
Source for the Gottlob Proof System, with the

Gottlob Paper as Comments

M. Randall Holmes

11/30/2018: The default display of Gottlob is now something like
Frege’s 2D notation, updated with a bug fix and fancy ASCII art.
An explanation of Frege’s notation is needed in the text. Bound

variables are renamed when a line is constructed, preventing
runaway indices. Further modifications occasioned by development

in the book (see note in wish list). Revisions to theory material
9/6. The display in script files is encoded in code page 437, so it
won’t look right in many text editors. Notepad++ can handle it

(Western European/OEM-US). I have a Python script which
converts the Frege notations to Unicode. There is a way to
comment out the string constant for the new ASCII art and
decomment the old ones, to restore the less pretty ASCII art

without encoding issues.

0.1 Preliminary remarks of various kinds

Add a comment opening at the beginning of the file to convert this to SML
source.

We observe on reading the Grundgesetze that it is so precise as to be emi-
nently implementable. So we propose to implement it: with the modifications
required to make the system stratified, and so consistent. It is our thesis here
that the program of the Grundgesetze is recoverable with inessential changes
in Jensen’s system NFU with Rosser’s Axiom of Counting. We implement this
higher order logic in a somewhat different way, since Frege’s system is based on
functions rather than sets.

wish list of possible additions:

:

1. I’d like to automate Frege’s method of documenting individual steps:
currently, I have to actually determine substitutions into a theorem
justifying a modus pones or transitive implication step, which Frege
leaves to the reader. It ought to be possible for the machine to do it.

2. 8/29 A couple of changes made as we proceed into value ranges. The
backquote ‘ is now a legal special character (so that I can use it

1

for Frege’s converse function application operator). The Raisetypes
command will now raise types in closed bound variable constructions,
though it still will not lower them. This actually turned out to be
needed! The Raisetypes command was also bugged: fixed now.

3. 8/28 The text needs an account of the 2D notation. Explain the
weird way implication is presented. Explain that Frege’s tick marks
are inverted (and that vertical bars can always be disambiguated:
underscore to the right signals that it is a tick mark). Explain that
2D notations are closed with three spaces (our innovation), which
is useful when a 2D notation is followed by a closing form. Finally,
note that the for negation can still appear. We do not attempt to
emulate the concavity notation for universal quanifiers (at least for
now).

4. 8/24 notes as I break into the main development. I think I need
the pretty-printer for sanity, and also I need sensible renumbering of
bound variables. Preserving the letter shape of variables when they
are bound by ugen might be nice, as well as lowering the indices.

5. The ability to pretty-print into something like Frege’s concept-script
is an obvious target. We claim at least that our notation is sufficiently
closely analogous to Frege’s to make translation possible. It may even
be possible to parse something that looks like Frege’s concept-script,
as a stunt...

6. add line references (line numbers which are incremented as new lines
are added) to fulfil the function of Frege’s Greek letters. This would
require some cunning about how lines are referenced.

7. I could add more letters to atomic term classes. This might include
providing proposition and natural number free variables (and bound
variables?)

8. bound variable and argument list as an internal component of binder
terms might be useful.

9. I could record type input and output information for the bodies of
variable binding operations and refine the type algorithm. I’m not
sure anything in Frege needs this. A more restricted idea might be to
allow typing of functions as concepts or relations (with propositional
output).

10. I could allow user definition of types (as ranges of unary operators
with output type obj) and/or updating of strongly cantorian types
(by proving theorems of particular forms). Nothing in Frege will
need this but the added mathematical competence would be a good.
Marcel, which has the same type system in essence, does allow type
declarations.

11. I could implement Marcel on top of Gottlob. The idea would be to
generate Gottlob proofs in the background from sequent proofs in

2

the foreground. Gottlob definitions are much cleaner than Marcel
definitions! Usual set notation as a variant of functions is an idea
suggested by Marcel implementation, and having bearing on input
and output types of binders being incorporated.

12. There is a subtle point about equality and definitions. We could have
equality as a defined notion if we have the Definition command
generate implications instead of equations. It is worth remarking
on this, but probably the current behavior is better since it is what
Frege actually does. The alternative behavior could be provided via a
toggle or alternative commands. It is an interesting point that axiom
III looks for all the world like a definition.

13. Does Frege apply his propositional rules to deeper levels of propo-
sitions than the top? I did find him doing it once, but managed to
fake it with top level uses of the commands. I could add ability to
apply the rules to subterms (to subcomponents as well as supercom-
ponents), if it turns out that this is actually needed in practice. In
general my propositional rules are not quite as free-form as his: for
me, permutation is always bringing a subcomponent to the front and
use of other rules is often specific in this sort of way, requiring extra
permutation steps to do more complex things.

14. Introducing Hilbert symbol acting on bracketed function names might
be fun; the binding rules are precisely such as to prevent the inad-
vertant assumption of Choice. But there is a problem with second
order quantification in this connection: the Hilbert symbol would in
this case be a new function-forming operator, something we do not
otherwise have in the system.

1 Introduction

The purpose of this paper is to describe a consistent modification of Frege’s
logic, in the very strong sense that it includes the source code for a computer
implementation of the intended system, which we intend to use to give a reason-
ably faithful implementation of the Grundgesetze. At the same time, this source
file with a change of one character is the Moscow ML (version 2.01) source for
the computer implementation.

The logical system presented is equivalent in strength to Jensen’s variation
NFU of Quine’s set theory New Foundations (NF), with the addition of Rosser’s
Axiom of Counting. The idea of making Frege consistent by imposing the strat-
ification restrictions of New Foundations on the formation of functions has been
proposed by Nino Cocchiarella: we do not claim priority for this idea, but our
implementation along these lines is improved by being closely faithful to Frege’s
notation and rules of inference.

It must be admitted that our notation looks superficially very different from
Frege’s (he has a very interesting two dimensional notation which looks forbid-

3

ding to the modern eye) but our notation is formally isomorphic in a suitable
sense.

4

Sections 1-4 currently contain actual text explaining what is going on, posi-
tioned ahead of the code implementing the concepts. It’s worth going past the
very long parser source to read the text on the type system! The code sometimes
contains further embeddied remarks, particularly in the type system. Sections
5 and 6 do not contain much text yet. Later 8/19 I have added more text about
the proof environment and rules of inference. Section 7 on the NFU semantics
is now drafted.

Contents

0.1 Preliminary remarks of various kinds 1

1 Introduction 3

2 Frege’s world introduced 6

3 The syntax of Gottlob 10
3.1 Display function ML source . 10
3.2 Discussion of the syntax . 15
3.3 The parser ML source . 17

4 Augmenting the type system of Frege with levels in the style
of Quine 36
4.1 The ML source for the datatype of types of our logic system, with

additional discussion . 39
4.2 ML source code for functions implementing the type system, with

a fair amount of text comment 41

5 The definition facility of Gottlob 69

6 The proof environment of Gottlob 72
6.1 The axioms . 80
6.2 The rules of inference . 81

7 Semantics for our formal system in NFU with the Axiom of
Counting 92

8 Philosophical motivation for stratification, and possible conse-
quences for the logicist program of Frege 96

9 Appendix: old embedded notes 101

5

2 Frege’s world introduced

The world of Frege’s logic contains objects which include propositions, natural
numbers, and value-ranges. There may be other objects as well, which we refer
to as atoms.

The truth values are objects, known as the True and the False. The primitive
operation – takes the True to the True and each other object to the False. The
primitive operation of negation, written ∼ in the language we will implement,
takes the True to the False and all other objects to the True. Note that double
negation implements –, but there are formal reasons for us as for Frege to treat
it as primitive.1 The primitive operation of equality is defined as one would
expect: a = b is the True if a and b are the same object, and otherwise is the
False. The primitive operation of implication a → b yields the False if a is the
True and b is not the True, and otherwise yields the True.

Before we introduce further primitives producing objects, we have to discuss
functions. Notations for the simplest sort of function are produced by Frege by
writing a notation for an object which includes a special notation ξ standing
for the object standing in its first (and only) argument place. The result of
applying f(ξ) to a is f(a), as it were. Our notation for what Frege writes f(ξ)
is [f(X)]: a single bracket encloses a notation for a function of one argument.
For example, [∼ X] is notation for the negation function. X is our notation for
an object first argument place, analogous to Frege’s ξ.

Frege himself has a type system: he recognizes that functions are not of the
same sort as objects (and he has further sorts of functions, as we will see). Before
we proceed to further types of functions, we introduce the next fundamental
primitive object construction. From a function F , we can construct an object,
its value-range: our notation for the value range associated with [f(X)] is
{x 7→ F (x)}. This is our first example of a variable binding construction.

We have three further primitive object constructions. {Ax : φ(x)} is the
format for the first-order universal quantifier. This is syntactic sugar for the
application of the operator A to the function [φ(X)], producing the True if
all values φ(x) are the True, and the False otherwise.2 We note in passing
the identity criteria for value-ranges: {x → f(x)} is equal to {x 7→ g(x)} iff
{Ax : f(x) = g(x)} is the True. {If : φ(f)} is the format for the second-order
universal quantifier. We use I to suggest “impredicative”. This is syntactic
sugar for the application of the second order universal quantifier to [φ(F)],
where the latter notation represents a function with a single function argument
place F and object output, producing the True if φ(f) is the True for all func-
tions f and the False otherwise. For a value range {x 7→ f(x)}, the{x 7→ f(x)}
denotes the unique object a such that f(a) is the True, if there is such an ob-
ject. We are indifferent to what the x may be when x is something other than

1It is worth noting that Frege himself remarks that his set of primitive notions and rules
of inference is not minimal.

2This is somewhat overstated. Since one cannot bind into bracketed terms, it is not really
possible to eliminate formalisms with bound variables in favor of formalisms using bracketed
terms in this way, but it is useful to think of variable binding constructions in this way.

6

a value-range {x 7→ x = a}.
We have already introduced another type of function, the type of functions

taking a single function to an object, for which we introduced the first function
argument place F . There are some further function types. Binary functions
with object input are provided: Frege writes these f(ξ, ζ), where ζ is the second
object argument-place. We use the notation [[f(X,Y)]] for this, Y being our
notation for the second object argument place, and double brackets being used
to signal a function of two arguments. We can then fill out all the function types
we can represent by noting that we also provide a second argument place G rep-
resenting a unary function from objects to objects, first and second argument
places R and S representing binary functions taking two objects to an object,
and Z, the first argument place representing a function from unary functions to
objects. The use of Z is exhibited in the definition of the second-order existen-
tial quantifier as [∼{If:∼Z(f)}]. The presentation of orders of functions and
possible numbers of arguments presented so far follows Frege exactly, except
that he does not explicitly give notation for non-object argument places, and he
does not need indications of scope for these notations (our brackets) because he
does not actually ever embed such a notation in another notation. He remarks
that such notations are not part of the concept script; we agree with him that
they need never appear explicitly in theorems, but they do appear for us in def-
initions and as specific values assigned to function free variables during proofs,
and this does correspond to features of his actual reasoning in proofs we have
implemented. We do allow these notations to appear in locations where function
variables are allowed; we allow these notations to contain free variables but not
bound variables or argument places other than their own proper arguments.

We present the term type of the Gottlob prover. The Prop construction
gives representations for -- and →: if t represents x then Prop[t] represents
--x. If t represents x and u represents y, then Prop [t,u] represents x→ y. If
t represents x and Prop(L), L having length greater than 1, represents y then
Prop(t::L) represents x → y. The Unary constructor handles other unary
operations on terms: for example, if t represents x, Unary("∼",t) represents
∼ x. The Binary constructor handles binary terms similarly: e.g, if t represents
x and u represents y, Binary(t,"=",u) represents x = y. The construction
Function1 builds function names for functions of one argument (a single bracket
is applied to the term represented by the argument). Function2 similarly builds
function names for functions of two arguments. Constant builds names for
object constants, which are introduced by definition commands. Freevar(t,n)
represents a free variable tn (these can represent objects, functions of a single
object, functions of two objects, and functions of a single unary function, the
type being determined by the letter represented by t. The App1 form represents
application of unary functions, and the App2 form represents application of
binary functions.

The first numerical argument appearing in the Boundvar, Binder, Firstarg
and Secondarg functions represents an additional feature of the type system of
Gottlob not found in Frege: these integers represent the relative types used in
the stratification criterion of New Foundations, which we call here levels.

7

The Binder construction handles variable binding constructions. If T rep-
resents the term T , then Binder("","v",j,i,T) represents {vji 7→ T} and

Binder("B","v",j,i,T) represents (Bvji : T). B here represents a specific
binder (A for example would be the universal quantifier). v will indicate by its
shape the sort of bound variable (object or function). j indicates level and i is a
further index of the variable. Boundvar(v,j,i) represents a bound variable vji ,
the sort (object or function) being determined by the shape of v. Firstarg(S,n)
represents a first argument place Sn, S determining sort and n determining level
and similarly Secondarg(S,n) represents a second argument place Sn. Error

is provided to handle ill-formed terms.

*)

(* BEGIN uncomment for PolyML

open PolyML;

fun desome(SOME x)=x |

desome NONE = "";

END uncomment for PolyML*)

datatype Term =

Prop of Term list |

Unary of string * Term |

Binary of Term * string * Term |

Binder of string * string * int * int* Term |

Function1 of Term |

Function2 of Term |

Constant of string |

App1 of Term*Term |

App2 of Term*Term*Term |

Freevar of string * int |

Boundvar of string * int * int |

8

Firstarg of string * int |

Secondarg of string * int |

Error;

(*

9

3 The syntax of Gottlob

We discuss the exact form of Gottlob’s notation in the context of presenting the
display function and the parser.

A first consideration in developing the parser and display functions is that we
chose to try to make them entirely independent of user declarations of constants,
unary and binary operations, and binders, and we succeeded in doing this.

We choose to make all binary operations have the same precedence and group
to the right and all unary operators to have the same precedence, stronger than
that of binary operators. This is different from Frege’s approach, which is left-
grouping by preference, but shares the characteristic of lacking operator prece-
dence. We depart radically from Frege by presenting implication as a binary
operation in the usual sense, though our internal representation of implications
is closer to his in spirit.

In the display function, this appears in the use of the functions iscomplex1
and iscomplex2 to identify arguments of unary operations and left arguments
of binary operations, respectively, which must be enclosed in parentheses. a
unary or binary or proposition term must be enclosed in parentheses when a
unary operation is applied to it; binary and proposition terms left of binary
operators must be enclosed in parentheses, but a unary term need only be so
enclosed if its argument is an identifier serving as a user defined constant (to
avoid the parser mistaking the second identifier for an infix).

Further details of the language are best discussed in connection with the
code for the parser.

The lowest level (1) is suppressed in the display of bound variables, as is the
lowest index 1 on free or bound variables. There are variations P,M of X and
Q,N of Y which represent argument places to be occupied by propositions and
natural numbers, respectively. On these argument places, level indications are
suppressed. On other argument places, level is expressed, separated from the
letter by a caret. The reason for this is that F and G are overloaded, used both
as function bound variables and as function argument places: F2 is a bound
variable and F^2 is an argument place, both being of level 2.

The new variant Display1 (new as of 8/26) supports pretty-printing in some-
thing like the style of Frege’s original notation. This is very useful for comparison
of Gottlob results with Frege’s text.

3.1 Display function ML source

*)

fun iscomplex1 (Unary(s,t)) = true |

iscomplex1 (Binary(t,s,u)) = true |

iscomplex1 (Prop L) = true |

iscomplex1 t = false;

10

fun

iscomplex2 (Prop L) = true |

iscomplex2 (Unary(s,Constant t)) = true |

iscomplex2 (Binary(t,s,u)) = true |

iscomplex2 t = false;

fun Display (Prop [t]) = "--"^

(if iscomplex1 t then "(" else "")

^(Display t)^(if iscomplex1 t then ")" else "") |

Display (Prop [a,b]) = (if iscomplex2 a then "(" else "")^

(Display a)^(if iscomplex2 a then ")" else "")^" -> "^(Display b) |

Display (Prop (x::L)) = (if iscomplex2 x then "(" else "")

^(Display x)^(if iscomplex2 x then ")"

else "")^" -> "^(Display(Prop L)) |

Display (Prop nil) = "{Impossible Proposition}" |

Display (Unary(s,t)) = if iscomplex1 t then s^"("^(Display t)^")"

else s^" "^(Display t) |

Display (Binary(t,s,u)) = if iscomplex2 t then

"("^(Display t)^") "^s^" "^(Display u)

else (Display t)^" "^s^" "^(Display u) |

Display (Binder(b,x,m,n,t)) =

"{"^b^(if b=""then "" else" ")^

(Display(Boundvar(x,m,n)))^

(if b = "" then " => " else " : ")^(Display t)^"}" |

Display (Function1 t) = "["^(Display t)^"]" |

Display (Function2 t) = "[["^(Display t)^"]]" |

Display (Constant s) = s |

Display (App1 (t,u)) = (Display t)^"("^(Display u)^")" |

Display (App2 (t,u,v))= (Display t)^"("^(Display u)^","^(Display v)^")" |

Display (Freevar (s,n)) = if n=1 andalso s<>"Z" then s else s^(makestring n) |

Display (Boundvar(s,m,n)) = Display(Freevar(s,m))

^(if n=1 then "" else "_"^(makestring n)) |

11

Display (Firstarg(s,n)) = if s = "M" orelse s = "P"

then s else s^"^"^(makestring n) |

Display (Secondarg(s,n)) = if s = "N"

orelse s = "Q" then s else s^"^"^(makestring n) |

Display (Error) = "?!?!";

fun OldDisplay t = Display t;

(* work on 2D style prettyprinter *)

(* Display1 = prettyprint starting at position n; Display2 will be the

genuine prettyprinter *)

fun tlength0 nil = 0 |

tlength0 (x::L) = if x= #"\n" then tlength0 L

else let val LL = tlength0 L in if LL < length L then LL else 1+LL end;

fun tlength s = tlength0 (explode s);

fun spaces n = if n<= 0 then "" else " "^(spaces (n-1));

fun indent0 x nil = nil |

indent0 x (y::L) = if y= #"\n" then [y]@x@(indent0 x L)

else (y::(indent0 x L));

fun indent x s = implode(indent0 (explode x) (explode s));

(* strings for use in improved ASCII art *)

(* BEGIN pretty version, encoding issues *)

val prettybar = " \179"; (* " |" *)

val threedashes = "\196\194\196"; (* "___" *)

val prettyneg = "\196\194\196"; (* "_|_" *)

val hook = "\n \192\196"; (* "\n |_" *)

12

val hookneg = "\n \192\196"^prettyneg; (* "\n |__|_" *)

(* END pretty version encoding issues *)

(* BEGIN original version

val prettybar = " |";

val threedashes = "___";

val prettyneg = "_|_";

val hook = "\n |_";

val hookneg = "\n |__|_";

END original version *)

fun Display1 n (Prop [t]) = "--"^

(if iscomplex1 t then "(" else " ")

^(Display1 (n+3) t)^(if iscomplex1 t then ")" else "") |

(* Prop clauses to be rewritten totally *)

Display1 n (Prop [Unary("~",x),Unary("~",y)]) = threedashes^(indent (spaces n)((indent prettybar (prettyneg^(Display1 4 (y))))^hookneg^(Display1 (6) x)^" ")) |

Display1 n (Prop ((Unary("~",x))::L)) = threedashes^(indent (spaces n)((indent prettybar (Display1 1 (if length L = 1 then hd L else Prop L)))^hookneg^(Display1 (6) x)^" ")) |

Display1 n (Prop [x,Unary("~",y)]) = threedashes^(indent (spaces n)((indent prettybar (prettyneg^(Display1 4 (y))))^hook^(Display1 (3) x)^" ")) |

Display1 n (Prop (x::L)) = threedashes^(indent (spaces n)((indent prettybar (Display1 1 (if length L = 1 then hd L else Prop L)))^hook^(Display1 (3) x)^" ")) |

Display1 n (Prop nil) = "{Impossible Proposition}" |

Display1 n (Unary("~",Prop(x::y::L))) = (* "_|_^(indent (spaces n)((indent " |" (Display1 4 (if L=nil then y else Prop L)))^"\n |_"^(Display1 (6) x)^" ")) *) prettyneg^(indent (spaces(n+3)) (Display1 0 (Prop(x::y::L)))) |

Display1 n (Unary(s,t)) = if iscomplex1 t then s^"("^(Display1 (length(explode s) + n + 1) t)^")"

else s^" "^(Display1 (length(explode s)+n +1) t) |

Display1 n (Binary(t,s,u)) = if iscomplex2 t then

let val T = Display1 (n+1) t in

"("^(T)^") "^s^" "^(Display1 (tlength ((spaces n)^"("^(T)^") "^s^" ")) u) end

13

else let val T = Display1 n t in

(T)^" "^s^" "^(Display1 (tlength ((spaces n)^(T)^" "^s^" ")) u) end |

Display1 N (Binder(b,x,m,n,t)) =

"{"^b^(if b=""then "" else" ")^

(Display1 0 (Boundvar(x,m,n)))^

(if b = "" then " => " else " : ")^(Display1 (length(explode b)+length(explode(Display1 0 (Boundvar(x,m,n))))+N+5) t)^"}" |

Display1 n (Function1 t) = "["^(Display1 (n+1) t)^"]" |

Display1 n (Function2 t) = "[["^(Display1 (n+2) t)^"]]" |

Display1 n (Constant s) = s |

Display1 n (App1 (t,u)) =

let val T = Display1 n t in

(T)^"("^(Display1 (tlength((spaces n)^T^"(")) u)^")" end |

Display1 n (App2 (t,u,v))=

let val T = Display1 n t in

let val U = Display1 (tlength((spaces n)^T^"(")) u in

(T)^"("^U^","^(Display1 (tlength((spaces n)^(T)^"("^U^",")) v)^")" end end |

Display1 N (Freevar (s,n)) = if n=1 andalso s<>"Z" then s else s^(makestring n) |

Display1 N (Boundvar(s,m,n)) = Display1 0 (Freevar(s,m))

^(if n=1 then "" else "_"^(makestring n)) |

Display1 N (Firstarg(s,n)) = if s = "M" orelse s = "P"

then s else s^"^"^(makestring n) |

Display1 N (Secondarg(s,n)) = if s = "N"

orelse s = "Q" then s else s^"^"^(makestring n) |

Display1 N (Error) = "?!?!";

fun Display t = Display1 0 t;

(*

14

3.2 Discussion of the syntax

The parser code follows. Here we will describe the language of Gottlob in some
detail.

Identifiers for Gottlob are either strings of special characters (see isspecial
for the list), strings of letters of which the first may be capitalized, or strings of
digits (numerals) . Tokens are either identifiers or punctuation (comma, colon,
parentheses, braces, brackets , underscores and carets; =>, which is an identifier
for the tokenizer, is treated as punctuation by the parser). To parse a string
into Gottlob notation, first resolve it into tokens. Whitespace between tokens
is ignored, except that a token always ends at whitespace.

Certain identifiers are reserved.

1. => is treated as punctuation: it is used in the notation for value-ranges.

2. a,b,c are reserved for object free variables.

3. f,g,h are reserved for unary function free variables.

4. x,y,z are reserved for object bound variables.

5. X,Y,M,N,P,Q are reserved for object argument places.

6. F,G,H are reserved for function bound variables and argument places.

7. r,s,t are reserved for binary function free variables.

8. R,S are reserved for binary function argument places.

9. Z is reserved for free variables or argument places representing functions
from unary functions to objects. These have narrow uses in the definitions
of second-order variable binding operators and the axiom for the second
order universal quantifier.

The form of a free variable is the appropriate letter followed by a numeral
read as an index (not a level). The index 1 may be omitted, except in Z1.

The form of a bound variable in fullest generality is the appropriate letter
followed by a numeral (its level) followed by an underscore followed by a numeral
(an index). The level may be omitted if it is 1. The index may be omitted,
along with its underscore, if it is 1.3

The form of an argument place is the appropriate letter followed by a caret
followed by the level. The caret and level are omitted if the letter is one of
M,N,P,Q. We identify the argument places.

Note that when an operator is said to have input of a particular sutype of
objects (propositions or natural numbers) it will actually take any object as
input, but this object is then coerced into the stated input type by applying a
retraction (-- in the case of propositions, # in the case of natural numbers).

3A refinement which probably should be implemented is the option of omitting the level
on a function bound variable if it is the minimum value 2. The parser does read a function
bound variable without explicit level as having level 2, but this level is then displayed.

15

first proposition argument: P , second proposition argument: Q.

first natural number argument: M ; second natural number argument: N .

first object argument: X; second object argument: Y .

first unary function argument: F ; second unary function argument: G.

first binary function argument: R; second binary function argument: S.

first unary function taking a unary function argument to an object: Z.

Some identifiers are declared as primitive unary or binary operators or
binders.

-- and ∼ are unary operations taking propositions to propositions. -- is
represented differently internally.

is a unary operation taking natural numbers to natural numbers.

the is a unary operation taking general objects to general objects.

-> acts like a binary operation taking two propositions to a proposition, but
is represented differently internally.

= is a binary operation taking two general objects to a proposition.

A is the first order universal quantifier (binding an object variable).

I is the second order universal quantifier (binding a function variable).

Other identifiers are available for user definitions as object constants, unary
and binary operators with object input and output, and as first order or second
order binders. Where an operation is specified to have input less general than
all objects, it actually can take arbitrary object input, but the object input
is supposed coerced to the target sort (for example, all non-truth values are
coerced to the False by operations with propositional input). A facility for
additional user defined sorts may be added.

The variables, argument places, and declared identifiers constitute the atomic
terms.

A general term consists of a series of non-infix terms (there might be just
one) connected by identifiers serving as binary operators. General terms are
always grouped to the right, so the form is non-infix term + identifier + general
term.

The non-infix terms are of the following forms:

1. an atomic term.

2. a general term in parentheses.

16

3. a unary operator followed by a non-infix term. Where a term begins an
identifier, followed by an identfier the sequel of which resolves as a term,
the second identifier is interpreted as an infix. This expedient allows us
to parse terms without consulting declarations: the effect is that a unary
operation applied to an identifier representing a constant must be enclosed
in parentheses if it appears to the left of a binary operator.

4. a value-range term {x=>T}, where x is a bound variable and T is a
general term.

5. a general binding term {Bx : T} where B is an identifier, x is a bound
variable, and T is a general term.

6. an application term T (U), where T is a non-infix term and U is a general
term: this represents application of a function with one argument.

7. an application term T (U, V), where T is a non-infix term and U, V are
general terms.

8. a single bracket term [T] where T is a general non-bracketed term.

9. a double bracketed term [[T]] where T is a general non-bracketed term.

3.3 The parser ML source

*)

fun islower c = #"a" <= c andalso c <= #"z";

fun isupper c = #"A" <= c andalso c <= #"Z";

fun isnumeral c = (#"0" <= c andalso c <= #"9") orelse c= #"’";

fun isspecial c = c= #"~" orelse c= #"‘"

orelse c = #"@" orelse c = #"#" orelse c = #"$"

orelse c = #"%" orelse c = #"&"

orelse c = #"*" orelse c = #"-" orelse c = #"+"

orelse c = #"=" orelse c = #"|" orelse c = #";"

orelse c = #"." orelse c = #"<"

orelse c = #">" orelse c = #"?" orelse c = #"/"

orelse c = #"!" orelse c = #".";

(* get first identifier from a list of characters *)

fun getident nil = nil |

17

getident [c] = if islower c orelse isupper c orelse isnumeral c

orelse isspecial c orelse c = #"," orelse c= #":"

orelse c = #"(" orelse c = #")" orelse c= #"[" orelse c= #"]"

orelse c= #"{" orelse c= #"}"then [c] else nil |

(* I could fiddle with allowed shapes of identifiers here *)

getident (a::(b::L)) =

if a = #"," orelse a = #":" orelse a = #"(" orelse a = #")"

orelse a = #"[" orelse a = #"]"

orelse a= #"{" orelse a= #"}" orelse a= #"_" orelse a= #"^" then [a] else

if a = #" " orelse a= #"\n" orelse a= #"\\" then getident (b::L)

else if isupper a

then if islower b (* orelse isnumeral b *)

then a::(getident(b::L))

else [a]

else if islower a

then if islower b (* orelse isnumeral b *)

then a::(getident(b::L))

else [a]

else if isnumeral a

then if isnumeral b

then a::(getident(b::L))

else [a]

else if isspecial a

then if isspecial b

then a::(getident(b::L))

else [a]

18

else nil;

(* the rest of the stream of characters after the first identifier is read *)

fun restident nil = nil |

restident [c] = nil |

restident (a::(b::L)) =

if a = #"," orelse a = #":" orelse a = #")" orelse a = #"("

orelse a= #"[" orelse a= #"]" orelse a= #"{" orelse a= #"}"

orelse a= #"_" orelse a= #"^" then b::L else

if a = #" " orelse a= #"\n" orelse a= #"\\" then restident (b::L)

else if isupper a

then if islower b (* orelse isnumeral b *)

then restident(b::L)

else (b::L)

else if islower a

then if islower b (* orelse isnumeral b *)

then restident (b::L)

else (b::L)

else if isnumeral a

then if isnumeral b

then restident(b::L)

else b::L

else if isspecial a

then if isspecial b

then restident(b::L)

19

else b::L

else nil;

(* utility for tokenization *)

fun testidentlist nil = nil |

testidentlist L = (implode(getident(L))::(testidentlist (restident L)));

(* get a list of tokens (identifiers and punctuation) from a string *)

fun tokenize s = testidentlist(explode s);

(* parser utilities *)

fun Item 0 L = nil |

Item n nil = nil |

Item 1 (x::L) = [x] |

Item n (x::L) = Item (n-1) L;

fun Initial 0 L = nil |

Initial n nil = nil |

Initial n (x::L) = x::(Initial (abs n -1) L);

fun Final 0 L = L |

Final n nil = nil |

Final n (x::L) = Final (n-1) L;

fun Hd nil = "" |

Hd (x::L) = x;

fun Tl nil = nil |

Tl (x::L) = L;

(* token classification *)

(* punctuation *)

20

fun ispunct a = a = "," orelse a = ":"

orelse a = ")" orelse a = "("

orelse a= "[" orelse a= "]"

orelse a= "{" orelse a= "}"

orelse a= "_" orelse a= "^" orelse a="=>";

(* numerals, with evaluation function *)

fun isnum s = s <> "" andalso isnumeral(hd (explode s))

andalso (length(explode s)=1 orelse isnum(implode(tl(explode s))));

(* fresh index for variables *)

val NEWNUM = ref 1;

fun Numvalue s = if isnum s then

if length(explode s)=1 then ord(hd(explode s))-48 else

(ord(hd(rev(explode s)))-48)+

10*(Numvalue(implode(rev(tl(rev(explode s))))))

else ~1;

fun max(x,y) = if x>y then x else y;

fun numvalue s = let val N = Numvalue s in

(NEWNUM:= max(!NEWNUM,N+1);N) end;

(* variables and arguments *)

fun isvarorarg s = s="a" orelse s = "b" orelse s="c"

orelse s="x" orelse s="y" orelse s="z" orelse s="f"

orelse s = "g" orelse s="h" orelse s ="F" orelse s="G"

orelse s="H" orelse s="r" orelse s="s" orelse s="t"

orelse s="X" orelse s="Y" orelse s="Z" orelse s="W"

orelse s="M" orelse s="N" orelse s = "P" orelse s="Q";

(* bound variables *)

fun isboundvar s = s="x" orelse s="y" orelse s="z"

orelse s="F" orelse s = "G" orelse s="H";

fun isobjectvar s = s="x" orelse s="y" orelse s="z"

orelse s="a" orelse s = "b" orelse s="c";

(* identifiers *)

fun isidentifier s = s<> "" andalso (not (ispunct s)) andalso (not (isvarorarg s));

21

(* outline getterm1 *)

fun Parse1 L =

let val I1 = Hd(Item 1 L) and I2 = Hd(Item 2 L)

and I3 =Hd(Item 3 L) and I4 = Hd(Item 4 L)

and I5 = Hd(Item 5 L) and I6 = Hd(Item 6 L) and

I7 = Hd(Item 7 L) in

(* if term begins with { and its first item is an identifier,

second item is x/y/z/F/G/H,

third item is a numeral, fourth item is a numeral and fifth item is

:, followed by a term followed by }, then getterm1 is the

obvious binder term and restterm1 is the tail of the restterm of the body *)

if I1 = "{" andalso isidentifier I2 andalso isboundvar I3

andalso isnum I4 andalso I5 = "_" andalso isnum I6 andalso I7 = ":"

then let val (A,B) = Parse(Final 7 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder(I2,I3,numvalue I4,numvalue I6,A),tl B)

end

else if I1 = "{" andalso isidentifier I2

andalso isboundvar I3 andalso isnum I4 andalso I5 = ":"

then let val (A,B) = Parse(Final 5 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder(I2,I3,numvalue I4,1,A),tl B)

end

else if I1 = "{" andalso isidentifier I2

andalso isboundvar I3 andalso I4 = "_"

andalso isnum I5 andalso I6 = ":"

22

then let val (A,B) = Parse(Final 6 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder(I2,I3,if isobjectvar I3 then 1 else 2,numvalue I5,A),tl B)

end

else if I1 = "{" andalso isidentifier I2 andalso isboundvar I3 andalso I4 = ":"

then let val (A,B) = Parse(Final 4 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder(I2,I3,if isobjectvar I3 then 1 else 2,1,A),tl B)

end

(* if term begins with { and its first item is a string,

second item is a numeral, third item is a numeral and fourth item is

=>, followed by a term followed by }, then getterm1 is the

obvious binder term and restterm1 is the tail of the restterm of the body *)

else if I1 = "{" andalso isboundvar I2

andalso isnum I3 andalso I4 = "_" andalso isnum I5 andalso I6 = "=>"

then let val (A,B) = Parse(Final 6 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder("",I2,numvalue I3,numvalue I5,A),tl B)

end

else if I1 = "{" andalso isboundvar I2 andalso isnum I3 andalso I4 = "=>"

then let val (A,B) = Parse(Final 4 L) in

if A = Error then (Error, nil)

23

else if Hd B <> "}" then (Error, nil)

else (Binder("",I2,numvalue I3,1,A),tl B)

end

else if I1 = "{" andalso isboundvar I2 andalso I3 = "_"

andalso isnum I4 andalso I5 = "=>"

then let val (A,B) = Parse(Final 5 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder("",I2,if isobjectvar I2 then 1 else 2,numvalue I4,A),tl B)

end

else if I1 = "{" andalso isboundvar I2 andalso I3 = "=>"

then let val (A,B) = Parse(Final 3 L) in

if A = Error then (Error, nil)

else if Hd B <> "}" then (Error, nil)

else (Binder("",I2,if isobjectvar I2 then 1 else 2,1,A),tl B)

end

(* if the term begins with (followed by a term and), we return

that term and return the tail of the restterm of the term as our restterm1 *)

else if I1 = "(" then

let val (A,B) = Parse(Final 1 L) in

if A = Error then (Error,nil)

else if Hd B <> ")" then (Error, nil)

else (A,tl B)

end

24

(* if the term begins with a bracket followed by a term

and a close bracket, followed by a parenthesis followed

by a term followed by a close parenthesis, we get an App1 term *)

(* if the term begins with a bracket followed by a term

and a close bracket, and the previous case does not hold,

we get a Function1 term *)

else if I1 = "[" andalso I2 <> "["

then let val (A,B) = Parse(Final 1 L) in

if A = Error then (Error,nil)

else if Hd B <> "]" then (Error, nil)

else if Hd(Tl B) = "("

then let val (C,D) = Parse(Final 2 B) in

if C = Error then (Error, nil)

else if Hd D <> ")" then (Error, nil)

else (App1(Function1 A,C),Tl D)

end

else (Function1 A,Tl B)

end

(* if the term begins with a double bracket followed by a term

and double close brackets, followed by a parenthesis followed by

a term followed by a comma followed by a term followed by

a close parenthesis, we get an App2 term *)

(* if the term begins with a double bracket followed by a term

and double close brackets, and the previous case doesnt hold,

we get a Function2 term *)

else if I1 = "[" andalso I2 = "["

then let val (A,B) = Parse(Final 2 L) in

25

if A = Error then (Error,nil)

else if Hd B <> "]" orelse Hd(Tl(B)) <> "]" then (Error, nil)

else if Hd(Final 2 B) = "("

then let val (C,D) = Parse(Final 3 B) in

if C = Error then (Error, nil)

else if Hd D <> "," then (Error, nil)

else let val (E,F) = Parse(Tl D) in

if E = Error then (Error,nil)

else if Hd F <> ")" then (Error,nil)

else (App2(Function2 A,C,E),Tl F)

end

end

else (Function2 A,Final 2 B)

end

(* if the term begins with a/b/c followed by _ followed by a number,

we get a suffixed free object variable *)

else if (I1 = "a" orelse I1 = "b" orelse I1 = "c") andalso isnum I2

then (Freevar(I1,numvalue I2),Final 2 L)

(* if the term begins with a/b/c not followed by _

we get a1/b1/c1, a free object variable *)

else if I1 = "a" orelse I1 = "b" orelse I1 = "c"

then (Freevar(I1,1),Tl L)

(* if the term begins with x/y/z followed by a number followed by _

followed by a number, a bound object variable with type and index *)

26

(* if the term begins with x/y/z followed by _ followed by a number,

a bound object variable of type 1 with index *)

(* if the term begins with x/y/z followed by a number

(and no earlier case holds), a bound object variable with type,

with index 1 *)

(* if the term begins with x/y/z and no earlier case holds,

a bound object variable of type 1 and index 1 *)

else if (I1 = "x" orelse I1 = "y" orelse I1 = "z")

andalso isnum I2 andalso I3 = "_" andalso isnum I4

then (Boundvar(I1,numvalue I2,numvalue I4),Final 4 L)

else if (I1 = "x" orelse I1 = "y" orelse I1 = "z") andalso isnum I2

then (Boundvar(I1,numvalue I2,1),Final 2 L)

else if (I1 = "x" orelse I1 = "y" orelse I1 = "z") andalso I2 = "_" andalso isnum I3

then (Boundvar(I1,1,numvalue I3),Final 3 L)

else if (I1 = "x" orelse I1 = "y" orelse I1 = "z")

then (Boundvar(I1,1,1),Tl L)

(* if the term begins with X/Y followed by a caret followed by a number,

an object argument term with type*)

(* if the term otherwise begins with X/Y,

an object argument term of type 1 *)

else if I1 = "X" orelse I1 = "M" orelse I1 = "P"

then if I2 = "^" andalso isnum I3

then (Firstarg(I1, numvalue I3),Final 3 L)

else (Firstarg(I1,1),Tl L)

else if I1 = "Y" orelse I1 = "N" orelse I1 = "Q"

then if I2 = "^" andalso isnum I3

then (Secondarg(I1, numvalue I3),Final 3 L)

27

else (Secondarg(I1,1),Tl L)

(* if the term begins with F/G/Z/W followed by a caret followed

by a number followed by (followed by a term followed by),

an App1 term *)

(* W not supported unless we implement quantification over

binary relations *)

(* if the term begins with F/G/Z/W followed by a caret

followed by a number otherwise, a function argument term *)

else if (I1 = "F" orelse I1 = "G" orelse I1 = "Z")

andalso I2 = "^" andalso isnum I3

then

if I4 = "("

then let val (A,B) = Parse(Final 4 L) in

if A = Error then (Error,nil)

else if Hd B <> ")"

then (Error,nil)

else if I1 = "F" orelse I1 = "Z"

then (App1(Firstarg(I1,numvalue I3),A),Tl B)

else (App1(Secondarg(I1,numvalue I3),A),Tl B)

end (* 1 *)

else if I1 = "F" orelse I1 = "Z"

then (Firstarg(I1,numvalue I3),Final 3 L)

else (Secondarg(I1,numvalue I3),Final 3 L)

(* if the term begins with f/g/h/F/G/H/Z (possibly followed by

a number) (possibly followed by an underscore

followed by a number in F/G/H case) followed by (followed by a term followed by),

an App1 term; a skipped index is read as 1 and a skipped type as 2 *)

(* if the term begins with f/g/h/F/G/H/Z (possibly followed by a number

in the F/G/H case) (possibly followed by an underscore followed by a number)

28

otherwise, a free or bound unary function variable;

a skipped index is read as 1 and a skipped type as 2 *)

else if (I1 = "F" orelse I1 = "G" orelse I1 = "H")

andalso isnum I2 andalso I3 = "_" andalso isnum I4

then

if I5 = "("

then let val (A,B) = Parse(Final 5 L) in

if A = Error then (Error,nil)

else if Hd B <> ")" then (Error,nil)

else (App1(Boundvar(I1,numvalue I2,numvalue I4),A),Tl B)

end (* 3 *)

else (Boundvar(I1,numvalue I2,numvalue I4),Final 4 L)

else if (I1 = "f" orelse I1 = "g" orelse I1 = "h"

orelse I1 = "F" orelse I1 = "G" orelse I1 = "H" orelse I1 = "Z") andalso isnum I2

then

if I3 = "("

then let val (A,B) = Parse(Final 3 L) in

if A = Error then (Error,nil)

else if Hd B <> ")" then (Error,nil)

else if isboundvar I1 then (App1(Boundvar(I1,numvalue I2,1),A),Tl B)

else (App1(Freevar(I1,numvalue I2),A),Tl B)

end (* 4 *)

else if isboundvar I1 then (Boundvar(I1,numvalue I2,1),Final 2 L)

else (Freevar(I1,numvalue I2),Final 2 L)

29

else if (I1 = "F" orelse I1 = "G" orelse I1 = "H")

andalso I2 = "_" andalso isnum I3

then

if I4 = "("

then let val (A,B) = Parse(Final 4 L) in

if A = Error then (Error,nil)

else if Hd B <> ")" then (Error,nil)

else (App1(Boundvar(I1,2,numvalue I3),A),Tl B)

end (* 5 *)

else (Boundvar(I1,2,numvalue I3),Final 3 L)

else if (I1 = "f" orelse I1 = "g" orelse I1 = "h"

orelse I1 = "F" orelse I1 = "G" orelse I1 = "H")

then

if I2 = "("

then let val (A,B) = Parse(Final 2 L) in

if A = Error then (Error,nil)

else if Hd B <> ")" then (Error,nil)

else if isboundvar I1 then (App1(Boundvar(I1,2,1),A),Tl B)

else (App1(Freevar(I1,1),A),Tl B)

end (* 6 *)

else if isboundvar I1 then (Boundvar(I1,2,1),Final 1 L)

else (Freevar(I1,1),Final 1 L)

(* if the term begins with r/s/t (possibly followed by an underscore

followed by a number) followed by (followed by a term followed by

30

a comma followed by a term followed by), an App2 term;

a skipped index is read as 1 and a skipped type as 2 *)

(* if the term begins with r/s/t (possibly followed by an underscore

followed by a number) otherwise, a free binary function variable

[I am omitting binary function bound variables and argument forms

for the moment, and their associated App2 terms] *)

else if (I1 = "r" orelse I1 = "s" orelse I1 = "t") andalso I2 = "_" andalso isnum I3

then if I4 = "(" then

let val (A,B) = Parse (Final 4 L)

in

if A = Error then (Error,nil)

else if Hd B <> "," then (Error,nil)

else let val (C,D) = Parse (Tl B) in

if C = Error then (Error,nil)

else if Hd D <> ")" then (Error,nil)

else (App2(Freevar(I1,numvalue I3),A,C),Tl D)

end (* 7 *)

end (* 8 *)

else (Freevar(I1,numvalue I3),Final 3 L)

else if (I1 = "r" orelse I1 = "s" orelse I1 = "t")

then if I2 = "(" then

let val (A,B) = Parse (Final 2 L)

in

if A = Error then (Error,nil)

else if Hd B <> "," then (Error,nil)

31

else let val (C,D) = Parse (Tl B) in

if C = Error then (Error,nil)

else if Hd D <> ")" then (Error,nil)

else (App2(Freevar(I1,1),A,C),Tl D)

end

end

else (Freevar(I1,1),Final 1 L)

else if (I1 = "R" orelse I1 = "S") andalso I2 = "^" andalso isnum I3

then if I4 = "(" then

let val (A,B) = Parse (Final 4 L)

in

if A = Error then (Error,nil)

else if Hd B <> "," then (Error,nil)

else let val (C,D) = Parse (Tl B) in

if C = Error then (Error,nil)

else if Hd D <> ")" then (Error,nil)

else if I1 = "R" then (App2(Firstarg(I1,numvalue I3),A,C),Tl D)

else (App2(Secondarg(I1,numvalue I3),A,C),Tl D)

end (* 7 *)

end (* 8 *)

else if I1="R" then (Firstarg(I1,numvalue I3),Final 3 L)

else (Secondarg(I1,numvalue I3),Final 3 L)

else if (I1 = "r" orelse I1 = "s" orelse I1 = "t")

then if I2 = "(" then

32

let val (A,B) = Parse (Final 2 L)

in

if A = Error then (Error,nil)

else if Hd B <> "," then (Error,nil)

else let val (C,D) = Parse (Tl B) in

if C = Error then (Error,nil)

else if Hd D <> ")" then (Error,nil)

else (App2(Freevar(I1,1),A,C),Tl D)

end

end

else (Freevar(I1,1),Final 1 L)

(* if the term begins with an identifier, followed by an identifier

followed by a term, read just the identifier as a constant *)

(* if the term begins with an identifier, followed by a term1,

read it as a unary operation term *)

(* if the term begins with an identifier otherwise, read it as a constant *)

else if isidentifier I1

then if isidentifier I2

then let val (A,B) = Parse(Final 2 L)

in

if A = Error

then let val (A1,B1) = Parse1(Final 1 L)

in

if A1 = Error

then (Constant I1, Tl L)

else

if I1 = "--"

then (Prop [A1],B1)

33

else (Unary (I1,A1),B1)

end else (Constant I1, Tl L) (*1 *)

end

else let val (A,B) = Parse1(Final 1 L) in

if A = Error then (Constant I1,Final 1 L)

else (if I1 = "--" then Prop [A] else Unary (I1,A),B) end

(* otherwise error *)

else (Error,nil)

end (* D *)

and deprop (Prop L) = L |

deprop t = [t]

and isprop (Prop L) = true |

isprop t = false

and Parse L =

let val (A,B) = Parse1 L in

if A = Error then (Error,nil)

else if not (isidentifier (Hd B)) then (A,B)

else let val (C,D) = Parse (Tl B) in

if C = Error then (Error,nil)

else if Hd B = "->" then (Prop (A::(if isprop C

andalso length(deprop C)=1 then [C] else (deprop C))),D) else

(Binary(A,Hd B,C),D)

end (* A *)

end (* B *)

fun parse s =

34

let val (A,B) = Parse (tokenize s) in

if B <> nil then Error else A end

fun parsetest s =

let val (A,B) = Parse(tokenize s) in

Display A end

(*

35

4 Augmenting the type system of Frege with
levels in the style of Quine

We next present the refinement of the type system which allows us to avoid the
contradictions found in the original system. The refinement is motivated by the
stratification criterion for instances of the axiom of comprehension in Quine’s
set theory New Foundations.

We have already assigned types to each term of our language. We provide
a succinct notation for these basic types. Let 0 denote the type of objects. For
each type τ for which we have first argument place terms, we have the type
(τ) of functions taking a single argument of type τ to an object. For each pair
of types σ, τ for which we have a first argument place of type σ and second
argument places of type τ , we have a type (σ, τ) inhabited by functions of two
arguments, the first of type σ and the second of type τ , with object output.

We now describe the refinement. Types can further be qualified with indi-
cations of level , either a positive integer or an indeterminate value which we
write ∞; object types may be qualified as prop (proposition) or nat (natural
number) which are special cases of ∞. Note that adding the same integer to
each integer component of a refined type yields a name for the same type: this
polymorphism reflects the fact that all the levels are actually the same type,
as in New Foundations. An extension to allow user definition of more specific
types of object is feasible. These refinements can be applied to each input type
of a function and to its output type, so notations are extended to have a third
argument representing the output. The basic type of negation is (0); the refined
type is (prop, prop). The basic type of equality is (0, 0); the refined type is
(1, 1, prop) (or any (n, n, prop)). Further, each function type has a further fea-
ture, a level of its own which may be expressed as a superscript, either a natural
number or ∞: the superscripted level must match the level of each component
(input or output) of the type.

We explain notation and details of matching of arguments of functions with
their formal types. The notation for type 0 (objects) qualified with level n is
simply n (∞ for the indeterminate type, and prop, nat for the specific types).
Object types match if they are not distinct integers (so ∞ and the specific
types match any type). A unary function of level n + 1 is of type (n, n) or a
type matching this compnentwise. Functions of type (m,n) with m 6= n can
be defined (for example, the is of type (2, 1)) but such functions cannot have
functions applied to them and are not assigned levels: the superscript on a type
(2, 1) (for example) must be ∞. Binary functions of level n + 2 are of type
(n, n, n) or a type matching this componentwise, and with level superscript
either n + 2 or ∞4. Again, binary functions of types with distinct integer
components do exist but cannot be assigned levels (the level superscript would
be∞). Finally, unary functions of level n+2 sending unary functions to objects
have types ((n, n), n + 1) or a type matching this componentwise, again with

4The displacement of 2 may be surprising here, but is strongly suggested by the way Frege
chooses to correlate binary functions with objects.

36

level superscript n or ∞. Again, functons of this basic type can only appear
as arguments if they have this refined type. All of this reflects stratification
criteria for functions in the usual mathematical sense in New Foundations.

The result of application of an entity of one type to an entity or pair of
entities of another type or types is now described. Take the type being applied
and displace its integer components uniformly by a constant amount so that the
input type or types of the applied entity match the type or types of the types of
the entities to which it is being applied [but this displacement is only permitted
where the superscript attached to the type of the applied entity is ∞]. If this is
not possible, the application is not permitted (the term is rejected as ill-formed,
not by the parser but in a second pass by the type algorithm).

We now discuss the typing of actual terms. Free object variables are typed
∞. Object bound variables and argument places are typed as their level. All
free unary function variables have type (1, 1)∞; a bound unary function variable
has type (n, n)n+1 where n+1 is its level. The effect of this on a bound function
variable is that its type cannot be displaced before matching when it is applied:
the type of F^n is frozen at (n − 1, n − 1). A free function variable can be
viewed as of type (1, 1) with the usual privileges of displacement. The types
of other free function variables are their usual types with free displacement (so
the attached level, as it were, is ∞). The types of the other function argument
places are treated as having an affixed level, and so are frozen: the type of R^n
is (n− 2, n− 2, n− 2)n and the type of Z^n is ((n− 2, n− 2), n− 1)n. 5

Typing of application terms follows the algorithm described above, working
from the types of the applied entity and the entities to which it is applied,
with the note that if the applied entity has frozen level, the displacement of the
applied type to get a match cannot be used. It should further be noted that
when a frozen function (say of frozen level n+ 1 and type (n, n), for example) is
applied to an object term or terms of type ∞ (or of type prop, nat), the result
is of type n, not of type ∞.

Typing of unary and binary operation terms is handled as application, in
effect: each unary operator is typed as a unary function (whose arguments may
be at different levels, and whose level superscript is ∞, allowing displacement)
and each binary operator is typed as a binary function with the same qualities.

1. – and ∼ have type (prop, prop).

2. → has type (prop, prop, prop).

3. = has type (1, 1, prop).

4. the has type (2, 1).

5The typing of Rn , which will very seldom be an issue, is intended to support the correla-
tion (identification?) of binary functions with their double value ranges; if there were bound
binary function variables, this type differential might be adopted as well. A type differential
of 1 between binary functions and their arguments is also perfectly supportable, but 2 agrees
with Frege’s preferred method of correlation of such functions with objects.

37

Superscripts of ∞ are not expressed above.
Typing of binder terms is handled similarly, with the proviso that {Bx : T}

is read as B([T ′]), where T ′ is the result of replacing x with X in T [this has
to be viewed with caution, because this expansion cannot be carried out if T
includes any bound variables other than x, because as we shall see bracketed
terms cannot contain bound variables, but the intention here is not to actually
carry out such expansions but to use them to motivate typing.] The value-range
notation is handled as a special case with B being named by the empty string.
We state the types of the primitive binders.

1. the value range operation has type ((1, 1), 2).

2. the first order universal quantifier A has type ((1, prop), prop), though it
is currently internally represented in Gottlob as simply (1, 1), prop).

3. the second order universal quantifier I has type (((1, 1), prop), prop),
though it is currently internally represented as having type (((1, 1), 2), prop).

Again, each of these types has unexpressed superscript ∞.
The final subtleties occur in the typing of bracketed terms and in the bodies

of variable binding terms. In either context, there is a notion of whether a
bound variable or argument place actually contributes to the type of the term:
an occurrence of an atomic term x in a term T does not contribute to its type
if it is bound in the term in the usual sense or if it occurs as the only variable
contributing type to a subterm of T whose type is ∞ or which appears as an
argument of a unary or binary relation in a position assigned input type ∞
(or its specializations such as prop, nat). A bound variable term {Bx : T} is
assigned type ∞ if no variable other than x contributes to the type of T (and
in particular if {Bx : T} is a closed term). Computation of input types is done
by looking at all instances of the atomic term as an argument of an operation:
if all such instances are in argument places with the same type more specific
than∞, the variable is assigned that type as an input. An input variable which
makes no contribution to type and cannot be assigned a more specific type
is assigned type ∞. Bracketed terms are ill-typed if they contain any bound
variables. They must contain occurrences of exactly one argument place of each
appropriate kind (and it must be noted, following Frege, that a term {x 7→ T}
or {Bx : t} must have x occurring in T , contrary to modern practice). The
input type associated wth an argument place will be∞ if it does not contribute
to the type of the body of the bracketed term, or a more specific subtype of ∞
if it occurs only in argument places of operations assigned that type.

A simplification of the type system of Gottlob already alluded to is that
function input types assigned to bracketed terms are coerced to the form (n, n),
as seen in the types of the universal quantifiers. A refinement of the type
system of Gottlob to allow specification of ∞ or its specializations as input
and/or output of function input types is possible but would make things a bit
more complex.

38

It should be noted here that defined unary and binary operations and binders
of both first and second order variables can neatly be defined simply by equating
their names to a bracketed term (containing no free variables) from which their
types can be computed (with the indicated coercion of input types in the case
of binders).

It is further important to note that, just as in NF, the levels actually do not
reflect any sorting of objects. All constant object terms are assigned type ∞
if well-formed, and all constant unary function terms (capable of occurring as
values of function variables) are of type (1, 1)∞. The type distinction between
functions and objects, and between various different sorts of functions, remains
real as in Frege, though as in Frege this is obviated by the precise embedding of
all unary functions of type (1, 1)∞ into the objects by the value-range operation.
But some unary and binary functions considered by Frege (the is an example
among the primitives) are seen not to be identified with any function in the range
of the second order quantifiers when the stratification conditions are imposed.

In relation to NF(U), it is worth noting that Gottlob does not allow the
expression of unstratified assertions which can be expressed in the language of
NF(U). All operations definable in Gottlob are stratified, though they can be
inhomogeneous (bracketed terms can be assigned types which have more than
one integer level among their arguments and outputs, which are stratified but
inhomogeneous and in terms of NF represent stratified operations not imple-
mentable by functions which are sets). The unstratified content of the Axiom
of Counting is expressed by the provision that the operator # (which is defined
by an additional axiom in the implementation, not presented here, as sending
each natural number to itself and each other object to 0) produces terms which
can be uniformly shifted in type: this causes many unstratified assertions about
natural numbers to become in effect stratified.

4.1 The ML source for the datatype of types of our logic
system, with additional discussion

*)

(* more complex type scheme *)

(* object types *)

datatype Kind1 =

prop1 | (* propositions *)

nat1 | (* natural numbers *)

obj1 | (* constants or unspecified s.c. type *)

39

level1 of int; (* type object variable or argument expressions *)

(* function types. level3 are functions from unary

functions to objects, needed for second order quantificaiton. *)

datatype Kind2 =

fun2 | (* function constant or free variable *)

rel2 | (* binary function constant or free variable *)

level2 of int | (* typed unary functiion variable or argument terms *)

level3 of int | (* typed unary function from unary functions to objects:

only first arguments. Second order binders have this argument type

for their input. *)

fun3 | (* type of constants of the just previous sort *)

blevel2 of int ; (* only assigned to relation argument terms,

unless we introduce binary function binders, in which case we

would also need blevel3 as their input type. *)

datatype Argtype =

arg1 of Kind1 |

arg2 of Kind2;

(* these would be the types assigned to general terms: atype types assigned

to non bracketed terms, utype and btype types assigned to bracketed terms

and operators. Some atypes are assigned to functions, but only to stratified functions. *)

(* binders in effect have things with utypes or btypes as arguments, but

only homogeneous things. The right word is homogeneous, not stratified, because

we actually cannot express unstratified abstractions at all. *)

datatype Kind =

atype of Argtype | (* types of arguments *)

utype of (Argtype*Kind1) | (* type of unary operators *)

btype of (Argtype*Argtype*Kind1) | (* types of binary operators *)

terror; (* type error *)

40

(*

Here is the type system of Gottlob.
Type Kind1 comprises the object types, these being propositions, natural

numbers, “belongs to an unspecified strongly cantorian set determinable from
context (this includes “is a constant or free variable”)” (obj1, type∞ in the dis-
cussion above) and relative types indexed by integers for stratification purposes:
level n is the type of a bound object variable coding an nth order function (of
level type, a function from order n− 1 functions to order n− 1 functions). Note
to self: use “level” for the types of Gottlob to avoid confusion with ML types
in the paper. The terms to watch are “order” and “level”.

Type Kind2 comprises the function and relation types assignable to argu-
ments. These include the types fun2, rel2, and fun3 of function constants
(unary functions from objects to objects, binary functions, and unary functions
from unary functions to objects, and the relative types level2 n, blevel2 n

and level3 n which correspond to these. The binary function indexed types
are assigned only to binary function argument terms, as we do not bind binary
functions. I’m contemplating additional types to be inhabited by functioins
of unspecified type with strongly cantorian range. In terms of the discussion
above, fun2 is (1, 1)∞, rel2 is (1, 1, 1)∞, and fun3 is ((1, 1), 2)∞. level2 n is
(n−1, n−1)n. blevel n is (n−2, n−2, n−2)n. level3 n is ((n−2, n−2), n−1)n.

Type Kind contains types of arguments and the further types to be assigned
to unary and binary function bracketed terms, operators, and binders. Notice
that the arguments of these latter types are of type Argtype, a disjoint union
of Kind1 and Kind2, while the output type is of type Kind1. This has the merit
of excluding unused options. It does mean we need to do some type casting in
the code to get from one type of type to another.

Frege does draw distinctions of type: his account of orders of functions
and the discussion on p. 48 describe a type system, in effect. Here we refine
his system of orders into a finer system of levels corresponding to the relative
types used in New Foundations. Special additional types represent “strongly
cantorian” sorts on which relative types can be freely raised and lowered. That
propositions are such a type is provable in NFU. That natural numbers are
such a type is a strong axiom consistent with NFU, known as Rosser’s Axiom
of Counting. We must assume this in order to justify the assertion that the set
{1, . . . , n} has n elements, which he uses to prove Infinity and which is not a
theorem of NFU.

4.2 ML source code for functions implementing the type
system, with a fair amount of text comment

*)

val TYPES = ref [("~",utype(arg1 prop1,prop1)),

("=",btype(arg1 (level1 1),arg1(level1 1),obj1)),

41

("",utype(arg2(level2 2),level1 2)),

("A",utype(arg2(level2 2),prop1)),

("the",utype(arg1(level1 2),level1 1)),

("I",utype(arg2(level3 3),prop1)),

("#",utype(arg1(nat1),nat1))];

val DEFS = ref[("a",Freevar("a",1))];

val _ = DEFS := nil;

fun find s default nil = default |

find s default ((t,x)::L) = if s=t then x else find s default L;

fun findtype s = (* find type associated with an identifier *)

find s terror (!TYPES);

fun finddef s = (* find body of definition of s *)

find s Error (!DEFS);

fun foundin x nil = false |

foundin x (y::L) = x=y orelse foundin x L;

fun foundin2 x nil = false |

foundin2 x ((y,z)::L) = x=y orelse foundin2 x L;

fun purge s nil = nil |

purge s (t::L) = if s=t then purge s L else t::(purge s L);

fun purge2 s nil = nil |

purge2 s ((t,u)::L) = if s=t then purge2 s L else (t,u)::(purge2 s L);

(* list has a single item (of object type if an argument) in it; a bound function

variable can be present *)

fun purgeargs nil = nil |

purgeargs (Firstarg(s,n)::L) = purgeargs L |

purgeargs (Secondarg(s,n)::L) = purgeargs L |

42

purgeargs (t::L) = t::(purgeargs L);

(* list has no more than one item in it *)

fun oneitem L = L=nil orelse (purge(hd L)L) = nil;

(*

Here we have the declaration list of types (and probably some other decla-
ration lists presently) and some basic functions for manipulating lists.

In addition the initial value of the list TYPES contains all the declarations of
primitive notions. There is a new primitive notion # made necessary by Frege’s
implicit assumption of the axiom of counting (in his proof of infinity).

As of 8/15 the output type of equality was revised to obj, so that we can
actually implement the proof of IIIi in the book. It is probably better eventually
to reinstall the obvious prop output type, in which case IIIi might become quite
hard to prove, but is nothing one would want to say (--(a=b) automatically
simplifies), while preserving the proof that works with obj typing. Another
alternative is to have a toggle which suppresses automatic simplifications during
substitution, to make it easier to exhibit reasoning not using these substitutions,
or using them in restricted ways. As of 8/16. substitution was refined to allow
lazier substitution in such a way that the proof of IIIi works with equality
assigned output type prop (though this seems silly, since the system knows that
a = b is a proposition). My observation also has bearing, that with a slight
tweak equality would be a defined notion whose output was obviously prop,
and in fact this is roughly how the proof works.

It is still instructive to convert the output type of equality to obj1 and
run the proof book. The simplification algorithm otherwise suppresses various
dashes and makes some hypotheses in the argument appear trivial. 8/23 output
type of equality set back to obj1 for faithfulness to Frege’s development.

*)

(* types of bound variables *)

fun vartype x m n = (* compute type of a double indexed variable *)

if x = "x" orelse x = "y" orelse x = "z" then atype (arg1 (level1 m))

else if x = "F" orelse x = "G" orelse x = "H" then atype (arg2 (level2 m))

else terror;

(* types of argument terms, both from internal data

43

and from such a term itself *)

fun argumenttype s n = (* compute type of argument term s^n *)

if s = "X" orelse s= "Y" then atype (arg1 (level1 n))

else if s = "M" orelse s="N" then atype (arg1 (nat1))

else if s="P" orelse s="Q" then atype (arg1 prop1)

else if s="F" orelse s="G" then atype (arg2 (level2 n))

else if s ="R" orelse s = "S" then atype (arg2(blevel2 n))

else if s = "Z" then atype (arg2 (level3 n))

else terror;

fun argumenttype0 (Firstarg(s,n)) = argumenttype s n |

argumenttype0 (Secondarg(s,n)) = argumenttype s n |

argumenttype0 x = terror;

(* types of free variables *)

fun freevartype(s,n) = (* compute type of free variable sn *)

if s = "a" orelse s = "b" orelse s="c" then atype (arg1 obj1)

else if s="f" orelse s="g" orelse s="h" then atype (arg2 fun2)

else if s="r" orelse s="s" orelse s="t" then atype (arg2 rel2)

else if s = "Z" then atype(arg2 fun3)

else terror;

(*

Here are functions for computing types of variables and argument terms.

*)

(* cast types to argument or object types *)

44

fun acast (atype x) = x |

acast x = (arg1 (level1 0));

fun otype (atype (arg1 x)) = true |

otype x = false;

fun ocast (atype (arg1 x)) = x |

ocast x = (level1 0);

(* the data type of type intervals *)

datatype typediff =

freetdiff | (* unknown type interval *)

badtdiff | (* impossible type interval *)

tdiff of int; (* concrete integer type interval *)

(* unification of type intervals *)

fun tdiffmerge badtdiff x = badtdiff |

tdiffmerge x badtdiff = badtdiff |

tdiffmerge freetdiff x = x |

tdiffmerge x freetdiff = x |

tdiffmerge (tdiff m) (tdiff n) = if m=n then tdiff m else badtdiff;

(* move argument types by a constant *)

(* moving types by the unknown interval has the

effect of ‘‘floating" them *)

fun tadd (tdiff n) ((arg1 (level1 m))) = (arg1 (level1 (m+n))) |

tadd (tdiff n) ((arg2 (level2 m))) = (arg2(level2(m+n))) |

tadd (tdiff n) ((arg2 (level3 m))) = (arg2(level3(m+n))) |

tadd freetdiff (arg1 (level1 n)) = arg1 obj1 |

45

tadd freetdiff (arg2(level2 n)) = arg2 fun2 |

tadd freetdiff (arg2(blevel2 n)) = arg2 rel2 |

tadd freetdiff (arg2(level3 n)) = arg2 fun3 |

tadd n x = x;

(* float a type, discarding stratification

information *)

fun typefloat (atype a) = atype(tadd freetdiff a) |

typefloat x = x;

(* determine difference between argument types

of the same kind *)

fun typecompare (arg1 (level1 m)) (arg1(level1 n)) = tdiff (n-m) |

typecompare (arg1 x) (arg1 y) = freetdiff |

typecompare (arg2 (level2 m)) (arg2(level2 n)) = tdiff (n-m) |

typecompare (arg2 fun2) (arg2 (level2 m)) = freetdiff |

typecompare (arg2 (level2 n)) (arg2 fun2) = freetdiff |

typecompare (arg2 (blevel2 m)) (arg2 (blevel2 n)) = tdiff (n-m) |

typecompare (arg2 rel2) (arg2 (blevel2 n)) = freetdiff |

typecompare (arg2(blevel2 n)) (arg2 rel2) = freetdiff |

typecompare (arg2 (level3 m)) (arg2 (level3 n)) = tdiff(n-m) |

typecompare (arg2 fun3) (arg2 (level3 m)) = freetdiff |

typecompare (arg2 (level3 m)) (arg2 fun3) = freetdiff |

typecompare x y = if x=y then freetdiff else badtdiff;

fun typevalue (arg1 (level1 m)) = m |

typevalue (arg2 (level2 m)) = m |

46

typevalue (arg2(level3 m)) = m |

typevalue x = ~1;

(* difference of level without regard to

being of the same kind *)

fun freetypecompare x y =

let val X = typevalue x and Y = typevalue y in

if X= ~1 then freetdiff

else if Y = ~1 then freetdiff

else tdiff (Y-X)

end;

(* determine whether argument types of the same kind can be

the same type *)

fun typematches t u = typecompare t u = freetdiff orelse typecompare t u = tdiff 0;

(* here we just determine whether two types can be

at the same stratification level *)

fun freetypematches t u = freetypecompare t u = freetdiff

orelse freetypecompare t u = tdiff 0;

(* this acts on general types *)

fun Typematches (atype t) (atype u) = typematches t u |

Typematches t u = t=u;

fun isfuntype (arg2 (level2 n)) = true |

isfuntype (arg2 fun2) = true |

isfuntype x = false;

(* cast a function type to an argument type, works

only when the type is homogeneous *)

fun funtypecast (utype (x,y)) =

if typematches x (arg1 y) then atype (arg2 fun2)

47

else if isfuntype x andalso freetypematches x (arg1 y) then

atype(arg2 fun3)

else utype(x,y) |

funtypecast (btype(x,y,z)) = if typematches x y

andalso typematches x (arg1 z) andalso typematches y (arg1 z)

then atype (arg2 rel2) else btype(x,y,z) |

funtypecast x = x;

(*

Here is a block of functions for handling types.
We provide a type of intervals between types, having either an integer value,

a value indicating an unknown displacement, and an error value. These objects
can be unified: unification of distinct integer values produces the error value;
unification of the unknown value with an integer value gives the second value;
unification of a value with itself of course gives itself.

We then provide functions for determining the interval between two types for
purposes of stratification, one which takes into account their being of the same
kind (function or object) and one which does not, and functions for raising a type
by a type interval. Notice that raising a type by the unknown interval gives the
corresponding “constant” type which does not need stratification information.

The last function allow us to cast operation types to argument types when
typing permts this (only homogeneous operations may appear as arguments).

It is important to note that all operations that we can represent in our
language and assign type to are stratified: operations may be represented by
bracketed terms which are inhomogeneous (their definition bodies are stratified
bu their input and output types include distinct integers). These can only
appear in applied position, not as arguments.

*)

fun applyutype (utype(x,y)) (atype z) =

let val D = typecompare x z in

if D = badtdiff then terror

else atype (tadd D (arg1 y))

48

end |

applyutype (atype (arg2 fun2)) (atype (arg1 z)) =

applyutype (utype(arg1 (level1 1),level1 1)) (atype (arg1 z)) |

applyutype(atype(arg2 (level2 n))) (atype(arg1(level1 m))) =

if n=m+1 then atype(arg1(level1 m)) else terror |

applyutype (atype(arg2(level2 n))) (atype(arg1 x)) =

atype(arg1(level1 (n-1))) |

applyutype (atype(arg2(level3 n))) (atype(arg2(level2 m))) =

if n=m+1 then (atype(arg1(level1 m))) else terror |

applyutype (atype(arg2(level3 n))) (atype(arg2(fun2)))=

atype(arg1(level1 (n-1))) |

applyutype (atype(arg2(fun3))) (atype(arg2(level2 m))) =

atype(arg1 (level1 m)) |

applyutype (atype(arg2(fun3))) (atype(arg2(fun2)))=

atype(arg1 obj1) |

applyutype x y =

if funtypecast y <> y then applyutype x (funtypecast y)

else terror;

(* find type of output

of unary operator of type x with input type y *)

(* also works on function variables *)

fun applybtype (btype(x,y,z)) (atype u) (atype v) =

let val D = tdiffmerge (typecompare x u) (typecompare y v)

and E = tdiffmerge (freetypecompare x y) (freetypecompare u v) in

if D = badtdiff orelse E = badtdiff then terror

else atype(tadd D (arg1 z))

end |

49

applybtype (atype(arg2 rel2)) (atype u) (atype v) =

applybtype (btype(arg1(level1 1),arg1(level1 1),level1 1)) (atype u) (atype v) |

applybtype (atype(arg2(blevel2 n))) (atype u) (atype v) =

if typematches u (arg1(level1 (n-2))) andalso

typematches v (arg1(level1 (n-2))) andalso typematches u v

then atype(arg1(level1(n-2))) else terror |

applybtype x y z =

if funtypecast y <>y orelse funtypecast z <> z

then applybtype x (funtypecast y) (funtypecast z)

else terror;

(* match formal input type of binder type x to function

taking actual type y to actual type z and compute the

actual output type, or report type error*)

(*

These functions compute the output type of a unary or binary operator given
the types of its inputs. The general idea is that one matches the types of the
actual inputs to the formal input types of the operations and determines a type
interval which if added to the formal types gives types which match the actual
types, then add the type interval to the formal output type to determine the
actual output type.

If bracketed terms appear as arguments then the type is cast to an argument
type if possible.

*)

fun deatype (atype x) = x |

deatype x = arg1(level1 0);

fun bindermatch (utype(x,y)) (atype u) (atype (arg1 v)) =

if typecompare x (acast(funtypecast(utype(u,v)))) = badtdiff then terror else

let val D = freetypecompare (tadd (tdiff ~1) x) u in

50

if D = badtdiff then terror

else atype(tadd D (arg1 y))

end |

bindermatch x y z = terror;

(*

This function is used to determine the actual type of a bound variable term
given the formal type of the binder, the actual type of the bound variable, and
the actual type of the body of the abstraction.

Check that the abstract function argument is of the same sort as one taking
the actual bound variable to the actual body.

Determine the displacement between the formal type expected of the bound
variable (one level below the type of the function argument) and the actual type
of the bound variable, and apply this displacement to the formal type of the
output to obtain the actual type of the output.

*)

fun floatoutputtype0 (utype(x,y)) = typevalue (arg1 y) = ~1 |

floatoutputtype0 (btype(x,y,z)) = typevalue (arg1 z) = ~1 |

floatoutputtype0 x = false;

fun floatoutputtype s = floatoutputtype0(findtype s);

fun floatlefttype0 (btype(x,y,z)) = typevalue (x) = ~1 |

floatlefttype0 x=false;

fun floatlefttype s = floatlefttype0 (findtype s);

fun floatrighttype0 (btype(x,y,z)) = typevalue (y) = ~1 |

floatrighttype0 x=false;

fun floatrighttype s = floatrighttype0 (findtype s);

fun propinputtype0 (utype(x,y)) = x=arg1 prop1 |

51

propinputtype0 x = false;

fun propinputtype s = propinputtype0(findtype s);

fun proplefttype0 (btype(x,y,z)) = x=arg1 prop1 |

proplefttype0 x=false;

fun proplefttype s = proplefttype0 (findtype s);

fun proprighttype0 (btype(x,y,z)) = y = arg1 prop1 |

proprighttype0 x=false;

fun proprighttype s = proprighttype0 (findtype s);

fun typevarlist (Prop nil) = nil |

typevarlist (Prop(x::L)) = let val L1 = typevarlist x and L2 = typevarlist (Prop L) in

if oneitem L1 andalso oneitem L2 then nil

else if oneitem L1 then L2

else if oneitem L2 then L1

else L1@L2

end |

typevarlist (Unary(s, t)) =

let val T = typevarlist t in

if oneitem T andalso floatoutputtype s then nil else

T end |

typevarlist (Binary(t,s,u)) =

let val T = typevarlist t and U = typevarlist u in

if oneitem T andalso oneitem U andalso floatlefttype s

andalso floatrighttype s then nil

52

else if oneitem (T@U) andalso floatoutputtype s then nil

else if oneitem T andalso floatlefttype s then U

else if oneitem U andalso floatrighttype s then T

else T@U

end |

typevarlist (Binder(b,x,m,n,t)) = let val T =purge (Boundvar(x,m,n)) (typevarlist t)

in if oneitem T andalso floatoutputtype b then nil else T end |

typevarlist (Function1 t) = purgeargs (typevarlist t) |

typevarlist (Function2 t) = purgeargs(typevarlist t) |

typevarlist (Constant t) = nil |

typevarlist (App1(t,u)) = (typevarlist t) @ (typevarlist u) |

typevarlist (App2(t,u,v)) = (typevarlist t)@(typevarlist u)@(typevarlist v) |

typevarlist (Freevar (s,n)) = nil |

typevarlist (Boundvar(s,m,n)) = [Boundvar(s,m,n)] |

typevarlist (Firstarg(s,n)) = [Firstarg(s,n)] |

typevarlist (Secondarg(s,n)) = [Secondarg(s,n)] |

typevarlist Error = nil;

(*

This function computes the list of bound variables and argument terms which
actually contribute information to the type of a term. To begin with we have
the list of bound variables occurring free in the term: items can be eliminated
from the list if they appear as the only element of the type variable list of a
subterm which is in a position which allows the subterm to float in type.

*)

53

(* design decision is made here (sensibly) that bracketed terms may not

contain bound variables *)

(* only object argument terms can be eliminated by

the type variable list generator, so it is safe to use

object types as default when argument terms are not

present *)

fun isfirstarg (Firstarg (s,n)) = true |

isfirstarg x = false;

fun issecondarg (Secondarg (s,n)) = true|

issecondarg x = false;

(* list of all argument terms free in a term, without type considerations *)

(* this is needed to catch extra argument terms which are eliminated by

the type variable algorithm *)

fun argumentlist (Prop nil) = nil |

argumentlist (Prop(x::L)) = (argumentlist x)@(argumentlist (Prop L))|

argumentlist (Unary(s, t)) =

argumentlist t |

argumentlist (Binary(t,s,u)) =

(argumentlist t)@(argumentlist u) |

argumentlist (Binder(b,x,m,n,t)) = argumentlist t |

argumentlist (Function1 t) = nil |

argumentlist (Function2 t) = nil |

argumentlist (Constant t) = nil |

argumentlist (App1(t,u)) = (argumentlist t)@(argumentlist u) |

argumentlist (App2(t,u,v)) = (argumentlist t)@(argumentlist u)@(argumentlist v) |

argumentlist (Freevar (s,n)) = nil |

54

argumentlist (Boundvar(s,m,n)) = nil |

argumentlist (Firstarg(s,n)) = [Firstarg(s,n)] |

argumentlist (Secondarg(s,n)) = [Secondarg(s,n)] |

argumentlist Error = nil;

fun isutype (utype(x,y)) = true |

isutype x = false;

fun isbtype (btype(x,y,z)) = true |

isbtype x = false;

(* determine type of a variable from context in a term *)

(* this function is used for precise computations of

input domains of operations *)

fun typesin z (Prop nil) = nil |

typesin z (Prop(x::L)) = (if x = z then [atype(arg1 prop1)]

else (typesin z x))@(typesin z (Prop L)) |

typesin z (Unary(s, t)) =

if not (isutype(findtype s)) then nil else

let val utype(x,y) = findtype s in

if z=t then [atype x] else typesin z t end |

typesin z (Binary(t,s,u)) =

if not (isbtype(findtype s)) then nil else

let val btype(x,y,w) = findtype s

in (if z=t then [atype x] else typesin z t)@

(if z=u then [atype y] else typesin z u) end

|

typesin z (Binder(b,x,m,n,t)) = typesin z t |

typesin z (Function1 t) = nil |

typesin z (Function2 t) = nil |

typesin z (Constant t) = nil |

55

typesin z (App1(t,u)) = (typesin z t)@(typesin z u)|

typesin z (App2(t,u,v)) = (typesin z t)@(typesin z u)@(typesin z v) |

typesin z (Freevar (s,n)) = nil |

typesin z (Boundvar(s,m,n)) = nil |

typesin z (Firstarg(s,n)) = if s="P" then [atype(arg1 prop1)]

else if s="M" then [atype(arg1 nat1)] else nil|

typesin z (Secondarg(s,n)) = if s="Q" then [atype(arg1 prop1)]

else if s="N" then [atype(arg1 nat1)] else nil |

typesin z Error = nil;

(* both arguments must actually appear in any bracketed function *)

fun firstargumenttype1 t = let val L = typevarlist t and M =argumentlist t in

if M=nil orelse not(oneitem M) then terror else

if L = nil then

let val T = typesin (hd M) t in

if T<>nil andalso oneitem T then typefloat(hd T)

else typefloat(argumenttype0(hd M)) end

else if isfirstarg (hd L) then argumenttype0(hd L) else terror end;

fun firstargumenttype2 t = let val L = typevarlist t and M = argumentlist t in

if oneitem M orelse not(oneitem(purge(hd M) M)) then terror else

let val A = if isfirstarg(hd M) then hd M

else if isfirstarg(hd(purge(hd M)M)) then hd(purge(hd M)M) else Error in

if A = Error then terror

else if foundin A L then argumenttype0 A

else let val T = typesin A t in

if T<> nil andalso oneitem T then typefloat(hd T)

else

56

typefloat(argumenttype0 A)

end end end;

fun secondargumenttype t = let val L = typevarlist t and M = argumentlist t in

if oneitem M orelse not(oneitem(purge(hd M) M)) then terror else

let val A = if issecondarg(hd M) then hd M

else if issecondarg(hd(purge(hd M)M)) then hd(purge(hd M)M) else Error in

if A = Error then terror

else if foundin A L then argumenttype0 A

else let val T = typesin A t in

if T<>nil andalso oneitem T then typefloat(hd T)

else typefloat(argumenttype0 A)

end end end;

(*

Here we provide functions which find the arguments in bracketed terms,
checking that there is just one argument term of each appropriate kind (first or
second) and determining the contribution it makes to the type information.

The typesin function is a refinement which allows us to determine whether
an argument can have a specific s.c. type (prop and nat being the possibili-
ties so far). Arguments of the less definite type obj can be determined using
typevarlist.

*)

(* list of all bound variables free in a term, without type considerations *)

(* this is needed because Frege requires that bound variables actually always occur

in their scopes *)

(* it would be a good idea to have the type function post

an error message when a bound variable doesnt appear in its

scope, since this type error defies modern expectations. *)

57

fun varlist (Prop nil) = nil |

varlist (Prop(x::L)) = (varlist x)@(varlist (Prop L))|

varlist (Unary(s, t)) =

varlist t |

varlist (Binary(t,s,u)) =

(varlist t)@(varlist u) |

varlist (Binder(b,x,m,n,t)) = purge (Boundvar(x,m,n)) (varlist t)|

varlist (Function1 t) = nil |

varlist (Function2 t) = nil |

varlist (Constant t) = nil|

varlist (App1(t,u)) = (varlist t)@(varlist u) |

varlist (App2(t,u,v)) = (varlist t)@(varlist u)@(varlist v) |

varlist (Freevar (s,n)) = nil |

varlist (Boundvar(s,m,n)) = [Boundvar(s,m,n)]|

varlist (Firstarg(s,n)) = nil |

varlist (Secondarg(s,n)) = nil |

varlist Error = nil;

fun typeof (Prop nil) = terror |

typeof (Prop[x]) = let val T = typeof x in

if otype T then atype(arg1 prop1) else terror end|

typeof (Prop(x::L)) = let val T1 = typeof x

and T2 = typeof (Prop L) in if otype T1 andalso otype T2

then atype(arg1 prop1) else terror end |

typeof (Unary(s,t)) = applyutype (findtype s)(typeof t) |

typeof (Binary(t,s,u)) = applybtype(findtype s)(typeof t)(typeof u) |

58

(* adding requirement that bound variables always appear in any scope *)

typeof (Binder(b,x,m,n,t)) =

let val V = varlist t in if purge(Boundvar(x,m,n))(V) = V then terror else

let val T = bindermatch(findtype b)(vartype x m n)(typeof t)

in if typevarlist (Binder(b,x,m,n,t)) = nil

then typefloat T

else T

end end |

typeof (Function1 t) = if varlist t <> nil then terror else

let val T = firstargumenttype1 t and U = typeof t in

if T = terror orelse not(otype U) then terror

(* else

if Typematches T U then atype(arg2 fun2) *)

else (utype(acast T,ocast(U))) end |

typeof (Function2 t) = if varlist t <> nil then terror else

let val T =

firstargumenttype2 t and U = secondargumenttype t and V = typeof t in

if T = terror orelse U = terror orelse not (otype V) then terror

(* else if Typematches T U andalso Typematches T V andalso Typematches U V

then atype (arg2 rel2) *)

else (btype(acast T,acast U,ocast(V))) end |

typeof (Constant t) = findtype t |

typeof (App1 (t ,u)) = applyutype (typeof t)(typeof u) |

typeof (App2 (t,u,v)) = applybtype (typeof t)(typeof u)(typeof v) |

typeof (Freevar(x,n)) = if n>0 then freevartype(x,n) else terror|

typeof (Boundvar(x,m,n)) = if m>0 andalso n>0 then vartype x m n else terror|

59

typeof (Firstarg(s,n)) =if n>0 then argumenttype s n else terror|

typeof (Secondarg(s,n)) = if n>0 then argumenttype s n else terror |

typeof Error = terror;

fun typetest s = typeof(parse s);

(*

And finally we present the type function itself. It makes use of the func-
tion varlist to enforce the condition that bound variables must occur in their
scopes.

This is an all purpose type system, which handles typing of operators as well
as terms.

Another essay! I’ll talk about the intended semantics, and how the syntax
and types support them. Frege says that the objects are propositions, natural
numbers, and courses of values. In our scheme, there are necessarily also some
atoms (lots of them): Frege wants all notations to be total, and with this in
mind explains what the results of applying propositions as functions are. In
our models, there are many many objects which are not actually courses of
values: they can of course be applied as if they were courses of values, and, if I
remember correctly, have constant extensions equal to the default value of the
definite description operator, given Frege’s definition of application.

The definition of f ‘x, application of objects, is

the(y 7→ (∃F : f = (z 7→ F (z)) ∧ y = F (x))).

So applications of non-functions give the default object, which by convention
we have taken to be the empty set (the constant course-of-values of the False).
In knwn models of the theory we are implementing, there will be lots of non-
functions: if the Axiom of Choice were added to our theory, it would be a
theorem that there are many such non-functions (which we call atoms). It is
curious that the definition of object function application requires the definition
description operator. The definition of membership does not: x ∈ y is defined
as (∃F : y = (z 7→ −F (z)) ∧ F (x)). Notice that it is entirely natural that
the interpreted set theory contains atoms, since anything other than a concept
(unary function with proposition values) is treated as an urelement. The reasons
why it is hard to have an extensional theory of object function application are
much less obvious. It is amusing to observe that “the set x such that φ(x)”
is actually definable without recourse to definite description, as “the set of
all z such that there is exactly one set which contains exactly those x such
that φ(x), and z belongs to some set which contains exactly those x such that
φ(x)”. The set of all x such that φ(x) is just (x 7→ −φ(x)). Further, one could
develop the theory of functions with set outputs in this style without using a

60

primitive definite description operator, anachronistically using one of the well
known implementions of functions as sets.

*)

fun freshen() = let val N = !NEWNUM in

(NEWNUM:=(!NEWNUM)+1;N) end;

(* list of all free variables in a term *)

fun freevarlist (Prop nil) = nil |

freevarlist (Prop(x::L)) = (freevarlist x)@(freevarlist (Prop L))|

freevarlist (Unary(s, t)) =

freevarlist t |

freevarlist (Binary(t,s,u)) =

(freevarlist t)@(freevarlist u) |

freevarlist (Binder(b,x,m,n,t)) = (freevarlist t)|

freevarlist (Function1 t) = freevarlist t |

freevarlist (Function2 t) = freevarlist t |

freevarlist (Constant t) = nil|

freevarlist (App1(t,u)) = (freevarlist t)@(freevarlist u) |

freevarlist (App2(t,u,v)) = (freevarlist t)@(freevarlist u)@(freevarlist v) |

freevarlist (Freevar (s,n)) = [Freevar(s,n)] |

freevarlist (Boundvar(s,m,n)) = nil |

freevarlist (Firstarg(s,n)) = nil |

freevarlist (Secondarg(s,n)) = nil |

freevarlist Error = nil;

(* shift types in all bound variables uniformly *)

61

fun typeshift n (Prop nil) = Prop nil |

typeshift n (Prop(x::L)) = Prop((typeshift n x)::(deprop (typeshift n (Prop L)))) |

typeshift n (Unary (s,t)) = Unary(s, typeshift n t) |

typeshift n (Binary(t,s,u)) = Binary(typeshift n t,s,typeshift n u) |

typeshift n (Binder(b,x,m,N,t)) =

if n<0 andalso varlist (Binder(b,x,m,N,t)) = nil andalso argumentlist (Binder(b,x,m,N,t)) = nil

then (Binder(b,x,m,N,t)) else

Binder(b,x,m+n,N,typeshift n t) |

typeshift n (Boundvar(x,m,N)) = Boundvar(x,m+n,N) |

typeshift n (App1(s,t)) = App1(typeshift n s,typeshift n t) |

typeshift n (App2(s,t,u)) = App2(typeshift n s, typeshift n t, typeshift n u) |

typeshift n t = t;

(* bound variable renumbering function *)

val RENUMBERS = ref[(0,0)];

val NEXTRENUMBER = ref 1;

val _ = RENUMBERS:=nil;

fun Renumber0 (Prop nil) = Prop nil |

Renumber0 (Prop(x::L)) = Prop((Renumber0 x)::(deprop(Renumber0 (Prop L)))) |

Renumber0 (Unary(s,t)) = Unary (s,Renumber0 t) |

Renumber0 (Binary(s,t,u)) = Binary(Renumber0 s,t,Renumber0 u) |

Renumber0 (Binder(b,x,m,n,t)) = let val N = find n ~1 (!RENUMBERS) in

if N<> ~1 then (Binder(b,x,m,N,Renumber0 t))

else (RENUMBERS:= (n,!NEXTRENUMBER)::(!RENUMBERS);

62

NEXTRENUMBER:=1+(!NEXTRENUMBER);

(Binder(b,x,m,find n 0 (!RENUMBERS),Renumber0 t)))

end | (*1*)

Renumber0 (App1(s,t)) = App1(Renumber0 s,Renumber0 t) |

Renumber0 (App2(s,t,u)) = App2(Renumber0 s,Renumber0 t, Renumber0 u) |

Renumber0 (Function1 t) = Function1(Renumber0 t) |

Renumber0 (Function2 t) = Function2(Renumber0 t) |

Renumber0 (Boundvar(x,m,n)) = let val N = find n ~1 (!RENUMBERS) in

if N<> ~1 then Boundvar(x,m,N)

else (RENUMBERS:= (n,!NEXTRENUMBER)::(!RENUMBERS);

NEXTRENUMBER:=1+(!NEXTRENUMBER);

(Boundvar(x,m,find n 0 (!RENUMBERS))))

end | (*2*)

Renumber0 x =x;

fun Renumber t = (RENUMBERS:=nil;NEXTRENUMBER:=1;Renumber0 t);

val OLDNEWNUM = ref 0;

fun Subs0 check x T (Prop nil) = Prop nil |

Subs0 check x T (Prop [t]) = if typeof t = atype(arg1 prop1)

then

Subs0 check x T t else Prop[Subs0 check x T t] |

Subs0 check x T (Prop ((Prop[u])::L)) = Subs0 check x T (Prop(u::L)) |

Subs0 check x T (Prop [a,b]) = let val A = Subs1 check x T a and

B = Subs1 check x T b in

if A = Error orelse B = Error then Error else

if isprop B then

Prop(A::(deprop B)) else Prop[A,B] end |

Subs0 check x T (Prop (y::L)) = let val Prop M = Subs0 check x T (Prop L) in

Prop((Subs1 check x T y)::M) end |

63

Subs0 check x T (Unary(s,Prop[t])) =

if propinputtype s then Unary(s,Subs1 check x T t)

else Unary(s,Subs1 check x T (Prop[t])) |

Subs0 check x T (Unary (s,t)) = Unary(s,Subs1 check x T t) |

Subs0 check x T (Binary(Prop[t],s,u)) =

if proplefttype s orelse typeof t = atype(arg1 prop1)

then Subs0 check x T (Binary(t,s,u))

else Binary(Prop[Subs1 check x T t],s,Subs1 check x T u) |

Subs0 check x T (Binary(t,s,Prop[u])) =

if proprighttype s orelse typeof u = atype(arg1 prop1)

then Subs0 check x T (Binary(t,s,u))

else Binary(Subs1 check x T t,s,Prop[Subs1 check x T u]) |

Subs0 check x T (Binary(t,s,u)) = Binary(Subs1 check x T t,s,Subs1 check x T u) |

Subs0 check x T (Binder(b,y,m,n,t)) =

let val N = freshen() in Binder(b,y,m,N,

Subs1 check x T (Subs2 (Boundvar(y,m,n))

(Boundvar(y,m,N)) t)) end |

Subs0 check x (Function1 T) (App1(s,t)) =

if x=s then let val L = argumentlist T in

let val A = hd L in

let val M = typevalue(acast(typeof t)) and N = typevalue(acast(typeof A)) in

if M= ~1 then Subs2 A t T

else Subs2 A t (typeshift (M-N) T)

end

end

end

else App1(Subs1 check x (Function1 T) s,Subs1 check x (Function1 T) t) |

64

Subs0 check x (Function2 T) (App2(s,t,u)) =

if x = s then

let val L = argumentlist T in

let val A = hd L

in

let val B = hd(purge A L) in

if isfirstarg A then

let val M = typevalue(acast(typeof A)) and M2 = typevalue(acast(typeof t))

and N = typevalue(acast(typeof B)) and N2 = typevalue(acast(typeof u)) in

if M2 = ~1 andalso N2 = ~1 then

Subs2 A t(Subs2 B u T)

else if M2 = ~1 then

Subs2 A t(Subs2 B u (typeshift (N2 - N) T))

else if N2 = ~1 orelse N2-N = M2 - M then

Subs2 A t(Subs2 B u(typeshift (M2 - M) T))

else Error

end

else let val M = typevalue(acast(typeof A)) and M2 = typevalue(acast(typeof u))

and N = typevalue(acast(typeof B)) and N2 = typevalue(acast(typeof t)) in

if M2 = ~1 andalso N2 = ~1 then

Subs2 A u(Subs2 B t T)

else if M2 = ~1 then

Subs2 A u(Subs2 B t (typeshift (N2 - N) T))

else if N2 = ~1 orelse N2-N = M2 - M then

Subs2 A u(Subs2 B t(typeshift (M2 - M) T))

65

else Error

end

end

end

end

else App2(Subs1 check x (Function2 T) s,

Subs1 check x (Function2 T) t,Subs1 check x (Function2 T) u) |

Subs0 check x T (App1(s,t)) =

App1(Subs1 check x T s,Subs1 check x T t) |

Subs0 check x T (App2(s,t,u)) =

App2(Subs1 check x T s,Subs1 check x T t,Subs1 check x T u) |

Subs0 check (Freevar(s,n)) T (Function1 U) =

Function1 (Subs1 check (Freevar(s,n)) T U) |

Subs0 check (Freevar(s,n)) T (Function2 U) =

Function2 (Subs1 check (Freevar (s,n)) T U) |

Subs0 check (Constant t) T (Function1 U) =

Function1 (Subs1 check (Constant t) T U) |

Subs0 check (Constant t) T (Function2 U) =

Function2 (Subs1 check(Constant t) T U) |

Subs0 check x T (Function1 U) = Function1 U |

Subs0 check x T (Function2 U) = Function2 U |

Subs0 check x T U = if x = U then

if typeof x = atype(arg1 prop1) andalso typeof T <> atype(arg1 prop1)

then Prop [T] else

if typeof x = atype(arg1 nat1) andalso typeof T <> atype(arg1 nat1)

66

then Unary("#",T)

else T else U

and Subs1 check x T U = if (not check)

orelse(foundin x (varlist U) orelse foundin x (argumentlist U)

orelse foundin x (freevarlist U)) then Subs2 x T U else U

and Subs2 x t U = Subs0 false x t U

and Subs x T U =

(OLDNEWNUM:=(!NEWNUM);

let val X = Renumber(Subs0 true x T U)

in (NEWNUM:=max(!NEXTRENUMBER,!OLDNEWNUM);X) end);

fun substest x y z = let val Z = parse z and Y = parse y in

if typeof Y <>terror andalso typeof Z <>terror then

Display(Subs (parse x) (parse y) (parse z)) else "Type error" end;

fun ren s = OldDisplay(Renumber(parse s));

(*

Here is the substitution function. The term replaced is always an atomic
term (variable, argument term, or constant).

We avoid bound variable collisions by the aggressive strategy of always re-
naming bound variables in the target term by applying a fresh index. This could
be tidied up as we have done in other systems to avoid a profusion of larger and
larger indices.

Notice that substitution of bracketed terms for atomic function terms causes
substitution into the body of the bracketed term. Only free variables and con-
stants may be replaced in substitutions into bracketed terms: argument terms
are bound there, and bound variables should not appear. Moreoever, all types
in the body of the bracketed term are shifted so that the type of the argument
place(s) agrees with the type of the actual inputs (if the input types do not
float).

In principle it is possible for substitution to fail for type shifting reasons, if
something whose type is too low is substituted into the body of a bracket term,
forcing variables into negative types. I believe this will never happen in any
prover operation, because no application of a bracket term to arguments whose

67

types cannot float (and which thus contain free occurrences of bound variables)
is ever actually made.

This function only checks type information in one place (when the term
replaced in the substitution is an argument term of concrete type), but it is
necessary to check that terms are well typed before making a substitution, as
otherwise infinite loops are possible.

The substitution function carries out simplifications of propositional terms,
but not in top level proper subterms which do not contain the atomic term
being replaced. This is a refinement supporting the ability to prove theorems
which are not in simplified form. Note that substitution of a fresh free variable
for itself is a clever way to do simplifications of propositional structures, just at
the top level.

68

5 The definition facility of Gottlob

Next comes declaration and use of definitions.
There is not a lot to say about this feature. It is entertaining that Frege’s

original type system makes it possible to tell exactly which of the various kinds
of definitions (object constants, unary and binary operations taking objects
to objects, term binding operations binding object or function variables with
object output) a term is intended to define strictly from its type, so it is only
necessary to give a fresh identifier and choose a term as its referent to to effect
a definition. A definition may not contain a free variable.

Definition expansion (except in the trivial case of defined constants) is ef-
fected by substitution into application terms using the bracketed term referred
to by the constant or operator defined. This may seem quite dangerous for
variable binding operations, but it will work, noting that it is important that
the Defexpand function is only applied to terms not containing free occurrence
of bound variables or argument places.

The setlog command will open a log file (with extension .gob) which is both
readable, with useful information, and executable. The closelog command
closes the log file. When a log created with the setlog command is executed
(which can be done with the ML use command) it starts by clearing the proof
environment all the way down to the axioms, so one should use the same log file
for an entire session, unless one edits out the part which clears the environment.

*)

(* log file commands needed for user commands to

be recorded with their outputs *)

val LOGFILE = ref (TextIO.openOut("default"));

fun Flush() = (TextIO.flushOut(TextIO.stdOut);TextIO.flushOut(!LOGFILE));

fun say s = (TextIO.output(TextIO.stdOut,"\n"^s^"\n\n");

Flush();TextIO.output(!LOGFILE,"\n"^s^"\n\n");Flush());

fun comment s = say("comment \""^s^"\";");

fun setlog s = (LOGFILE:= TextIO.openOut(s^".gob");

say "LINES:=nil;";

say "THEOREMS:=(!AXIOMS);";

say "DEFS:=nil;";

say "NEWNUM:=2;");

fun closelog() = (TextIO.flushOut(!LOGFILE);

TextIO.closeOut(!LOGFILE);LOGFILE:=TextIO.openOut("default"));

69

fun saycomment s = say ("(* ERROR: "^s^" \n*)");

fun versiondate() = say "Gottlob Proof System 8/28/2018";

fun Define s t = if foundin2 s (!DEFS) then "Already defined"

else let val D = parse t in

if freevarlist D <> nil then "Free variables present"

else let val T = typeof D in

if T = terror then "Badly typed"

else (DEFS:= (s,D)::(!DEFS); TYPES:=(s,T)::(!TYPES);

say ("Define \""^s^"\" \""^t^"\";");

say ("(*\n"^s^" := "^(indent(spaces(length(explode(s^" := ")))) (Display D))^" \n*)") ;

s^" := "^(Display D))

end end;

fun isbracketfun (Function1 t) = true |

isbracketfun x = false;

fun thefirstarg (x,m,n) =

if x = "x" orelse x = "y" orelse x= "z" then Firstarg("X",m)

else if x = "F" orelse x = "G" orelse x = "H" then Firstarg("F",m)

else Error;

fun Defexpand (Constant s) =

if finddef s = Error then Constant s else finddef s |

Defexpand (Unary(s,t)) = if finddef s = Error then Unary(s,t) else

let val N = freshen() in

Subs (Freevar("f",N)) (finddef s) (App1(Freevar("f",N),t)) end |

70

Defexpand (Binary(t,s,u)) = if finddef s = Error then Binary(t,s,u) else

let val N = freshen() in

Subs (Freevar("r",N))(finddef s)(App2(Freevar("r",N),t,u)) end |

Defexpand (Binder(b,x,m,n,t)) =

if not (isbracketfun (finddef b)) then (Binder(b,x,m,n,t)) else

let val Function1 B = finddef b in

let val F = Function1 (Subs (Boundvar(x,m,n)) (thefirstarg(x,m,n)) t)

in Subs (hd(argumentlist B)) F B

end end |

Defexpand (App1((Function1 t),u)) =

let val L = argumentlist t in Subs (hd L) u t end |

Defexpand (App2((Function2 t),u,v)) =

let val L = argumentlist t in

if isfirstarg(hd L) then Subs(hd L) u(Subs(hd(purge(hd L)L)) v t)

else Subs(hd L) v(Subs(hd(purge(hd L)L)) u t) end |

Defexpand t = t;

fun deftest s = Display(Defexpand(parse s));

(*

71

6 The proof environment of Gottlob

Now we get into entirely new headaches with the logical rules.
We summarize Frege’s rules and remark on how we handle them.

1. The rule of “fusion of horizontals” (elimination of dashes in various con-
texts) is handled by the substtution function implicitly. A subtle point is
that the substitution function does not carry out fusion of horizontals in
top level subterms which do not contain the atomic subterm being subsi-
tuted for: this enables us to prove theorems which involve non-simplified
terms.

2. in a term x1 → x2 → . . . → xn → y (grouped to the right), Frege calls
each xi a subcomponent and each subterm xi → x2 → . . .→ xn → y (and
y itself) a supercomponent .

3. Frege provides a rule that subcomponents can be permuted freely. We
implement a rule which allows the subcomponent at a given position in a
given line in the current proof environment to be brought to the front of
the term. A small number of applications of this move will implement any
desired permutation. In this and all my rules the result of the operation is
added as a new front line to the environment, not replacing the line acted
upon.

4. Frege gives a quite free notion of contrapositive: we provide a rule which
replaces a given supercomponent of a given line in the book with its con-
trapositive in the usual sense. Experience suggests that it is not expensive
to implement Frege’s contrapositive moves using this move. It should be
noted that inversion of the truth value of a term in Frege’s sense involves
automatic application of double negation.

5. Frege allows fusion of identical subcomponents in a line. We provide a
command that fuses subcomponents at given positions in a given line.
This is the first of several prover functions which require a function which
determines whether two internal representations of terms are “the same”.
Our Sameterms function identifies terms which are the same up to renam-
ing of bound variables and shifts of types by a constant amount in closed
terms, and also automatically takes redundant dashes into account.

6. Frege allows universal generalization of supercomponents. We provide a
function which replaces a given free variable in a given line with a bound
variable (of course adding a universal quantifier to bind it) in a given
supercomponent of a given line; the bound variable must be assigned a
given type (and this can fail for stratification reasons). The free variable
acted on cannot occur in the line outside the given supercomponent.

7. Frege provides three familiar rules of inference, which we can express ex-
actly as they would be expressed in a modern system as long as we pro-
vide that we move relevant subcomponents to the front before applying

72

the rule. In all of these rules, the Sameterms function is used to check
required identifications of propositions.

(a) modus ponens: if two given previous lines are of the form A and
A→ B, we get a new line B.

(b) Two previous lines A1 → . . .→ An → B and B → C allow us to de-
duce A1 → . . .→ An → C. We call this “transitivity of implication”,
though it might be thought a trifle more general than that.

(c) From A → C1 → . . . → Cm → B and ∼ A → D1 → . . . → Dn → B
we can deduce C1 → . . . → Cm → D1 → . . . → Dn → B. We call
this “reasoning by cases”, though again it might be thought to be
more general than that.

8. We may replace a free variable of any kind uniformly in a line which has
been proved: this includes replacement of functions with bracket terms,
causing complicated further substitutions.

9. Generate an equation using Defexpand to implement reasoning with def-
initions. I am strongly tempted to generate implications instead to save
steps.

10. Renaming of bound variables is automatically taken care of, because of
our automatic generation of fresh variables during subsitution and our
term identification function alluded to above.

The code which follows immediately implements the Gottlob proof envi-
ronment, which consists of a list of lines to which new items are added at
the beginning: line 1 is always the most recently generated command, and one
should use the Displaylines command to check references which are not to the
immediately preceding line or two, coimbined with a list of named theorems.

User commands to save a line as a theorem and to show a numbered line
or theorem are provided. User commands to state axioms as theorems and
instances of definitions as lines are given.

The commands to substitute a value for a free variable in a line or theorem
are given: the result becomes line 1.

A command is given which uniformly moves types in a line. Our belief is
that this is never actually needed.

It should be noted that prover lines and theorems cannot include free occur-
rences of bound variables or argument places.

*)

(* recently proved lines *)

val LINES = ref[parse "a=a"];

73

val _ = LINES:= nil;

fun pptest s = Display1 0 (parse s);

(* display the recent lines *)

fun Displaylines0 n nil = "\n\n" |

Displaylines0 n (x::L) =

(Displaylines0 (n+1) L)^"\n"^(makestring n)^". "^(OldDisplay x)^"\n";

fun Displaylines2() = TextIO.output(TextIO.stdOut,Displaylines0 1 (!LINES));

(* Display the recent lines using the Frege-style pretty printer *)

fun Displaylines01 n nil = "\n\n" |

Displaylines01 n (x::L) =

(Displaylines01 (n+1) L)^"\n"^(makestring n)^". "^(indent (spaces(length(explode((makestring n)^". ")))) (Display1 0 x))^"\n";

fun Displaylines() = TextIO.output(TextIO.stdOut,Displaylines01 1 (!LINES));

fun getline0 n L =

if n<1 then Error

else if L = nil then Error

else if n=1 then hd L

else getline0 (n-1) (tl L);

fun getline n = getline0 n (!LINES);

fun dropline0 n L =

if L = nil then nil

else if n=1 then tl L

else (hd L)::(dropline0 (n-1) (tl L));

fun dropline n = LINES:=dropline0 n (!LINES);

74

(* Theorem list *)

val THEOREMS = ref [("Id",parse "a=a")];

val _ = THEOREMS := nil;

val LEMMAS = ref (!THEOREMS);

fun thethm s = find s Error (!THEOREMS);

fun thelemma s = find s Error (!LEMMAS);

(* user command to introduce an axiom *)

fun Axiom s t = if thethm s <> Error

then "Theorem name already in use"

else let val T = parse t in

if T = Error then

(saycomment("Badly formed term");

say("(*\n"^s^": "^t^" \n*)");

"Badly formed term"

)

else let val U = typeof T in

if U = terror orelse varlist T <> nil orelse argumentlist T <> nil

then "Badly typed term or bad atomic subterms"

else (THEOREMS:=(s,T)::(!THEOREMS);

say("Axiom \""^s^"\" \""^t^"\";");

say("(*\n"^s^": "^t^" \n*)");

s^": "^t) end end;

(* user command to record a line as a theorem *)

fun Theorem s n = if thethm s <> Error

then (saycomment "Theorem name already in use";

saycomment ("(*\n"^s^": "^(indent(spaces(length(explode(s^": "))))(Display (thethm s)))^" \n*)");

"Theorem name already in use")

75

else (THEOREMS:=(s,getline n)

::(!THEOREMS); LINES:= [getline n];

say("Theorem \""^s^"\" "^(makestring n)^";");

say ("(*\n"^s^": "^(indent(spaces(length(explode(s^": "))))(Display (thethm s)))^" \n*)");

s^": "^(Display (thethm s)));

fun Lemma s n = (LEMMAS:=(s,getline n)

::(purge2 s (!LEMMAS)); LINES:= [getline n];

say("Lemma \""^s^"\" "^(makestring n)^";");

say ("(*\n"^s^": "^(indent(spaces(length(explode(s^": "))))(Display (thelemma s)))^" \n*)");

s^": "^(Display (thelemma s)));

fun showline n = (makestring n)^": "^(indent (spaces(length(explode((makestring n)^": ")))) (Display(getline n)));

fun showthm s = s^": "^(indent(spaces(length(explode(s^": "))))(Display(thethm s)));

fun showlemma s = s^": "^(indent(spaces(length(explode(s^": "))))(Display(thelemma s)));

(* user command to introduce a definition expansion as a line *)

fun Definition t = let val T = parse t in

if T = Error then

(saycomment "Badly formed term";

saycomment ("Definition \""^t^"\";");

"Badly formed term")

else

let val U = Defexpand T in

if U = Error orelse T=U orelse varlist U <> nil

orelse argumentlist U <> nil

then

(saycomment "Unsuccessful typing or definition expansion";

saycomment ("Definition \""^t^"\";");

"Unsuccessful typing or definition expansion")

76

else (LINES := (Binary(U,"=",T))::(!LINES);

say ("Definition \""^t^"\";");

say("(*\n"^(showline 1)^" \n*)"); (*1 *)

showline 1)

end end;

(* user commands to introduce specifications of free variables

in lines or theorems as lines; this will also simply copy lines

or copy theorems to lines *)

fun Specifyline x t n = let val X = parse x and T = parse t in

if typeof T = terror then "Badly typed source" else

if varlist T <> nil orelse argumentlist T <> nil

then

(saycomment "Bad atomic terms in source";

say("(*\n"^(showline (n))^" \n*)");

saycomment ("Specifyline \""^x^"\" \""^t^"\" "^(makestring n)^";");

"Bad atomic terms in source"

)

else

let val U = Subs X T (getline n) in

if U = Error orelse typeof U = terror

then (

saycomment "Unsuccessful substitution";

say("(*\n"^(showline (n))^" \n*)");

saycomment("Specifyline \""^x^"\" \""^t^"\" "^(makestring n)^";");

"Unsuccessful substitution"

)

else (LINES:=((Renumber U)::(!LINES));

say("Specifyline \""^x^"\" \""^(ren t)^"\" "^(makestring n)^";");

say("(*\n"^(showline (n+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)"); (* 2 *)

77

showline 1)

end

end;

fun Specifythm x t s = let val X = parse x and T = parse t in

if typeof T = terror then "Badly typed source" else

if varlist T <> nil orelse argumentlist T <> nil

then (saycomment "Bad atomic terms in source";

saycomment("Specifythm \""^x^"\" \""^t^"\" \""^s^"\";");

"Bad atomic terms in source") else

let val U = Subs X T (thethm s) in

if U = Error orelse typeof U = terror

then (saycomment"Unsuccessful substitution";

saycomment("Specifythm \""^x^"\" \""^t^"\" \""^s^"\";");

"Unsuccessful substitution")

else (LINES:=((Renumber U)::(!LINES));

say("Specifythm \""^x^"\" \""^(ren t)^"\" \""^s^"\";");

say("(*\n"^(showline 1)^" \n*)"); (* 3 *)

showline 1)

end

end;

fun Specifylemma x t s = let val X = parse x and T = parse t in

if typeof T = terror then "Badly typed source" else

if varlist T <> nil orelse argumentlist T <> nil

then (saycomment "Bad atomic terms in source";

78

saycomment("Specifylemma \""^x^"\" \""^t^"\" \""^s^"\";");

"Bad atomic terms in source") else

let val U = Subs X T (thelemma s) in

if U = Error orelse typeof U = terror

then (saycomment"Unsuccessful substitution";

saycomment("Specifylemma \""^x^"\" \""^t^"\" \""^s^"\";");

"Unsuccessful substitution")

else (LINES:=((Renumber U)::(!LINES));

say("Specifylemma \""^x^"\" \""^(ren t)^"\" \""^s^"\";");

say("(*\n"^(showline 1)^" \n*)"); (* 3 *)

showline 1)

end

end;

(* user command which uniformly shifts types in a line *)

fun Raisetypes n m =

let val T = typeshift m (getline n) in

if T = Error orelse typeof T = terror

then (

saycomment "Unsuccessful type shift";

say("(*\n"^(showline (n))^" \n*)");

saycomment ("Raisetypes "^(makestring n)^" "^(makestring m)^";");

"Unsuccessful type shift")

else (LINES:= (Renumber T)::(!LINES);

say ("Raisetypes "^(makestring n)^" "^(makestring m)^";");

say("(*\n"^(showline (n+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)"); (* 4 *)

79

showline 1) end;

(*

Here we create the proof environment, which consists of a list of lines cur-
rently being manipulated and a repository of named theorems.

I have now added an additional repository of lemmas, the temporarily named
lines in Frege’s proofs, which reduces the need for distant backward line refer-
ences. Also, all but the last line is discarded when a lemma or theorem is
proved: short term memory display and management will be easier, and the
whole structure will look more like what Frege describes.

6.1 The axioms

*)

(* the axioms *)

val _ = Axiom "Ia" "a->b->a";

val _ = Axiom "Ib" "a->a";

val _ = Axiom "IIa" "{A x:f(x)} -> f(a)";

val _ = Axiom "IIb" "{I F: Z1(F)} -> Z1(f)";

val _ = Axiom "III" "g(a=b) -> g({IF:F(b)->F(a)})";

val _ = Axiom "IV" "~(--a = ~b) -> (--a = --b)";

val _ = Axiom "V" "({x=>f(x)}={x=>g(x)}) = {A x:f(x)=g(x)}";

val _ = Axiom "VI" "a=the{x=>a=x}";

(*

Here we state the axioms from the Grundgesetze.
Now we need to develop rules of inference. Our forms of the rules may be

eccentric.
The axioms implementing fusion of horizontals are actually provable, except

for Fusion4, which really is needed as an axiom unless we allow more detailed

80

input types for function types (the prover does not know enough to automati-
cally handle leading dashes in the body of a universal quantification).

*)

(* axioms implementing fusions of horizontals *)

val _ = Axiom "Fusion1" "--(--a) = --a";

val _ = Axiom "Fusion2" "--(--a -> -- b) = a -> b";

val _ = Axiom "Fusion3" "--(~(--a))= ~a";

val _ = Axiom "Fusion4" "--{A x:--f(x)} = {A x:f(x)}";

val _ = Axiom "Fusion5" "--{IF:--Z1(F)}={IF:Z1(F)}";

val AXIOMS = ref(!THEOREMS);

(*

6.2 The rules of inference

In this subsection, we actually define the notions of subcomponent and super-
component and implement the rules of inference not yet handled along the lines
indicated above.

A possible weakness of our approach is that we envison application of the
rules only at the top levels of lines (though many of them allow application to
numbered supercomponents). If Frege makes a lot of use of application of the
rules to more deeply embedded subterms, we might need to make the functions
a bit more sophisticated. There is no question but that we have adequate logical
power in principle: the issue, which can only be tested by looking at what Frege
actually does, is whether our rules might need to be augmented to be faiithful
to what Frege does. Our aim is to have a very small uniform blowup factor in
number of rules applied.

*)

(* hypotheses *)

fun subcomponent n (Prop nil) = Error |

subcomponent n (Prop([x])) = Error |

81

subcomponent n (Prop(x::L)) =

if n<1 then Error

else if n=1 then x

else subcomponent (n-1) (Prop L) |

subcomponent n T = Error;

fun dropsub n (Prop nil) = Error |

dropsub n (Prop([x])) = Error |

dropsub n (Prop(x::L)) =

if n<1 then Error

else if n = 1 then Prop L

else let val T = dropsub(n-1)(Prop L) in

if T = Error then Error else

Prop(x::(deprop (T))) end|

dropsub n T = Error;

fun bringtofront n t =

let val T = subcomponent n t

and U = dropsub n t in

if T=Error orelse U=Error then

Error

else Prop(T::(deprop U)) end;

(* user command to bring the nth hypothesis to

the front in the mth line, as a new line *)

fun Permline m n =

let val T = bringtofront n (getline m)

82

in if T = Error then (

saycomment "Permutation error";

saycomment(Displaylines0 1 (!LINES));

saycomment("Permline "^(makestring m)^" "^(makestring n)^";");

"Permutation error")

else (LINES:=(T)::(!LINES);

say("Permline "^(makestring m)^" "^(makestring n)^";");

say("(*\n"^(showline (m+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)");

showline 1) end;

fun supercomponent n (Prop(x::L)) =

if n<0 then Error

else if n=0 then Prop(x::L)

else if n=1 andalso L<>nil then Prop L

else supercomponent (n-1) (Prop L) |

supercomponent n T =

if n=0 then T else Error;

fun subcomponents n (Prop(x::L)) =

if n<0 then nil

else if n=0 then nil

else if n=1 andalso L<>nil then [x]

else (x::(subcomponents (n-1) (Prop L))) |

subcomponents n T = nil;

fun invert (Prop[t]) = invert t |

invert (Unary("~",t)) = t |

invert t = Unary("~",t);

fun contra1 t = let val T = subcomponent 1 t and

U = supercomponent 1 t in

83

if T = Error orelse U = Error then Error

else Prop[invert U,invert T] end;

fun contra n (Prop nil) = Error |

contra n (Prop(x::L)) =

if n<1 then Error

else if n=1 then contra1 (Prop(x::L))

else let val T = contra (n-1)(Prop L) in

if T = Error then Error else

Prop(x::(deprop T)) end |

contra n x = Error;

(* use command to perform contrapositive

maneuver at a position indicated by n in the mth line *)

fun Contra m n =

let val T = contra n (getline m) in

if T = Error then (

saycomment"Contrapositive error";

saycomment(Displaylines0 1 (!LINES));

saycomment ("Contra "^(makestring m)^" "^(makestring n)^";");

"Contrapositive error")

else (LINES:= (T)::(!LINES);

say("Contra "^(makestring m)^" "^(makestring n)^";");

say("(*\n"^(showline (m+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)"); (* 5 *)

showline 1) end;

(* equivalent of terms up to renaming of bound variables;

this could be enhanced to get stronger ability to recognize

equivalent terms *)

fun sameterms (Prop nil) (Prop nil) = true |

84

sameterms (Prop(x::L)) (Prop(y::M)) =

sameterms x y andalso sameterms (Prop L) (Prop M) |

sameterms (Prop [x]) y = typeof y = atype(arg1 prop1) andalso sameterms x y |

sameterms y (Prop[x]) = typeof y = atype(arg1 prop1) andalso sameterms x y |

sameterms (Unary(s,t)) (Unary(u,v)) =

s=u andalso sameterms t v |

sameterms (Binary(s,t,u)) (Binary(f,g,h)) =

sameterms s f andalso t=g andalso sameterms u h |

sameterms (Binder(s,x,m,n,t)) (Binder(s2,x2,m2,n2,t2)) =

if s=s2 andalso m<>m2 andalso varlist (Binder(s,x,m,n,t)) = nil

andalso varlist (Binder(s2,x2,m2,n2,t2)) = nil

then if m>m2

then sameterms (Binder(s,x,m,n,t))

(typeshift (m-m2) (Binder(s2,x2,m2,n2,t2)))

else if m2>m then sameterms (typeshift (m2-m) (Binder(s,x,m,n,t)))

(Binder(s2,x2,m2,n2,t2))

else false

else s=s2 andalso

m=m2 andalso

let val N = freshen() in

sameterms (Subs (Boundvar(x,m,n)) (Boundvar(x,m,N)) t)

(Subs (Boundvar(x2,m2,n2)) (Boundvar(x,m,N)) t2) end |

sameterms (Function1 t) (Function1 u) = sameterms t u |

sameterms (Function2 t) (Function2 u) = sameterms t u |

sameterms (App1(t,u)) (App1(t2,u2)) =

sameterms t t2 andalso sameterms u u2 |

sameterms (App2(t,u,v)) (App2(t2,u2,v2)) =

sameterms t t2 andalso sameterms u u2 andalso sameterms v v2 |

85

sameterms Error t = false |

sameterms t Error = false |

sameterms t u = t=u;

fun Sameterms t u =

let val OLD = !NEWNUM in let val N = freshen() in

let val T = sameterms (Subs (Freevar("a",N))

(Freevar("a",N)) t)

(Subs (Freevar("a",N)) (Freevar("a",N)) u)

in (NEWNUM:=OLD;T) end end end;

(* user command to

fuse hypotheses m and n if identical in line r *)

fun Samehyps r m n =

if m=n then (

saycomment "Same indices, nothing to do";

saycomment("Samehyps "^(makestring r)^" "^(makestring m)^" "^(makestring n)^";");

"Same indices, nothing to do")

else let val T = subcomponent m (getline r)

and U = subcomponent n (getline r) in

if T = Error orelse U = Error

then (

saycomment "Badly numbered hypotheses";

saycomment(Displaylines0 1 (!LINES));

saycomment("Samehyps "^(makestring r)^" "^(makestring m)^" "^(makestring n)^";");

"Badly numbered hypotheses")

else if not(sameterms T U)

then (saycomment "Hypotheses do not match";

saycomment(Displaylines0 1 (!LINES));

86

saycomment("Samehyps "^(makestring r)^" "^(makestring m)^" "^(makestring n)^";");

"Hypotheses do not match")

else (LINES:= ((dropsub m (getline r)))::(!LINES);

say("Samehyps "^(makestring r)^" "^(makestring m)^" "^(makestring n)^";");

say("(*\n"^(showline (r+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)"); (* 6 *)

showline 1) end;

fun samelists nil x = false |

samelists x nil = false |

samelists [x] [y] = sameterms x y |

samelists (x::L) (y::M) = sameterms x y andalso samelists L M;

fun getboundvar m (Freevar(s,n)) =

let val N = freshen() in if s="a" orelse s="b"

orelse s="c" then Boundvar("x",m,N)

else if s="f" orelse s="g" orelse s="h" then Boundvar("F",m,N)

else Error end |

getboundvar m T = Boundvar("?!?!",0,0);

fun getquantifier (Freevar(s,n)) = if s="a" orelse s="b" orelse s="c" then "A"

else if s ="f" orelse s="g" orelse s="h" then "I"

else "?!?!"|

getquantifier T = "?!?!";

fun ugen1 x n t = if foundin x (freevarlist t) then

let val XX = getboundvar n x in

let val T = Subs x (XX) t in

if typeof T = terror then Error else

let val Boundvar(X,M,N) = XX in

Binder(getquantifier x,X,M,N,T) end end end

else Error;

fun ugen x n m (Prop(y::L)) =

if m<0 then Error

87

else if m=0 then ugen1 x n (Prop(y::L))

else if foundin x (freevarlist y) then Error

else let val T = ugen x n (m-1) (Prop L) in

if T = Error then Error else

Prop(y::(deprop T)) end|

ugen x n m T =

if m=0 then ugen1 x n T else Error;

(* user command to carry out universal generalization

in line r replacing free variable x with a bound variable

of type n in the mth supercomponent *)

fun Ugen r x n m =

let val X = parse x in

let val T = ugen X n m (getline r) in

if T = Error then

(saycomment "Bad generalization";

saycomment(Displaylines0 1 (!LINES));

saycomment("Ugen "^(makestring r)^" \""^x^"\" "^(makestring n)^" "^(makestring m)^";");

"Bad generalization")

else (LINES := (Renumber T)::(!LINES);

say("Ugen "^(makestring r)^" \""^x^"\" "^(makestring n)^" "^(makestring m)^";");

say("(*\n"^(showline (r+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)");

showline 1)end end;

fun mp t (Prop(x::L)) =

if (sameterms t x orelse sameterms t (Prop[x]))

andalso L<>nil then if length L = 1

88

then hd L else Prop L else Error |

mp t u = Error;

(* user command, modus ponens *)

fun Mp m n =

let val T = mp (getline m) (getline n) in

if T=Error then (

saycomment "Not modus ponens";

saycomment(Displaylines0 1 (!LINES));

saycomment("Mp "^(makestring m)^" "^(makestring n)^";");

"Not modus ponens")

else (LINES:= (T)::(!LINES);

say("Mp "^(makestring m)^" "^(makestring n)^";");

say("(*\n"^(showline (m+1))^" \n*)");

say("(*\n"^(showline (n+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)");

showline 1) end;

fun transimp (Prop(x::L)) (Prop(y::M)) n =

if sameterms y (supercomponent n (Prop(x::L)))

orelse length(deprop(supercomponent n (Prop(x::L)))) = 1

andalso sameterms y (hd (deprop(supercomponent n (Prop(x::L)))))

then Prop((subcomponents n (Prop(x::L)))@M) else Error |

transimp t u n = Error;

(* user command, transitivity of implication *)

fun Transimp m n n2 =

let val T = transimp (getline m) (getline n) n2 in

if T = Error then (

89

saycomment "Not transitive implication";

say("(*\n"^(showline (m))^" \n*)");

say("(*\n"^(showline (n))^" \n*)");

saycomment(Displaylines0 1 (!LINES));

saycomment("Transimp "^(makestring m)^" "^(makestring n)^" "^(makestring n2)^";");

"Not transitive implication")

else (LINES:=((T)::(!LINES));

say("Transimp "^(makestring m)^" "^(makestring n)^" "^(makestring n2)^";");

say("(*\n"^(showline (m+1))^" \n*)");

say("(*\n"^(showline (n+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)");

showline 1) end;

fun cases (Prop((Unary("~",t))::L1)) (Prop(u::L2)) n =

let val n2 = n + (length L2) - (length L1) in

if sameterms t u andalso sameterms

(supercomponent (n-1) (Prop L1)) (supercomponent (n2-1) (Prop L2)) then

let val L = (subcomponents (n-1) (Prop L1))@

(subcomponents (n2-1) (Prop L2))@

(deprop(supercomponent (n-1) (Prop L1))) in

if length L = 1 then hd L else Prop L end

else Error end |

cases t u n = Error;

(* user command, reasoning by cases *)

fun Cases m n n2 =

let val T = cases (getline m) (getline n) n2 in

if T = Error then (

saycomment "Not reasoning by cases";

say("(*\n"^(showline (m))^" \n*)");

90

say("(*\n"^(showline (n))^" \n*)");

saycomment(Displaylines0 1 (!LINES));

saycomment("Cases "^(makestring m)^" "^(makestring n)^" "^(makestring n2)^";");

"Not reasoning by cases")

else (LINES:=(T)::(!LINES);

say("Cases "^(makestring m)^" "^(makestring n)^" "^(makestring n2)^";");

say("(*\n"^(showline (m+1))^" \n*)");

say("(*\n"^(showline (n+1))^" \n*)");

say("(*\n"^(showline 1)^" \n*)");

showline 1) end;

(*

One important observation is that our system of levels restricts the use of
universal generalization. A type must be proposed by the user for the free
variable to be replaced with a bound variable, and it is quite possible that a
free variable in a general proposition may be impossible to type uniformly: such
a general theorem cannot be converted to a universally quantified assertion.

A part of the program presented here must be an attempt to address the
issue of whether the stratification restriction on function and concept formation
can be justified on a philosophical basis. We do believe that this can be done,
but it is of course very tricky.

The function Sameterms checks whether terms are the same in a suitable
sense. It checks for identity mod bound variable renaming and mod uniform
shifting of types in closed terms, and in addition checks for identity mod propo-
sitional simplification (after elimination of redundant dashes).

91

7 Semantics for our formal system in NFU with
the Axiom of Counting

In this section (mercifully free of computer code) we discuss the interpretation
of what we have done above in Jensen’s set theory NFU with the addition of
Rosser’s Axiom of Counting.

Quine’s New Foundations is the first order theory with equality and mem-
bership whose axioms are

extensionality: (∀xy : (∀z : z ∈ x↔ z ∈ y)→ x = y))

stratified comprehension: For each formula φ for which there is a function σ
from variables appearing in φ (bound or free, as items of syntax) to natural
numbers such that when u ∈ v appears in φ we have σ(u) + 1 = σ(v) and
when u = v appears in v we have σ(u) = σ(v), we say that φ is stratified ,
we call σ a stratification of φ, and we adopt (∃A : (∀x : x ∈ A ↔ φ)) as
an axiom, where A does not appear in φ.

In this and the subsequent theory, free variables may occur in axioms, and are
understood to be implicitly universally quantified. Note that this is analogous
to the treatment of free variables in Frege’s own logic.

The consistency of this system is a vexed question. However, the following
modification was shown to be consistent by Jensen:

weak extensionality: (∀xyw : (w ∈ x ∧ (∀z : z ∈ x↔ z ∈ y))→ x = y))

stratified comprehension: For each formula φ for which there is a function σ
from variables appearing in φ (bound or free, as items of syntax) to natural
numbers such that when u ∈ v appears in φ we have σ(u) + 1 = σ(v) and
when u = v appears in v we have σ(u) = σ(v), we say that φ is stratified ,
we call σ a stratification of φ, and we adopt (∃A : (∀x : x ∈ A ↔ φ)) as
an axiom, where A does not appear in φ.

This system NFU modifies the original NF to allow many objects with no
elements. It is usual to specify a constant ∅ with no elements to serve as the
empty set and to call all objects which either have elements or are equal to ∅
sets and call all other objects atoms or urelements (thus the U in the name of
the theory).

We note some modifications of stratification. First of all, we can restrict the
domains of stratifications to bound variables. If a formula becomes an axiom of
comprehension by distinguishing some free occrrences of some variables, notice
that we can deduce thie offending formula as a theorem by asserting the instance
of the comprehension scheme obtained by distinguishing occurrences of free
variables, then reimposing the identifications by using the fact that free variables
are implicitly universally quantified and making substitutions of variables to
restore the original formula from the axiom.

92

Secondly, we can introduce terms with stratification rules. A simple way
to do this is to introduce a definition description operator. Define φ[(θx : ψ)]
contextually as

((∃y : (∀x : x = y ↔ ψ)) ∧ φ[y/x]) ∨ (¬(∃y : (∀x : x = y ↔ ψ)) ∧ φ[∅/x]).

This has the exact effect of allowing (θx : ψ) to denote the unique x such that
ψ, or the empty set if there is no such x. It is then clear that the conditions
for stratification of the extended language with definite descriptions constitute
extension of stratifications to all terms, with the condition that the type assigned
to (θx : ψ) is the same as that assigned to x; now all operations defined in set
theory can be regarded as abbreviations for definite descriptions. The idea of
stratification for general term constructions is then that a term f(x1, . . . xn)
will be assigned a value under a stratification with a constant displacement δi
from the values assigned by the stratification to each xi (with the effect that
the difference between the values assigned to xi and xj must be δi − δj).

A particular case of definite description is the usual notation for set abstracts:
{x : φ} can be read as (θA : (∀x : x ∈ A ↔ φ)) (our choice of default object
makes this work correctly for empty extensions where we are not guaranteed a
unique witness).

We can then define {x} as {y : y = x} (one type higher than x), (x, y) as
{{x}, {x, y}} (two types higher than x and y, which must be of the same type),
(λx : T) as {p : (∃x : p = (x, T))} (three types higher than x and T), and
f [x] as (θy : (x, y) ∈ f), the same type as x and three types lower than f , and
f(x) as (θy : f = (λu : f [u]) ∧ (x, y) ∈ f), also the same type as x and three
times lower than f : the latter form of application has the exact behavior for
non-functions that we want. This gives a nonextensional theory of functions
under which all non-functions map everything to the empty set. We define t as
the universal set and f as the empty set, then invite the reader into the theory
whose primitives are the primitives of first order logic, stratified λ abstraction,
β-reduction, equality, definite description (thef to be defined as the unique x
such that f(x) = t, if there is one, and otherwise f: this is stratified and of the
type of the arguments of f , not of f itself), and the assertion that t and f are
distinct. Notice that in this theory all values of stratifications can be taken to
be multiples of three...and so we can conveniently divide them by three.6

In this theory of functions, we can interpret all of the primitive notions of
Frege’s logic (or we are given them already) in stratified forms. ∼ x is defined
as t if x = t and f otherwise. There is a function which implements ∼ in the
underlying set theory. Similarly there is a function which implements --. We
read x = y as a term equal to t if x = y in the usual sense and f if x 6= y; this is
definable in terms of the underlying set theory in a stratified way, and we will
see below how to represent it as a function. We read x→ y as a term equal to

6The usual method for achieving a type differential of one between functions and their
arguments, via postulating the Quine type-level pair, is irrelevant to our purposes. It is
interesting to see that this type differential can be achieved without any particular attention
to the nature of the pair: in fact, the Kuratowski pair used to build the functions in our
interpretation disappears froim view as soon as we pass to the interpretation.

93

f if x is equal to t and y is not equal to t, and otherwise equal to t, which is
again definable in stratified terms.

The type distinction, crucial to Frege, between functions and objects, is ac-
tually entirely ignored in our semantics: the interpretation of [f(X)] is just
(λx : f(x)). We do not have a pair here, so we interpret [φ(X,Y)] more devi-
ously. We first redefine {x} as (λx : x = t) (and more generally can reinterpret
{x : φ} as (λx : φ = t)). The notation x = y of course denotes t if x = y in the
usual sense and f otherwise. To see that this allows us to recover set theory in our
theory of functions, note that a term p whose value is a proposition can be freely
raised or lowered in type. Define −−p as t if p is t and as f otherwise. We can
define the function P (x) as (θy : (x = t∧ y = (λz : t))∨ (x 6= t∧ y = (λz : f))).
(λx : P (x)) exists, and we can briefy call this function P . Now observe that
P (p) = (λu : −−p) for any p, and P (p) = (λu : p)for a truth value p. We can
also define P−1(x) = (θy : P (y) = x): P−1(λu : p) is then −−p (the default
object for unsatisfied definite descriptions is f on our current definitions; but we
could define P−1 more carefully to get this default value anyway), and so equal
to p if p is a truth value. This means that we can raise the type of a proposi-
tion valued expression p by replacing it with P (p)(∅) or lower it by replacing p
with P−1(λu : p), without changing its meaning (in propositional contexts, we
arrange for p to be replaceable by --p). This gives sense to our assignment of
type ∞ to proposition-valued terms.

We interpret [f(X,Y)] as (λx : (λy : f({x}, y))), using the new definition
of singleton set: we identify functions of two variables with the abstractions
denoting a stratified version of what Frege calles their double value ranges.7

Note that we have entirely avoided any appeal to a notion of pairing in the
development in our theory of functions. The functions of higher orders which
implement the quantifiers (and can implement other defined variable binding
operations in the system of Frege) collapse to λ abstractions in ways a reader
can work out via the collapse of their higher order domains to the first order
objects of our theory of functions. The first order quantifier becomes

∀ = (λx : (λy : x(y)) = t) = (λy : t)).

The second order quantifier can be interpreted as

(λx : (λy : x((λu : y(u)))) = (λy : t)) :

one has to recall that the second order quantifier acts only on functions from
unary functions to truth values.

Natural numbers can be defined in the theory of functions presented exactly
as Frege defines them (which is essentially the way they are defined in NFU
in modern treatments). We define the map # sending each natural number to
itself and each non-natural number to 0, and then we implicitly assert Rosser’s

7We were charmed, years ago, to discover that Frege is the inventor of currying. His use
of double value ranges is the reason that we declare that binary functions are assigned type
2 higher than that of their arguments: a displacement of 1 could easily be justified but we
follow his preferred representation.

94

Axiom of Counting by asserting that the types of terms #(N) can be raised or
lowered freely. If the Axiom of Counting holds, there is a function defined by a
stratified recursion which sends each natural number n to {n}: this function can
be used to demonstrate that terms with natural number values can be freely
raised and lowered in type. The original form of the axiom is the assertion
that |{1, . . . , n}| ∈ n, which is not stratified, but which becomes stratifiable and
provable if each n is qualified with #. This is very similar to the statement
Frege uses to prove Infinity. The Axiom of Counting is a consequence of un-
stratified mathematical induction, but is not nearly as strong. Jensen’s original
paper on consistency of NFU establishes the existence of ω-models of NFU, in
which Counting holds. It has been shown that the consistency strength of NFU
+ Counting is that of Zermelo set theory with the existence of iin for each
concrete natural number n, which is quite a lot of set theory.

It should not be particularly hard to see (though we will work on filling in
more details) that we have described an exact implementation of the logic of
Gottlob in NFU + Counting, with the unexpected feature that all the second-
and higher-order types collapse to subtypes of the type of objects.

95

8 Philosophical motivation for stratification, and
possible consequences for the logicist program
of Frege

This section (also innocent of computer code) is very much under construction.
It is a fact of mathematical and philosophical significance that the original

program of Frege failed. Frege did not make the error which to our minds
underlies “naive set theory” naively presented, of overlooking the distinction in
sort between objects and predicates of objects (or operations taking objects to
objects). He acknowledges the distinction of sort and explicitly postulates an
embedding of the operations (and so the predicates) into the domain of objects,
sending operations with distinct extensions to distinct objects, which turns out
on examination to be impossible. It is an interesting question whether this
correlation, postulated as Axiom V, is actually a logical hypothesis at all. It
certainly cannot be a logical principle, since it turns out to be false!

It is a mathematical fact that the program of Frege as modified by stratifica-
tion restrictions avoids paradox. Whether this is a fact of philosophical interest
requires discussion. We do not modify Axiom V in our approach (another neo-
Fregean approach is to dump Axiom V in favor of the much weaker Hume’s
Principle, which supports the exposition of the Grundgesetze but gives a much
weaker logical system); what we actually modify is the ways in which opera-
tions and predicates applying to objects can be defined. It is a mathematical
fact that our restriction averts paradox. For this to be a fact of philosophical in-
terest, an account needs to be given as to why this restriction of the formation
of operations and predicates makes sense. One should note that a successful
explanation of this kind would also bear on the question of the philosophical
interest of Quine’s set theory New Foundations.

It is important to note that while Frege restricts the scope of his work in such
a way as to quantify only over objects (first-order) and unary functions from
objects to objects (second-order) he does not deny the presence of entitities of
higher order. We can give an account of what he did as an effort to collapse
discourse about all orders to discourse about two; moreover, he indicates fairly
clearly that this was what he was doing. In terms of a scheme with all orders,
we can explain Axiom V as a daring mathematical hypothesis which turned
out to be false – but which was excessive for his purposes. A more modest
hypothesis along the same lines does everything he needs for hsi mathematics,
preserving the ability to collapse discourse about all orders into two, and results
in our stratified version of his system. Neither his hypothesis nor ours has the
necessary character of a logical principle, his being necessarily false and ours
merely possible. But ours is possible.

We start by describing a system with orders indexed by all natural numbers
with the same conceptual resources as Frege’s system. There are orders indexed
by the natural numbers. Order n+ 1 objects are to be understood as functions
from order n objects to order n objects. We provide basic notions of function
application and abstraction: Tn+1[Un] represents application of an order n +

96

1 term to an order n term (note the use of brackets: this is a preliminary
implementation of application which we improve below). (λxn : Tn) represents
a function of a variable xn which sends xn to Tn for each value of xn. The symbol
= refers to equality of order 1 objects. Xn+1 = Y n+1 is defined as holding
iff Xn+1(Zn) = Y n+1(Zn) for each Zn (we finesse the question of whether
extensional identity criteria actually hold for our functions). We provide a
primitive operation ifX = Y thenTelseU which yields T if X = Y holds and
U otherwise. Note that we can define negation, implication, and quantifiers
using this operation mod choice of distinct objects t and f of each order: choose
two distinct objects t and f of order 1, and use their respective iterated constant
functions in higher orders in this role. Finally, we provide the (X,Y), which
returns a Z with the unique extension such that X(Z) = Y (Z) if there is such a
Z and otherwise returns the value f appropriate to the order (each f being the
constant function of the one of the next lower order). We define Fn+1(Xn) as
the(λY : (∃X ′ : X = X ′∧Y = F (X ′))): this modifies the application operation
to return the default value if the function F does not respect our extensional
notion of equality.

It is important to note that Frege himself uses functions between different
orders. This is easily managed: a function F from order n to order 1 (we can
stick to this case because all functions Frege uses are of this form) can be coded
by the order n + 1 function taking each x of order n to Kn−1[F (x)], where
K[x] = (λy : ify = ythenxelsex), the constant function of x.

The system described above is adequate for a lot of mathematics, including
a good deal of technical set theory.

The claim behind Frege’s Axiom V in the form he uses can then be stated
economically: he postulates the existence of a γ mapping order 2 to order 1
(which we would encode as an order 3 function sending order 2 objects to con-
stant functions of order 1 objects, but we will write γ(F 2) to refer to the intended
order 1 image), with the property that if γ(x) = γ(y), x and y are coextensional
(note that Frege supplies no notion of equality except for order 1 objects). The
advantage of this is that the entire structure described above collapses to orders
1 and 2. We define f ‘x, application of an order 1 object f to an order 1 object
x, as the(λy : (∃F 2 : γ(F 2) = f ∧ y = F 2(x))). Frege’s use of this definition is
the reason why he cannot eliminate all the orders. We can then use the defined
application and use γ(F) to represent each function F in our reasoning, with
(λx : f ‘x) as a specific preimage γ−1(f) for each f of order 1 which actually is
an image under γ. If we have defined γn mapping order n into order 1, and γ−n

sending each element of order 1 which is an image under γn back to a preimage
(and each other object to a default), then we can define γn+1(Fn+1) as the map
sending γn(Xn) to γn(Fn+1(Xn)) for each x, that is, γn+1(Fn+1) is defined as
γ(λx : γn(Fn+1(γ−n(x)))). This map is clearly injective up to coextensionality,
so γ−(n+1) can be defined conveniently using the definite description operator.
The point of this scheme is that all need for orders (much) higher than 2 is
eliminated. Frege does need to refer to functions of order 3 in some generality
to handle second order quantifiers and to a specific order 4 function (the sec-
ond order universal quantifier itself) but all quantifiers are over orders 1 and

97

2 (and he really only needs to mention order 2 because of the way he defines
application).

However, this lovely hypothesis, far from being a logical truth as he conjec-
tured, is false. One needs only to consider (λx : ¬x‘x) to obtain the paradox of
Russell.

There things stopped: Frege gave up and abandoned his work.
However, his despair was premature. In fact, there is no need to suppose

that γ itself is a function found in order 3 at all. It can be postulated as an
external operation taking order 2 objects to order 1 objects, not represented
by an actual function of order 3. We can then see that the Russell “function”
will not be a function at all. We do require than that some functions defined
in terms of the operator γ actually be functions: the exact requirement is that
every function F definable in the language of the system with all orders taking

a vector or parameters x
τ(i)
i of order τ(i) to output y of order τ8 corresponds

to a function of order 2 taking the vector whose ith component is γτ(i)(x
τ(i)
i) to

γτ (y) (this does require of course that the functions γn be total, and it requires
that the ranges of the maps γn be concepts, needed for definition of default
behavior for other input vectors). This does not allow definition of the Russell
function because the Russell function has no such analogy to a function definable
in the system with all orders. This is a function based way of expressing the
stratification criterion of New Foundations, of course, and it is implemented
above. And, if it works, it allows expression of all the considerable mathematics
implementable in the system with all orders in just 2 to 4 orders (depending on
what one considers Frege’s actual commitments to be).

Does this make sense philosophically? We would say yes, if functions and
concepts are understood intensionally: the idea that there might be a purely
arbitrary correlation of type 1 objects to type 2 objects that our mathematical
understanding underlying the theory with all orders does not allow us to capture
does not seem absurd. Does it make sense as a hypothesis? It can be motivated
much as Quine motivated NF, by the observation that the system with all orders
has the feature that any theorem or defined object in one order is mirrored in
all higher orders. Is it a logical truth that there is such a correlation? We would
say not. Is it possible? Jensen showed this to be true.

We are here drafting an account of the logic which makes it clear how the
non-function embedding from order 2 into order 1 is handled. The sorts we
consider are the same ones that Frege uses: order 1 objects, order 2 functions
from order 1 to order 1, order 3 functions taking an order 2 argument to an
order 1 argument, and order 3 functions taking two order 1 arguments to an
order 1 argument. Our primitives are the same as his: the order 1 constants

8Note that such a function can be represented in our system of orders in spite of the
heterogeneous types of the inputs and outputs by coding: raise all inputs and outputs to
the maximum type present by iterating the constant function operation; further, functions of
multiple arguments can be represented by a stratified variant of currying as functions of a
single argument: f(x1, x2, . . . , xn−1, xn) can be read not as f(x1)(x2) . . . (xn−1)(xn) but as
f(Kn−1[x1])(Kn−2[x2]) . . . (K1[xn−1])(x1). Frege of course uses (invented?) currying in his
notion of double value range.

98

t and f, the order 1 negation function, the order 3 implication and equality
functions, the order 3 first order universal quantifier, and the order 4 second
order quantifier (only constants of order 4 are ever considered). We view the

as order 3, taking [a = X] to a instead of taking (x 7→ a = a) to a. Functions
can be constructed from the primitives using bracketed terms as above.

We then add to our system the external operator γ taking order 2 functions
[F (x)] to order 1 objects (intended to be (x 7→ F (x))). Unrestricted use of γ
to build functions is not permitted, but certain functions defined in terms of γ
do exist. We provide in addition the operator γ−1 sending each object γ(F) to
a function coextensional with F and each other object to the constant function
of f : the intention is that γ−1(f) = [f ‘X].

We note that it is advantageous to suppose that γ sends [t = X] to t and
[f = X] to f. This is not the same as Frege’s assignment of extensions to the
truth values, but it is handy to do things this way to avoid the need for extra
definitions by cases.

We define other operators in terms of γ. To any third order function Z
of a second order argument there corresponds a second order function γ1(Z)
defined as [Z(γ−1(X))], and to any second order function f there corresponds
a third order function γ−11 (f) defined as [f(γ(F)] (f being the argument). The
assertion that these are genuine functions in either case has real content, as
they are defined in terms of γ and γ−1. Functions from order 2 functions to
objects (if they respect coextensionality) are precisely correlated with functions
to objects from the representations of order 2 functions as objects vai γ.

We define an operation allowing an order 1 object to be in effect shifted in
level. γ0(x) is defined as γ[x = X] (this is the singleton set operation). γ−10 is
exactly Frege’s operation the (noting that for us the is not a function, as it shifts
level; we use f as the default object which is the value of the at non-singletons).
We provide that for every order 2 function F , γ2(F) = [γ0(F (γ−10 (X)))] and
γ−12 (F) = [γ−10 (F (γ0(X)))] are functions: there is a precise correlation between
the action of functions on singletons and the action of functions on general
objects. These operations can be iterated, of course.

Other orders of function need associated operators. Let r be an order 3
function of two order 1 arguments. That γ[r(a,X)] is equivalent to r∗(γ0(a))
for an order 2 function r∗ appears to require a postulate: this ensures that
double value ranges work as intended (in a stratified version). Since there is
no abstraction over binary relations in Frege’s development, it seems sufficient
to cash out talk of any specific r with talk of r∗, but we could provide that
functions on binary functions (if we consider any) have exact correlates acting
on the correlated unary functions. It is worth noting that this postulate will
be needed in justifying the ability to bind variables into value range terms in
general, in a full justification of our typed logic along the lines we are developing
here.

This account is still incomplete: I am working on developing an account
roughly in Frege’s own terms which justifies the typed logic developed above
via introduction of an external operation γ from order 2 to order 1 and careful
specification of how γ, which is not itself a function, can be used to define

99

functions. A motivation of the whole system along similar lines already exists
via a wholesale translation of everything that is being done into NFU, but this
is of course anachronistic.

100

9 Appendix: old embedded notes

note from Frege text: pp. 5-6 and footnote on page 6. Contra the
footnote on p.6, I find it useful to provide notation for functions with one and
two arguments, with argument place-holders of the same general kind as ξ, ζ
but distinguished by level and order, and I do regard these as an essential part
of my implementation of the concept-script. Frege refers to these notations later
as names of functions: including them in our notation then seems natural. It
is also the case that the bracket notations (I enclose function of one argument
in one bracket, functions of two arguments in two brackets) will not appear in
theorems: but they are an essental device in definitions, and they are used in
specification of function variables in proofs (as Frege actually uses them in his
own discussion!)

note from Frege text re rules: Permutability of lines is implemented
in the narrow form of bringing a single subcomponent to the front. A small
number of such operations will handle any general permutation encountered in
practice. A more profound difficulty arises if Frege makes much use of rules
for calculation with propositions inside subcomponents: the rules as we have
implemented them are formally adequate but we might need to expand our
functions to emulate such reasoning, if it occurs. We do provide parameters for
user commands to indicate that they act on a particular supercomponent.

note from Frege text re names: Starting on page 43 there is a discus-
sion of proper names for functions of one and two arguments which I believe
justifies my inclusion of notations for functions and concepts in my formal lan-
guage. There are quantifiers over functions, so we ought to be able to write
names of particular functions! p. 48 he quite accurately enumerates the orders
of function which a faithful formalization of his system requires. It is interesting
that the four flavors of function correspond precisely to basic syntactical con-
structions, first level functions of one argument to unary operators, first level
functions of one argument to binary operators, second level functions with one
first level function as an argument to first-order quantifiers and analogous vari-
able binding operations, and second level functions with a function from unary
functions to arguments to the second-order quantifier and analogous variable
binding operations (in the latter two cases, the type described is not the type of
the variable binding operator but the type of the function which invisibly serves
as its argument). We need free variables and a first argument place term of
the last kind, though not bound variables, in order to support statement of the
axiom on the second order quantifier and to make definitions of second order
variable binding operations possible.

definition commands: It is fun that Gottlob requires only a single def-
inition command to handle definitions of object constants, unary and binary
operations on objects, and first and second order variable binders. For all that
is required is an equation between a fresh identifier and a term, and the type
of the term unequivocally indicates the sort of construction being defined! The
elegance of the type system which makes this possible is entirely down to Frege
himself.

101

a block of notes I wrote after I wrote the basic type definition for
terms and before I wrote anything else: some of this I changed as I
wrote further code:

Please note that this section was written before the code and some of the
concepts in it changed at least in detail as the implementation proceeded. In
particular, there is no type cls in the implementation: this is resolved into
finer-grained types of unary and binary relations (the same types assigned to
operations).

We summarize the type system. Each term has a sort: object, unary func-
tion, or binary function, and a type. Objects are of type prop, nat, obj, or a
positive integer. Unary functions are of type fun, cls, or a positive integer
greater than 1. Binary functions are of type rel, cls, or a positive integer
greater than 1. It is worth noting that all functions have object output, and
that constant object terms never have positive integer type. All references to
type cls in this section are replaced in the implementation by references to ac-
tual function types with specified input types and an object output type: what
distinguishes things typed with cls in this discussion is that they are inhomoge-
neous operations in the stratified context (more than one integer level appears
among their input and output types).

note from Frege text re signs for functions: -- is our eventual notation
for Frege’s dash function, though we use ! for this purpose in some discussion
below. ∼ is our notation for negation. Equality is provided with the same
notation Frege uses: we note that a very slight modification of his scheme would
allow equality to be defined rather than primitive. In his exact scheme it cannot
be so, because use of definitions relies on equality: but use of definitions could
equally well be founded on implication. We denote the universal quantifier as
{Av : φ}, {IF : φ}, I for “impredicative” being our notation for the second
order universal quantifier. We use the notation {x 7→ T} for value ranges. Note
that we use the same bound variables in universal quantifications (and other
object variable binding constructions: we allow such to be defined) that we
use in value-range notations: it is straightforward to see that this is harmless,
particularly as my presentation of types is based on the analysis of {Bx : T} for
any binder B as something like B({x 7→ T}), though the argument is not really
taken to be a value-range, but a function. We follow Frege in requiring that a
bound variable always occur in its scope. For the definite description operator \
we use the notation the, and we note that our implementation of the semantics
using NFU precludes the definition of \f as the unique object x such that f(x)
is the True, and otherwise x: this definition is unstratified, and it is a theorem of
NFU that there can be no such operation. Fortunately, this stipulation is no part
of Frege’s axiomatization, and we are free to provide that \ is {x 7→∼ (x = x)}
(the empty set) when there is not a unique x such that f(x) is the True. We
use the notation x → y for material implication. We note that the notations
−− and→ are not handled in our internal representations of terms as standard
unary and binary operators: the internal representation is via an operator which
acts on a list [t1, . . . , tn] and returns notation for (t1 → (t2 → . . . → tn)), and
acts on a list [t] and returns notation for −−t. Further, an implication may not

102

occur as the final item in an implication notation (a dash notation may, but is
automatically simplified away by the substitution operation). This means that
our notation, though it does not look like Frege’s concept-script for propositions,
does have certain formal features which it has.

old material resumes
The Proposition form denotes nested implications: [p1, p2, . . . , pn] repre-

sents p1 → (p2 → . . .→ pn): note the direction in which parentheses group. We
are conscious of the abuse of use and mention in our nonce notation here. This
notation implements his charming two dimensional notation in a linear form:
we suppose that a complete version of Gottlob would be enhanced by pretty
printing of the two dimensional notation. The type of such a term is prop (see
below for discussion of types) and all that is required of the listed items is that
they have object types (prop (preferred), nat, obj, or a positive integer). A
Proposition will not be asserted as a theorem if it contains any free variables
(which rules out a positive integer type and some occurrences of type obj).

The Unary, Binary and Binder forms represent unary and binary operations
and variable binding constructions in the obvious way. The string and integer
in the binder form are the innards of the bound variable.

Primitive unary operations include∼ (negation), ! (coercion to a proposition:
sends the True to the True and everything else to the False; actually definable as
double negation, and reasonably expressed as unit list, not unary at all; this is
changed back to -- in the implementation, similar to Frege’s original notation),
(coercion to a natural number: sends each natural number to itself and
everything else to 0), \ (the definite description operator: sends courses-of-values
of concepts under which one object falls to that object, and everything else to the
constant course-of-values of the False; this is not Frege’s definition, but Frege’s
is intrinsically unstratified; this is expressed as the in the implementation).

Primitive binary operations include = (equality, taking two object arguments
and returning a proposition). Implication is not actually expressed using the
Binary form, though we could allow the parser to read → as a binary operator
and express it as a Proposition form.

New unary and binary operations can be defined by binding strings to func-
tions using a user command to be implemented below.

With each unary or binary operator, we need to associate input and output
types. The types of objects are prop, nat and positive integers: there is an
additional special type obj of objects whose type can be left free. The type of
a unary operator is the pair of its input type and its output type. The type of
a binary operator is the triple of its first input type, its second input type, and
its output type. The meaning of an operator type is not changed by adding the
same integer constant to all positive integers present in it, and the conventional
form of the type of a unary or binary operator is chosen so that the minimal
integer present (if there is one) is 1 (one can subtract as well as add as long as
no nonpositive types are created).

The type of ∼ and ! is [prop, prop]. The type of # is [nat, nat]. The type of \
is [2, 1]. The type of = is [1, 1, prop]. The type of→ would be [prop, prop, prop].

In a unary or binary term, the types of the arguments (actual types) must

103

match the type of the operator (formal types), with the proviso that a match can
be effected by adding the same integer constant to all the integer formal types,
and that prop and nat match integer types with no need for adjustment (either
as actual or formal types), and obj matches any type: an actual argument which
matches a formal type of prop or nat may be supposed decorated with ! or #
as appropriate, and this will be supplied if the definition of the operator has to
be expanded. We indicate below ways in which obj may appear as the formal
type of an argument or output. The output type found in the formal type of
the operator as adjusted to match the actual types of the inputs is the actual
type of the term.

The primitive binders are the empty string (courses of values, expressed
(xji 7→ T) where x is the bound object variable of index i and positive integer
type j and T is the body), A and I. I for “impredicative” is our notation
for the second order quantifier over functions of one argument. (Ax:phi) is our
notation for (∀x : φ) and (IF:phi) is our notation for (∀2F : φ) (the superscript
indicating second order quantification: x and F here will have indices and type
superscripts).

A binder is typed as a unary operator, as suggested by rewriting (Bx : T) as
B(x 7→ T): the (x 7→ T) is a function, not a course of values, as it must be for
second-order binders (binding function variables). This has the advantage that
a binder type cannot be confused with a binary function type. As with unary
and binary operators, all integers in a type may have the same constant added
to their absolute values to effect a match, and the actual type of the output
is the output type component of the formal type of the operation as adjusted
to effect the match. There is a final qualification that the type of a binder
term with integer type in which no bound object variable [not immediately
decorated with ! or # or other unary operator with non-integer output type]
occurs free is taken to be obj, a special type (not occurring as a formal type?)
which matches positive integer types, prop, or nat freely. If the bracketed
qualification is adopted, some provision should be made for obj to occur as a
formal as well as an actual type, as it will be a possible output (and, with more
effort, input) type of defined operations. 9

Binders may be defined by binding strings to suitable abstractions. Only
the first input type may be of sort other than object: the body type and the
output type must be object types. The typing of these abstractions is subtle:
a function taking the bound variable type to the body type is mapped to the
output type. Underneath, we always read (Bx : T) as B(x 7→ T). Below we will
see that this requires us to take rather elaborate types into account to handle
definition of second order quantifiers.

The Function1 and Function2 forms represent function constants of one
and two arguments in Frege’s sense. A Function1 term with body T is written
[T]; a Function2 term with body T is written [[T]]. In either case, T must
be of object type (so there is no ambiguity in the double bracket notation).

9The meaning of type obj is “is constant or varies in some unspecified strongly cantorian
set”: this footnote is for NF-istes.

104

The type assigned to [T] is fun, which matches any unary function type other
than cls, or cls (conditions under which it must be typed as cls are described
below) as long as T is typable and contains occurrences of no more than one
first argument variable not included in a proper nonatomic function subterm
of T (there may be more than one occurrence of the same such first argument
variable) and no second argument variable not included in a proper nonatomic
function subterm of T . The type assigned to [[T]] is rel, which matches any
binary function type other than cls, or cls (conditions under which it must
be typed as cls are described below) as long as T is typable and contains
occurrences of no more than one first argument variable not included in a proper
nonatomic function subterm of T (there may be more than one occurrence of
the same such first argument variable) and contains occurrences of no more
than one second argument variable not included in a proper nonatomic function
subterm of T (there may be more than one occurrence of the same such second
argument variable).

We assign type cls to Function1 or Function2 terms with non-object ar-
guments: we do maintain the requirement that they have one first argument
and one second argument (if appropriate) in the exact sense described above,
and that the body of the term has object type.

App1 and App2 implement application of functions of one and two arguments,
respectively.

In a App1 or App2 term in which the function part is a Function1 or
Function2 term, the type of the first argument must match the type of the
first argument variable appearing in the function part, unless the first argument
variable is absent or immediately decorated with a unary operation with non-
integer output type, and the type of the second argument must match the type
of the second argument variable, unless the second argument variable is absent
or immediately decorated with a unary operation with non-integer output type.
The match may be effected by adding the same constant (positive or negative)
to the absolute values of the types of any argument variables with integer types.
In a App1 or App2 term in which the function part is atomic (and so has integer
type), the successors of of any integer types of arguments and the type of the
function part must all be the same. Note that this means that Function1 or
Function2 terms with object arguments in which the integer type of the body
does not match the integer type of an argument (not decorated immediately
with unary operations with non-integer output type) or the integer types of the
arguments are different (and not decorated immediately with unary operations
with non-integer output type) cannot instantiate function variables: such terms
are assigned type cls. Type cls does not match any other type (in particular,
it does not match integer unary or binary function types).

The Freevar and Boundvar forms represent free and bound variables re-
spectively. Free variables have a string body and an index (a positive integer;
index 1 is not expressed). Bound variables have a string body, an index, and a
type (a positive integer: one is not expressed). The type is a new feature not
found in Frege’s system, of course. A free variable ai, bi, ci may be assigned a
type obj to be construed as an indefinite integer: for purposes of type matching,

105

obj can match any integer, prop or nat. A bound variable xji , y
j
i , z

j
i is assigned

the object type j. A variable f, g, h is a free function variable of one argument
and may be taken as having type fun, which will match any unary function
type other than cls. A variable F ji , G

j
i , H

j
i is a bound unary function variable

of unary function type j. A variable ri, si, ti is a free function variable of two
arguments and may be taken as having type rel, matching any binary relation
type other than cls. A variable Rji , S

j
i , T

j
i is a bound binary function variable of

binary function type j (not used by Frege, but we provide it for completeness).
The Firstarg and Secondarg forms represent arguments of functions, in

Frege’s sense (analogous to his ξ, ζ, but we implement this in more generality).
The string and the integer are both indications of type. Xi is a first object argu-
ment of type i. Y i is a second object argument of type i. P,Q (the superscript
1 not expressed) are first and second proposition arguments (convenient abbre-
viations for !X, !Y , assigned type prop). M,N (superscript 1 not expressed)
are first and second natural number arguments (convenient abbreviations for
#X,#Y , assigned type nat). F i, Gi are first and second unary function argu-
ments (with one argument themselves) of type i. Ri, Si are first and second
binary function arguments (with two arguments themselves) of type i, an op-
tion which we provide because Frege mentions it, though we do not construct
such things ourselves. A non-subscripted X or Y (hiding a one) of one of these
shapes, occurring always with the same unary operation of a non-integer output
type (including obj!) may be assigned type obj (the idea here is that the inputs
associated with the same outputs in the s.c. range of the operator are in effect
identified).

See the last paragraph for additional first argument terms Zi,W i of more
involved types.

The only function terms are free and bound function variables and the
Function1 and Function2 terms (which are expressed by enclosing their bodies
in single or double brackets). Since no defined unary or binary operation can
have a function as an argument or value, nor can any binder have a function as
body or value (the only way a function appears as a subterm of a complex term
is as a free or bound function variable), it follows that bracketed terms can only
appear as input to definition commands or in the function role in an App1 or
App2 term10which seems to agree with Frege’s uses of functions. Our intention is
that App1 and App2 terms will be automatically eliminated by the substitution
operation. The existential quantifier, for example, appears as [∼ (∀x ∼ F 2(x))]:
the abstraction is a function of a unary function variable with type one higher
than the bound variable type with output the body type. We have to do a little
extra work (as Frege did) to be able to define the second order existential quan-
tifier (or any other second order quantifier). We actually need first argument
terms (we supply the shapes Zi+2,W i+2 of type i+2) which take a unary (resp.
binary) function input of type i + 1 and return an object output of type i. So
the second order existential quantifier ∃2 is bound to the third level function

10or as an argument to a function which takes function arguments, but in this case it must
be of type fun and so actually stratified

106

[∼ (∀F 2
0 :∼ Z3(F 2

0))] (the subscript on F is expressed to indicate that it is not
a first argument term; this is handled, but differently, in the Gottlob syntax).
We do not need second argument terms of these involved types as we are not
committed to quantifying over vectors of arguments. It is amusing to observe
that these function terms are actually typable.

The semantics is simpler than it appears, because ultimately the second order
objects (functions) are actually identified with their corresponding courses-of-
values (when they have them) which causes our formally second-order (or even
third-order) theory to collapse to a first-order theory. The same would have
been true of Frege’s original system, were it of any actual interest.

In the implementation we follow Frege in not allowing binding of binary
function variables. But we do support bracket terms which can take binary
functions as arguments, so that we can define operations taking binary functions
to objects.

Here is the display function. At least initially, we are giving all operators the
same precedence and having them group to the right. No more parentheses are
displayed then are needed. Prop terms are displayed as implication terms with
the expected binary notation. Single term Prop’s are adorned with −. Note that
first and second arguments are always adorned with their types, separated by a
caret. Thus they cannot be confused with free variables or bound variables with
only one index. A bound variable is followed first by its type with no separator,
then by its index with an underscore as separator; neither is expressed if it is 1
and if only one is expressed the presence or absence of the separator indicates
which one it is.

On the proposition and natural number argument terms, types are sup-
pressed by the display, because they are meaningless. On F and G the types
must be displayed even if the minimal value 2 is taken, to maintain distinc-
tion from the bound variables F and G. On X and Y we retain display of the
minimal type just because it is easier.

Unary operations bind slightly more tightly than binary operations.
see p. 64: of Frege text for his discussion of these issues. We see no

reason to emulate his usage, but we notice that it is similar in spirit in giving
all operations the same precedence, but he groups to the left not the right. Our
usage is roughly that of the ancient computer language APL.

107

