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This note makes an observation which has been made by others, though
perhaps not in the same way. The observation is that the logical system of
Frege is readily salvaged by imposing the discipline of stratification originally
proposed in Quine’s 1937 paper New Foundations. The resulting system is
consistent because it is essentially equivalent to the system NFU proposed
by Jensen in 1969 and shown to be consistent (see [?]). (Nino Cocchiarella
for example, has given a full formal description of a development of Frege’s
system with paradoxes removed by imposing stratification in [?]). The details
of how stratification is best defined in this context are worth spelling out
precisely. It should be noticed that we are making some strategic decisions
as we do this which could have been made differently: this is not the only way
to formulate a stratified version of Frege’s foundational system; the reader
can for example compare what we do with what Cocchiarella did. There
is then a further question, of a philosophical rather than a mathematical
nature: is it possible to give a justification for the repair in philosophical
terms more satisfying than the simple observation that it works as a piece of
mathematics?

It should be noted that this approach is quite different from the recent
neo-Fregean program abandoning Axiom V and adopting Hume’s Principle.
The systems resulting from the latter approach are far weaker.

The payoff is considerable. The entire development of the Grundgesetze
works. One does need to add an axiom of infinity to the purely logical axioms,
as NFU does not prove infinity. NFU + Infinity is a fully impredicative
system (with the same strength as Principia with the axiom of reducibility,
or Zermelo set theory with comprehension restricted to bounded formulas),
more than adequate for all of classical mathematics, and certainly adequate
for arithmetic.
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We present axioms for propositional logic adapted from Frege’s Begriff-
schaft to modern notation.

P1 P → (Q→ P )

P2 (R → (Q→ P )) → ((R → Q) → (R → P ))

P3 (S → (Q→ P )) → (Q→ (S → P ))

P4 (Q→ P ) → (¬Q→ ¬P )

P5 ¬¬P → P

P6 P → ¬¬P

Along with

Rule 1 (modus ponens): From P and P → Q deduce Q.

this is an adequate set of rules for propositional logic (with suitable defi-
nitions of the other usual logical operators). Any system of classical propo-
sitional logic will do, of course.

Axioms for identity and quantification follow:

I1 a = b→ (Fa→ Fb)

I2 a = a

Q1 (∀x.Fx) → Fa

Further, we have

Rule 2 (universal generalization): if we can prove Fa, where a is an ar-
bitrary constant about which we have assumed nothing, we can deduce
(∀x.Fx).

Here the expression Fx is to be understood as representing any formula
in which the variable x appears. In the formalization below, F is taken to
represent any second order term.

Now we have to introduce more detail. What we have so far is a fairly
standard presentation of first-order logic with identity. Frege’s full system
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is second-order logic with an additional abstraction operator for converting
second-order terms to first-order terms. Our approach requires more care
with syntax.

First order terms of our language (representing objects) are of the follow-
ing forms:

variables: First order variables x, with each variable having an associated
integer type type(x) Notice here and throughout that type operates on
syntax, not the objects represented by the syntax. You may suppose
the argument enclosed in quotes, but we will not do this.

constants: We further provide constants a, to which no type needs to be
assigned,

abstraction terms: We further provide abstraction terms x̂A(x), where
A(x) is a formula (which may or may not include the variable x). The
type of an abstraction term is governed by type(x̂A(x)) = type(x)+1.
Occurrences of x in A(x) are bound in x̂A(x).

Formulas of our language are of the following forms:

equations: Equations t = u, where t and u are first order terms and either
at least one of t and u contains no free variables (of either order) or
type(t) = type(u) (this is part of the stratification discipline).

applications: Second order terms applied to first order terms: Fx, where
F is a second-order term, x is a first-order term, and either at least one
of F and x contains no free variables (of either order) or type(F ) =
type(x) + 1.

implications: Implications P → Q where P and Q are formulas.

negations: Negations ¬P where P is a formula.

first order quantifications: Universal sentences (∀x.A(x)) where A(x) is a
formula (which may or may not actually contain x; and all occurrences
of x in A(x) are bound in (∀x.A(x))).

second-order quantifications: Universal sentences (∀F.P ) where F is a
second order variable and P is a formula (all occurrences of F in P
are bound in (∀F.P ). Other logical operators (such as the existential
quantifier) are to be defined in standard ways.
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Since we have introduced second order quantification, we need an axiom
and a rule for it.

Q2 (∀F.P ) → P [T/F ] where P [T/F ] is the result of substituting the second
order term T for the second order variable F , as long as P [T/F ] is
well-formed (stratification requires us to make this qualification).

Rule 3 (second order universal generalization): if we can prove P then
we can prove (∀F.P [F/T ]), where T is a second order constant about
which we have made no assumptions and P [F/T ] is well-formed.

Observation: The first-order rule of universal generalization can be stated
similarly, though the formulation above works. if we can prove P then
we can prove (∀x.P [x/a]), where a is a constant about which nothing
has been assumed and P [x/a] is the result of substituting x for a, as
long as P [x/a] is well-formed. The definition of substitution of course
has subtleties caused by variable binding. Substitution of variables for
constants can cause ill-formedness because of the stratification disci-
pline.

Second order terms of our language (representing concepts) are of the
following forms:

variables: second order variables F , each associated with an integer type(F )

constants: second order constants T (to which no type needs to be as-
signed),

concept terms: concept terms [A(x)], where A(x) is a formula containing
at least one free occurrence of the first order variable x and containing
no other free variable. The occurrences of x in [A(x)] are bound, and
no type needs to be assigned to a concept term.

The whole story about concept terms is contained in this

Rule 4 (concept term application): [A(x)]t may be replaced by A(t) in
any context, where t is any first order term, and vice versa.
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Concept terms are a novelty here, intended to make instantiation of sec-
ond order variables clearer. I could similarly reify more general expressions
with free variables, obtaining something like the propositional functions of
Russell and Whitehead, but this is not needed. Notice that the formation of
concept terms is much more restricted than the formation of the first-order
abstraction terms.

Finally, we need axioms governing the abstraction terms x̂A(x).

A1 (∀x.Fx = Gx) ↔ x̂Fx = x̂Gx (the infamous Axiom V of Frege)

We could readily add a definite description operator as Frege does, but
we do not need to do this here.

We can define a membership relation: t ∈ u abbreviates (∃F.u = x̂Fx ∧
Ft). Notice that if t and u each contain free variables this is only well-formed
if type(t)+1 = type(u). So Russell’s paradoxical x̂(x 6∈ x) cannot be formed
in this system.

But also note that V = x̂(x = x) is well-formed, and V ∈ V is well-formed
and true. But, subtly, this does not mean that we can say (∃x.x ∈ x): this
is ill-formed.

Note that the defined membership relation satisfies weak extensionality:
objects with elements must be abstracts, and Frege’s Axiom V entails that
abstracts with the same extensions are equal. There may of course be many
non-abstracts, all with no elements.

We indicate why stratified comprehension is satisfied. Let φ(x) be a
stratified formula of the language of NFU. Convert the free variables other
than x to constants, and the resulting formula φ′ will be well-formed in the
language given here, and [φ′(x)] will be a concept term. z ∈ x̂φ′(x) will
be equivalent to (∃F.x̂φ′(x) = x̂Fx ∧ Fz): this statement will be true and
witnessed by F = [φ′(x)] iff φ′(z) is true. The formula (∃A.(∀x.x ∈ A↔ φ(x)
is then provable by universal generalization: this is a completely general
instance of stratified comprehension.

The interpretation of this system in NFU is very direct. Equality is
interpreted by equality. First order variables range over all objects of NFU
(atoms and sets). Second order variables range over sets. A proposition Fx
translates to x∗ ∈ F ∗, where x∗ translates F and F ∗ translates F . If the
formula φ in the language of the theory here translates to φ∗ in NFU, x̂φ(x)
translates to {x | φ∗(x)}, and [φ(x)] also translates to {x | φ∗(x)}. All axioms
of this theory translate to true assertions in NFU, so everything provable in
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this theory is provable in NFU. It is considerably harder to show, but is true,
that every theorem of NFU which is the translation of a sentence of this
theory is also a theorem of this theory.

An important point which we of course know is that we have artifically
limited the scope of our language: the only primitive predicates that we pro-
vide are the binary predicate of equality and monadic second-order constants.
We of course know that we can define an ordered pair (and so ordered n-
tuple) construction using abstraction, and so represent any desired primitive
n-ary predicates we want to add to our system as special second order con-
stants intended to take n-tuples as arguments, but this is an anachronism:
this was not known to be the case until Wiener defined the ordered pair in
set theory in [?], 1914, and none of Frege, Russell and Whitehead, or Zermelo
knew this. It does make our lives simpler, though.

Mathematical validity of this repair is evident. This system can be in-
terpreted in NFU (though its legal formulas are only a subset of the legal
formulas of NFU, as for philosophical reasons we do not allow unstratified
assertions with free variables to be formed at all). It is not immediately ob-
vious, but follows from work of Marcel Crabbé, that all stratified theorems of
NFU can be proved in this system (Crabbé showed in [?] that every stratified
theorem has a proof which only mentions stratified formulas).

NFU does not prove Infinity, so an explicit axiom of infinity is needed.
Once Infinity is added, this system has the same strength as the theory of
types with Infinity. It supports the entire program of the Grundgesetze with
ease. This is a fully impredicative mathematical system.

Philosophical adequacy is harder to assess. The question is whether one
can justify the rules for typing terms. My view is that there is a coherent
philosophical view behind stratification, but that it is one which it would have
been difficult to arrive at without seeing in advance that the mathematics
works out.

I have talked about this elsewhere. The idea is that while we are working
formally in a two sorted theory (first order terms representing objects and
second order terms representing first-order concepts), the device of abstrac-
tion allows us to represent first order concepts as objects, and iteration of this
process allows us to represent concepts of any order by either first or second
order terms. The idea is that when we form abstractions we are required to
consider any particular object which we have not specified completely (any
object represented by a term with free variables) under a single one of these
roles (as a concept of a particular order). The syntactical rules for stratifica-
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tion can then be seen to express exactly this restriction. We certainly want
the restriction, because otherwise we get paradox. There is an possible a
priori motivation for the restriction, which is roughly speaking that the rep-
resentation of concepts by particular objects is not really a feature of either
the concept or the object, but an arbitrary device for compacting the levels,
and so we should not expect that (for example) non-self-membership is a
legitimate feature of a class, because this would be perturbed by a different
choice of object to represent the class. This requires considerable exposition,
which I have attempted elsewhere.

In the usual formulation of NF or NFU, one allows quantification over
unstratified sentences. We do not allow this at all here. The reason is
philosophical rather than mathematical, though it does not affect what the
theory is able to prove. If one can write x ∈ x (with x a variable), then there
is the Fregean concept of self-membership. We do not want this concept
to have any standing at all. We acknowledge that V ∈ V is true (we can
prove it), but we do not allow x ∈ x to be a general feature of x, and so
we do not allow this formula with a variable in it to be formed at all. In
this particular case, we can articulate the reasons for this. The issue is that
this assertion talks about x in two different roles, as an object and as a first-
order concept (or more generally as a concept of order n and as a concept
of order n + 1, but we stick to the simplest case). Now suppose that x is
neither the universe nor the empty set. We could modify the choice of object
representing the concept x in such a way as to make x ∈ x either true or
false, without perturbing any essential feature of the concept or of any object.
The idea is that we must view the underlying representation of concepts by
objects as arbitrary, so that the relation between the concept of order m and
the concept of a different order n which happen to be represented by the
same object is accidental (in the technical philosophical sense!), and not to
be abstracted from.

Incidentally, it is fairly clear that the second order logic is redundant
here: all reasoning in the system presented here is supported in first-order
NFU. But my intention is to faithfully present Frege’s system in a stratified
format; that the second order features turn out out be subsumed under first
order features of NFU is a discovery about Frege’s system, not a criticism.
Second order logic over the usual formulation of NFU is of course far more
expressive because of the presence of unstratified formulas which correspond
to concepts whose extensions cannot be sets.

The reader should compare this with the development given by Nino
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Cocchiarella in “Frege’s Double-Correlation Thesis and Quine’s Set Theories
NF and ML” Journal of Philosophical Logic Vol. 14, No. 1 (Feb., 1985), pp.
1-39, which gives a similarly motivated full formal development.

I also note that I need to go and read Frege himself carefully!
I acknowledge use of an appendix to Michael Beaney’s Frege: Making

Sense as a reference for Frege’s logical notation and axioms (pp. 283-89).
I have looked at Ferreira’s “Amending Frege’s Grundgesetze”, and I have
encountered other neo-Fregean systems: this other work generally leads to
much weaker systems which do not fully implement Frege’s mathematical
intentions. This approach clearly fully implements Frege’s mathematical in-
tentions (it goes far beyond them); the question is how much violence is done
to his philosophy by the technical modification that is applied.
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