A realization of the system of Principia
Mathematica

M. Randall Holmes

8/3/2018 10:35 am. Corrected an error in 7.1

Contents

1 Remarks on completing this paper 2
2 Introduction 3
3 Propositional and Object Notations 6
4 Evaluation of pfs; the definition of substitution 11

5 Evaluation of propositions: the semantics of (propositional

notations of) PM 14
5.1 Obligations incurred by the Axiom of Reducibility 14
5.2 Does the no-class theory reduce ontological commitments? . . 16
6 Effects of our design decisions 18
7 Technical issues 20
7.1 Theory and metatheory 0. 20

7.2 The schemes of contextual definition in PM reviewed and
found to be eliminable 20

7.2.1 Definite description discussed 21
7.2.2 The no-class theory discussed 21

7.2.3 The effect of the no-class theory (indeed, a fully exten-
sional theory) achieved with no contextual definition
ofclassatall 22

7.2.4 Definite description defined in terms of class notation
inalmost all cases 23

1 Remarks on completing this paper

It needs a bibliography, and probably a few more references.

The section on evaluation of propositions needs to be written out more
formally.

The note on p. 15 needs to be cashed out with an actual reference to
theorems. I reproduce the relevant test (including a footnote) exactly here:
“Now we get hoist by the petard of substitutional quantification. This for-
mula tells us that for each value of f there is an actual pf notation ¢ which
does the trick [Russell’s discussion makes it clear that he thinks this is what
he is saying'], and in general (if we think our notations are constructed re-
cursively from some finite stock of primitive notions) this is simply not true.
Impredicative type theory simply will not have all its predicates represented
in this way. NOTE: a proof or reference to a proof of this mathematical fact
should be inserted. I have carefully provided a device to make this possible
nonetheless: the only way for this to be true is for there to be lots and lots
of primitive elementary functions in every type.”

A reference is needed for the low consistency strength of PM without the
axiom of reducibility.

!see for example p. 167: he says that any function of one argument or two is to be
equivalent extensionally to a predicative function, and defines a predicative function as
one for which we have notation involving no bound variables, which is more general than
saying that the function is elementary but not much more so: the subset of the language we
are left with is the set of notations built from elementary functions and variable function
applications by operations of propositional logic. It really does seem that Russell is here
making an assertion about the resources of his language: this assertion is in fact provably
false unless one charitably allows elementary functions of all predicative types as primitives.

2 Introduction

This is a document intended to describe a full implementation of the system
of the Principia Mathematica of Russell*> and Whitehead (hereinafter PM)
meeting modern standards. PM is a piece of mathematics, and there is really
just one structure that PM (with the Axiom of Reducibility) can describe
(up to a certain amount of isomorphism) and we will duly describe it. This
is not to say that some details of an implementation cannot be filled in in
different ways: we will discuss this in places in the development where we see
other options as possible. Most references are either to the first volume of
PM ([?], referenced by page number with no identification) or to Klement, K.
“The functions of Russell’s no-class theory”, Rewview of Symbolic Logic, vol.
3, no. 4 Dec 2010 ([?], identified briefly as “Klement”), which we read after
completing the first draft of this document and found quite congenial on a
technical level, though we draw somewhat different philosophical conclusions.
Nothing in the main text is modified by anything in Klement; we did add
remarks in footnotes to the text as we read the Klement paper.

All of our work on PM owes a debt to the following paper: Fairouz
Kamareddine, Twan Laan, and Rob Nederpelt, “Types in Logic and Math-
ematics before 1940”, Bull. Symbolic Logic, Volume 8, Number 2 (2002),
185-245 ([?]). It is not so much that we take ideas from them directly as
that they called our attention to the fact that the system of PM needed to
be formalized in accordance with modern standards. Our technical solutions
are not always the same as theirs. We are definitely indebted to their nota-
tions and terminology. Our paper [?], describing a formalization of the type
system of PM and software for type-checking terms of a language based on
that of PM based on that formalization, should be mentioned only to say
that we think that the formalization of the language of PM and its semantics
given there should be taken as considerably farther from the actual language
of PM and associated semantics than the formalization given in this paper
(and closer to that in [?]), though comparison of the two papers might be
useful to understand the way we think about the subject.

The mathematical implementation of PM which we will present uses the
Axiom of Reducibility (so it proves all the results in all three volumes). It

2the author of PM is referred to as “Russell” for convenience. We do know that
Whitehead is part of the composite author of the work.

uses the type system described in the introduction to the first edition®, not
the type system described in the body of the first edition (section 12) or worse
yet in the introduction to the second edition. It uses section 10 for quantifiers:
we really can apply propositional connectives to quantified sentences. These
are rational decisions designed to make the mathematics clearer.

There are interesting things to be said about PM without the Axiom of
Reducibility, but that is another story.

Russell says over and over that the world of PM is inhabited by individu-
als, propositions, and propositional functions. It is weird and opaque of him
to do this and then to provide us with hardly any examples of notation for
propositional functions and no examples at all of notation for their types.
But the propositional functions are not a fiction and not eliminable. Every
quantifier over classes in the whole work (and there are lots of them) trans-
lates to a quantifier over propositional functions via the formulas in section
20*. Russell is committed to propositional functions, whatever they are [we
will explain something that they could very reasonably be].

We feel entirely free to use modern formulations of concepts where they
coincide reasonably closely with Russell’s treatment. We certainly feel free
to use modern notation and to introduce our own notation where desirable.

For us, propositional functions are pieces of notation in a language.® This
seems to fit closely with how Russell talks about them. This is a specific de-
sign decision. We use the briefer term pf for “propositional function” (here
we can directly acknowledge the influence of the paper of Kamareddine et.
al.). One could alternatively interpret pfs as functions in the usual mathe-
matical sense, but this would run up against Russell’s evident unwillingness
to commit to their being extensional, and against issues of use and mention:
he does in some places pretty clearly regard pfs as characterized by their
notational features.® One should not forget that notations are themselves
abstract objects, and one should note that I am absolutely not committing

3pp. 48-55

4proposition 20.07 is unequivocal: every quantifier over classes translates to a quantifier
over pfs; there is no reduction of ontological claims here, merely a replacement of the claim
that there are classes with the claim that there are pfs (whatever they are).

°This is (independently) basically the same as Klement’s reduction of pfs to open
formulas in a language.

6An example of such language is found in the four numbered points at the bottom of
p- 167 and their application to the discussion of reducibility

to these notations being finitary or making up a countable set. In fact, under
the most natural interpretation the “language” I am talking about turns out
to be of a quite large uncountable cardinality.”

A pf is obtained from an expression for a proposition by circumflexing one
or more variables. A pfis actually a sort of A-term, but the syntax differs from
Church’s both in the restriction to abstraction from propositional expressions
and in the lack of a head binder. A pf is to be thought of as representing
a function of a vector of variables, namely the circumflexed variables in its
notation, listed in alphabetical order (so @ < b is a function of (a,b) (the
less-than relation) and b < @ is also a function of (a,b) (the greater-than
relation!).®

We could take the bull by the horns and replace pfs with A-terms with
proper head binders, and make things much cleaner. We would then write
(Aab:a < b) and (Aab : b < a) instead of @ < b, b < @, respectively. But it is
fun to work out the details and see that Russell’s original concept works.

A pf has a type, which is a vector of types consisting of the types of its
circumflexed arguments in alphabetical order, with the additional feature of
a numerical order, to be explained. Propositions do have types (with order)
and there are propositional variables, but for our formal purposes we never
circumflex a propositional variable [and Russell only does this under special
circumstances|. The basic types are built by this operation from the type of
(relative) individuals. We say relative individuals because the typing scheme
is polymorphic, with every type being defined relative to the type of relative
individuals, which may be any particular type, whose internal structure is
being ignored in the context.

"Klement discusses realist and nominalist approaches to pfs: I suppose mine is nom-
inalist in his terms though I do not regard my interpretation as giving much comfort to
nominalism. An argument in favor of a realist approach (which I could formulate along
similar lines) is that distinct pfs may in fact be equal in the internal sense of PM, and it
might be better to think of such pfs as names for the same extra-linguistic object. But
it is easier not to do this. For Russell speaking as if a pf denotes something, see p. 40,
bottom of the second paragraph, but what he says there and near there is quite vague.

8The role of alphabetical order of circumflexed variables in computing values of pfs
with several arguments is discussed on p. 200. The need for such a device for evaluating
pfs with multiple arguments follows from the lack of head binders in the notation.

3 Propositional and Object Notations

To start making this concrete, we need to define the notations for proposi-
tions.

propositional variables: A letter p,q,r ... may be used as a propositional
variable. These have propositional type, (), which may further be qual-
ified as ()° where 0 is the numerical order of the type , as we will reveal.
A propositional variable is a propositional notation. No object variable
is free in such a notation.

elementary functions: An expression f(¢y,...,t,) is a propositional nota-
tion, where each t; is an object term of type 7; and f is an elementary
propositional function of type (71, ..., 7,)™, where the numerical order
m of the type is the smallest order greater than the orders of each of the
7;’s. We provide many elementary functions for every type vector (in
this we are more generous than Russell, who only provides elementary
functions of individuals). This represents a simple atomic predicate of
a vector of terms of the types 7;. The elementary function f here is a
constant (it cannot be circumflexed or generalized over). The type of
f(t1, ..., t,) is ()™. The object variables free in this expression are the
object variables free in any of the t;’s.

variable function expressions: An expression z(ti,...,t,) is a proposi-
tional notation, where the t;’s are object terms of types 7; and where
x is a variable of type (71,...,7,)™, where m is greater than the order
of each 7;. The type of x(t1,...,t,) is (). The object variables free
in this expression are the object variables free in each of the ¢;’s and
x. If x is circumflexed or bound by a quantifier, the order of its type is
forced to be the smallest which is greater than the orders of the types
of the arguments.”

One could also use Russell’s notation z!(ty,...,t,) to force x to have
type of lowest order.!?

9 At the bottom of p. 165 Russell discusses the fact that in a general term f(z) or f(¢(%)
the order of f is uncontrolled, but that in any context where it is bound (“apparent”) its
order will be minimal.

10Russell uses the exclamation point to signal that the pf is a matriz, that is, involves
no quantification, but we do not regard this as a useful concept. We regard quantifications

propositional connectives: If P and () are propositional notations, =P is
a propositional notation of the same type as P and with the same
free object variables, and P V @) is a propositional notation of the
propositional type with order the maximum of the orders of the types
of P and () and with those free object variables found in either P or
Q. Notations PAQ, P — @, P < @ are defined in the usual ways
and type in the same way as conjunctions.

quantification: If P is a propositional notation of type ()" and z is an
object variable free in P, (x)P is a propositional notation with type
the maximum of n and the successor of the order of the type of x. The
free object variables in ()P are those in P other than z. (3x)P is
defined in the usual way and types in the same way. It may be that z
occurs in P with an argument list of circumflexed variables [indicating
an explicit type relative to the type of relative individuals]; nonetheless,
only the solitary letter x will appear in the quantifier.!!

completeness: All propositional notations are constructed using the clauses
here and no others.

We define object terms.

names for individuals: To enforce the axiom of infinity, we provide an
infinite collection of names for distinct individuals, all of the true type
0. We assume that we have a name for each individual.

object variables, type inference, and typed variables: A letter z,y, z...

(and possibly other letters) is an object variable. A letter appearing as
an argument (not in a quantifier prefix and not in applied position) is
of the type 0 of relative individuals with order 0 (of course the order

as problematic only when they raise the order of the proposition. He defines predicative
functions as matrices in this sense in the body of the first edition (as on p. 167) but
in the introduction, on p. 53, the term “predicative” is defined in the more liberal way
that we use here: a pf is predicative iff its type has the minimal order compatible with
the types of its arguments. On p. 52 he gives the example of a function ¢!z defined as
(y)¢(z,y), making it clear that at that point he is not requiring that functions marked
with the exclamation point be matrices.

"Russell discusses the omission of type information from quantifier prefixes on p. 165,
in paragraph beginning “When any predicative function. ..occurs as apparent variable. . .

of this type is as relative as the type itself: the type of relative indi-
viduals may be a more complex type with a nonzero order if we look
more closely). If an object variable letter appears in applied position
x(t1,...,t,) with term ¢; having type 7;, it has a type (7;,...,7,)™
where the order m of this type is higher than the orders of the 7;’s. If
the variable z is circumflexed or bound by a quantifier, m is as small
as possible. If all the arguments ¢; are circumflexed, the expression
x(ty,...,t,) is in effect a variable with a type label, and the order of
its type is taken to be as small as possible The expressions capable of
being circumflexed (which we may called typed variables) are exactly
the object variable letters and the expressions x(yi,...,¥,) where all
arguments are circumflexed.'> The only object variable free in z or
(Y1, .-, Yn) is x. Note that in a quantified sentence (x)P or (3x)(P)
we can determine the type of x because x must occur free in P, and
this appearance will reveal its type.

pf notations: A pf notation P is not a typed variable and is obtained by
applying a circumflex to one or more free typed variables in a propo-
sitional notation P, [a typed variable is free in Fy iff the variable free
in it is free in Pp). Let (43, ...,4,) be the vector of circumflexed type
variables appearing in P but not in F, presented in alphabetical order,
with types (71,...,7,). The type of the notation will be (7q,...,7,)"
where m is the smallest order greater than the orders of each 7; and
greater than or equal to the order of Py (which may independently be
raised by quantifications). There are no free object variables in a pf
notation: we view any object variable appearing uncircumflexed in a
pf notation as representing a constant!3, and so of course it cannot be
bound or quantified over. [this is a limitation of the notation for pfs

12These “typed variables” are ubiquitous in Russell’s actual notations for propositional
functions. See for example the footnote on p. 49 noting that ¢ and ¢Z are both function
variables with similar meaning, the circumflexed argument serving to signal that the func-
tion needs an argument, that is, what its type is. More complex typed variables can be
seen in use on p. 52.

13In the main text I am following what is found in PM, so I am putting a modest
proposal regarding constants here in a footnote. We have constant names for each true
individual. We could use the names for elementary functions of the type of the relative
individuals as constants of that type (since we actually will assume eventually that there
is an elementary function coextensional with every pf — we could assume that there was
one indiscernible from each predicative pf as readily) and then require that a pf notation
is obtained by circumflexing every typed variable in a pf notation, constants being then

8

of which Russell does not seem to have been aware, but it admits only
one solution; the reason that we cannot allow quantification over such
a variable is that we take seriously the idea that where (z)(¢(z)) makes
sense, so must ¢(2)].

Such notations do occur in PM, but Russell does not explicitly note
the difficulties that they entail.!®

A typed variable looks as if it should be a pf notation, and arguably
is one, but we distinguish them as a separate kind of notation because
they are regarded as containing free occurrences of a variable and sub-
stitutions into them are allowed.

A circumflexed variable not appearing as an argument of a typed vari-
able is bound in the smallest notation containing it which looks like a
proposition (circumflexes other than those on arguments of typed vari-
ables or appearing in proper subnotations for pfs being ignored) and is
either in a position appropriate to an object or is the entire term under
consideration. Again, we have subtleties due to the fact that we have
no head binders for pf terms: the fact that we abstract pfs only from
propositions helps avert any ambiguity.

syntactically distinct. On the other hand, for purposes of formal reasoning with quantifiers
it is convenient to have nonce constants (free variables which cannot be bound) and these
could be allowed to occur in pf notations—in fact we would need them to so occur.

YMproposition 9.15, p. 133. We cannot regard any proposition f(i = a) as a function
of the variable a for a purely typographical reason: f(& = &) cannot be read as a pf
which when applied to a gives f(Z = a): it must be read as the application of f to the
pf constant & = a of two variables, the equality relation on individuals. So we determine
that the expression f(# = a) cannot be viewed as having a variable a in it: a must be
understood as having been fixed as a constant at the time the pf was constructed. This
is an example of a problem caused by lack of head binders: A-notation would allow us to
distingush (Aa)(f((Ax)(z = a))) from f((Aazx)(z = a))

15For example, the notation Z = a occurs on p. 19. On p. 19 it is also valuable to quote
this sentence “In fact, we have found it convenient and possible — except in the explanatory
portions—to keep the explicit uses of symbols of the type ¢ either as constants (e.g. & = a)
or as real variables, almost entirely out of this work”. It is important to note the “almost”
and the “explicit”: he is not saying that he can dispense with propositional functions
or propositional function notation completely, merely that he can keep it to a minimum.
The contexual definitions in section 20 of statements about classes, if expanded, will lead
to language actually mentioning propositional functions. The secret to his avoiding pf
notation is that he never actually expands these notations. But the commitment to pfs
remains: the entire work depends on them, as he clearly says in many places.

completeness: All object terms are constructed using the clauses here and

no others.
note about circumflexed variables: The expression Z(yy, . .., y,) is quite
different from z(yi,...,9,). There is an error in PM where one is

written in the place of the other.! The first is a pf notation for a
function of n+1 variables; the second is a solitary circumflexed variable
of a possibly quite complex type (not meaningful except in a larger
context).

further note: I have achieved the condition which Russell achieves in PM,
where I can type an applied real variable [a variable not circumflexed
or quantified over| in a non-predicative way (with order higher than
expected) but the type of any circumflexed variable or variable bound
by a quantifier (and so any proper constituent of the type of a pf) will
be predicative.

All features of this notation are actually found in the text of PM some-
where. This notation is adequate to underpin all the formalism, and it
squares with what he says about it.

16 At the bottom of p. 52 I believe there is a notational error: f!(¢!2) is indeed a function
of two variables, which should be written f'(@) and ¢!(2): the notation f!(¢!2) which is
actually given can only refer to the application of f to the function (ﬁ!(é)7 the two argument
function which applies a pf to a (relative) individual. This last two argument function is
discussed at the top of p. 52, though the circumflexed notation for it is not given, only its
ambiguous values ¢lz.

10

4 Evaluation of pfs; the definition of substi-
tution

To complete this definition, we should explain the underlying notion of eval-
uation of a pf. In particular, the really subtle point (which Russell does
discuss) is that when one makes a substitution for ¢ in a pf gg(tl, oo tn),
what one obtains is the result of substituting t¢q,...,¢, for the appropriate
variables in the pf replacing ¢: there is no intermediate stage at which a pf
notation appears in applied position.'”

Notice that the notation here coincides with the notation for pfs and
propositions actually found in PM; the notation for types is a novelty, as
PM has no such notation. This follows [I believe] Ramsey ([?]). The use of
argument lists of circumflexed items as type labels is characteristic of PM.

The general convention is that if one asserts a proposition in which some
variable is not quantified or circumflexed, this assertion is made for all pos-
sible values and all possible typings of these real variables. This allows us
to state the axiom of reducibility and some other things of interest exactly
as Russell intends. The one point of typing which is not as Russell intends
(though he does exhibit notations in passing which would exhibit this prob-
lem) is the fact that non-circumflexed variables inside pf notations are forced
to be constants (which might be construed as real variables of global scope):
they cannot be bound or circumflexed subsequently.

The formal definition of substitution follows.

17this is related to Russell’s point at the bottom of p. 39 that there is no presupposition
in the form of a sentence ¢z of that particular function ¢. A pf notation, as opposed
to a pf variable, never appears in applied position, because ¢a means exactly the result
of replacement of & with a in ¢Z. Russell also says on p. 55 that a function is not a
constituent of its values: I believe this is what he means.

11

What we define is Nt1 /vy, ..., t,/v,], the result of replacing object vari-
ables v; with object terms ¢; simultaneously in V.

propositional variables: plt; /vy, ..., t,/v,] = p.

elementary functions:
f(ul, . ,’U,m>[t1/'l}1, R ,tn/'l}n]

= Flw[t1/v1, .t/ Vnls [t /01, ot O0)).

variable functions:
T(Upy oo Um)[E1 /U1, ot U]

= x(wif[ty/v1, .. to/on], - um[ti /o1, ot UR]),

unless some v; = z, in which case we examine t;: if ¢; is an object
variable v,

T(Ury .oy Um) [t V1, -t)

=y(ur[ti/v1, .. s tn/Unls oy umlts/vr, .ot/ n)),

but if ¢, is a pf with vector of circumflexed variables (1w, . .., uwy,) [there
must be exactly m variables for this to be well-formed]

T(Upy oo Um)[E1 /U1, o T U]
= thlu[tr/vr, ..t /R fw1, U [tV OR] 0],

where t; is the result of removing circumflexes from the variables cir-
cumflexed in forming ¢; (not from circumflexed arguments serving to
provide typed variables with type signatures). The pf ¢; should contain
no occurrence of any variable v; in the substitution.

propositional connectives:
(_‘P)[tl/vla cee 7tn/vn] = _‘(P[tl/vla cee atn/vn]);

(PVQ)[ti/v1, ... tn/vn] = Plt1/vr, .. ta /o] V Q[t1/v1, .. tn/vn).

12

quantifiers:

() P)[t1/v1, ... ta/va] = (2)(Plz/x][t1/v1, . . - s tn/vn])

where z is any variable of the same type as z and not occurring in P at
all, not identical with any of the v;’s, and not occurring in any of the
t;’s at all. We note further that we regard (z)P as exactly equivalent
to any (z)(P[z/x]) where z does not occur in P at all.

object variables and typed variables:

xty/vr, ..t/ Un)

is t; if some v; is « and otherwise is z. z (Y1, ..., Ym)[t1/v1, ..., tn/Vy) 18
(Y1, -, Ym) if no v; is x. If v; is x, this is ¢; (or t;(y1, ..., ym) if t; is
merely a variable letter).

pf notations: pf notations are constants and will not be affected by sub-
stitutions. Non-circumflexed and non-quantified variables appearing in
pf notations should not appear as v;’s.

One can prove by induction on the structure of types that this process of
substitution preserves types and terminates. This would not be true if type
discipline were not applied: replacing x with the purported pf =2 (z) in —z(x)
would be a nonterminating substitution, reproducing Russell’s paradox.

Notice that polymorphism enters in here: there is a freedom of typing of
the t;’s due to the unspecified character of the type of relative individuals.
Some t; may of course force more information about this type, and the type
information about all ¢;’s must then be compatible.

This definition of substitution tells us how to evaluate pfs. We believe
that Russell had to avoid explicit use of pf notation because explicit use of it
would have forced a formal definition of substitution of this kind, which he
did not know how to produce.!®

Bon p. 644 of Klement he describes attempts of Russell to develop systematic notation

for formal substitutions.

13

5 Evaluation of propositions: the semantics
of (propositional notations of) PM

NOTE: this should be spelled out with more formality.

To complete the semantics, we need to know how to assign truth values to
each proposition (evaluation of pfs is handled via the substitution operation:
we do not need to assign referents to them). We presume an environment in
which values are assigned to each variable which occurs free.

propositional variables: Each propositional variable can be assigned the
value true or false in the environment.

elementary functions: Each elementary function f is implemented as a
relation on objects of the appropriate types. The relation assigned to
f cannot be deduced from syntax: this is background information.

variable functions: The value to be assigned to a variable function is com-
puted by taking the pf value for the applied variable from the envi-
ronment and carrying out the substitution of the arguments to get a
presumably simpler term to evaluate. Substitution does provably sim-
plify terms, so this will actually work.

propositional connectives: We know how to evaluate negations and con-
junctions.

quantifications: We can evaluate ()P as an infinite conjunction of all re-
placements of x with elements of its type (this is how variables get
assigned values in the environment), because all these propositions will
be of lower order; substitutional quantification works!

So we have reduced everything to syntax you say. Not really.

5.1 Obligations incurred by the Axiom of Reducibility

The reason has to do with the Axiom of Reducibility, which says

(3¢)(z)(f(2) < o(z))

14

where f is a real variable (and so may stand for any pf with type of any order;
our typing conventions tell us that ¢ has type of minimum possible order (we
do not need an exclamation point on it: just the fact that it is quantified
over is enough, because of the way we have defined the typing scheme).

Versions of this axiom are needed for vectors of greater length, of course:
Russell provides

(30) (@) (w)(f(z,y) <> ¢(x,y))

Now we get hoist by the petard of substitutional quantification. This
formula tells us that for each value of f there is an actual pf notation ¢
which does the trick [Russell’s discussion makes it clear that he thinks this is
what he is saying'?], and in general (if we think our notations are constructed
recursively from some finite stock of primitive notions) this is simply not true.
Impredicative type theory simply will not have all its predicates represented
in this way. NOTE: a proof or reference to a proof of this mathematical fact
should be inserted. I have carefully provided a device to make this possible
nonetheless: the only way for this to be true is for there to be lots and lots
of primitive elementary functions in every type.2°

The intuitive way to get Reducibility to work is to provide an elementary
function implementing every subset of 7, X ... X 7, where the 7;’s are exten-
sions of types. If done with care, this is a well-founded process, because the
elementary function will be of a type of higher order than any of the 7;’s.
One can be more subtle (and get the axiom of extensionality to hold in your
implementation of PM) by requiring that elementary functions implement
all and only the extensions which respect extensionality: a relation R will
be implemented iff R(zy,...,2,) <> R(y1,...,yn) whenever PM asserts that
x; = y; for each 7. The equality of PM on individuals may be supposed to

9see for example p. 167: he says that any function of one argument or two is to be
equivalent extensionally to a predicative function, and defines a predicative function as
one for which we have notation involving no bound variables, which is more general than
saying that the function is elementary but not much more so: the subset of the language we
are left with is the set of notations built from elementary functions and variable function
applications by operations of propositional logic. It really does seem that Russell is here
making an assertion about the resources of his language: this assertion is in fact provably
false unless one charitably allows elementary functions of all predicative types as primitives.

20Klement p. 657 quotes Russell on the possibility of having infinitely (even nondenu-
merably) many simple symbols

15

be real equality: on all other types, coextensional pfs of the same type will
turn out to be equal. Even the radical approach of allowing all relations on
notations to be implemented by elementary functions will work (though it
will give a version of PM very far from satisfying extensionality). We cannot
require that each pf be implemented by a different elementary function; this
would run afoul of Cantor’s theorem and it would break the well-foundness
of the process [at the point where the elementary functions on a given Carte-
sian product of types are being constructed, we do not have access to all the
impredicative pfs which may have extensions in that type].

In this way we obtain substitutional quantification, but it does nothing
to serve what might be thought of as nominalist aims. The ontological com-
mitment to arbitrary sets and relations appears in a quite different place in
the semantics, not to do with quantification at all.

5.2 Does the no-class theory reduce ontological com-
mitments?

The claim that the no-class theory effects any reduction of ontological com-
mitments is seriously doubtful. In the translation following number 20, every
quantifier over classes [and there are plenty in PM] converts to a quantifier
over pfs [this is explicit in 20.07], so one has the commitment to pfs cover-
ing the same ground as the commitment to classes, and I have given strong
reasons to suppose that pfs commit you to a strong ontology of sets or the
equivalent in the presence of Reducibility.?!

2lyou might argue that substitutional quantification (as opposed to objectual quantifi-
cation) does not commit you to the existence of the objects of the domain over which
you are quantifying — but it does when the domain quantified over is identical with the
domain of notations to be substituted, as is the case here. It can be noted that one is
not really mentioning but using the notations (p. 651 Klement) but if they are taken to
denote anything (including themselves) those things are each being mentioned, or at least
each of them is being treated.

More generally, I am skeptical of any application of substitutional quantification to
eliminate objects. If you are willing to make your language large enough to provide
names for all objects of a class, and willing to provide a non-effective definition of how to
evaluate propositions with these names in any context, then you can eliminate any domain
of objects from explicit consideration. But then you have names for all of these objects and
criteria for determining whether they have the same referent (using the Leibniz criterion).
Whether you admit it or not, you have the entire domain of objects available to you.

16

What is really going on here is that the no-class theory is not actually
about ontological reduction at all: it is about eztensionality. Russell is
(rather kludgily) presenting a way to interpret an extensional theory in a
nonextensional theory. The ontological commitments of the extensional the-
ory (if it were to be taken literally) are of exactly the same strength as those
of the nonextensional theory.

It should be noted that there is no commitment in our formalization
of PM to a nonextensional view: nothing forces us to provide any predicate
which does not treat pfs with the same extension identically, and if we restrict
ourselves to such predicates we will find that the theory says that pfs with
the same extension (even if different as pieces of infinitary text) are equal:
one must remember that equality is a defined notion in PM and look at how
it is defined.???3

The Axiom of Reducibility forces us to associate with most complex ab-
stractions of an impredicative character new unanalyzable elementary func-
tions. This is a very strong commitment to the existence of objects specified
by abstraction: PM has a considerable commitment to “abstract particulars”.
Prior to this, one can note that pieces of notation are abstract particulars.
Even the version of PM without reducibility must be construed as talking
about infinite domains of abstract objects, even if we construe the pfs as
PM’s own formal notations.

Subsitutional quantification does have value, as in this case, for simplifying the semantics
of quantification (at the cost of increasing the size of your language). A claim that a class
of objects has been eliminated can be taken more seriously if the class of names is finite
or countable and all operations on the class of names that are used are effective.

22p. 166: “There is no advantage in assuming that there really are such things as
classes. . .It would seem that the sole purpose which classes serve, and one main reason
which makes them linguistically convenient, is that they provide a method of reducing
the order of a propositional function. We shall, therefore, not assume anything of what
may seem to be involved in the common-sense admission of classes, except this, that every
propositional function is equivalent, for all its values, to some predicative function of the
same argument or arguments.” Our critique is that in fact this grants everything that the
assumption of classes permits. Russell seems to think that the paradoxes have something
to do with asserting the identity criteria for classes; in fact, imposing extensionality has
no logical strength, and the mere ability to talk about nonextensional pfs without type
discipline would give the paradoxes at once [the pf R = =¢(¢(i) would do the trick: the
assertion R(R) would be equivalent to =(R(R))].

23Klement p. 642 tells us that Russell knew the paradox cited in the previous footnote.

17

6 Effects of our design decisions

We briefly comment on our design decisions. The more fine-grained type sys-
tems described in the body of the first edition or in the introduction to the
second edition make it basically impossible to do any mathematics without
the axiom of reducibility. The system of types and orders in the introduction
to the first edition is the correct one: it does exactly enough to ensure that
substitutional quantification is workable. Russell is excessively cautious, be-
cause he is uncertain what exactly is causing the paradoxes; we are more
confident now because we have more experience. The approach of section
9 which doesn’t allow propositional connectives to be applied to quantified
sentences does not gain us anything. We suspect that Russell’s motivation in
doing this had to do with paranoia about paradoxical assertions, and again,
we know [and in this case we think Russell actually knew| that the section
10 approach is perfectly safe. That pfs are actually identified with pieces of
notation is perhaps conservative, but workable, noting that the equality of
PM is defined, and does not need to be the same as the equality relation on
pieces of notation considered in the metatheory. In many places Russell does
appear to regard features of the notation associated with a pf to be features
of the pf itself.?*

The one option which we do not take which we do regard as having gen-
uine mathematical interest is the option of denying the Axiom of Reducibility.
If one does not assert Infinity one gets a very weak theory indeed. If one has
a finite supply of names for individuals, there is a natural model of PM as
described above [except for the qualification about the names for individuals]
in which each type is finite. Provide an elementary equality relation which
respects extensionality on each type and otherwise provide no elementary
functions: the resulting interpretation of PM along our lines will think that
each type is finite. Further, oddly enough, it will satisfy reducibility! If one

24we do note (this is analogous to points discussed by Klement on p. 660) that in fact
we have not assigned referents to any object symbol in my formal semantics: I have only
assigned referents (true or false) to notations for propositions. But I seem to be forced
on the metalinguistic level to talk about arbitrary collections of notations in defining the
semantics of elementary function symbols. And the linguistic objects which I am using
(even if not mentioning) are not concrete linguistic objects (I say things about them which
far outrun the scope of any talk of concrete inscriptions). In some sense I have described
a semantics for the language which does not mention any referents except the True and
the False. But the ontological commitments behind this discourse are vast.

18

does assert Infinity one gets a theory known to be weaker than Peano arith-
metic but nonetheless capable of doing a lot of elementary mathematics (it
is known that this theory cannot prove mathematical induction or the least
upper bound property in analysis). Again, build a minimal model of this by
providing only the fixed infinite collection of individuals and the elementary
equality relations respecting extensionality on each type. An inductive argu-
ment which Russell himself seems to have grasped on an intuitive level shows
that the resulting interpretation of PM without reducibility is extensional.
In this model Reducibility will be false. One could have fun by doing weird
things like providing an elementary enumeration of each type; this would
falsify Cantor’s theorem. In any models one builds by simple recursions the
axiom of reducibility will turn out to be false.

19

7 Technical issues

7.1 Theory and metatheory

We turn to the matter of how to understand the linguistic expressions that
we have used as a substrate for the pfs. We can regard these notations as
finite sequences of symbols, or better as finite parse trees, which we might
imagine that we can build, all in the same low type, using the machinery of
PM itself, from a supply of atomic notations which may be very large?®. But
notice that if the naive approach to introducing function symbols is taken,
the collection of elementary function symbols will be larger in size than any
type. It is possible to build a countable model, and in such a model we could
actually build all the notations in a single fairly low type.

If we wanted to explicitly express quantifications as infinitary conjunc-
tions and disjunctions, this would remove the finitary character of the parse
trees, but could still be carried out in a single low type if there were not too
many elementary function symbols 26

This is not paradoxical! For PM will view the equality of these internal
versions of the propositional notations as genuine textual equality. The rela-
tion on propositional notations of having the same truth value would in fact
not be definable in PM at all (actually, if one considered notations with types
of subexpressions bounded as simpler than a given type, it would definable,
but only in a type higher than the given type, and this process cannot be
described uniformly with the resources of PM). So, although the notations
used to implement the propositions and pfs would under these hypotheses be
visible to PM itself, and in fact all visible in the same type, their relation to
the semantics of PM would not be visible.

7.2 The schemes of contextual definition in PM re-
viewed and found to be eliminable

We recall that x = y is defined as (V¢)(¢(z) <> ¢(y)).

251f the natural approach is taken, there will be J,, elementary function symbols
26Klement pp. 657-58 on possibility of linguistic expressions of infinite length considered
by Russell

20

7.2.1 Definite description discussed

We review Russell’s contextual definitions. The definite description operator
(0x)(P) (where x must occur free in P) [we use a different symbol because
we do not know how to typeset his original] is defined by

f(0x)(P)) +» (Fa.(Vx.P < x = a) A f(a))

This can be improved (allowing the logic of expressions (0x)(P) to be the
same as those of any other variables or constants) by the refinement

f((0x)(P)) < (Fa.(Vz.P <>z =a)A f(a))V (—=(3Fa.(Vz.P <> z = a)) A f(A))
where A is a default object of the appropriate type: this can be arbitrary in
the type of individuals and the universally false pf in each other type.

The use of this approach allows us to regard (6z)(P) as in every case
the name of a specific object, and removes the need for any considerations of
scope in the use of this notation. It must be further observed that the contex-
tual definition can be entirely eliminated (this is basically Frege’s approach
in [?]). Introduce # as a primitive operation acting on pfs of one variable.
The governing axiom would be

((Fa.(Va.g(z) ¢z =a) NO($(1)) = a))
V(=(Fa.(Vz.¢(x) <>z =a)) NO(o(T)) = A)
It is worth noting that the object picked out by a definite description is
always of a predicative type, as its type is the type of an argument of a pf.

We are not proposing adoption of such an operation, merely pointing out its
formal possibility.

7.2.2 The no-class theory discussed

The definition of class notation is thus:

f(@(P)) = (F¢.(x)(d(x) < P) A f(¢(2)))

21

Similarly

[(@9(P)) = (3¢.(z)(y)(¢(z,y) ¢ P) A f(6(2,9)))
defines relation notation.

The scope convention for this notation is that in all cases the scope is
to be taken to be the smallest proposition containing the class symbol. The
idea is that each elementary function symbol or variable function symbol is
reinterpreted as having its extension fattened up in the minimal way which
causes it to respect coextensionality. This has no effect on the meaning of
any symbol which already respects coextensionality.

We propose a uniform method of handling any class variable a:: each such
variable has a predicative pf type, and is to be read as Z¢,(x) wherever it
occurs where ¢, is a correlated pf variable of the same type. Each quan-
tifier («) is simply to be read as (¢,). Similarly, each relation variable R is
correlated with a pf variable ¢(Z,3) and to be read as £y¢gr(z,y) wherever
it occurs, with (R) read simply as (¢r). The notation x € a abbreviates
¢a(z). The notation Ry abbreviates ¢r(z,y). Notice that applied position
is a context which respects extension.

7.2.3 The effect of the no-class theory (indeed, a fully extensional
theory) achieved with no contextual definition of class at all

It is worth noting that the exact effect of replacing every pf variable with a
class variable and so causing extensionality to hold can be achieved in a quite
different way (though on examination it is very similar). Define a relation ~
and a new pf application operation ¢[z1, ..., x,] by mutual recursion. a ~ b
for a, b individuals is defined as a = b (using the predicative equality relation
on individuals which Reducibility gives us). ¢ ~ 1 is defined as

(x1. a2y) () ~w A AT~ = Pl x] Yl T]).

olzy,xy) isdefined as (Fzy, ..., x,) (21 ~ TN Axy ~ T AD(21, .0, 20)).
The theory of pfs and individuals using the new application operation is ex-
tensional and otherwise satisfies the same logic as the original language of
pfs, which can then be ignored. No contextual definitions are involved. The
relation ~ will coincide with the defined equality of PM in the new language.

22

Also note that order is not raised by replacing all applications with the new
application.

One then defines (¢ (x)) as (00)((z)(¢(x) <> ¢(x))) [with the contextual
definition of # expressed in terms of the new equality based on ~]. The point
of this is that the type of a definite description is always predicative, due
to our typing rules for quantifiers. The unique predicative function with the
same extension as ¢ [unique in the sense of the new equality defined as ~|
does exist by Reducibility combined with extensionality.

7.2.4 Definite description defined in terms of class notation in
almost all cases

Even more dramatically, 6 is definable in most types as soon as one has
extensionality. 0(¢(Z)) can be defined as the class

§(Fr.a(y) A (V2.6(2) & 2 = 1))

unless the type of z is the type of true individuals. So in fact our device
for eliminating the need for contextual definition of classes also eliminates
the need for contextual definition of definite description except in the case
of its use in defining classes and the case of descriptions of true individuals,
and arguably we could do entirely without descriptions of true individuals,
as mathematical objects are generally implemented as pfs.

This elimination of most contextual definition from PM is not merely a
piece of anachronistic technical brilliance: it should make a point about the
actual significance of such devices in the system. In particular it should help
to make our point that the no-class theory has nothing to do with ontological
reduction at all.

At this point we are fully set up to carry out the actual development in
PM in a manner supported by the notation and semantics given here.

23

