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1 Introduction

This is a presentation of the simple typed theory of sets as an unsorted theory.
The initial observation is due to Thomas Forster. In a context which is

unsorted in the logical sense, we can recognize that two objects are of the
same type if they belong to a common set.

Definition: x ∼τ y is defined as (∃z : x ∈ z ∧ y ∈ z). We read this as “x
has the same type as y”, though we do need to justify that it is an
equivalence relation.
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2 The Axioms

Axiom of Reflexivity: For every x, x ∼τ x. This amounts to the assertion
that every object belongs to some set, and so that “x has the same type
as x”.

Axiom of Separation: For every x and for each formula φ, there is an
object {y ∼τ x : φ} such that {y ∼τ x : φ} ∼τ {y ∼τ x : y = y} and
(∀y : y ∈ {y ∼τ x : φ} ↔ y ∼τ x∧φ) We define τ(x) as {y ∼τ x : y = y}
and note that we can equivalently write {y ∼τ x : φ} as {y ∈ τ(x) : φ}.
In other words, for any property we can collect the objects with that
property of the same type as a given x. The type of x, τ(x), is the set of
all objects of the same type as x: we reiterate in different terminology
that {y ∈ τ(x) : φ} ∼τ τ(x), or {y ∈ τ(x) : φ} ∈ τ 2(x).

We can now establish that ∼τ is a symmetric and transitive. That

x ∼τ y ↔ y ∼τ x

is simply a truth of logic (given the definition of ∼τ . It follows from Separa-
tion that x ∈ τ(y)↔ y ∈ τ(x).

Now suppose that x ∼τ y and y ∼τ z. It follows that x ∈ τ(y) and
z ∈ τ(y), whence x ∼τ z.

Thus we have established that ∼τ is an equivalence relation.
We have one more axiom controlling types.

Axiom of Level: If x ∈ y, u ∈ v, and y ∈τ v then x ∼τ u. It is worth
noticing that in the presence of the other axioms, the axiom of level is
equivalent to the usual Axiom of Union asserting the existence for each
A of {x : (∃y : x ∈ y ∧ y ∈ A)} or an axiom of binary union asserting
that if x ∼τ y, then {z : z ∈ x ∨ z ∈ y} exists.

We state identity criteria for sets.

Axiom of Extensionality:

(∀xyz : z ∈ x ∧ (∀u : u ∈ x↔ u ∈ y)→ x = y)

Nonempty objects with the same elements are equal.
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Axiom of Null Sets: If (∀y ∼τ x : ¬φ) and x ∼τ x′ then

{y ∼τ x : φ} = {u ∼τ x′ : u 6= u},

We define ∅τ(x) as {u ∼τ x : u 6= u}.

We can define a notion of sethood at this point, and state some convenient
alternative extensionality theorems.

Definition: We define “x is a set”, written as set(x), as

(∃y : y ∈ x ∨ x = ∅τ(y)).

Theorem: (∀xy : set(x)∧set(y)∧x ∼τ y∧ (∀z : z ∈ x↔ z ∈ y)→ x = y)

Theorem: {y ∼τ x : φ} = {y ∼τ u : ψ} iff x ∼τ u and (∀y : φ↔ ψ).

Note that nothing here prevents the existence of non-sets with no ele-
ments, in addition to distinct null sets in each type which contains sets.

There certainly may be interest in alternative approaches to the axioma-
tization here.
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3 The relation to simple type theory

We define local hierarchies of types.

Definition: We define τ 1(x) as τ(x) and τn+1(x) as τ(τn(x)) for each con-
crete natural number n. We will see that we cannot associate these
indices sensibly with natural numbers inside the theory. We will cer-
tainly never quantify over these indices.

Observation: If x ∈ y, we have x ∈ {z ∼τ x : z ∈ y} ∼τ τ(x) by Separation.
{z ∼τ x : z ∈ y} is nonempty and has the same elements as y [note
that any element of y is of the same type as x by definition of ∼τ ], so
is equal to y, so y ∼τ τ(x), so y ∈ τ 2(x).

Observe that τ(u) = τ(v) iff u ∼τ v. If τ 2(u) = τ 2(v) we have τ(u) ∼τ
τ(v) whence by the axiom of levels and u ∈ τ(u), v ∈ τ(v), we have
u ∼τ v whence we have τ(u) = τ(v).

So if we have x ∈ y and y ∈ τn(u) with n ≥ 2, we have τ 2(x) = τn(u),
whence τ(x) = τn−1(u).

Clearly if x = y, it follows that τ(x) = τ(y).

A type τ(u) is called a base type iff there is no τ(x) ∈ τ(u). Notice
that a non-base type will contain only one type as a member: a τ(u)
in which u is not a type can be rewritten in just one way as τ 2(x) (up
to the identity of τ(x), not the identity of x).

Further observations: For any x, {x} = {y ∼τ x : y = x} ∈ τ 2(x). If
we define ι(x) as {x} and define iteration in the natural way, ιn(x) ∈
τn+1(x). We now show that τ 2(x) 6= τ(x): the key observation is
that {y ∈ τ(x) : y 6∈ y} belongs to τ 2(x) but cannot belong to τ(x)
for the usual Russellian reasons. More generally Rn = {ιn−2(y) ∈
τn−1(x) : ιn−2y 6∈ y} = {z ∈ τn−1(x) : (∃y : z = ιn−2(y) ∧ z 6∈ y}
will cause disaster if τn(x) = τ(x). This will certainly belong to τn(x)
by separation. The point is that ιn−2(Rn) ∈ Rn exactly if ιn−2(Rn) 6∈
Rn and ιn−2(Rn) ∈ τn−1(x), and if τ(x) = τn(x) it will be true that
ιn−2(Rn) ∈ τn−1(x), leading to contradiction.

Equivalence to the usual simple theory of types? We have given enough
information to make it clear that this theory interprets TSTU (in a ver-
sion with a notion of sethood). The translation is achieved by fixing an
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object x and interpreting each type n variable as a variable restricted
to τn+1(x).

This theory certainly has more expressive power than TSTU, but we
argue that TSTU interprets it as well. Take a model of TSTU amd add
the assertions making the types disjoint. The only axioms that present
any difficulty are unstratified instances of Separation. Each such ax-
iom can be converted to a well-typed statement (or to many well-typed
statements). Start by assigning a type to each free variable (which
will specify the type τ(x) to which the set constructed is restricted).
Then work from the outside in, replacing each universal quantifier with
the conjunction of quantified statements restricted to specific types and
each existential quantifier with the disjunction of quantified statements
restricted to specific types. Whenever an atomic sentence becomes ex-
plicitly ill-typed, replace it with the False. Only finitely many types
need be considered when expanding quantified sentences (there is no
need to consider type τn(x) or a type y with τn(y) = τ(x) for n greater
than the number of variables present, and any statement about vari-
ables of types not connected to the type of x in one of these ways can be
reduced to a truth value). This process will terminate with well-typed
instances of the separation axiom scheme of TSTU for each assignment
of types to the free variables of the original instance of separation.

This theory is much vaguer about what types there are than is TSTU.
There may be many disjoint series of types, each of the order type of
N or of Z. There is no way whatsoever to talk about relationships
between disconnected type systems.

An ambiguity axiom may be formulated: For each formula φ(x) in
which no variable occurs free other than x, (∀xy : φ(τ(x))↔ φ(τ(y))).
We note that if our language includes a Hilbert symbol, this axiom will
lead very naturally to an interpretation of NFU. A restriction worth
imposing on the formula φ(τ(x)) in the ambiguity axiom is that x be
of the lowest type present: this doesn’t change the effect (one still gets
a theory related to NFU) but it does prevent the types from becoming
provably bottomless.
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4 The natural numbers in unsorted type the-

ory: a first case study. The Axiom of In-

finity.

We define some further frequently used concepts.

Definition: If u is of the form τ 2(v), we define τ−1(u) as τ(v). Otherwise
this notation is undefined.

Note that we can use this to define the usual notation for sets derived
by separation: {x ∈ A : φ} may be taken hereinafter to abbreviate
{x ∈ τ−1(τ(A)) : x ∈ A ∧ φ}, when A is a set and A ∈ τ 2(a) for some
a.

Definition: Define x ⊆ y as x ∼τ y∧set(x)∧set(y)∧(∀z : z ∈ x→ z ∈ y).
For a set A, define P(A), the power set of A, as {B ∈ τ(A) : B ⊆ A}.
Notice that P(A) ∈ τ 2(A).

We do some sample mathematics, introducing the natural numbers as
represented in this theory.

Definition: We define {x} as {y ∼τ x : y = x} as above. Note that {x} ∈
τ 2(x).

Definition: If x and y belong to τ 2(u), we define x ∪ y as

{z ∼τ u : z ∈ x ∨ z ∈ y},

noting that this set will contain all elements of x, all elements of y, and
no other elements, as expected.

Definition: We define 0τ(x) as {∅τ(x)}. Note that 0τ(x) ∈ τ 3(x) is the set of
all sets of the same type as τ(x) with 0 elements.

Definition: We define σ(A) as {x ∪ {y} ∈ τ−1(τ(A)) : x ∈ A ∧ y 6∈ x}.
Recall that τ−1(τ 2(x)) is defined as τ(x), and τ−1(u) is not defined if
u is not the type of a type. This can be read “the successor of A”.
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Definition schema: Define 1τ(x) as σ(0τ(x)) and more generally define (n+ 1)τ(x)
as σ(nτ(x)). Notice that 1τ(x) will be the set of all singleton sets of the
same type as τ(x) and in general nτ(x) for a natural number n will be
the set of all sets of the same type as τ(x) with n elements. Note that
nτ(x) ∈ τ 3(x). We reserve the right to omit type subscripts where they
can be understood from context.

Definition: We call a set I a-inductive iff a ∈ A∧ (∀x : x ∈ I → σ(x) ∈ I).
We define Ia as the set of all a-inductive sets.

Definition: We define
⋃
A as {x ∈ τ−2(τ(A)) : (∃y : x ∈ y ∧ y ∈ A}. We

define
⋂
A as {x ∈ τ−2(τ(A)) : (∀y : y ∈ A→ x ∈ y}.

Definition: We define Nτ(x) as
⋂
I∅τ(x) . We thus define Nτ(x) as the inter-

section of all sets which contain 0τ(x) and are closed under successor. It
is useful to note that there is a set which satisfies this closure condition:
τ 3(x). Nτ(x) ∈ τ 4(x) is useful to note.

Definition: We define the set Fτ(x) of finite subsets of τ(x) as
⋃
N.

Axiom of Infinity: We assert that for every x, τ(x) 6∈ Fτ(x). Each type is
an infinite set.

Observation: Notice that we do not quantify over numerals n in the context
nτ(x) any more than we do in the context τn(x). We certainly can
quantify over all n ∈ Nτ(x), but that is not (officially) the same thing.
The natural numbers as we know them before we start developing our
type theory are not actually part of our subject matter.

Theorems: The Peano axioms for arithmetic hold for our implementation(s):

1. 0τ(x) ∈ Nτ(x)

2. For each n ∈ Nτ(x), σ(n) ∈ Nτ(x).

3. For each n ∈ Nτ(x), σ(n) 6= 0τ(x).

4. For each m,n ∈ Nτ(x), σ(m) = σ(n) → m = m (the proof of
axiom 4 requires the Axiom of Infinity, unlike the others).

5. (mathematical induction) Any 0τ(x)-inductive set includes all ele-
ments of Nτ(x): for any predicate P , if P (0τ(x)) and

(∀n ∈ Nτ(x) : P (n)→ P (σ(n))),
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it follows that (∀n ∈ Nτ(x) : P (n)), because under these conditions,
{x ∈ Nτ(x) : P (x)} will be inductive.

We can at once define an operation on sets generalizing addition of natural
numbers.

Definition: Define x ∩ y (where x ∼τ y) as {u ∈ x : u ∈ y}. Define A + B
as {a ∪ b ∈ τ−1(τ(A ∪ B)) : a ∈ A ∧ b ∈ B ∧ a ∩ b = ∅τ−2(τ(A∪B))}. We
can expect intuitively that for familiar numerals m,n, mτ(x) + nτ(x) =
(m+ n)τ(x), but we do not have a way of saying this internally to this
theory.

Theorems: The first-order Peano axioms for addition hold for this definition
of addition.

1. (∀m,n ∈ Nτ(x) : m+ n ∈ Nτ(x))

2. (∀m ∈ Nτ(x) : m+ 0τ(x) = m)

3. (∀m,n ∈ Nτ(x) : m+ σ(n) = σ(m+ n))

There is an obvious correlation between natural numbers in related types.

Definition: Define ι“A as {{a} ∈ τ(A) : a ∈ A}.

Theorem: (∀A : A ∈ Fτ(x) → ι“A ∈ Fτ2(x))

Definition: For n ∈ Nτ(x), define T (n) as the unique m ∈ Nτ2(x) which
contains ι“A for eachA ∈ n. We firmly believe of course that T (nτ(x)) =
nτ2(x) for each familiar natural number n in the pre-type-theoretic sense,
but we do not allow ourselves a way to say this. More generally, we
surely believe that T i(nτ(x)) = nτ i+1(x)

As usual, we define T 1(n) = T (n);T i+1(n) = T (T i(n)) for each concrete
integer i.

Theorem: For every n ∈ Nτ(x), T (n) is defined, and for every n ∈ Nτ2(x),
there is a unique m such that T (m) = n, which we call T−1(n).

We define T−(i+1)(n) = T−1(T−i(n)) for each concrete positive integer
i.
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Definition: For m,n ∈ Nτ(x), we define m · n as the set of all unions
⋃
A

where A ∈ T (n), A ⊆ m, and for each a, b ∈ A, a ∩ b = ∅τ(x). This is
basically the elementary school definition of multiplication with some
finicky attention to types.

Theorems: The first order Peano axioms for multiplication hold in our in-
terpretation(s):

1. (∀m,n ∈ Nτ(x) : m · n ∈ Nτ(x))

2. (∀m ∈ Nτ(x) : m · 0τ(x) = 0τ(x))

3. (∀m,n ∈ Nτ(x) : m · σ(n) = (m · n) + n)

The T operation commutes with operations of arithmetic, as one would
expect.

Theorem: For any m,n ∈ Nτ(x), T
i(σ(m)) = σ(T i(m)), T i(m + n) =

T i(m) +T i(n), and T i(m ·n) = T i(m) ·T i(n), for any concrete positive
integer i and for any concrete negative integer i for which either side is
defined.
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5 Introducing the ordered pair to support re-

lations, functions, and cardinality. The Ax-

iom of Ordered Pairs.

Now we introduce an ordered pair in order to commence discussion of rela-
tions and functions.

Definition: For x ∼τ y, define {x, y} as {z ∈ τ(x) : z = x ∨ z = y}. Define
{x1, x2, . . . , xn} as {x1} ∪ {x2, . . . , xn}. Define [x, y], the Kuratowski
ordered pair of x and y, as {{x}, {x, y}}. Note that [x, y] ∈ τ 2(x) =
τ 2(y).

Theorem: For any x, y, z, w all of the same type, [x, y] = [z, w] → x =
z ∧ y = w.

For us, the Kuratowksi pair is a nonce construction which we use in order
to introduce another ordered pair construction almost immediately.

Definition: [A×B] = {[a, b] ∈ τ 2(A) : a ∈ A ∧ b ∈ B}.

Definition: A Kuratowski relation is a set of Kuratowski ordered pairs. We
write x[R]y for [x, y] ∈ R. Notice that for this to be true we must have
τ 4(x) = τ 4(y) = τ 2([x, y]) = τ(R). This type differential eventually
proves inconvenient and we make an adjustment. But the adjusted
theory is difficult to motivate without the initial development using
this pair.

Definition: if R is a Kuratowski relation, [R]−1 is defined as {[y, x] : x[R]y}.
We write just x[R]−1y instead of x[[R]−1]y We define dom[R] as

{x ∈ τ−3(R) : (∃y : x[R]y)}.

We define rng[R] as dom[[R]−1].

Definition: A Kuratowski function f is a Kuratowski relation such that for
all x, y, z, x[f ]y ∧ x[f ]z → y = z. We define f : [A → B] as asserting
that f is a function, dom[f ] = A, and rng[f ] ⊆ B.

Definition: A Kuratowski function f is injective iff [f ]−1 is a Kuratowski
function. A Kuratowski function is a Kuratowski bijection from A to
B iff f : [A→ B] and [f ]−1 : [B → A].
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Definition: We define A ∼ B (A is the same size as B) as holding iff there
is a Kuratowski bijection from A to B. We define |A|, the cardinality
of A, as {B ∈ τ(A) : B ∼ A}. Notice that |A| ∈ τ 2(A). We refer to
any set |A| as a cardinal number.

Theorems: Natural numbers are cardinal numbers (for any finite set A,
A ∈ n ∈ Nτ−1(τ(A)) ↔ |A| = n). ∼ is an equivalence relation.

Definition: We define T (|A|) = |ι“A|. This extends the identification of
natural numbers with natural numbers in the next higher type to car-
dinal numbers. We will see below that T−1 is not total on general
cardinals: the T operation is one-to-one, though.

∗Definition: We define |A|+|B| as T−2(|[A×{x}]∪[B×{y}]|) where x and y
are distinct elements of τ−1(τ(A)). We define |A|·|B| as T−2(|[A×B]|).
There is some evidence here of the inconvenience of the type differential
in the definition of the Kuratowski ordered pair.

The inconvenient character of the proposed definitions of addition and
multiplication of cardinals can be taken to motivate our immediate introduc-
tion of our

Axiom of Ordered Pairs: For each x, there is a Kuratowski bijection

πτ(x) : [[τ(x)× τ(x)]→ ι2“τ(x)].

Definition: We define (x, y), the (official) ordered pair by πτ(x)[[x, y]] =
{{(x, y)}}. Note that τ(x) = τ(y) = τ((x, y)).

Theorem: If x, y, z, w are all of the same type (x, y) = (z, w)↔ x = z∧y =
w.

Definition: A×B = {(a, b) ∈ τ−1(τ(A ∪B)) : a ∈ A ∧ b ∈ B}.

Definition: A relation is a set of ordered pairs. We write xRy for (x, y) ∈
R. Notice that for this to be true we must have τ 2(x) = τ 2(y) =
τ 2((x, y)) = τ(R).

Definition: if R is a relation, R−1 is defined as {(y, x) : xRy}. We define
dom(R) as

{x ∈ τ−1(τ(R)) : (∃y : xRy)}.
We define rng(R) as dom(R−1).
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Definition: A function f is a relation such that for all x, y, z, xfy ∧ xfz →
y = z. We define f : A→ B as asserting that f is a function, dom(f) =
A, and rng(f) ⊆ B.

Definition: A function f is injective iff f−1 is a function. A function is a
bijection from A to B iff f : A→ B and f−1 : B → A.

Theorem: A ∼ B iff there is a bijection f : A → B. So all notions and
theorems about cardinality transfer to the new pair.

The underlying fact here is that there is a precise correspondence be-
tween functions f and Kuratowski functions

f ∗ = {[x, f(x)] ∈ τ 2(f) : x ∈ dom(f)}.

Definition: We define |A| + |B| as |(A × {x}) ∪ (B × {y})| where x and y
are distinct elements of τ−1(τ(A)). We define |A| · |B| as |A×B|.

Theorems: The notions of addition and multiplication just defined extend
the notions already defined for natural numbers.

The fact that we introduce our official ordered pair by axiom may require
some comment. It is worth noting that the Axiom of Ordered Pairs in fact
implies the Axiom of Infinity (this is not difficult: strictly speaking, the
Axiom of Ordered Pairs implies that each type τ 2(x) is infinite; it is consistent
with existence of base types with just one element). If we assumed the Axiom
of Infinity and strengthened extensionality so that all objects are sets, we
would be able to prove Ordered Pairs as a theorem (the definition of the
Quine ordered pair gives an explicit πτ5(x)). It is straightforward to produce
an interpretation of our theory with Ordered Pairs from an interpretation
with just Infinity, exploiting the fact that the definition of the Quine pair
works on sets of sets in this theory without full extensionality Further, our
theory with Infinity and the Axiom of Choice also proves Ordered Pairs.
Our view is that there is value in allowing non-sets in our theory and that
the definition of the Quine ordered pair is remarkably complicated, and that
results noted here show that the assumptiion of a type level ordered pair that
we make here is not unreasonable.

We note that we seem to have given ourselves the power to choose a πτ(x)
for each of infinitely many types. It should be noted that unless significant
power is added to the system, there isn’t any mathematical content to this,

13



as we really have no way to consider more than a concrete finite collection of
types at one time in any argument. It is also true that with full extensionality
and Infinity, we really can do this, as the Quine pair is definable in the same
way in every type with sufficiently high index. And the use of the Quine pair
on sets of sets allows an interpretation of the Axiom of Ordered Pairs exactly
as written in all types uniformly (assuming Infinity): the idea is that we
restrict ourselves to sets of sets which contain natural numbers as our objects
(in all types which contain sets of sets which contain natural numbers). The
Quine pair on these is definable. We then restrict the membership relation
so we consider only sets of sets of sets as the sets of the interpretation, and
we recover the full theory (on a cleverly restricted domain) with a type level
ordered pair.

For reference, we give the definition of the Quine pair, of which we make
no use here.

Definition: Define σ0(a) as σ(a) if a ∈ Nτ−2(τ(a)) and as a otherwise.

Define σ1(A) as {σ0(a) ∈ τ−1(τ(A)) : a ∈ A}.
Define σ2(A) as σ1(A) ∪ {0τ−3(A)}
Define 〈A,B〉 as

{c ∈ τ−1(τ(A ∪B)) : (∃a ∈ A : c = σ1(a)) ∨ (∃b ∈ B : c = σ2(b))}.

Theorem: If 〈A,B〉 = 〈C,D〉 then A = C and B = D, if A,B,C,D are
sets of sets belonging to a τ 5(x). It is also worth noting that every set
of sets in such a type is a Quine pair.
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6 Power sets, function spaces, theorems about

infinite cardinals. Cantor’s Theorem.

We now look into function spaces and exponentiation.

Definition: We define BA as {f ∈ τ(A ∪ B) : f : A → B}. In a horrible
pun, usual in set theory already, we define |B||A| as T−1(|BA|). As we
will see below, this can be undefined, because T−1, though injective
(if T (κ) = T (λ) then κ = λ) is partial. There are cardinals which
are not outputs of the T operation. The use of T−1 is necessary if
we are to have an exponention operation that we can manipulate as
a mathematical function: if A,B ∈ τ 2(x) then BA ∈ τ 3(x). We note
that this definition does define the usual exponentiation operation on
natural numbers.

Definition: We define |A| ≤ |B| as holding if there is an injection from A
to B. We define |A| < |B| as holding iff |A| ≤ |B| and A 6∼ B (so
|A| 6= |B|).

Theorem (Cantor-Schroder-Berstein): If |A| ≤ |B| and |B| ≤ |A| then
|A| = |B| (so A ∼ B).

Theorem (Cantor): T (|A|) < |P(A)|.

Proof of Cantor Theorem: The theorem is not stated in the usual form,
because |A| < |P(A)| does not make sense, as elements of A and ele-
ments of P(A) are not of the same type. But T (|A|) is in some intuitive
sense the same cardinal as |A|: the mathematical content of the theo-
rem is the same, and the proof, as we shall see, is very similar to the
usual one.

Certainly T (A) = |ι“A| ≤ |P(A)|. This is witnessed by the identity
function restricted to ι“A, which is an injection from ι“A to P(A).

So we need to show that |P(A)| 6≤ |ι“A| (appealing here to Cantor-
Schroder-Bernstein). Suppose we have an injection f : P(A) → ι“A.
Consider R = {x ∈ A : x 6∈ f−1({x})}. f(R) = {r} for some r ∈ A.
r ∈ R iff r 6∈ f−1({r}) = R, which is a contradiction.

Corollary: T−1(|τ 2(x)|) is undefined. This follows from |ι“τ(x)| < |P(τ(x))| ≤
|τ 2(x)|. So, as foreshadowed, the idenfification of cardinals in lower
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types with cardinals in higher types via the T operation is not surjec-
tive: the higher type contains new cardinals, as it were.

This also shows that the exponential map is partial: 2|A| = T−1(|2A|) =
T−1(P(A)), via the one to one correspondence of sets with their characteristic
functions, and we have seen that T−1(|P(τ(x))|) is undefined.

It might be useful here to introduce the alternative notation Vτ(x) for the
set τ(x): a type is a local universal set, and this would make some of what I
write more familiar to readers of text about TSTU or NFU.
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7 The Axiom of Choice; well-orderings and

ordinal numbers. The Well-Ordering The-

orem.

We discuss the Axiom of Choice, which is enormously useful in simplifying
cardinal arithmetic, but which in type theory can be most naturally initially
introduced as a formal device to simplify equivalence class constructions.

If R is an equivalence relation (reflexive, symmetric, and transitive) it
determines a partition of dom(R) into equivalence classes

[x]R = {y ∈ τ−1(τ(R)) : yRx}.

One frequently wants to identify all elements of an equivalence class for some
mathematical purpose. In ordinary set theory, the object obtained from x
by this identification can conveniently be taken to be the class [x]R itself,
but here we see that [x]R ∈ τ 2(x): these objects are of different types. So,
it is also frequently some canonical element of [x]R which is taken to stand
in for x in such constructions. The Axiom of Choice is the assertion that
we can always choose a representative element from each compartment of a
partition.

Definition: A partition is a set of nonempty sets P such that for any A,B ∈
P either A = B or A ∩ B = ∅τ−2(τ(P )). A choice set for a partition P
is a set C ⊆

⋃
P such that for each A ∈ P , C ∩ A has exactly one

element.

Axiom of Choice: Every partition has a choice set.

Observation: If our language includes a Hilbert symbol which can occur
essentially in instances of separation, then Choice is a theorem.

Theorems: The Axiom of Choice is very powerful and has many unexpected
consequences. It is equivalent to the assertion that for any infinite
cardinal κ, κ · κ = κ, so Choice and Infinity together imply the Axiom
of Ordered Pairs. The Axiom of Ordered Pairs does not imply choice,
since it only requires this equation for the cardinals of types.

We have discussed infinite cardinal numbers. We now discuss infinite
ordinals.
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We use for the moment a representation of an order ≤ by the set of its
initial segments {y : y ≤ x}. In this parlance, a well-ordering is represented
by a collection of sets S with the property that S is linearly ordered by
inclusion, for every T ⊆ S,

⋃
T ∈ S, and for every s ∈ S other than

⋃
S,

there is a set s ∪ {x} ∈ S with x 6∈ s (which is unique because S is linearly
ordered by inclusion). It should be clear that the set of segments in a well-
ordering has these properties. The order ≤S on the domain

⋃
S is defined

by x ≤S y ↔ (∀s ∈ S : y ∈ s → x ∈ s). If A ⊆
⋃
S is nonempty, consider

the union A′ of all elements of S which do not meet A. This belongs to S
and is not equal to

⋃
S, so there is a such that A′∪{a} ∈ S, and this a must

be the ≤S-least element of A.
We say that sets S and S ′ representing well-orderings are isomorphic and

write S ≈ S ′ iff there is a bijection f such that for each s ∈ S, f“s ∈ S ′, and
for each s′ ∈ S ′, f−1“s′ ∈ S.

Isomorphism is an equivalence relation. We define the order type of a
representation S as the set of all S ′ ≈ S, and write this ot(S). We call
a set an ordinal number iff it is the order type of some representation of a
well-ordering.

We observe that if the elements of
⋃
S are in τ(x), then elements of S

are in type τ 2(x), S ∈ τ 3(x), and ot(S) ∈ τ 4(x).
We note that we could also define ot(S) as the set of all relations ≤S′

for S ′ ≈ S, which would be in τ 3(x). In general, we could consider the
well-orderings ≤S directly as sets of ordered pairs. But the representation
of well-orderings considered here is elegant and very useful for the following
theorem.

Theorem (using Choice): For any set A, there is a set S representing a
well-ordering such that

⋃
S = A.

Sketch of Proof: Consider the set M of all pairs (T, t) where T is a proper
subset of A and t is a one-element subset of A−T . M admits a partition
P into sets Mt = {(T, t′) ∈ M : t′ = t} for t ∈ ι“A. This partition
admits a choice set C. Now define a nice representation as a set S ′

representing a well-ordering in which for each s′ ∈ S ′ other that
⋃
S ′

the unique s′
⋃
{x′} ∈ S ′ will satisfy (s′, {x′}) ∈ C. The union of all

nice representations is a representation S of a well-ordering of A. The
idea is that C guides us in choosing the “next” element of A in the
well-ordering represented by S at every stage.
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If S represents a well-ordering and x ∈
⋃
S, then Sx = {s ∈ S : x 6∈ S}

also represents a well-ordering, a proper initial segment of S. We define a
strict partial order on ordinal numbers: ot(T ) < ot(S) iff (∃x ∈

⋃
S : T ≈

Sx). Of course we can define ot(T ) ≤ ot(S) as ot(T ) < ot(S) ∨ ot(T ) =
ot(S)

We define Ord as the set of all ordinal numbers. We refer to the natural
well-ordering on the ordinals as WOrd (the set representing it), or ≤Ord (the
set of ordered pairs).

Theorem: {{β ∈ Ord : β < α} ∈ P(Ord) : α ∈ Ord} represents a well-
ordering of the ordinal numbers.

We can define T operation on ordinal numbers analogous to the operation
on natural numbers and cardinals already defined. For α ∈ Ord, and any
S ∈ α, T (α) = ot({ι“s : s ∈ S}), the order type of the well-ordering on
ι“

⋃
S induced by the order on

⋃
S represented by S in the obvious way.

We observe that if S ∈ α, the order type of the restriction of WOrd to ordi-
nals less than α is T 3(α) (if we used equivalence classes of relations as order
types, T 2(α)). In some sense T (α) is the same order type as α translated up
one type. We see that each well-ordering in a given type corresponds in this
way to a proper initial segment of the natural well-ordering on the ordinals
of that type (two or three types higher), and so we see that there are longer
well-orderings and so larger ordinal numbers in higher types. We see that
T−3(ot((WOrd)α) = α, whence T−3(ot(WOrd)) cannot be defined (it would
have to be larger than every ordinal number of the type of α!)
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