y1 ∧ (∃z1 : (y1, z1) ∈
f4 ∧ y1 6∈ z1))}

The subformula (y1, z1) ∈ f4 can be expanded

to

(∃w3 ∈ f4 : (∀u2 : u2 ∈ w3 ↔ (∀v1 : v1 ∈ u2 ↔
v1 = y1)∨ (∀v1 : v1 ∈ u2 ↔ v1 = y1∨v1 = z1)))

And this only works because we have replaced

A1 itself with ι“A1 in the statement of the

theorem and its proof. The general idea is

that we can define sets and reason in general

in NFU in the ways warranted in the typed

theory of sets, and not much more.
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The theorem we have proved is T (|A|) < |P(A)|,
and from this we get T (|V |) < |P(V )| ≤ |V |, so

instead of |V | < |V | we have obtained T (|V |) <
|V |, the assertion that the cardinality of ι“V ,

the set of all singletons, is less than the cardi-

nality of the universe.

We seem to see a bijection (x 7→ {x}) from V

to ι“V , but we must conclude that this is not

a set, and further it is clearly not an object we

can sensibly define in the typed theory of sets:

there is no reason to believe that the singleton

map can be defined as a set in a well-typed

way.

It is worth observing that both V , the universal

set, and |V |, the largest cardinal, actually exist

in NFU. They are not paradoxical objects in

the absence of additional assumptions.
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Paradox the third: the Burali-
Forti paradox of the largest or-
dinal

For any two binary relations R,S, we say that

R ≈ S, R and S are isomorphic, iff there is a

bijection f from the field of R to the field of S

such that for all x, y, xRy ↔ f(x)S f(y). We

define the isomorphism type [R] as {S : S ≈ R}.

In the particular case of a well-ordering ≤, we

call [≤] the order type of ≤, and we refer to the

set of order types of well-orderings as the set

of ordinal numbers. This is the original Frege-

Russell-Whitehead method of defining ordinal

numbers.
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It is a theorem about well-orderings that for

any two well-orderings ≤1 and ≤2, either ≤1 is

isomorphic to the restriction of ≤2 to an ini-

tial segment, or vice versa. In addition, it is

impossible for a well-ordering to be isomorphic

to one of its proper initial segments. It follows

(with more work not given here) that the re-

lation [≤1] ≤Ω [≤2] defined as holding iff ≤1 is

isomorphic to the restriction of ≤2 to an initial

segment is a well-ordering, and so has an order

type Ω.

We can now state the Burali-Forti paradox. Ω

is an ordinal and the order type of the natural

order ≤Ω on the ordinals below an ordinal α

is obviously α, so the order type of the ordi-

nals below Ω is Ω, whence the well-ordering

on the ordinals is isomorphic to a proper initial

segment of itself, which is impossible.
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The problem with this is that the assertion that

“the order type of the natural order ≤Ω on the

ordinals below an ordinal α is obviously α” is

not well-typed and is actually false. If x ≤ y,

the type of the well-ordering ≤ is three higher

than the common type of x and y (we have

{{x0}1, {x0, y0}1}2 ∈≤3) and the type of [≤] is

one higher (≤3∈ [≤]4).

So the order type of the natural order ≤Ω on

the set of ordinals < α is in fact four types

higher than α: to claim that it is α is to make

an ill-typed assertion.

For any well-ordering ≤, the order ≤ι= {({x}, {y}) :

x ≤ y} is one type higher than ≤ and the order

type T ([≤]) = [≤ι] is one type higher than [≤].

The assertion that “the order type of the nat-

ural order ≤Ω on the ordinals below an ordinal

α is T4(α)” is well-typed and provable in NFU.
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We then discover that the order type of the

natural order ≤Ω on the ordinals below Ω is

T4(Ω), so T4(Ω) < Ω. This should make us

uncomfortable, since there is an obvious exter-

nal isomorphism T4 from Ω to T4(Ω): but the

way in which T4 is defined should make it clear

that we cannot expect it to be a set, just as we

cannot expect the singleton map to be a set,

and the resolution of the Burali-Forti paradox

is that indeed it cannot be a set on pain of

contradiction.

T (and T4) certainly commute with order, so

we have the alarming

Ω > T4(Ω) > T8(Ω) > . . . > T4i(Ω) > . . .

but we do not have a descending sequence in

the ordinals (which would be a contradiction)

because this is not a set.
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Note that the order type Ω of the ordinals ex-

ists in NFU. It is not, however, the largest or-

dinal. There can be a largest ordinal in NFU

(another story) but only if Infinity fails to be

true.
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Is this an explanation of why we should trust
NFU? I would tend to think not, because while
it does show that NFU does not fall prey to the
paradoxes, it also shows that NFU behaves in
weird unexpected ways.

One slide might be thought to be indirectly an
explanation of why we trust NFU: the careful
exposition in support of the Cantor paradox
resolution of the definition of the crucial set R
is an illustration of the fact that our reasoning
in NFU is closely tied to reasoning in the typed
theory of sets, a theory in which we might have
a lot more intuitive confidence.

A hard counterargument is that the entire strat-
egy for resolving the paradoxes would proceed
in the same way in the theory NF + AC in
which we assume that all objects are sets (there
are no urelements) and the Axiom of Choice
holds. And this theory is known to be inconsis-
tent; it falls prey to an argument for a contra-
diction which might be construed as another,
more elaborate paradox of set theory.
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But this exposition of the resolution of the

paradoxes does have an explanatory function

in NF(U) studies. It exhibits how mathemat-

ics is done (in particular, the Frege-Russell-

Whitehead cardinals and ordinals are presented).

It teaches caution: a student of NFU needs to

know that correspondences mediated through

the singleton map are not likely to be set bi-

jections. And there is the positive point that

it exhibits the fact that reasoning in this kind

of theory follows the pattern of reasoning in

the typed theory of sets, in which we do have

confidence: to this extent it might be taken as

(partially) justifying confidence in this theory.
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Part Two: why do we have con-
fidence in NFU?

We do believe, since the publication of a paper

in 1969 by R. B. Jensen, that NFU is consis-

tent, and as a result of this and subsequent

work we can form an intuition about what a

model of NFU looks like and what is really hap-

pening in the resolutions of the paradoxes de-

scribed above: one can look at the model and

“see” the largest cardinal and the order type

of the natural order on the ordinals at work.
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Tuesday, November 5, 3:00 - 3:50 pm

Title: The Consistency of NFU (and what
bearing it has on discourse about paradoxes)

Abstract: I will discuss the typed theory of
sets TST, its variant TSTU (actually I tend
to think of TST as a variant of TSTU :-) and
the consistency proof for R.B. Jensen’s variant
of Quine’s set theory New Foundations.

I will take pains to talk about how the consis-
tency proof with its presentation of a model
of NFU (in one of its versions) might help us
understand exactly what is going on in the cu-
rious ways that NF(U) avoids the paradoxes,
the topic of our talk last time.

I shall continue to touch on the theme of math-
ematical explanation and the basis for our con-
fidence in the reliability of mathematical theo-
ries, where appropriate.
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Typed theory of sets

The typed theory of sets with urelements (TSTU)

is the first order theory with a sethood predi-

cate, equality and membership, with sorts in-

dexed by the natural numbers, with formation

rules for atomic formula summarized by the

templates set(xi+1, xi = yi, xi ∈ yi+1, and the

axioms on the next slide:
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sethood: (∀xy : x ∈ y → set(y). Things with

elements are sets.

extensionality:

(∀xy : set(x)∧ set(y)∧ (∀z : z ∈ x↔ z ∈ y)→ x = y)

Sets with the same elements are the same.

comprehension:

(∃A : set(A) ∧ (∀x : x ∈ A↔ φ))

for each formula φ in which A does not ap-

pear. The witness to this axiom can be de-

noted by {x : φ} (and is of type one higher

than that of x).

Note that we do not adorn every variable with a

type superscript. Each variable x is understood

to have a type type(x), and any variable or

term may be written with the appropriate type

superscript for clarification when necessary.
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Intuitive pictures and justifica-
tion?

There is an intuitive idea behind this theory:

we begin with type 0 (a population of feature-

less individuals), then construct all sets of type

0 objects and perhaps throw in some urele-

ments to get type1, then construct all sets of

type 1 objects and perhaps throw in some ure-

lements to get type 2, and so forth. The ure-

lements may be unexpected: they are needed

for Jensen’s proof of consistency, and there is

a general point that there is no particular rea-

son to believe that everything is a set. The

original proposals of this theory did not have

a sethood predicate (in effect assuming that

everything was a set) and satisfied strong ex-

tensionality.
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Typical ambiguity

Assume that we have a bijection (x 7→ x+)
between variables in general and variables of
positive type, with type(x+) = type(x) + 1.
For any formula φ, define φ+ as the result of
replacing every variable x in φ, free or bound,
with x+.

Note the following facts:

1. φ is a formula iff φ+ is a formula.

2. φ is an axiom iff φ+ is an axiom.

3. ψ can be logically inferred from φ iff ψ+

can be logically inferred from φ+

4. Any object {x : φ} that we can define has
an analogue {x+ : φ+} in the next higher
type.
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Motivation of NF(U) and the am-
biguity scheme

The phenomena outlined on the previous slide

are the motivation for NFU (well, originally for

the strongly extensional version NF).

The idea is that we might be tempted to think

not just that φ+ is a theorem if φ is a theorem

[a fact following from the observations above]

but that φ is true iff φ+ is true: the axiom

scheme φ ↔ φ+ will be termed the Ambiguity

Scheme.
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Further, we might be tempted to think (and

the original proposal vaulted right over the sug-

gestion of the ambiguity scheme to this more

radical view) that analogous objects {x : φ}
and {x+ : φ+} are simply to be viewed as the

same object.

This leads to an unsorted set theory with the

untyped versions of the axioms of TSTU, which

we have already presented in the first talk, as

NFU. The subtle point is that dropping the

types does not give the inconsistent compre-

hension scheme of naive set theory: what one

obtains are untyped versions of all the typable

comprehension axioms.
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Specker’s ambiguity theorem

In 1962, Specker presented a formal justifica-

tion for vaulting from the conjecture of the

ambiguity scheme to the identification of the

types: he proved that TST(U) + Ambiguity is

consistent if and only of NF(U) is consistent.
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In the case of TSTU + Choice +Ambiguity

we can outline an argument for this. In TSTU

+ Choice, one can prove that each type is

well-ordered and introduce a well-ordering ≤i

of each type. Define (νx : φ) as the first ob-

ject x in the appropriate well-ordering (if there

is one) such that φ and otherwise as the empty

set (or a default object of type 0). This gives

what is called a Hilbert symbol. Now it is a

standard result that one can construct a model

of TSTU + Choice with exactly the same the-

ory as one’s original model whose elements are

exactly the closed Hilbert symbols. One can

then safely identify each term (νx : φ) with

(νx+ : φ+), because the ambiguity scheme en-

sures that all statements about the elements

of the model will be unaffected by shifting type

indices, and then one has a model of NFU +

Choice.
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It is an embarrassing fact that NF disproves

Choice, and so of course does TST + Ambi-

guity. Specker’s original proof of his theorem

was intended to apply just to NF, and Specker

knew that choice was false in NF already, so

took a different tack. The original proof is

rather more difficult.
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We prove the consistency of NFU

We begin with a set model of TSTU (which
can be supposed to exist in a model of TSTU:
the types of the model will all be sets of the
same type. For each set τi representing a type,
we have an injective map ei : P(τi) → ι“τi+1
and we define the relation x ∈i y as

x ∈ τi ∧ y ∈ τi+1 ∧ x ∈ e−1({y}).

We pause to make this point because much
nonsense has been said to the effect that al-
ternative set theories cannot be taken seriously
philosophically because we prove their consis-
tency in the usual set theory. Here the argu-
ments can be carried out quite sensibly in the
system TSTU itself (the assumption that there
is such a model of TSTU in TSTU is quite
strong, of course, but if we believe TSTU to
be consistent, we believe that it has models in
TSTU (though not necessarily such rich ones
as we describe here).
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We now subvert the type system of our model

creatively. Define ι∗(x) for each x ∈ τi as the

element of e({x}): this is just the implementa-

tion of the singleton operation in the model.

Define x ∈i,j y for x ∈ τi and y ∈ τj, j > i,

as ιj−i−1
∗ (x) ∈j−1 y ∧ e−1({y}) ⊆ ιj−i−1

∗ “τi. We

are subverting the type system by supplying

a membership relation for each type in each

higher type.

For each strictly increasing sequence s, the

structure in which type i is represented by τs(i)
and the membership of type i in type i + 1 is

represented by ∈s(i),s(i+1) is readily seen to be

a model of TSTU: each subset of type s(i) is

represented in type s(i+ 1) by its elementwise

image under the appropriate iterated singleton

map, and sets in type s(i + 1) which are not

such images are interpreted as urelements.
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Now we can take any formula φ of the language

of TSTU and transform it to φs by replacing

each reference to type i to type s(i) and suit-

ably correcting membership relations. We are

ready for (a version of) Jensen’s proof of the

consistency of NFU. Notice for application of

the ambiguity theorem that if choice holds in

our original model Choices also holds for every

sequence s.
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We will use the Ramsey partition theorem, which

we state. For any infinite set I, we define [I]n

as the collection of n-element subsets of I. If

P is a partition of [I]n, we say that H ⊆ I is

homogeneous for P iff all n element subsets of

H belong to the same element of the partition

P .

The Ramsey partition theorem asserts that each

partition of [I]n for any infinite set I and any

n has an infinite homogeneous set.
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Let Σ be any finite set of formulas in the lan-

guage of TSTU. Let n be greater than any

type index appearing in any formula in Σ.

We can partition [N]n, placing each n-element

A in one of 2|Σ| compartments determined by

the truth values of formulas φs for φ ∈ Σ and

s“{0, . . . , n− 1} = A.

This partition has an infinite homogeneous set

H, determining an increasing sequence h. The

sentences φh describe the situation in a model

of TSTU with types indexed by the elements

of H, in which the instances of the Ambiguity

Scheme φ↔ φ+ hold for each φ ∈ Σ. So any fi-

nite subset of the Ambiguity Scheme is consis-

tent with TSTU, from which it follows that the

Ambiguity Scheme is consistent with TSTU by

the Compactness Theorem, from which it fol-

lows by Specker’s theorem that NFU is consis-

tent.
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It is important to notice that this procedure

creates lots of urelements. Whenever a type is

skipped in the construction, all sets which are

not iterated singleton images of the type at the

bottom of the skipped interval become urele-

ments in the type at the top of the skipped

interval.

So this procedure simply does not address what-

ever it is that is going on in the more mysteri-

ous NF.

It should also be clear that if Infinity and Choice

hold in the original model of TSTU, they will

continue to hold in the models with partial am-

biguity schemes that are constructed by the

procedure above, and so by compactness can

be taken to hold in NFU.
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An intuitive picture with the aid
of the cumulative hierarchy

This approach can be embedded in the usual

cumulative hierarchy. A model of TSTU is ob-

tained from any sequence Vαi where αi’s are

strictly increasing, with x ∈i y defined as x ∈
Vαi ∧ y ∈ Vαi+1 ∧ x ∈ y. Notice that this mem-

bership relation of elements of Vαi in elements

of Vαi+1 treats each element of Vαi+1 \Vαi+1 as

an urelement.

Model theoretic magic not terribly different from

the Jensen argument given above can arrange

for a nonstandard model of an initial segment

of the cumulative hierarchy with an external

automorphism j sending each αi to αi+1. We

can then get a model of NFU by letting its

universe be any fixed Vαi and defining x ∈NFU y
as x ∈ j(y) ∧ j(y) ∈ Vαi+1.
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Third Talk

Tuesday November 12: 3-3:50 pm.

Title: The axiom of cantorian sets in NFU and
the existence of n-Mahlo cardinals

Abstract: We report on some observations of
Robert Solovay, somewhat extended and re-
fined by the speaker, regarding the relationship
between the seemingly innocent Axiom of Can-
torian Sets proposed by C Ward Henson for NF
a long time ago, and the existence of n-Mahlo
cardinals. A partition theorem of Schmerl will
be described which handles the relationship in
one direction.

It is important to remark that errors in this talk
should not be imputed to Solovay, where they
relate to anything he explained to me, but to
my imperfect understanding.

This could be two talks.
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Our base theory is NFU + Infinity + Choice,

which we defined and showed to be consistent

in earlier talks.

The talk relates two concepts.

The Axiom of Cantorian Sets was originally

proposed by C. Ward Henson in the context

of NF. It is a nice assumption regularizing the

behavor of certain ill-typed notions which are

natural to consider in NFU.

The other concept is the notion of inaccessi-

ble and (strongly) n-Mahlo cardinals, an initial

segment of the large cardinal hierarchy. We

will define these in TSTU or NFU because that

is our metatheory, but of course these are usu-

ally discussed in ZFC.
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Cantorian and strongly cantorian
sets, cardinals, ordinals

A cantorian set is a set A such that |A| =

|ι“A|. A cantorian cardinal is a cardinal which

contains a cantorian set (it follows immediately

that all sets of that cardinality are cantorian).

A cantorian ordinal is the order type of a well-

ordering on a cantorian set.

It is a consequence of Infinity that N is canto-

rian (in fact, it is equivalent to Infinity). We

can define a map f by induction which sends

0 to {0} and which if it sends m to {n} sends

m + 1 to {n + 1}. It is easy to show by in-

duction that this is a bijection from N to ι“N.

Your itch to identify the variables m and n is

understandable, but that would be ill-typed.
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Rosser’s axiom of counting

The assertion that f(n) = {n}, where f was

defined on the previous slide, is equivalent to

Rosser’s Axiom of Counting, proposed in the

context of NF by Rosser in his excellent book

Logic for Mathematicians, the only book length

treatment of foundations of mathematics in

NF. The original form of Rosser’s axiom is the

entirely common sense

|{x ∈ N : 1 ≤ x ≤ n}| = n.

This is ill-typed, but very natural. What we

can prove, in entirely standard ways, are the

assertions f(n) = {T−1(n)} and

|{x ∈ N : 1 ≤ x ≤ n}| = T2(n).
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The axiom of counting is not a
theorem of our base theory

The axiom of counting is not a theorem. In the
models of NFU using an automorphism, the T

operation coincides with the external automor-
phism j on the natural numbers of the inter-
preted NFU, and it is easy to build a model in
which j moves a natural number. In fact, one
needs to build quite a large model to allow it to
be possible for j not to move a natural number.
If the ordinal rank Vαi moved by j is a Vω+n

for n a natural number (the immediate natural
way to get NFU + Infinity) then n is certainly
moved upward by j and the Axiom of Count-
ing is false in the model. This is readily proved
internally in NFU: if the cardinality of the uni-
verse is in for some natural number n, then
in = |V | > |P(V )| = 2|ι“V | = 2iT (n) = iT (n)+1,
so n > T (n) > T2(n) for this particular n, so
|{x ∈ N : 1 ≤ x ≤ n}| = T2(n) < n. for this
choice of n.
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The axiom of counting is equivalent in consis-

tency strength to the assertion that iin exists

for each standard natural number n. That iin
exists for each standard natural number (not

necessarily for all natural numbers: the induc-

tion turns out to be on an unstratified condi-

tion) is provable in NFU with Counting by the

same sort of computation exhibited on the pre-

vious slide. The result in the other direction is

an amusing bit of model theory.

This should be surprising: the axiom of count-

ing looks like a convenience for arithmetic, not

a moderately strong set theoretic existence prin-

ciple.
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The difference between the theorem that N is

cantorian and the stronger assertion of the ax-

iom of counting motivates a definition and an

obviously convenient axiom, just a natural reg-

ularity principle.

We say that a set A is strongly cantorian (s.c.)

iff ιdA, the restriction of the singleton map to

A, is a set. The Axiom of Counting asserts

that our map f from above (which we knew

was a set) is in fact ιdN. Strongly cantorian

cardinals and ordinals are defined in the same

way cantorian cardinals and ordinals were de-

fined.

The Axiom of Cantorian Sets asserts that ev-

ery cantorian set is strongly cantorian (and so

every cantorian ordinal is s.c., every cantorian

cardinal is s.c.). What could be more natural?
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Large cardinals introduced

A regular cardinal is a cardinal κ such that a
set of cardinality κ is not the union of any set
of cardinality < T (κ) whose elements are all
of cardinality < κ. You may enjoy my type
theoretical precision: I did!

A strong limit cardinal is a cardinal κ such that
for no µ < κ do we have 2µ ≥ κ.

A subset C of the set of cardinals < κ is a club
in κ (a closed unbounded set) if its closure un-
der the construction of least upper bounds of
its subsets in the natural order on the cardinals
is C ∪ {κ}.

A inaccessible or 0-Mahlo cardinal is a regular
strong limit cardinal. An (n+1)-Mahlo cardinal
is a cardinal any club in which contains an n-
Mahlo cardinal. These are large cardinals: the
existence of such cardinals is not proved by the
usual set theory ZFC.
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Our possibly shocking results

NFU + Infinity + Choice + Cantorian Sets

(which we will call NFUA, following Solovay)

proves the existence of n-Mahlo cardinals for

each standard natural number n (not for all

natural numbers: induction on an ill-typed con-

dition is involved).

The consistency of NFUA is equivalent to the

consistency of TSTU (or ZFC) plus the exis-

tence of n-Mahlo cardinals for each standard

n (a scheme, not an assertion quantified over

n).
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A natural side remark

This has bearing on whether NFU is itself a

plausible proposal for foundations of mathe-

matics. We have argued that NFU + Infinity

+ Choice is a plausible basis for foundations

of mathematics, though propaganda for this is

not our purpose in this series of talks.
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There is a counterargument that NFU + Infin-

ity + Choice is (to use Dr Ferrier’s word from

the comments after the last thought) “para-

sitic”: that we only have confidence in it be-

cause we have confidence in ZFC. This is sim-

ply false. The proposal of NF historically was

somewhat a stretch, but it was based on con-

fidence in TST, not ZFC. The Jensen proof

of constency of NFU was in fact carried out

in ZFC but is not intellectually dependent on

ZFC: it could be carried out (as we have done)

in TSTU + consistency of TSTU. We have

confidence in TSTU: when we have justified

the ambiguity scheme, we can bootstrap to

NFU, as it were.
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There is a counterargument that NFU + Infin-

ity + Choice is not strong enough. Saunders

Mac Lane has seriously proposed Zermelo set

theory with separation restricted to bounded

formulas as a general foundation, and this is

exactly as strong as the base theory NFU +

Infinity + Choice. And it appears that natural

extensions of NFU with ill-typed principles (as

Counting, Cantorian Sets) tend to give equiva-

lents of principles which appear consistent with

the usual set theory but are much stronger

than expected. NFUA is much stronger than

ZFC, and there are further natural extensions

of NFU which are stronger yet.
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I’m not engaged in a polemic for NFU as a

foundational scheme. To underline this, I note

that there is a third objection to NFU and

its variants as a foundational scheme which

I think either has genuine merit or necessi-

tates some technical improvements in the way

this set theory is presented. Sol Feferman has

noted that NFU can lead to awkward presenta-

tion of almost any mathematical construction

involving indexed families of sets. I got seri-

ously burned by this in my published book on

the subject, in which I fell into embarrassing

error in the discussion of infinite products and

sums of cardinals. This was fixed in the online

version, but this sad history underlines Fefer-

man’s point. Sometimes one has to carefully

revisit the roots of NFU in type theory to get

things right.
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Solovay’s framework for proving
the existence of inaccessibles (and
n-Mahlos) in NFUA

We start doing some math. The framework of

this argument is originally due to Solovay, but

nothing about my actual presentation should

be attributed to him without inquiry to me.

We will need as a tool a special function C.

For each strong limit cardinal κ, choose a club

C({κ}) in κ which

1. is of minimal cardinality among clubs in κ

(T−1(|C({κ}|) is cf(κ), the cofinality of κ

in the usual sense).

2. does not contain n-Mahlos unless κ is (n+ 1)-

Mahlo [in which case it must, by the defi-

nition of (n+ 1)-Mahlo].
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We “cut down” C in a way which the Axiom
of Cantorian Sets characteristically supports.
Define Cι as the function which sends {T (κ)}
to T“C({κ}) for each κ.

This type-shifted version of C will agree with
C for each cantorian (= s.c.) cardinal. T fixes
a cardinal iff it is cantorian. The axiom of can-
torian sets implies that every cardinal less than
a cantorian cardinal is cantorian (this assertion
is actually equivalent to the axiom, at least in
the presence of choice), and so T“A = A for
any set A of cardinals less than κ.

Thus C and Cι will agree for all cardinals less
than some noncantorian χ ≤ T (|V |); we re-
strict our attention to cardinals less than this
χ, so that for all cardinals we consider we will
have C({T (κ)}) = T“C({κ}). The fact that
the cantorian cardinals/ ordinals are a non-set
initial segment of the cardinals/ordinals in the
natural order is a powerful consequence of the
Axiom of Cantorian Sets.
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A special function on pairs of
cardinals

We define a partial function D acting on pairs

of cardinals.

not strong limit: If κ, λ are distinct cardinals

which are not strong limit, then D(κ, λ) =

(κ−, λ−), where for any cardinal µ, µ− is

the smallest cardinal ν such that 2ν ≥ µ.

strong limit, not regular, different cofinality:

If κ, λ are distinct cardinals which are strong

limit but not regular, and they have differ-

ent cofinalities,’then D(κ, λ) = (cf(κ), cf(λ)).
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strong limit, not regular, same cofinality: If

κ, λ are distinct cardinals which are strong

limit, but not regular, and they have the

same cofinality, then D(κ, λ) is the first

pair (κ′, λ′) of distinct cardinals with cor-

responding positions in the natural orders

on C(κ) and C(λ) respectively.

inaccessible: If κ, λ are distinct inaccessibles

which are both n-Mahlo, but not n + 1-

Mahlo, for the same value of n, then D(κ, λ)

is the first pair (κ′, λ′) of distinct cardinals

with corresponding positions in the natu-

ral orders on C(κ) and C(λ) respectively, if

there is such a pair, and otherwise is unde-

fined.

otherwise undefined: In all other cases, D(κ, λ)

is undefined.



Notice that κi = π1(Di(κ, λ) and λi = π2(Di(κ, λ)

are strictly decreasing sequences of cardinals,

so must be finite: D can only be iterated finitely

many times on any given pair of cardinals.

We choose a cardinal κ such that κ 6= T (κ)

and all of κ, T (κ), T2(κ) are less than χ (which

enforces nice behavior of the function C which

chooses clubs).

We define Di(κ, T (κ)) = (κi, λi) and Di(T (κ), T2(κ)) =

(µi, νi)
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An unstratified induction

We would like to claim that νi = T (µi) =

T (λi) = T2(κi) for each i. These conditions

are clearly true for i = 0 and it is straightfor-

ward to argue that they hold for i = k + 1 if

they hold for i = k. But these conditions are

ill-typed (unstratified): we need to know that

they define a set before we can be sure that

induction applies.

They do, because the assertion that (T (κi), T (λi)) =

(µT (i), νT (i)) is well-typed and so defines a set,

and since i = T (i) by the axiom of count-

ing (a consequence of NFUA), this assertion

along with the well-typed λi = µi expresses the

questionable condition, so it does define a set

and can be proved to contain all relevant i by

induction. It remains to actually present the

argument.
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What we prove by induction is the condition

νi = T (µi) = T (λi) = T2(κi) for each i for

which our sequences are defined, unless the

cardinals involved are inaccessible, and that the

sequences continue to index i+ 1 except pos-

sibly in the case where κi and λi are distinct

inaccessibles. This implies, since the sequence

must terminate, that there are noncantorian

inaccessibles.

With refinements to be discussed later, we can

actually show that there are noncantorian n-

Mahlos for each concrete n (not for all n, just

for each standard natural number).
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If κi, λi are distinct and not strong limit, the

same is true of µi, νi (images under the T op-

eration).

D(κi, λi) = (κ−i , λ
−
i ), and the − operation cer-

tainly commutes with T so the same is true of

µi, νi (and the relations νi = T (µi) = T (λi) =

T2(κi) are preserved with subscript incremented).

We argue further that κ−i 6= λ−i . Otherwise

we would have κi, λi = T (κi) both less than

2κ
−
i = 2λ

−
i : if these last two items are equal,

they are cantorian, so s.c. and they dominate

κi and T (κi) = λi which thus must also be

cantorian, and this is a contradiction, as κi
and λi are distinct.
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If κi and λi are strong limit, not regular, and

have distinct cofinalities, things are straightfor-

ward. All that we have to observe is that the

operation of taking cofinalities will commute

with T, so all desired conditions will continue

to hold.
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If κi and λi are strong limit, not regular, and

have the same cofinality, this cofinality is can-

torian and the same as the common cofinality

of µi, νi. Let (κ′, λ′) be the first pair of cor-

responding elements in the natural orders on

C(κi), C(λi) which differ (at ordinal index δ,

say). Because all cardinals considered are be-

low χ, the first pair (µ′, ν′) of corresponding

elements in the natural orders on C(µi), C(νi)

is the componentwise image under T of (κ′, λ′)
and occurs at index T (δ). But T (δ) = δ, so the

changes happen at the same place, preserv-

ing the desired conditions. Note that actual

work is done here to show that λ′ = µ′ [that

λi+1 = µi+1 required no special comment in

the first two cases].
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If κi and λi are distinct n-Mahlos which are not

(n+ 1)-Mahlo, of course µi, νi satisfy the same

condition.

Let (κ′, λ′) be the first pair of corresponding

elements in the natural orders on C(κi), C(λi)

which differ (at ordinal index δ, say). Because

all cardinals considered are below χ, the first

pair of corresponding elements in the natural

orders on C(µi), C(νi) is the componentwise

image under T of (κ′, λ′) and occurs at index

T (δ). If δ = T (δ), everything works nicely as

above. If δ 6= T (δ), failure occurs, and we will

analyze this more carefully in further discussion

at a later point. We do need to note that the

point of difference must exist: if there was no

first point of difference, then C(λi) would be

an initial segment of C(κi) or vice versa, and

the closure properties of a club would force λi
into C(κi) or vice versa, which cannot happen

because C(κi), C(λi) contain no n-Mahlos.
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At this point, we have exhibited a procedure for

constructing descending sequences of cardinals

which must end at a pair of distinct inaccess-

bles (the logical possibility of failing at a pair

of distinct ω-Mahlos should not be ignored). A

further refinement of the argument enables us

to show that the failure can in fact only occur

either at an ω-Mahlo or at an n-Mahlo with n

not a standard natural number. This will be

presented later if we have time.
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Once more with feeling...

We reprise a final segment of the slides from

the last talk with refinements allowing us to

show that there are n-Mahlos for each concrete

n.

We begin by specifying a special set A of car-

dinals which has the properties that

1. If µ ∈ A then the minimum of T (µ) and

T−1(µ) is in A. A set with this property is

said to be semi-natural.

2. A has a noncantorian element.

For any cardinal µ which is not an upper bound

for A, we define µA as the supremum of the

set of cardinals in A which are ≤ µ.
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It must be noted that if µ 6= T (µ) are not

upper bounds of A, we must have T (µ)A =

T (µA) 6= µA. That ·A commutes with T should

be evident. If µA = T (µ)A we then have this

common value cantorian, and the next value in

A must also be cantorian and larger than both

µ and T (µ), which are thus cantorian.

Note that we have demonstrated that the set

of inaccessible cardinals has these characteris-

tics.



A special function on pairs of
cardinals

We define a partial function D acting on pairs

of cardinals.

not strong limit: If κ, λ are distinct cardinals

which are not strong limit, then D(κ, λ) =

(κ−A, λ
−
A), where for any cardinal µ, µ− is

the smallest cardinal ν such that 2ν ≥ µ.

strong limit, not regular, different cofinality:

If κ, λ are distinct cardinals which are strong

limit but not regular, and they have differ-

ent cofinalities,’then D(κ, λ) = (cf(κ)A, cf(λ)A).
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strong limit, not regular, same cofinality: If

κ, λ are distinct cardinals which are strong

limit, but not regular, and they have the

same cofinality, then D(κ, λ) is (κ′A, λ
′
A),

where (κ′, λ′) is the first pair of distinct car-

dinals with corresponding positions in the

natural orders on C(κ) and C(λ) respec-

tively.

inaccessible: If κ, λ are distinct inaccessibles

which are both n-Mahlo, but not n + 1-

Mahlo, for the same value of n, then D(κ, λ)

is (κ′A, λ
′
A), where (κ′, λ′) is the first pair of

distinct cardinals with corresponding po-

sitions in the natural orders on C(κ) and

C(λ) respectively, if there is such a pair,

and otherwise is undefined.

otherwise undefined: In all other cases, D(κ, λ)

is undefined.



Notice that κi = π1(Di(κ, λ) and λi = π2(Di(κ, λ)

are strictly decreasing sequences of cardinals,

so must be finite: D can only be iterated finitely

many times on any given pair of cardinals.

We choose a cardinal κ such that κ 6= T (κ)

and all of κ, T (κ), T2(κ) are less than χ (which

enforces nice behavior of the function C which

chooses clubs), and none of these cardinals are

upper bounds for A.

We define Di(κ, T (κ)) = (κi, λi) and Di(T (κ), T2(κ)) =

(µi, νi)
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An unstratified induction

We would like to claim that νi = T (µi) =

T (λi) = T2(κi) for each i. These conditions

are clearly true for i = 0 and it is straightfor-

ward to argue that they hold for i = k + 1 if

they hold for i = k. But these conditions are

ill-typed (unstratified): we need to know that

they define a set before we can be sure that

induction applies.

They do, because the assertion that (T (κi), T (λi)) =

(µT (i), νT (i)) is well-typed and so defines a set,

and since i = T (i) by the axiom of count-

ing (a consequence of NFUA), this assertion

along with the well-typed λi = µi expresses the

questionable condition, so it does define a set

and can be proved to contain all relevant i by

induction. It remains to actually present the

argument.
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What we prove by induction is the condition

νi = T (µi) = T (λi) = T2(κi) for each i for

which our sequences are defined, unless the

cardinals involved are inaccessible, and that the

sequences continue to index i+ 1 except pos-

sibly in the case where κi and λi are distinct

inaccessibles. This implies, since the sequence

must terminate, that there are noncantorian

inaccessibles.

With refinements to be discussed later, we can

actually show that there are noncantorian n-

Mahlos for each concrete n (not for all n, just

for each standard natural number).
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If κi, λi are distinct and not strong limit, the

same is true of µi, νi (images under the T op-

eration).

D(κi, λi) = ((κi)
−
A, (λi)

−
A), and the − operation

and the A operation certainly commute with T

so the same is true of µi, νi (and the relations

νi = T (µi) = T (λi) = T2(κi) are preserved with

subscript incremented).

We argue further that κ−i 6= λ−i . Otherwise

we would have κi, λi = T (κi) both less than

2κ
−
i = 2λ

−
i : if these last two items are equal,

they are cantorian, so s.c. and they dominate

κi and T (κi) = λi which thus must also be

cantorian, and this is a contradiction, as κi and

λi are distinct. It follows that (κi)
−
A 6= (λi)

−
A,

due to the general fact that if µA = T (µ)A we

must actually have µ = T (µ).
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If κi and λi are strong limit, not regular, and

have distinct cofinalities, things are straightfor-

ward. All that we have to observe is that the

operation of taking cofinalities will commute

with T, so all desired conditions will continue

to hold. Further, the operation ·A commutes

with T and preserves distinctness for the same

reasons discussed at the end of the previous

slide.
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If κi and λi are strong limit, not regular, and

have the same cofinality, this cofinality is can-

torian and the same as the common cofinality

of µi, νi. Let (κ′, λ′) be the first pair of cor-

responding elements in the natural orders on

C(κi), C(λi) which differ (at ordinal index δ,

say). Because all cardinals considered are be-

low χ, the first pair (µ′, ν′) of corresponding

elements in the natural orders on C(µi), C(νi)

is the componentwise image under T of (κ′, λ′)
and occurs at index T (δ). But T (δ) = δ, so the

changes happen at the same place, preserv-

ing the desired conditions. Note that actual

work is done here to show that λ′ = µ′ [that

λi+1 = µi+1 required no special comment in

the first two cases].

Further applying ·A will preserve everything,

because this operation commutes with T and

preserves distinctness under these conditions

for reasons described above.
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If κi and λi are distinct n-Mahlos which are not
(n+ 1)-Mahlo, of course µi, νi satisfy the same
condition.

Let (κ′, λ′) be the first pair of corresponding
elements in the natural orders on C(κi), C(λi)
which differ (at ordinal index δ, say). Because
all cardinals considered are below χ, the first
pair of corresponding elements in the natural
orders on C(µi), C(νi) is the componentwise
image under T of (κ′, λ′) and occurs at index
T (δ). If δ = T (δ), everything works nicely as
above. If δ 6= T (δ), failure occurs, and we will
analyze this more carefully in further discussion
at a later point. We do need to note that the
point of difference must exist: if there was no
first point of difference, then C(λi) would be
an initial segment of C(κi) or vice versa, and
the closure properties of a club would force λi
into C(κi) or vice versa, which cannot happen
because C(κi), C(λi) contain no n-Mahlos.

Applying ·A will not break anything unless it is
broken for the reason described.
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Notice that the process must terminate with

noncantorian inaccessibles which are limits of

the set A.

Initially (stage 0), we show that any set eligi-

ble to be A must contain noncantorian inac-

cessibles = 0-Mahlos. This is just the original

argument with the modified definition of D.

At stage n + 1, we show that there must be

noncantorian (n+ 1)-Mahlos in any set eligible

to be A, on the assumption that there must

be noncantorian n-Mahlos in any such set. To

do this, we show that failure of our descending

process cannot occur at an n-Mahlo, so must

occur at a noncantorian n+ 1-Mahlo.

We reproduce the text for the failure at n-

Mahlos.
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If κi and λi are distinct n-Mahlos which are not

(n+ 1)-Mahlo, of course µi, νi satisfy the same

condition.

Let (κ′, λ′) be the first pair of corresponding

elements in the natural orders on C(κi), C(λi)

which differ (at ordinal index δ, say). Because

all cardinals considered are below χ, the first

pair of corresponding elements in the natural

orders on C(µi), C(νi) is the componentwise

image under T of (κ′, λ′) and occurs at index

T (δ). If δ = T (δ), everything works nicely as

above. If δ 6= T (δ), failure occurs, and we will

analyze this more carefully in further discussion

at a later point. We do need to note that the

point of difference must exist: if there was no

first point of difference, then C(λi) would be

an initial segment of C(κi) or vice versa, and

the closure properties of a club would force λi
into C(κi) or vice versa, which cannot happen

because C(κi), C(λi) contain no n-Mahlos.



Applying ·A will not break anything unless it is

broken for the reason described.

The reason this cannot happen is that the

common part of the clubs C(κi), C(λi) if δ 6=
T (δ) would satisfy the conditions to be a set

A and so by ind hyp would have to contain

an n-Mahlo, and these clubs do not contain

n-Mahlos.

This argument works for each concrete natu-

ral number n but cannot be carried to a proof

that there are n-Mahlos for each n, because

the complicated inductive hypothesis does not

in any obvious way define a set of natural num-

bers: the condition that any set eligible to be

A (an unstratified description) must contain a

noncantorian n-Mahlo is ill-typed.



There is a converse result. If we suppose that

there are n-Mahlo cardinals for each standard

natural number n (a scheme, not a quantified

statement) we can deduce the consistency of

NFUA.

This relies on a partition relation established by

Schmerl, which reads almost as if it were de-

signed to prove this result (which it was not!)

We outline the argument from a partition the-

orem of Schmerl that NFUA is consistent if

there are n-Mahlos for each n.
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The Schmerl partition property P (n, α) asserts

of a cardinal κ that if we have a well-ordered

set X of order type init(κ) and partitions Cν

of [X]n each of size < T (κ) that we have a

subset Y of X with order type α such that

Y −Xν is homogenous with respect to Cν for

each ν, where Xν is the initial segment of X

of order type ν.

The interesting theorem is that P (n+ 2, n+ 5)

holds for n-Mahlo cardinals (in fact, it charac-

terizes n-Mahlo cardinals).
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We use it as follows. Let Σ be a finite collec-

tion of formulas of the language of set theory

containing n+2 types, in a language which in-

cludes a countable supply of anonymous con-

stants. Let X be the collection of ordinals less

than the initial ordinal for an n-Mahlo cardi-

nal. Let the partition Cν be determined by the

truth values of the formulas in Σ in the mod-

els determined by the levels of the hierarchy of

isomorphism types of well-founded extensional

relations with types taken from a given finite

subset of size n + 2 of X, including versions

of the formulas with every assignment of con-

stant values of level ≤ ν in the hierarchy to

anonymous constants in the formulas. This

partition will be of size less than the n + 2-

Mahlo in play. It then follows by the Schmerl

property that there is an ambiguous model for

these formulas with n+ 5 types. Note further

that a cantorian ordinal determined by a term

f(x1, . . . , xn+2) and, because cantorian, equal
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to f(x2, . . . , xn+3), will coerce any ordinal term

known to be less than it to be similarly canto-

rian, because the set of formulas will include a

concrete assignment of a value to the f term

and to the g term if these terms are mentioned

(the assignment only operating in types with

index higher than ν, but that is enough to make

the point). TSTU + Ambiguity + Infinity is

thereby modelled in an infinitary language with

typically ambiguous names for a lot of ordinals,

and passage to NFUA will yield Cantorian Sets

in addition: a term will be cantorian in the lim-

iting theory iff it is equal to a typically ambigu-

ous ordinal constant.


