
Loglan Academy Agenda

Randall Holmes

September 12, 2015

Contents

1 The Currently and Recently Active Proposals with Com-
ments 6

2 Description of the PEG Grammar and Grand Proposal 15
2.1 Loglan Phonology . 15

2.1.1 Introductory Remarks 15
2.1.2 Letters and symbols 15
2.1.3 Sounds and sound combinations 17
2.1.4 Syllables, to the definitions of name and borrowed pred-

icate words . 26
2.1.5 Djifoa (“affixes”) to the definitions of complex predi-

cate and predicate in general 32
2.2 Loglan Lexicography . 39

2.2.1 Introductory remarks 39
2.2.2 Auxiliary rules . 40
2.2.3 Logical connectives . 41
2.2.4 Numerals, letters, acronyms, pronouns 44
2.2.5 Tense/location/relation operators 48
2.2.6 Articles and quotation constructions 50
2.2.7 Assorted grammatical particles, somewhat classified . . 54
2.2.8 The two large word classes 59

2.3 Loglan Grammar Proper . 60
2.3.1 Introductory Remarks 60
2.3.2 Closing forms . 60
2.3.3 Tightly bound terms and modifiers with JE/JUE . . . 62

1

2.3.4 Basic predicate constructions 62
2.3.5 Modifiers (prepositional phrases) 66
2.3.6 Names and vocatives 67
2.3.7 Arguments and terms 69
2.3.8 Advanced predicates 73
2.3.9 Sentences . 75
2.3.10 Utterances . 77

3 List of Subproposals of the Grand Proposal 79

4 Essays (pending) 84
4.1 On Quotation (pending) . 84
4.2 On Names (zero draft) . 85
4.3 On Acronyms (zero draft) . 86
4.4 On Syllables (pending) . 88
4.5 On Negation (pending) . 88
4.6 On Pauses . 88
4.7 On Linking Termsets . 88
4.8 On ME . 88

5 Appendix: Grammatical Vocabulary 88

This document contains the previous list of proposals before the Loglan
Academy, and presents my Grand Proposal to bring the official definition
of the language into line with something like my PEG parser. This is first
presented in the form of a detailed review of the PEG grammar in three
sections (Phonology, Lexing, and Grammar), then recapitulated in the form
of a list of subproposals.

If other members of the academy have Proposals, communicate them to
me and I will add them here! Members of the list may suggest things to us
as well.

6/6/2014, important: Section 2.1 on Loglan phonology (culminating
in formal definitions of name words and predicate words) should now have
something close to enough supporting English to be read. I believe that there
is actually very little in this section which is strictly speaking a change in
the official language definition. The new vowel stream grouping convention is
novel, I suppose, and the notation for syllable breaks and stresses is new. The

2

rule that the last two consonants in a syllable cannot be a non-continuant
followed by a continuant is new but I hope will not be controversial. The
proposal that q,w,x be dropped is included, and so is John’s alternative
construction of complexes using zao. The imposition of syllable structure on
names is new, but virtuous.

6/7, 6/8: lexicography section reorganized for readability with minor
corrections and all new text. Quotation and foreign text forms made more
uniform 6/8.

6/9: The grammar section is rewritten as well. This should look a lot
more like at least the outline of a reference grammar.

This (or at least my parts of it) can also be viewed as my complete working
notebook on parsing Loglan. I’m planning to enhance it with examples and
references to previous texts and support it with essays on particular topics.
Parsing the NB3 corpus (completed) and the ongoing process of parsing
material from L1 is informing corrections and improvements.

Although this document does recommend various changes in the language,
my intentions are conservative. You may examine my parse of the entire
NB3 corpus to see that the scope of the changes suggested here is relatively
minor. The real underlying reason is that I want to replace LIP as the official
standard parser, because it is impossible to update it (I think) and quite
difficult to look under the hood to see what it is doing on the phonological
and lexer levels. I would like to get to a position where we can regard this
as the official parser; I am well aware that this will require a process of
deliberation over individual subproposals and also a process of testing and
debugging of this parser.

I have now added the titles but not the text for various essays that I have
promised at the end of this document.

6/6 Proposal 8 has passed (and we now officially have one pause phoneme
again). This means that I have the work assignment of actually revising
Appendix H and getting things posted.

6/9 I am reformatting the list of proposals, and eliminating references to
ones which have been completely processed into Appendix H.

6/11 gui can terminate any argmod1; CV and CVV cmapua can be
prefixed to a predicate with ZAO. There is a new Proposal 4 listed.

7/30 technical changes to juncture rules preventing complexes with ille-
gally placed syllable breaks from being parsed as borrowings. Change to zao
constructions.

8/1/14: major changes to acronyms. What were acronymic predicates

3

are now acronymic names. The mandatory front markers on acronyms have
been replaced with a single one which is mandatory on an acronym of one
letter (so this can be told from a letteral) and optional on other acronyms.
Both sorts of acronyms are terminated with an explicit pause. 8/2: fixed
a bug in acronyms due to misimplementation of 8/1 revision; reintroduced
front marking of dimensions (for good reasons); fixed a missing freemod in
sentence class. 8/3: further refinements: acronymic names, like those with
false name markers, are always marked. The le blanu, Djan construction
now allows a CI marker on the name, and requires it if the name is acronymic
or contains a false name marker. 8/4 further refinements: the CI which links
predicates cannot be followed by a name.

8/4 zero drafts of essays on names and acronyms added.
notes to myself: I have not imposed stress rules on numerical or acronymic

predicates. The parser recognizes the ends of such predicates without whites-
pace or terminal punctuation in any case, I believe. After 8/1, there are no
acronymic predicates; acronymic names need no stress rules.

9/20/2014 changing the text to fit the new version with PO always long
scope. I believe that this is the best all-around solution; a supporting essay
is probably wanted. The issue has very little to do with the structure word
break in LEPO, though this removes that problem. The real issue is that “PO
sentence” predicates have very limited grammatical privileges in the previous
version: one should be able to say blanu po mi cluva if one wants, but in
the current version a PO sentence predicate cannot enter into a metaphor.
I arrange things subtly so that a LEPO clause and a PO sentence predicate
are both closed by GUO (it is never necessary to apply two closures as I hear
it can be in the sister language).

9/30/2014 minor changes to parsing of borrowings.
12/6/2014 Minor tweaks to older text. Introduced CA-connected quanti-

fiers (such as SUCERA, SUCENOIRA. Excluded NOI-initial compound PA
words; NOI needs always to be a final form. NOI can be used to negate second
and further components of the new compound quantifiers but not initially. It
appears that logical transformations enable us to say all the things that are
excluded by this last, and while these words were found in the NB3 corpus
I have not seen them in Loglan usage. I can produce examples where they
lead to ambiguity where one either has ANOI PACE... or A NOIPACE...
with different meanings.

12/18/2014 Various adjustments which came up in the course of writing
the lexicography section of the reference grammar. Put NOCA and NO-

4

CANOI forms back as possible links in PA (and now NI) words. Adds words
AA EE OO added since trial.85 to UI0. Makes it possible to quote ZIY and
ZIYMA with LIU (these are names of the letter y, and a problem because
their form is phonetically irregular). Allows untensed A connectives to be
closed with GU or pause.

5/15/2015 Fixed a bug in closures of A words with GU. Forbade spaces
internal to words. There are many niggling little changes to effect this some
of which might have been overlooked here.

5/16/2015 Refinements of the 5/15 update not yet entered here: in gen-
eral, wherever the PA word component class can appear, whitespace followed
by a PA word component is forbidden. After an A word, it is just whitespace
followed by a PA followed by a a GU or pause that is forbidden. The idea is
to ensure that where a space appears one can always pause; but there is an
exception: when an A word is followed by a PA word then a space, replacing
the space with a pause makes an APA word (possibly with an illegal space
in it) which either breaks the parse or changes it essentially. I will enter the
changes to the rules shortly. The 5/15 and 5/16 upgrades did detect some
errors or at least usages open to question in the corpus. This also illustrates
how nasty APA words are. I do need to write an essay about them, includ-
ing how they cause trouble under LIP. I preserve them (for now) because
IPA words seem to be important, and anything that defends IPA words also
defends APA words.

also 5/16 I removed capitalization restrictions in the interior of acronymic
names (so la DaiNaizA is legal). A solution which also works in acronyms
used as dimensions might be appealing.

5/20/2015 Noticed that ii and uu with explicit juncture is an instance of
RepeatedVowel. I made the 5/16 changes in the text as far as I could; I am
beginning to think that enough small changes were made in the “no spaces
inside words” initiative that there ought to be a full overhaul to ensure that
all rules are directly copied from the current grammar rather than manually
corrected with possible errors and omissions as now.

7/17/2015 Corrected a nasty bug in the juncture class (related to my im-
plementation of the rule that last syllables of cmapua stressed before pred-
icates must be followed by pauses). Allows converse forms of the BI class
predicates (this should be uncontroversial: these predicates are clearly rea-
sonable and likely to be wanted).

9/5/2015 New proposal concerning basic sentence structure: marked-
predicate-initial sentences are not imperatives but gasents, and if the final

5

ga clause is missing ga ba is to be understood.
9/12 further action re proposal of 9/5, allowing modifiers to appear at the

head of an imperative. It is useful to note that the changes of 9/5 and 9/12
should have hardly any effect on what sentences are parsable: the effects are
mainly to recategorize which sentences are imperatives. An imperative is a
sentence in which no terms or only modifiers precede an unmarked predicate.
A sentence in which no terms or only modifiers precede a marked predicate
is a declarative sentence with an unexpressed indefinite subject.

1 The Currently and Recently Active Pro-

posals with Comments

Any member of the Academy is eligible to have a Proposal posted here, and
moreover also to have Comments in their own names posted here. Members
of the list are welcome to bother us!

Proposal 3 2013: (John Cowan): Introduce a word ZAO which when
placed between predicates has the same effect as complex formation,
and abandon the attempt to form complexes using borrowings.

Proposal 3B 2013 (Randall Holmes): Introduce ZAO as in Cowan’s pro-
posal while taking no negative action (complexes with borrowings con-
tinue to be allowed, but ZAO is available to paraphrase these or indeed
any complexes).

Comments: This proposal is fully implemented in the provisional parser
(in the 3B form). It appears as part of the definition of the class of
predicate words.

I would encourage prompt action, though I am not pushing action at
this time. I support this proposal in the weak sense of 3B: I think after
doing work to implement borrowing affixes, that we can keep them.
But the zao approach has merit.

Proposal 5 2013: (Randall Holmes) Eliminate noka and all similar words.

Comments: I do not think this proposal requires any particular action,
because I think it is a mistake in the dictionary. I do not think there is
much danger of either my parser or LIP ever thinking that it is reading

6

such a word. I have already corrected my parser so that it does not
recognize such words. So one can expect that this proposal will
soon disappear from the list.

Proposal 6 (John Cowan): Eliminate the djifoa (affixes) with the repeated
vowels aa/ee/oo and do the required dictionary work to rebuild affected
complexes. [he has suggested a more limited proposal to eliminate the
EE and OO djifoa]

Comments: My parser does not implement this. It would require massive
dictionary work. A revised version leaving the AA djifoa would have
a more modest impact. I do not support this, but it is a plausibly
motivated proposal and I am happy to leave it out for discussion.

I am not against working on this proposal (perhaps think about elim-
inating the few EE and OO djifoa), but I think the AA djifoa are too
numerous and widely used. In spirit, I agree with John, but this is one
of those charming features the language is already committed to.

Proposal 7 2013 (John Cowan – revised to incorporate Proposal 4 text):

1. The sounds of x, q, w to be removed from Loglan. They are
permitted only in names, and are relatively low-frequency sounds
in the world’s languages.

2. The letter h to be allowed with either IPA /h/ (its current sound)
or IPA /x/ (the current sound of x). This will make life easier for
Spanish, Russian, and Chinese loglanists, who have /x/ in their
languages but not /h/. (Hindi, English, and Japanese have /h/
only, German has both, French has neither.)

3. Extension of gao: Currently it is permitted only before ”Ceo”
and ”Vfi” words to make Greek upper case letters. It is to be
permitted before any phonological word to make a new word of
nurcmapua TAI.

4. Specific new words of TAI to be added to the dictionary: ”gaohei”
= x, ”gaohai” = X, ”gaokei” = q, ”gaokai” = Q, ”gaovei” = w,
”gaovai” = W, ”gao,alef” = ? (Hebrew letter alef). These replace
”xei”, ”xai”, ”qei”, ”qai”, ”wsi”, ”wma”, and nothing respectively.

[replaces original proposals 4 and 7]

7

Comments: My parser implements this fully.

I agree with this proposal, with a proviso. I do think that we need
CVV words for the Latin letters thus eliminated from the alphabet.
They occur commonly in mathematics and in foreign words.

I agree that x,q,w should be eliminated, but I want CVV words for at
least lowercase versions of these letters.

I urge immediate discussion (if needed) and ratification (hope-
fully) of this proposal. Addition of CVV letterals for qwx
would then be advisable.

Proposal 8 (Randall Holmes): A predunit appearing in a name must be
prefixed with CI. Rescind the earlier decision that we have an additional
pause phoneme used only in serial names.

rationale: very simple: this makes La Djan, blanu a sentence rather
than a name again, and without multiple grades of pauses.

cautions: make sure there are no ambiguities with existing uses of CI.

La Djan, blanu once again means ”John is blue”.

La Djan, ci blanu, mrenu becomes ”John the Blue is a man”. (yes,
the pause works to mark the predicate, though this may not be a good
practice).

Comments: My parser implements this. This makes an actual incompati-
bility between my parser and LIP; there are things which each parses
which the other does not parse, as predunits are put into serial names
in incompatible ways.

In fact, my parser implements the further requirement that a name
component following a predunit component must be marked with CI
as well. This is all part of a global solution to the name marker problem.

This proposal has passed. It is still on this list because I have
not yet updated Appendix H.

There are further related refinements to the definition of serial
names implicit in my provisional parser

Proposal 10 (John Cowan): The Loglan Project uses the terms ”affix”
and ”lexeme” in ways that contradict standard linguistic usage. Our

8

complexes are composed entirely of affixes, but an affix to a linguist
is either a suffix or a prefix: there must be a root to which they are
attached. I suggest we switch to the neutral term ”combining form”
until we have a Loglan term analogous to Lojban ”rafsi”.

Similarly, a ”lexeme” is not a word class based on syntactic interchange-
ability, but one based on sharing an underlying form to which different
inflections are added. Thus ”run”, ”runs”, ”running”, ”ran” are all
members of the ”run” lexeme in English (”runner” is not, as the ”-er”
ending derives a new lexeme). We should instead use ”nurcmapua”, X
is a little-word class including Y.

Of course, this applies only to formal proposals and documentation and
where clarity is needed, not to casual loglandic chitchat.

Comment (Randall Holmes) This proposal ties into my program of de-
veloping a full Loglan vocabulary for our own grammar. The grammar
terms should have English translations that a linguist would understand
(and possibly alternative English translations which are traditional in
the L community but misleading for linguists , and labelled as such).
An implementation of Proposal 10 might be part of an implementation
of the Loglan grammar terminology project.

Comment: I would say that this metalevel proposal has in effect been im-
plemented (and thank you John). Please continue virtuously saying
“djifoa” or “combining form” instead of “affix” except when alluding
to historical documents, fellow logli! I am not as good about “‘lexeme”;
I am trying to say things like “word class”.

Also note “syllabic consonant”

Proposal 11 (Randall Holmes): I hereby officially suggest the introduc-
tion of an infix -zie- which can be used to merge PA class operators
with A-zie-B meaning roughly A-and then-B or ”proceeding from A to
B”

then replacing each of the compound location operators with a -zie-
form

that is, vuva would be replaced by vuzieva

The rationale has been discussed: it is part of the general program of
eliminating structure word breaks.

9

vu, va preda really cannot be construed as meaning the same thing as
vuva preda

My parser does not as yet implement this. It would require modest
dictionary work to change the compound location operators.

Comments: This is not high on my priority list but it is needed eventually
(or something like it). It would appear as part of the Lexer layer of
my grand proposal if I had attended to it (which I have not). The
exact CVV used needs to be changed because ZIE is now intended to
be lower case Latin e. I suggest JIU.

This is not a high priority but it does bear on the issue of composition-
ality of structure words.

Proposal 12 (John Cowan): Currently, we have NAHU compounds for
every NA word which create time, place, and manner questions. Gram-
matically these are freemods, which means they can appear almost any-
where. I think it would be sufficient to treat these just as regular tagged
arguments. ”Na hu” as two words would mean ”at the same time as
what?” which is entirely synonymous with ”nahu” meaning ”when?”

The only downside is that sentences like ”I tu sonli nahu dzoru?”, which
is one way of saying ”When do you sleepwalk?”, would have to have
the ”nahu” moved to somewhere else in the sentence. However, this is
only a trivial syntactic change; there is no semantic benefit to having
it between two predunits.

Comments: My parser now implements this. It has no effect, for example,
on the NB3 corpus. I tu sonli jenahu dzoru would work under my
proposal below, so I suggest approving both.

Proposal 13 (Randall Holmes): A change to jelink and juelink.

JE and JUE can currently only be followed by arguments; it should
also be permissible to allow them to be followed by modifiers

the rule should be changed to

jelink ¡- JE term from jelink ¡- JE argument

(leaving out freemods for clarity)

This is clearly grammatically harmless and allows much finer use of
modifiers (PA clauses).

10

examples

le mrenu je vi la hasfa bi la Djan

The man who is at the house is John

le bilti je vi lo cutri, nirli ga gudbi sucmi.

The beautiful-in-the-water girl swims well

Notice that this allows tight application of modifier clauses as here in
metaphors.

This interacts with John’s proposal 12, restoring a lot of the freedom
of placement of nahu if it becomes a modifier instead of a freemod.

I think that JEPA and JUEPA will feel like new classes of words, though
there is no need to add them to the grammar:

one is likely to write ”le mrenu jevi la hasfa”.

My parser implements this.

I would like it if this were ratified reasonably promptly (so I suppose I
am in favor of ratifying the previous one at the same time); it is already
in my provisional grammar.

Proposal 14 2013: clean up uses of MO (John Cowan): It was pointed
out that homonymous uses of mo create endless opportunities for LW
breaks which must be marked by pauses. I implemented this by elim-
inating the -mo letter construction completely and replacing the 000
numeral with moa in my parser.

The similar changes to MA that he suggested are not needed, as other
changes that I make disambiguate the uses of MA.

Proposal 1 2014: introduce SIE: I propose the introduction of a new
word sie expressing apology rather than mere regret: uu currently
expresses both, and it is an important distinction to draw. I run into
this problem in speech in English frequently and I have encountered it
in Loglan.

If one says Sie by itself (I’m sorry) I think that Siu would be an
appropriate response (rather in the spirit of “don’t mention it”, which
is also a phrase which can be used in place of “you are welcome”, the
current official translation of siu.

11

I’m very fond of this very modest proposal: I would like to see it ratified.
I have installed the word in the provisional parser.

Proposal 2 2014: eliminate vowel-initial letterals: The vowel-initial let-
terals are a pain. They create the only situation where CVV-V occurs
in compound little words (in acronyms, and strictly speaking this will
not be entirely eliminated) and they appear to require an additional
clause in the formation of predicates to handle compounds like X-ray
with the letter a vowel (A-train). I modestly propose that we introduce
CVV letterals for vowels. ZIA, ZIE, ZII, ZIO, ZIU are free. One might
want the ZUv series as well for upper case. We could then eliminate
all the vowel initial letterals and the need for special rules in various
situations. I would assume one would keep the ability to abbreviate
vowels in acronyms.

Note that one would not want to use -zie- as the linker for compound
location operators in this case. I have proposed JIU instead.

There are now no Cvv/V joints at all in the PEG grammar, even in
acronyms, if the VCV letterals are dropped. I leave the phonetic possi-
bility open, but I eliminated it in acronyms without VCVs by requiring
z before an abbreviated vowel in an acronym.

Currently the ZIV and ZIVma (capitalized) vowels are present as an
alternative to the VCV letterals.

Proposal 3 2014, 3/9/2014: I have withdrawn my proposal to move words
like rana from PA to mod1. I am convinced that they can sensibly be
used as prepositions.

Proposal 4, 2014 (Randall Holmes): I found the word riyhasgru in the
dictionary, which my parser views as an error, but I am told by James
that legacy software does assume CVy djifoa correlated with CV cma-
pua. I do not recall that CVy djifoa are documented anywhere, and I
do not like them. I propose that the CVh djifoa be assigned to correlate
with those CV cmapua which do not already have djifoa. None of these
are in use (they are not ideal as they must be y hyphenated) – their
pronunciation can be more definite than their spelling suggests because
the hard pronunciation of h as ch in loch can be used. This requires
no parser changes and would change riyhasgru to rihyhasgru in the

12

dictionary. There might be other words of this kind which would have
similar systematic modifications.

This is not something I regard as highest priority. The alternative
would be to implement CVy djifoa, to which I have phonetic objections
(too easily confused with unstressed CVV djifoa); John convinced me
that my alternative scheme with CVry and CVny djifoa was a bad idea.

Proposal 1 2015, 9/5/2015: I propose, following the cue of style objec-
tions to this kind of sentence raised by Steve Rice in L3, that a sentence
optionally beginning with one or more modifiers followed by a tense-
marked predicate should always be understood as a gasent; if the final
GA terms clause is missing, ga ba should be understood. So Donsu
ti mi means “Give this to me”, as before, but Fazi donsu ti mi is no
longer a deprecated imperative, but instead is to be understood as Fazi
donsu ti mi (ga ba), “Someone is about to give this to me”. Vi le
hasfa fazi donsu ti mi means “Someone is about to give it to me in
the house” (what it means now is actually open to some debate); if the
term vi le hasfa is replaced by an argument we get an ordinary sen-
tence in which donsu has too many arguments. This proposal removes
the case terms gasent from the grammar, as it is rather difficult to
tell what to do with an argument appearing before a gasent; the intent
of the framers must have been to allow initial modifiers.

statement <- (gasent / (terms (freemod)? gasent) /

(terms (freemod)? predicate))

is replaced by

statement <- gasent / modifiers freemod? gasent/

terms freemod? predicate

modifiers is a new class, a string of modifiers. The class gasent

also has to be modified to allow the final GA terms component to be
omitted.

13

This will shortly be implemented in the provisional grammar.

Addendum: I have also arranged for sentences in which initial mod-
ifiers are followed by an unmarked predicate to be understood as im-
peratives (in sen1 rather than statement), which really must be the in-
tention. It is useful to note that there is clear discussion of the rules we
are changing here and their motivations in the commentary on Group J
grammar rules in NB3. It is quite clear that misrecognizing a sentence
like Na la Ven, donsu ta mi as a declarative sentence goes right back
to the NB3 period.

An interesting point about this proposal is that it has hardly any effect
on whether any sentence is parsable. It does forbid formation of terms
gasent sentences in which the terms include an argument, and JCB
says in NB3 that such sentences do not make sense. The actual effect
is to redraw the boundary between declarative sentences and impera-
tives: a sentence in which no terms or only modifiers appear before the
unmarked predicate is imperative, and a sentence in which no terms or
only modifiers appear before a marked predicate is a declarative sen-
tence with indefinite subject (understood as a gasent with omitted final
ga ba).

14

2 Description of the PEG Grammar and Grand

Proposal

This is the text of the PEG grammar with commentary. I do have the aim of
getting this (with whatever changes are needed) to be approved as the official
Loglan parser, with the proviso that the English text should be consulted re
intent in case of bugs.

This section is an official Proposal. Details are most certainly open to
discussion. The overall Grand Proposal will be divided into three sections,
Phonology, Lexicology, and Grammar.

2.1 Loglan Phonology

2.1.1 Introductory Remarks

6/6/2014: Rewriting the first section of the grammar into proposal language.
This section contains the exact text of the relevant parts of Loglan.peg

as of 9 am on D-day 2014, with some corrections that I found I had to make
in the course of reading the rules to write the English text. The English text
will be a self-contained description of the phonology of Loglan, up to the
level of formation of the various classes of words.

2.1.2 Letters and symbols

lowercase <- (!([qwx]) [a-z])

uppercase <- (!([QWX]) [A-Z])

letter <- (!([QWXqwx]) [A-Za-z])

This text includes the proposal that the letters qwx included in NB3 and
L1 accounts of the language be dropped. These letters remain usable in
quotation forms and other forms which include foreign text, but they are not
Loglan letters.

juncture <- (([-] &letter)/([\’*] !juncture))

15

juncture2 <- ((([-] &(letter)) / ([\’*] !((([])* Predicate))

((’, ’ ([])* &(Predicate)))?)) !(juncture))

A juncture is a member of the class of symbols consisting of the hyphen,
the apostrophe and the asterisk.

The hyphen stands for a syllable break and may appear between two
syllables. To write a hyphen is optional, except that it may be required to
force a desired pronunciation of a name. The parser deduces syllable breaks
in Loglan text when not supplied with them explicitly.

The apostrophe stands for stress on a syllable and the asterisk for em-
phatic stress on a syllable. There is no difference between these that affects
parsing of any Loglan utterance, but the distinction between the two forms
can communicate emphasis. Either kind of stress can appear between two
syllables, indicating stress on the preceding one, or at the end of a syllable
which is not followed by another syllable.

To include stress is always optional. If stress is not given explicitly, the
presence of a stress can be deduced from whitespace or terminal punctuation
at the end of a predicate word.

An explicit pause is indicated by a comma followed by one or more spaces.
A hyphen is always followed by a letter.
A stress of either sort may not be followed by (whitespace followed by)

a predicate word. It may not be followed by a hyphen (either sort of stress
includes the sense of a hyphen) or by another stress mark. A stress marker
may be followed by (and include, for purposes of the grammar) an explicit
pause (a comma followed by whitespace) if it is followed immediately by a
predicate word. This enforces the rule that one must pause after a stressed
unit cmapua before a following predicate. 7/17 this rule is enforced using
the second form juncture2, only in the context of the vowel classes used for
building cmapua.

Note that a juncture symbol is never followed by another juncture symbol.
A style of writing Loglan which involves showing all stresses (and option-

ally all syllable breaks) and showing whitespace only after commas (explicit
pauses) is intended to be supported. This we will call a phonetic transcript.
JCB’s own phonetic transcripts can be converted quite mechanically to this
form.

16

In some situations, pauses will be deducible from whitespace without an
explicit pause, and in some cases stress can be deduced from such. Most
whitespace has no phonetic import at all.

We note here that Loglan now has one pause phoneme, though it may be
expressed in various ways.

Lowercase <- (lowercase / juncture)

Letter <- (letter / juncture)

These classes add junctures to the indicated class of letters.

comma <- ([,] ([])+ &(letter))

\end{description}

This is the comma, representing an explicit pause.

Introduced 8/2, all rules mentioning this must have been modified at that point.

\begin{description}

period <- ([!.:;?] (!(.) / (([])+ &(letter))))

These characters are the supported forms of terminal punctuation. This
writer is for the most part not inclined to replace Loglan words with bits of
punctuation, though willing to explore such styles if clearly defined.

2.1.3 Sounds and sound combinations

B <- [Bb]

C <- [Cc]

D <- [Dd]

17

F <- [Ff]

G <- [Gg]

H <- [Hh]

J <- [Jj]

K <- [Kk]

L <- [Ll]

M <- [Mm]

N <- [Nn]

P <- [Pp]

R <- [Rr]

S <- [Ss]

T <- [Tt]

V <- [Vv]

Z <- [Zz]

The Loglan consonants. Their pronunciations are mostly as an English
speaker would expect. g is never soft as in gem, but always hard as in gun.
c is pronounced as English sh as in shoe in all contexts. j is pronounced as
the voiced consonant corresponding to c, which is the pronunciation of z in
azure in my idiolect. n is usually pronounced as English nose, but before g

or k as in English finger or tanker. Since the hard ch of Scottish loch is no
longer the sound of the banished Loglan x, it is available as an alternative
pronunciation of Loglan h.

18

Nothing in this paragraph is intended to be new.
See below for syllabic pronunciation of mnlr.

a <- ([Aa] (juncture2)?)

e <- ([Ee] (juncture2)?)

i <- ([Ii] (juncture2)?)

o <- ([Oo] (juncture2)?)

u <- ([Uu] (juncture2)?)

AA <- ([Aa] (juncture)? [a] (juncture2)?)

AE <- ([Aa] (juncture)? [e] (juncture2)?)

AI <- ([Aa] [i] (juncture2)?)

AO <- ([Aa] [o] (juncture2)?)

AU <- ([Aa] (juncture)? [u] (juncture2)?)

EA <- ([Ee] (juncture)? [a] (juncture2)?)

EE <- ([Ee] (juncture)? [e] (juncture2)?)

EI <- ([Ee] [i] (juncture2)?)

EO <- ([Ee] (juncture)? [o] (juncture2)?)

EU <- ([Ee] (juncture)? [u] (juncture2)?)

IA <- ([Ii] (juncture)? [a] (juncture2)?)

IE <- ([Ii] (juncture)? [e] (juncture2)?)

19

II <- ([Ii] (juncture)? [i] (juncture2)?)

IO <- ([Ii] (juncture)? [o] (juncture2)?)

IU <- ([Ii] (juncture)? [u] (juncture2)?)

OA <- ([Oo] (juncture)? [a] (juncture2)?)

OE <- ([Oo] (juncture)? [e] (juncture2)?)

OI <- ([Oo] [i] (juncture2)?)

OO <- ([Oo] (juncture)? [o] (juncture2)?)

OU <- ([Oo] (juncture)? [u] (juncture2)?)

UA <- ([Uu] (juncture)? [a] (juncture2)?)

UE <- ([Uu] (juncture)? [e] (juncture2)?)

UI <- ([Uu] (juncture)? [i] (juncture2)?)

UO <- ([Uu] (juncture)? [o] (juncture2)?)

UU <- ([Uu] (juncture)? [u] (juncture2)?)

V1 <- [AEIOUYaeiouy]

V2 <- [AEIOUaeiou]

C1 <- (!(V1) letter)

Mono <- (([Aa] [o]) / (V2 [i]) / ([Ii] V2) / ([Uu] V2))

EMono <- (([Aa] [o]) / ([AEIaei] [i]))

NextVowels <- (EMono / (V2 &(EMono)) / Mono / V2)

20

BrokenMono <- (([a] juncture [o]) / ([aeo] juncture [i]))

This body of rules is related to Loglan vowel sounds and vowel grouping.
The regular Loglan vowels are aeiou. y is a special vowel.
The regular vowels are pure sounds.
English father (not hat) sounds like Loglan a. English long i as in kite

sounds like Loglan ai.
English get sounds like Loglan e. English long a as in gate sounds like

Loglan ei.
English ee as in beet or mete, or i in machine, sounds like Loglan i.

This is a pure sound; an English speaker has a bad habit of following it with
something like consonantal y.

English aw as in law or o as in lost sounds like Loglan o. The English
long o as in bone sounds like Loglan ou (though Loglan ou is definitely two
syllables).

English u as in lure or tune sounds like Loglan u. English speakers should
avoid the habit of closing this up with something like consonantal w.

These sound values for the regular vowels are a bit odd to an English
speaker but quite usual in continental Europe.

The special vowel y has the “schwa” sound of a in English sofa or u in
English hunt. An English speaker should avoid the bad habit of turning
unstressed regular vowels into y: these must always be clearly pronounced.
John Cowan suggests the more definite sound in English look for y; I like this
(it can be an allophone; the schwa is clearly appropriate in some contexts,
but clearer articulation might be useful in others).

The letter pairs ao, ai, ei, oi, when grouped together, have mandatory
monosyllabic pronunciation. The pronunciation of ao is surprising, as in
English cow. The pronunciations of ai, ei, oi are as in English tie, pay,
boy.

The letter pairs with initial i or u may be pronounced as two syllables
or as monosyllables with intial i (resp. u) taking on the pronunciation of
English consonantal y (resp. w). These are called optional monosyllables.

Other vowel pairs if they appear together in a word must be pronounced
as two separate syllables. See below for a special rule for the pairs aa, ee,
oo.

Nothing above this point in the account of vowels and vowel grouping is
intended to be new.

21

When a stream of regular vowels is presented (in the context of a bor-
rowing or name word: a stream of vowels in a cmapua is organized into a
stream of VV words with a possible initial V word), one segments it starting
at the left using the following precedence: first, take a mandatory monosyl-
lable, if present; next, take a single vowel if it is immediately followed in the
stream by a mandatory monosyllable (which will then be taken); next, take
an optional monosyllable; next, take a single vowel. Repeat as necessary.
Whitespace or juncture interrupts this process (juncture can be used to force
different grouping). This algorithm for grouping vowels is a new proposal.

CVVSyll <- (C1 Mono)

LWunit <- (((CVVSyll juncture? V2)/

(C1 !BrokenMono V2 juncture? V2)/

([Zz] ’iy’ juncture? ’ma’?)/(C1 V2)) juncture2?)

LW1 <- (((V2 V2)

/ (C1 !(BrokenMono) V2 (juncture)? V2)

/ (C1 V2)) (juncture2)?)

The word classes above are used to represent units from which structure
words (Loglan cmapua) can be constructed. The actual rule for constructing
structure words phonetically has very limited use in Loglan grammar and in
fact does not appear in this section.

Before we enter the lexer section, all we need to know is that unit cma-
pua are of one of the forms V, VV, CV, CVV. We really truly need to know
nothing else (the whole compound cmapua parsing algorithm in NB3 is ir-
relevant). In the lexer section, we will construct various classes of compound
cmapua in individual word classes (which will just happen to satisfy the NB3
rules, but without any use of them). The one place where the NB3 rules are
used is in determining what a single cmapua word is for purposes of LIU
quotation, which naturally comes later. I believe that LIP never uses the
NB3 compound cmapua rules at all in any way!

12/18/2014 A hack Added ZIY and ZIYMA to this class by force so that
LIU will be able to quote these names of the letter Y. This needs some fixes:
there is no need to add ZIYMA, and the option of putting a syllable break
in ZIY should be supported.

22

caprule <- ((uppercase / lowercase) ((lowercase / juncture))* !(letter))

This rule enforces the Loglan capitalization convention. A string of letters
and junctures unbroken by any other characters will contain an uppercase
letter only at the beginning. Capitalization is always optional.

InitialCC <- (’bl’ / ’br’ / ’ck’ / ’cl’ / ’cm’ / ’cn’ / ’cp’ / ’cr’

/ ’ct’ / ’dj’ / ’dr’ / ’dz’ / ’fl’ / ’fr’ / ’gl’ / ’gr’ / ’jm’ / ’kl’

/ ’kr’ / ’mr’ / ’pl’ / ’pr’ / ’sk’ / ’sl’ / ’sm’ / ’sn’ / ’sp’

/ ’sr’ / ’st’ / ’tc’ / ’tr’ / ’ts’ / ’vl’ / ’vr’ / ’zb’ / ’zv’

/ ’zl’ / ’sv’ / ’Bl’ / ’Br’ / ’Ck’ / ’Cl’ / ’Cm’ / ’Cn’ / ’Cp’

/ ’Cr’ / ’Ct’ / ’Dj’ / ’Dr’ / ’Dz’ / ’Fl’ / ’Fr’ / ’Gl’ / ’Gr’

/ ’Jm’ / ’Kl’ / ’Kr’ / ’Mr’ / ’Pl’ / ’Pr’ / ’Sk’ / ’Sl’ / ’Sm’

/ ’Sn’ / ’Sp’ / ’Sr’ / ’St’ / ’Tc’ / ’Tr’ / ’Ts’ / ’Vl’ / ’Vr’

/ ’Zb’ / ’Zv’ / ’Zl’ / ’Sv’)

MaybeInitialCC <- (([Bb] (juncture)? [l])

/ ([Bb] (juncture)? [r]) / ([Cc] (juncture)? [k])

/ ([Cc] (juncture)? [l]) / ([Cc] (juncture)? [m])

/ ([Cc] (juncture)? [n]) / ([Cc] (juncture)? [p])

/ ([Cc] (juncture)? [r]) / ([Cc] (juncture)? [t])

/ ([Dd] (juncture)? [j]) / ([Dd] (juncture)? [r])

/ ([Dd] (juncture)? [z]) / ([Ff] (juncture)? [l])

/ ([Ff] (juncture)? [r]) / ([Gg] (juncture)? [l])

/ ([Gg] (juncture)? [r]) / ([Jj] (juncture)? [m])

/ ([Kk] (juncture)? [l]) / ([Kk] (juncture)? [r])

/ ([Mm] (juncture)? [r]) / ([Pp] (juncture)? [l])

/ ([Pp] (juncture)? [r]) / ([Ss] (juncture)? [k])

/ ([Ss] (juncture)? [l]) / ([Ss] (juncture)? [m])

/ ([Ss] (juncture)? [n]) / ([Ss] (juncture)? [p])

/ ([Ss] (juncture)? [r]) / ([Ss] (juncture)? [t])

/ ([Tt] (juncture)? [c]) / ([Tt] (juncture)? [r])

/ ([Tt] (juncture)? [s]) / ([Vv] (juncture)? [l])

/ ([Vv] (juncture)? [r]) / ([Zz] (juncture)? [b])

/ ([Zz] (juncture)? [v]) / ([Zz] (juncture)? [l])

23

/ ([Ss] (juncture)? [v]))

The rule InitialCC lists the pairs of Loglan consonants which may appear
in initial position in a syllable. The rule MaybeInitialCC identifies such
pairs even if they are separated by a syllable break (this is used to detect
certain error conditions). The pairs sv and zl accidentally omitted in L1 are
restored.

NonmedialCC <- (([b] (juncture)? [b])

/ ([c] (juncture)? [c]) / ([d] (juncture)? [d])

/ ([f] (juncture)? [f]) / ([g] (juncture)? [g])

/ ([h] (juncture)? [h]) / ([j] (juncture)? [j])

/ ([k] (juncture)? [k]) / ([l] (juncture)? [l])

/ ([m] (juncture)? [m]) / ([n] (juncture)? [n])

/ ([p] (juncture)? [p]) / ([q] (juncture)? [q])

/ ([r] (juncture)? [r]) / ([s] (juncture)? [s])

/ ([t] (juncture)? [t]) / ([v] (juncture)? [v])

/ ([z] (juncture)? [z]) / ([h] (juncture)? C1)

/ ([cjsz] (juncture)? [cjsz]) / ([f] (juncture)? [v])

/ ([k] (juncture)? [g]) / ([p] (juncture)? [b])

/ ([t] (juncture)? [d]) / ([fkpt] (juncture)? [jz])

/ ([b] (juncture)? [j]) / ([s] (juncture)? [b]))

NonjointCCC <- (([c] (juncture)? [d] (juncture)? [z])

/ ([c] (juncture)? [v] (juncture)? [l])

/ ([n] (juncture)? [d] (juncture)? [j])

/ ([n] (juncture)? [d] (juncture)? [z])

/ ([d] (juncture)? [c] (juncture)? [m])

/ ([d] (juncture)? [c] (juncture)? [t])

/ ([d] (juncture)? [t] (juncture)? [s])

/ ([p] (juncture)? [d] (juncture)? [z])

/ ([g] (juncture)? [t] (juncture)? [s])

/ ([g] (juncture)? [z] (juncture)? [b])

/ ([s] (juncture)? [v] (juncture)? [l])

/ ([j] (juncture)? [d] (juncture)? [j])

/ ([j] (juncture)? [t] (juncture)? [c])

24

/ ([j] (juncture)? [t] (juncture)? [s])

/ ([j] (juncture)? [v] (juncture)? [r])

/ ([t] (juncture)? [v] (juncture)? [l])

/ ([k] (juncture)? [d] (juncture)? [z])

/ ([v] (juncture)? [t] (juncture)? [s])

/ ([m] (juncture)? [z] (juncture)? [b]))

These rules define sequences of consonants which may not occur in a
Loglan word. They are taken directly from NB3 and L1. Some additional
sequences are proscribed by a new rule which appears below, but they are
ones which are rather unlikely to appear in a proposed word.

RepeatedVowel <- (([Aa] (juncture)? [a])

/ ([Ee] (juncture)? [e]) / ([Oo] (juncture)? [o])/[Ii] juncture [i]/[Uu] juncture [u])

The “repeated vowel” sequences aa, ee, oo have a special associated rule.
Since they are not optional monosyllables, the two vowels in such a sequence
must appear in adjacent syllables. The special rule is that one of them
must be stressed (this does not need to be shown explicitly). This rule also
applies to ii. uu when they are explicitly disyllables (noticed and revised
5/20/2015).

RepeatedVocalic <- (([Mm] [m]) / ([Nn] [n]) / ([Ll] [l]) / ([Rr] [r]))

Syllabic <- [lmnr]

Nonsyllabic <- (!(Syllabic) C1)

Badfinalpair <- (Nonsyllabic !(’mr’) !(RepeatedVocalic) Syllabic

!((V2 / [y] / RepeatedVocalic)))

The consonants mnlr admit use as syllabic consonants (we now deprecate
the usage “vocalic”, though it remains embedded in our texts and in some
class names in this grammar). The only consonants which appear repeated

25

in Loglan orthography are the continuants mnlr (the ones which can be
syllabic). When they appear repeated, they are always syllabic, and if a
syllabic use of these consonants is intended, they will appear repeated. Note
that this forces a change in the spelling of certain names, but note also
that JCB suggests this in L1 as an alternative convention. The distinction
between a consonantal mnlr and the syllabic (doubled) version is phonemic,
in spite of incorrect statements in L1.

Syllabic consonants occur only in names and in borrowed predicate words.
The class Badfinalpair is used to enforce a new rule that the final two

consonants in a syllable cannot be a non-continuant followed by a continuant,
as such a sequence would basically have to be pronounced as another sylla-
ble. This forbids certain three letter sequences of consonants not explicitly
forbidden in L1 or NB3, and forbids certain placements of syllable breaks.

2.1.4 Syllables, to the definitions of name and borrowed predicate
words

FirstConsonants <- (((!((C1 C1 RepeatedVocalic))

&(InitialCC) (C1 InitialCC)) / (!((C1 RepeatedVocalic)) InitialCC)

/ ((!(RepeatedVocalic) C1) !([y]))) !(juncture))

FirstConsonants2 <- (((!((C1 C1 RepeatedVocalic)) &(InitialCC)

(C1 InitialCC)) / (!((C1 RepeatedVocalic)) InitialCC)

/ (!(RepeatedVocalic) C1)) !(juncture))

These rules define the sequences of consonants which can appear at the
beginning of a Loglan syllable. The first version is used in predicate words,
and the second in names.

Such a sequence of consonants can have between one and three letters
in it, all consonants. Each successive pair of these letters must be a per-
missible initial pair. (This rule appears in NB3). The final consonant in
the sequence cannot be the first consonant in a syllabic consonant pair. An
initial consonant sequence will of course not be followed by a juncture. In a
predicate word, an initial consonant sequence will not be followed by y; this
is permissible in a name.

26

VowelSegment <- (NextVowels !RepeatedVocalic / RepeatedVocalic)

VowelSegment2 <- (NextVowels / RepeatedVocalic)

This rule defines the “vowel” in a Loglan syllable (which may be a mono-
syllabic pair of vowels or a syllabic consonant). The rule Nextvowels chooses
a single vowel or a pair of vowels from a stream of vowels in the way described
above.

9/30/2014 The vowel segment in a predicate may not be followed by a
syllabic consonant.

Syllable <- (((FirstConsonants)? !(RepeatedVowel)

!(&Mono V2 RepeatedVowel) VowelSegment

!(Badfinalpair) (FinalConsonant)? (FinalConsonant)?) (juncture)?)

JunctureFix <- (((FirstConsonants)? V2 juncture &(InitialCC)

(!(C1) RepeatedVocalic)) / ((FirstConsonants)? VowelSegment C1

!(InitialCC) &(MaybeInitialCC)))

SyllableFinal1 <- ((FirstConsonants)? !(RepeatedVocalic)

VowelSegment !([\’*]) ([-])? (&(Syllable) / &([y]) / !(letter)))

SyllableFinal2 <- ((FirstConsonants)? !(RepeatedVocalic)

VowelSegment (juncture)? (&([y]) / !(Letter)))

SyllableFinal2a <- ((FirstConsonants)? !(RepeatedVocalic)

VowelSegment (juncture)? (&([y]) / !(Letter)))

SyllableFinal2b <- ((FirstConsonants)? !(RepeatedVocalic)

VowelSegment [\’*] (&([y]) / !(Letter)))

StressedSyllable <- (((FirstConsonants)? !(RepeatedVowel)

!(&Mono V2 RepeatedVowel) VowelSegment

!(Badfinalpair) (FinalConsonant)? (FinalConsonant)?) [\’*])

FinalConsonant <- (!(NonmedialCC) !(NonjointCCC)

27

!(Syllable) C1 !((juncture V2)))

Syllable2 <- (((FirstConsonants2)? (VowelSegment2 / [y])

!(Badfinalpair) (FinalConsonant2)? (FinalConsonant2)?) (juncture)?)

FinalConsonant2 <- (!(NonmedialCC) !(NonjointCCC)

!(Syllable2) C1 !((juncture V2)))

This block of rules defines the Loglan syllable, in two versions, one for
borrowed predicate words and one for names, with some variations and sub-
classes specified.

The most general form of the Loglan syllable is the one which can appear
in names. It consists of an optional permitted sequence of initial consonants,
followed by a vowel segment or y, followed by one or two optional final conso-
nants, which may not make up a pair consisting of a non-continuant followed
by a continuant, followed by an optional juncture. The rules governing the fi-
nal consonants are that a final consonant may not begin a forbidden sequence
of two or three consonants from the lists above taken from NB3 (whether this
continues into the next syllable or not, and ignoring junctures), it may not
begin a syllable (junctures are placed as far to the left as possible if not ex-
plicitly given) and it may not be followed by an explicit juncture followed by
a vowel (a syllable will always incorporate at least one of a preceding block
of consonants).

In borrowed predicate words, the additional conditions are imposed that
the vowel segment may not be replaced by y and the last vowel in the vowel
segment may not start a sequence aa ee oo which forces a stress.

A class of stressed syllables appropriate in borrowings is given.
Classes of syllables are given which can be identified as (possibly) final

in a borrowed predicate word because they are vowel-final, not explicitly
stressed and followed by another syllable, y or a non-letter, or definitely final
because followed by y or a non-letter. Syllables final in a borrowing affix are
always followed by y and may be explicitly stressed: the classes given are not
incorrect but can be simplified (FIX).

The rule JunctureFix is a technical device to prevent the parser from
allowing borrowings which are variants of illegal complexes formed simply
by moving syllable breaks. A vowel-final syllable may not be followed by
an initial consonant pair – the juncture must be placed to separate the two

28

consonants (unless the second consonant of the pair starts a syllabic conso-
nant pair – the juncture i-gllu is permitted). A syllable may not end with
a consonant followed by followed by an initial consonant pair broken by a
juncture. The reason for this is that neither of these situations is allowed
to occur in a complex predicate, because syllable breaks in a complex must
respect breaks between djifoa. The point of this rule is to prevent complexes
with illegally placed syllable breaks from parsing as borrowings.

9/30/2014 Note use of VowelSegment2 in Syllable2 so that names may
contain vowels followed by syllabic consonants, ruled out now in predicates.

Name <- (([])* &(((uppercase / lowercase)

((!((C1 ([\’*])? !(Letter))) Lowercase))*

C1 ([\’*])? !(Letter) (!(.) / comma / &(period)

/ &(Name) / &(CI)))) ((Syllable2)+

(!(.) / comma / &(period) / &(Name) / &(CI))))

A name word (this is only a first approximation: further rules in the
grammar not presented in this section are used to peel words of other classes
off the front of a name word) is optional whitespace followed by a sequence
of letters and junctures satisfying the capitalization rules, resolvable into
syllables (permitting y as a vowel segment and with no restriction on repeated
vowels), and ending in a consonant and an optional final stress, followed by an
explicit pause (the comma being included in the word for parsing purposes) or
immediately followed by end of text, or non-included terminal punctuation,
or another name, or the word ci (the last two provisions enable us to write
serial names without commas).

This is phonetically seemingly far more restrictive than the rule given in
L1, but in practice the only change which seems to be required for names in
the corpus is to double any consonants used syllabically.

CCSyllableB <- (((FirstConsonants)? RepeatedVocalic

!(Badfinalpair) (FinalConsonant)? (FinalConsonant)?) (juncture)?)

A syllable whose “vowel” is a syllabic consonant.

29

BorrowingTail <- ((!(JunctureFix) !(CCSyllableB) StressedSyllable

((!(StressedSyllable) CCSyllableB))? !(StressedSyllable) SyllableFinal1)

/ (!(CCSyllableB) !(JunctureFix) Syllable

((!(StressedSyllable) CCSyllableB))? !(StressedSyllable) SyllableFinal2))

A borrowing tail is the two or three syllables final in a borrowing be-
ginning with the stressed syllable, followed by an optional syllable with a
syllabic consonant (such syllables are not counted for determination of pred-
icate penultimate stress) followed by an unstressed syllable. The end of the
borrowing is identified either by finding an explicit stress or by seeing whites-
pace after a final syllable (which cannot be explicitly stressed).

PreBorrowing <- (((!(BorrowingTail) !(StressedSyllable)

!(JunctureFix) Syllable))*

!(CCSyllableB) BorrowingTail)

A pre-borrowing is a stream of syllables which are neither explicitly
stressed nor stand at the beginning of a borrowing tail, followed by a bor-
rowing tail. This class is used in the algorithm for finding the left end of a
borrowing, below.

HasCCPair <- (C1? (V2 juncture?)+ !Borrowing)?

!(!InitialCC MaybeInitialCC) C1 juncture? C1)

CVCBreak <- (C1 V2 (juncture)? &(MaybeInitialCC)

C1 (juncture)? &((PreComplex / ComplexTail)))

CCVV <- ((&(BorrowingTail) C1 C1 V2 [\’*] V2)

/ (&(BorrowingTail) C1 C1 V2 (juncture)? V2

(!(Letter) / ((juncture)? [y]))))

Borrowing <- (!(CVCBreak) !(CCVV) &(HasCCPair)

!((V2 (juncture)? MaybeInitialCC V2))

30

!(CCSyllableB) (((!(BorrowingTail)

!(StressedSyllable) !(JunctureFix) Syllable))* !(CCSyllableB) BorrowingTail))

We now give the formal definition of a borrowing. A borrowing is a pre-
borrowing (look at the end of the rule). In addition, it either begins with a
pair of consonants or has a (C)Vn (meaning an optional consonant followed
by a sequence of vowels) followed by a pair of consonants which does not
start a shorter borrowing itself. This rule both makes sure that there is a
pair of adjacent consonants and prevents a cmapua from falling off the front
of a borrowed predicate.

It does not begin with a CVCC-sequence where the CC is an initial conso-
nant pair and peeling the CVC off would give a pre-complex (see below). Nor
can it begin with VCCV where the CC is an initial pair. The first syllable
of a borrowing does not contain a syllabic consonant.

There are no CCVV borrowings.
Nothing in this definition is new, except for technical details of placement

of syllable breaks, which do not contradict anything in the sources (in any
significant way: JCB did write some very odd junctures).

9/30/2014 The CC found in HasCCPair cannot be a permissible initial
broken by a juncture.

PreBorrowingAffix <- ((((!(StressedSyllable) !(SyllableFinal2a)

!(JunctureFix) Syllable))+ SyllableFinal2a)

(juncture)? [y] ([-])? (([,] ([])*))?)

BorrowingAffix <- (!(CVCBreak)

!(CCVV) &(HasCCPair) !((V2 (juncture)?

MaybeInitialCC V2)) !(CCSyllableB)

(((!(StressedSyllable) !(SyllableFinal2a)

!(JunctureFix) Syllable))+ SyllableFinal2a)

(juncture)? [y] ([-])? (comma)?)

StressedBorrowingAffix <- (!(CVCBreak) !(CCVV)

&(HasCCPair) !((V2 (juncture)? MaybeInitialCC V2))

!(CCSyllableB) (((!(StressedSyllable) !(SyllableFinal2a)

31

!(JunctureFix) Syllable))+ SyllableFinal2b) (juncture)? [y] ([-])? !([,]))

A borrowing affix is exactly a borrowing followed by y (a ruling in Ap-
pendix H) but it differs from a borrowing in having its stress, if any, placed
finally. These are not new conditions; they are found in our sources. Sep-
arate but very similarly motivated rules are needed because of the different
treatment of the stress.

I used to restrict the length of the sequence of vowels before the first
consonant pair; I no longer do, but I still think very long ones would be
absurd.

2.1.5 Djifoa (“affixes”) to the definitions of complex predicate and
predicate in general

We now begin the definition of the class of complex predicates. These are
peculiar in being built from djifoa (“affixes”) rather than syllables. In defin-
ing possible syllable breaks in complexes, I followed the rule that a syllable
in a complex predicate may not cross the boundary of a djifoa.

yhyphen <- ((juncture)? [y] !([\’*]) ([-])? !([y]) &(letter))

A y-hyphen is a buffering syllable which may be placed between djifoa to
fix pronunciation problems. It is regarded as part of the preceding djifoa for
parsing purposes. It is not stressed and will be followed (after an optional
hyphen) by a letter other than y.

CV <- ((C1 V2 !(V2)) !([\’*]) ([-])?)

A CV is the final syllable of a five letter djifoa. It is never stressed.

Cfinal <- ((C1 yhyphen) / (!(NonmedialCC)

!(NonjointCCC) C1 !(((juncture)? V2))))

32

A Cfinal is the final consonant of a CVC djifoa. It will be manifested
either as a consonant followed by a y-hyphen or a consonant not starting a
forbidden sequence of consonants and not followed (mod possible intervening
juncture) by a vowel.

hyphen <- (!(NonmedialCC) !(NonjointCCC)

(([r] !(((juncture)? [r])) !(((juncture)? V2)))

/ ([n] (juncture)? &([r]))

/ ((juncture)? [y] !([\’*]))) ((juncture)? &(letter))

!(((juncture)? [y])))

This is a formal description of all the various kinds of hyphens used to
fix pronunciation problems at djifoa boundaries (including y-hyphens). This
will be an r not followed by another r or a vowel, or an n followed by an
r, or a y-hyphen. No hyphen is followed by a y (mod intervening juncture).
The hyphen is regarded as part of the preceding djifoa for parsing purposes.

StressedSyllable2 <- (((FirstConsonants)?

VowelSegment !(Badfinalpair)

FinalConsonant (FinalConsonant)?) [\’*])

This is an explicitly stressed syllable of the kind that can occur in a
complex predicate. Repeated vowels are not restricted.

CVVStressed <- (((C1 &(RepeatedVowel)

V2 !([\’*]) ([-])? !(RepeatedVowel) V2 (hyphen)?) (([\’*] / juncture))?)

/ (C1 !(BrokenMono) V2 [-] V2 [\’*]) / (C1 !(Mono) V2 V2 [\’*]))

This is the class of all finally stressed two-syllable CVV dijifoa. The first
sort, with a repeated vowel, may be qualified as possibly finally stressed. The
class BrokenMono applies to optional monosyllables which are forced to be
two syllables by an explicit juncture. One has CVV djifoa here with optional
hyphen in the middle but in any case certain to be two syllables, and either
with explicit stress at the end or repeated vowels of the sort which force a
stress.

33

CVV <- (!((C1 V2 [\’*] V2 [\’*]))

((C1 !(BrokenMono) V2 (juncture)?

!(RepeatedVowel) V2 (hyphen)?) (juncture)?))

The completely general form of a CVV djifoa, completely decorated with
options of hyphens and junctures.

CVVFinal1 <- (C1 !(BrokenMono) V2 [\’*] V2 ([-])?)

CVVFinal2 <- (((C1 !(Mono) V2 V2) / (C1 !(BrokenMono)

V2 juncture V2)) !(Letter))

CVVFinal5 <- (((C1 !(Mono) V2 V2) / (C1 !(BrokenMono)

V2 juncture V2)) &(((juncture)? [y])))

CVVFinal3 <- (C1 Mono !([\’*]) ([-])?)

CVVFinal4 <- (C1 Mono !(Letter))

CVV djifoa which may be final in a complex, either because of an explicit
stress on the first syllable of two or because they have two syllables and end
in non-letters (forms 1 and 2)

Form 5 is final in a borrowing affix
Forms 3 and 4 are possible or actual final CVV monosyllables, actual if

followed by a non-letter, possible if not explicitly stressed or broken by an
explicit juncture.

CVC <- ((C1 V2 Cfinal) (juncture)?)

CVCStressed <- (C1 V2 !(NonmedialCC) !(NonjointCCC) C1 [\’*] (yhyphen)?)

CVC djifoa, stressed and otherwise. These cannot be final in a complex.

34

CCV <- (InitialCC !(RepeatedVowel) V2 (yhyphen)? (juncture)?)

CCVStressed <- (InitialCC !(RepeatedVowel) V2 [\’*])

CCVFinal1 <- (InitialCC !(RepeatedVowel) V2 !([\’*]) ([-])?)

CCVFinal2 <- (InitialCC V2 !(Letter))

CCV djifoa, their stressed form, and two final forms, the certainly final
form without a following letter or juncture and the possibly final form without
an explicit stress.

CCVCVMedial <- (CCV C1 [y] ([-])? &(letter))

CCVCVMedialStressed <- (CCV [\’*] C1 [y] ([-])? &(letter))

CCVCVFinal1 <- (InitialCC V2 [\’*] CV)

CCVCVFinal2 <- (InitialCC V2 (juncture)? CV !(Letter))

The CCVCV five letter djifoa and variations. The first two are the medial
forms with final y in stressed and unstressed forms. Two final forms are given
for CCVCV but of course expression of the final vowel forces this to be final
in any case. This could be simplified though it is not an error (FIX).

CVCCVMedial <- (C1 V2 ((juncture &(InitialCC)))?

!(NonmedialCC) C1 (juncture)? C1 [y] ([-])? &(letter))

CVCCVMedialStressed <-

((C1 V2 ([\’*] &(InitialCC)) !(NonmedialCC) C1 C1 [y] ([-])? &(letter))

/ (C1 V2 !(NonmedialCC) C1 [\’*] C1 [y] ([-])? &(letter)))

CVCCVFinal1a <- (C1 V2 [\’*] InitialCC V2 ([-])?)

35

CVCCVFinal1b <- (C1 V2 !(NonmedialCC) C1 [\’*] CV)

CVCCVFinal2 <- (C1 V2 ((juncture &(InitialCC)))?

!(NonmedialCC) C1 (juncture)? CV !(Letter))

The CVCCV five letter djifoa in their variations. This case is more com-
plicated because there are two different places where an internal syllable
break or stress can be placed: CV-CCV or CVC-CV. The final forms again
can probably be simplified.

GenericFinal <- (CVVFinal3 / CVVFinal4 / CCVFinal1 / CCVFinal2)

GenericTerminalFinal <- (CVVFinal4 / CCVFinal2)

These are final or possibly final monosyllables. The second one includes
only those which are not followed by a letter or juncture and so must be final.

Affix1 <- (CCVCVMedial / CVCCVMedial / CCV / CVV / CVC)

These are the non-borrowing djifoa.

Peelable <- (&(PreBorrowingAffix) !(CVVFinal1)

!(CVVFinal5) Affix1 (!(Affix1)

/ &((&(PreBorrowingAffix) !(CVVFinal1)

!(CVVFinal5) Affix1 !(PreBorrowingAffix) !(Affix1)))

/ Peelable))

The peelable djifoa at the beginning of a borrowing affix are a string of
Affix1’s each of which is initial in a pre-borrowing-affix, none of which are
final in a borrowing affix or followed by an Affix1 final in a borrowing affix.

36

Any peelable djifoa in this sense are actually fake: if we see no Affix1 or a
peelable Affix1 we are at the start of a borrowing affix.

The details are horrible: the upshot is that if one has a Peelable initial
Affix1 or no initial Affix1, the apparent borrowing affix which follows is not
resolvable into djifoa. Something which looks like a borrowing affix, has a
front Affix1 but does not have a peelable front Affix1 is in fact resolvable into
Affix1’s and not a borrowing affix at all. Same remarks for Peelable2 below.

FiveLetterFinal <- (CCVCVFinal1 / CCVCVFinal2

/ CVCCVFinal1a / CVCCVFinal1b / CVCCVFinal2)

Peelable2 <- (&(PreBorrowing) !(CVVFinal1)

!(CVVFinal2) !(CVVFinal5) !(FiveLetterFinal)

Affix1 !(FiveLetterFinal) (!(Affix1)

/ &((&(PreBorrowing) !(FiveLetterFinal)

!(CVVFinal1) !(CVVFinal2) !(CVVFinal5)

Affix1 !(PreBorrowing) !(FiveLetterFinal) !(Affix1)))

/ Peelable2))

As Peelable, but for borrowings proper.

Affix <- ((!(Peelable) !(Peelable2) Affix1) / BorrowingAffix)

Affix2 <- (!(StressedSyllable2) !(CVVStressed) Affix)

Since we can exclude fake djifoa read from the fronts of borrowing affixes
or borrowings, we can read Affixes (djifoa). Affix2 excludes stressed non-
borrowing djifoa.

ComplexTail <- ((Affix GenericTerminalFinal)

/ (!((!(Peelable) Affix1)) StressedBorrowingAffix GenericFinal)

/ (CCVCVMedialStressed GenericFinal)

/ (CVCCVMedialStressed GenericFinal)

/ (CCVStressed GenericFinal) / (CVCStressed GenericFinal)

37

/ (CVVStressed GenericFinal) / (Affix2 CVVFinal1)

/ (Affix2 CVVFinal2) / CCVCVFinal1 / CCVCVFinal2

/ CVCCVFinal1a / CVCCVFinal1b / CVCCVFinal2

/ (!((CVVStressed / StressedSyllable2)) Affix

!((!(Peelable2) Affix1)) Borrowing !(((juncture)? [y]))))

This catalogues the djifoa or pairs of djifoa which are guaranteed to ter-
minate a complex, either because they explicitly end or because they are
explicitly stressed. I don’t believe I need to reproduce the catalogue of situ-
ations in English; I think they are readable from the rule.

Primitive <- (CCVCVFinal1 / CCVCVFinal2

/ CVCCVFinal1a / CVCCVFinal1b / CVCCVFinal2)

This class is actually redundant (primitives turn out to be complexes),
but it is nice to have the parser label the primitive five letter forms.

PreComplex <- (ComplexTail / ((!((CVCStressed

/ CCVStressed / CVVStressed / ComplexTail

/ StressedSyllable2)) Affix) PreComplex))

This is a stream of djifoa none of which have a misplaced stress or start
a ComplexTail, followed by a ComplexTail.

Complex <- (!((C1 V2 (juncture)? (V2)? (juncture)?

(Primitive / PreComplex / Borrowing / CVV)))

!((C1 V2 (juncture)? &(MaybeInitialCC) C1 (juncture)?

&((PreComplex / ComplexTail)))) PreComplex)

A complex is a pre-complex satisfying initial conditions: one of these is
that a CV or CVV cannot fall off the front and leave a predicate; the other
forbids CVCC- initial predicates with more than six letters with the CC
initial.

38

Predicate <- ((&(caprule)

((Primitive / Complex / Borrowing)

((([])* Z AO (’, ’)? ([])* Predicate))?))

/ (C1 V2 (V2)? ([])* Z AO

(comma)? ([])* Predicate))

The full definition of a predicate word. Note that a borrowing is whatever
is not a primitive or complex. Many though not all primitives and complexes
would also parse as borrowings, and various tricky errors in complex predicate
formation have manifested invisibly to ordinary use by parsing complexes as
borrowings due to a bug. The option of building complex predicates from
predicate words using zao is supported. It is worth noting that I do not
require a pause after zao when it is followed by a vowel-initial borrowing.

6/11 a consonant initial cmapua can be affixed with ZAO to the front of
a predicate.

It is important to note that there is no grouping with ZAO and there
is no distinction between constructions with ZAO and the usual complexes,
or indeed between either of these and mixed forms. Of course cmapua can
be affixed to the front of a complex with zao which happen not to have
corresponding djifoa.

7/30 added option of an explicit pause after ZAO. I am suspicious of my
earlier belief that ZAO could be followed by a vowel initial predicate without
a pause; I think the ZAO would affix to the front of the predicate word
instead (a pause guards against this).

2.2 Loglan Lexicography

2.2.1 Introductory remarks

This section deals with details of Loglan that are for the most part not man-
ifest in the previous official formal grammar. The word classes are defined
by LIP using rather opaque internal representations, and there are clearly
bugs. Our program is to parse Loglan from the level of letters upward, and
as a result we have had to mandate exact formal definitions for these word
classes, which in some cases are clearly not exactly the same as those implicit
in LIP. Details will be seen below.

39

Quotation constructions and other constructions which import foreign
text are handled in this section. My implementation of strong quotation is
a completely new proposal.

6/7/2014, complete rewrite: Here I am working on drafting a proper
narrative version of the lexer section. This involved moving things around;
alphabetical order is not a narrative structure.

2.2.2 Auxiliary rules

__LWinit <- (([])* !(Predicate) &(caprule))

This is a marker for the beginning of a freestanding cmapua (structure
word). Whitespace will be scanned over initially. The class excludes fake unit
cmapua which are actually the beginning of predicates. The capitalization
convention is enforced.

Oddvowel <- ((juncture)? (((V2 (juncture)?

V2 (juncture)?))* V2) (juncture)?)

This is a device for ensuring that CV cmapua are not mistaken for initial
segments of CVV cmapua. Under normal circumstances, a cmapua unit will
not be followed by an odd number of vowels without a pause (junctures are
ignored). The reason for this is that a stream of vowels which is not in initial
position in a block of letters will be a string of VV attitudinals (UI words).
So a little word will not be followed by a specimen of class Oddvowel (a
stream of vowels of odd length).

This happens in the previous grammar only before VCV letterals, which
are still present in this grammar but which I intend to remove.

__LWbreak <- (!(Oddvowel) !((!((([])* Predicate))

(A / ICI / ICA / IGE / I))) ((comma &((V2 / A))))?)

40

This class is used to mark the ends of cmapua and some other words. It
enforces the condition that the word is not followed without a space by an
odd number of vowels. Most of its business is to ensure that vowel initial
words which are not predicates (which will be members of certain classes of
logical and utterance connectives, which are listed, will not follow a word
without being preceded by an explicit pause. Further, the class allows an
explicit pause to follow the word (included in the word for parsing purposes)
before any vowel-initial or A word (not all A words are vowel initial, but
the non-vowel-initial ones (such as noa) must nonetheless be preceded by
pauses). It isn’t clear to me that this class in its present form has much to
do with cmapua in particular (LOOK INTO THIS).

CANCELPAUSE <- (comma

((’y’ comma) / (C UU __LWbreak)))

PAUSE <- (!(CANCELPAUSE) comma

!((A / ICI / ICA / IGE / I)) !((&(V2) Predicate)))

PAUSE contains those pauses which have potential grammatical signifi-
cance. Such a pause will not be followed by a logical connective or a vowel
initial predicate. It will not be an instance of CANCELPAUSE: a pause
followed by y followed by a pause (“uh”. . .) or by the word cuu is consid-
ered to have been inadvertant. Of course CANCELPAUSE can also be used
deliberately for effect!

Pauses after names or after stressed syllables before predicates are also not
PAUSE, as they are consumed by previous strings (there are other instances
of this kind of explicit pause consumed before it can get into PAUSE).

2.2.3 Logical connectives

A0 <- ((([AEOUaeou] !([AEIOUaeiou]))

/ (!Predicate H a)) (juncture)? !(Oddvowel))

A <- (__LWinit !(Predicate)

(((N u) &((u / (N o)))))? ((N o))? A0 ((N OI))?

41

!([]+ PA ((!Predicate G u)/PAUSE))

((PA? ((!Predicate G u) / PAUSE)))? !(Oddvowel))

A1 <- (A __LWbreak)

These three classes define the main series of logical connectives. A0 con-
tains the atomic logical connectives, the words a e o u amd the interrogative
connective ha.

The class A of compound logical connectives is quite complex. One may
prefix a compound logical connective with no. A no or u initial connective
may further be prefixed with nu. The core of an A connective is an instance
of A0. It can then be suffixed with noi and further suffixed with a PA
class tense/location/relation word which will be closed with either gu or an
explicit pause. The only change here from the L1 version of the language is
the requirement that APA words be closed with gu or an explicit pause.

The class A is not closed up with LWbreak because it can serve as an
initial component of other classes. Other rules in the grammar (such as
LWbreak above) ensure that one must explicitly pause before any word or
word component of class A.

12/18/2014 Allows an untensed A word to be closed with GU or a pause.
5/15/2015 fixes a bug in the 12/18 innovation.
5/16/2015 forbids an A word without a PA suffix to be followed by whites-

pace then a pause or GU closed occurrence of PA.
A1 is inhabited by top level A words.

ACI <- (A (PA)? !Predicate C i __LWbreak)

AGE <- (A (PA)? !Predicate G e __LWbreak)

These are two other series of logical connectives. The ACI connectives
bind more tightly. The AGE connectives bind more loosely. See the grammar
section for details. A modification to the grammar was required to ensure
that an A connective followed by GE cannot be confused with AGE: the so-
lution is that classes of predicates and arguments linked by A1 are forbidden
to start with GE (which is deprecated as a matter of style already): this

42

is a new grammatical rule though, and causes certain examples given (and
deprecated) by JCB not to parse at all.

5/15 forbids spaces in these words.

CA0 <- ((__LWinit (N o)? !Predicate ((C a)/(C e)/(C o)

/(C u)/(Z e)/(C i H a)) !Oddvowel) (N OI)?)

CA1 <- (!Predicate (((N u) &(((C u) / (N o)))))?

((N o))? CA0

((PA ((G u) / PAUSE)))? !(Oddvowel))

CA <- (__LWinit &(caprule) CA1 __LWbreak)

ZE2 <- (__LWinit (Z e) __LWbreak)

An auxiliary series of logical connectives (used to link predicates internally
to metaphors and in the construction of some other classes). Their structure
is closely analogous to that of the main series; no pauses are needed.

12/18/2014 includes NO prefix and NOI suffix in core CA connective
CA0. I should remove the optional NO in CA1.

The rule given here allows more CA words than LIP seems to permit.
ZE2 signals a variant use of ZE to connect arguments.

I <- (__LWinit i !([]+ PA) ((PA ((!Predicate (G u))/ PAUSE)))? __LWbreak)

ICA <- (__LWinit !(Predicate) i ((!Predicate H a) / CA1) __LWbreak)

ICI <- (__LWinit i (CA1)? !Predicate C i __LWbreak)

IGE <- (__LWinit i (CA1)? !Predicate G e __LWbreak)

Sentence and utterance level connectives with different levels of prece-
dence. See the final rules of the grammar for the details.

5/15 updates to prevent spaces in middles of words.

43

5/16 refinements to the 5/16 updates forbidding replacement of a PA
suffix form with whitespace followed by a PA suffix form. It is possible that
the 5/16 mod to class I should follow the form of that to class A (forbidding
only whitespace followed by a pause or GU closed PA suffix form) but I think
the present form is justifiable.

KA0 <- !Predicate (((K a) / (K e) / (K o) / (K u) / (K i H a)) !(Oddvowel))

KOU <- !Predicate (((K OU) / (M OI) / (R AU) / (S OA)) !(Oddvowel))

KOU1 <- (((N u) / (N o) / (N u N o)) __LWinit KOU)

KA <- (__LWinit &(caprule)

(((((N u) &((K u))))? KA0)

/ ((KOU1 / KOU) K i)) ((N OI))? __LWbreak)

KI <- (__LWinit (K i) ((N OI))? __LWbreak)

The forethought connectives. The causal word classes KOU and KOU1,
which are more naturally associated with the PA words, are needed for the
causal series.

2.2.4 Numerals, letters, acronyms, pronouns

NI0 <- !Predicate (((K UA) / (G IE) / (G IU) / (H IE)

/ (H IU) / (K UE) / (N EA) / (N IO)

/ (P EA) / (P IO) / (S UU) / (S UA) / (T IA)

/ (Z OA) / (Z OI) / (H o) / (N i) / (N e) /

(T o) / (T e) / (F o) / (F e) / (V o) / (V e)

/ (P i) / (R e) / (R u) / (S a) / (S e) / (S i)

(S o) / (S u) / (H i)) !(Oddvowel))

Atomic numeral and quantifier words.

44

TAI0 <- !Predicate (((V1 (juncture)? !(Predicate)

!(Name) M a (juncture)?) / (V1 (juncture)?

!(Predicate) !(Name) F i (juncture)?)

/ (C1 AI) / (C1 EI) / (C1 EO)

/ (Z i (juncture)? V1 (juncture)?

((M a))? (juncture)?)) !(Oddvowel))

Atomic letter words. The deprecated V-initial names for vowels are re-
tained for the moment. V-ma and V-fi are the old upper- and lowercase
vowel names. The new ones are zi-V-ma and zi-V. I am not sure what the
name for y should be: ziy is supported but surely would cause problems.
C1-ai and C1-ei name upper and lower case consonants. C1-eo names Greek
letters. We should have CVV letterals for qwx; these letters are quite often
used in mathematics.

The principal function of these words is as pronouns!

NI1 <- (NI0 ((M a))? ((M OA (NI0)*))? !(Oddvowel))

This rule supports notation for powers of ten (though it also allows other
odd things). An atomic quantifier word (in intention a numeral but the
grammar does not require this) can be followed by an optional ma, then an
optional moa which may have a numeral attached. The ma multiplies by 100;
moa multiplies by 1000; moa followed by n multiplies by 1000n (so nomoato

is one million). This is new. The shape of moa is different to avert confusion
with the pronoun mo.

Notice that this change ensures that the use of ma to multiply by one
hundred and the use of ma to capitalize a letter are distinguishable as what
occurs just before them will make it clear what is intended. ma and moa are
not members of NI0.

RA <- !Predicate (((R a) / (R i) / (R o)) !(Oddvowel))

45

A subset of the quantifier words which do double duty as suffixes creating
predicates from quantity words.

5/16 guarded from being initial in a predicate, as many word component
forms are in the 5/15 and 5/16 updates.

IE1 <- (__LWinit IE __LWbreak)

The interrogative “which”, also used in argument constructions.

NI <- (__LWinit (IE1)?

(((((RA / (NI1 &(NI1))))* NI1) / RA)

(CA0 ((((RA / (NI1 &(NI1))))* NI1) / RA))*

!((([])+ !(Predicate) (NI1 / RA)))

((&((M UE)) Acronym (comma

/ !(.) / &(period)) !((C u)) !((P UI))))?

(((C u) / ((comma)?

([])* P UI &(NI))))? !(Oddvowel))

mex <- (__LWinit NI __LWbreak)

The class of mathematical expressions. mex is a freestanding word class,
NI can be a component of other classes. There is an optional initial ie

(which?); this is followed by a string of NI1’s and RA’s in which a RA is
not final unless it is the sole item in the string: this component is a complex
number or quantifier; one may optionally append an acronym followed by an
explicit pause as a dimension, and there is a final option of appending cu. A
NI item may be terminated by the construction pui, or by an explicit pause
followed by pui (yes, I really mean for the pause to be before pui). The
termination option is new, avoiding the need for explicit pauses to determine
boundaries between adjacent NI constructions (though one can use pauses
to define such boundaries as well).

A fix is needed to ensure that a NI class form ends after an acronym.
12/6/2014 allowing CA0 connected quantifiers (with noninitial negations

with NOI allowed)
12/18/2014 optional NO and NOI attached to CA0 are now internal to

that class

46

Acronym <- (([])*

((M UE) / TAI0 / ([Zz] V2 !(V2)))

((NI1 / TAI0 / ([Zz] V2 (!(V2) /

([Zz] &(V2))))))+ !((([])* !(Predicate)

(NI1 / TAI0 / ([Zz] V2 (!(V2) / ([Zz] &(V2)))))))

(([,] &((([])+ !(Predicate) (NI1 / TAI0

/ ([Zz] V2 (!(V2) / ([Zz] &(V2)))))))))?)

There is now a single acronym class. An acronym is a sequence of letter
names (possibly abbreviated in the case of vowels, and number names, be-
ginning either with mue or a letter (possibly abbreviated) and having more
than one component (the dummy mue allows the formation of one letter
acronyms and also of numeral initial acronyms without confusion with nu-
merals or letterals. Acronyms are used to form dimensioned numbers and to
form acronymic names (no longer acronymic predicates).

5/16 capitalization in the interior of acronymic names (but not dimen-
sions) made free by eliminating caprule here. This restores usages exhibited
in NB3 and other Loglan sources, along the lines of la DaiNaizA. A simi-
lar update permitting free capitalization in dimensions would be trickier to
implement but not undesirable.

TAI <- (__LWinit (TAI0

/ ((G AO) !(V2) ’, ’? ([])*

(Name / Predicate / (C1 V2 V2 (!(Oddvowel)

/ &(TAI0))) / (C1 V2 (!(Oddvowel)

/ &(TAI0)))))) __LWbreak)

This is the full class of letterals, including John’s proposal that allows
construction of letters using gao followed by an arbitrary word (name, pred-
icate or consonant-initial unit cmapua).

DA0 <- (((T AO) / (T IO) /

(T UA) / (M IO) / (M IU) / (M UO)

47

/ (M UU) / (T OA) / (T OI) / (T OO)

/ (T OU) / (T UO) / (T UU) / (S UO)

/ (H u) / (B a) / (B e) / (B o) / (B u)

/ (D a) / (D e) / (D i) / (D o) / (D u)

/ (M i) / (T u) / (M u) / (T i) / (T a)

/ (M o)) !(Oddvowel))

Atomic pronouns of various kinds. They appear in this section because
letterals are also pronouns.

DA1 <- (!Predicate (TAI0 / DA0) ((C i ![] NI))? !(Oddvowel))

DA <- (__LWinit DA1 __LWbreak)

Pronouns. These can be suffixed with mathematical expressions using
ci. Please note that letteral pronouns are single letters, possibly with a
numerical subscript. There are no multi-letter variables and thus there is
no need to pause between letteral pronouns which appear in sequence as
arguments in a sentence. It does appear as if this is what JCB assumed
in NB3, though it is not what LIP does. It is far more important to treat
sequences of pronouns sensibly than to support use of multi-letter variables.
This is a change from LIP but not I think from the actual intentions of the
founder.

5/15 changes to avoid spaces in middles of words.
There can be a need to pause after an acronym (of either kind) to avoid

it absorbing a letteral. [I am contemplating requiring a pause after any
acronym in all contexts].

2.2.5 Tense/location/relation operators

Here begins the definition of tense/location/relation operators. The compo-
nent classes KOU1 and KOU were referenced early because of their role in
defining forethought causal connectives.

PA0 <- !Predicate (((G IA) / (G UA)

48

/ (P IA) / (P UA) / (N IA) / (N UA)

/ (B IU) / (F EA) / (F IA) / (F UA)

/ (V IA) / (V II) / (V IU) / (C IU) / (C OI)

/ (D AU) / (D II) / (D UO) / (F OI) / (F UI)

/ (G AU) / (H EA) / (K AU) / (K II) / (K UI)

/ (L IA) / (L UI) / (M IA) / (D II) / (M OU)

/ (N UI) / (P EU) / (R OI) / (R UI) / (S EA)

/ (S IO) / (T IE) / (V a) / (V i) / (V u)

/ (P a) / (N a) / (F a) / (V a)

/ (V i) / (V u) / KOU) !(Oddvowel))

The atomic tense/location/relation operators. The causal ones have al-
ready been given in class KOU.

5/16 guarded from being initial in a predicate.

PA <- (!Predicate ((!(PA0) NI))?

((KOU1 / PA0))+ (((CA0

((KOU1 / PA0))+))*

!([]+ PA)

((ZI / ((’, ’)?

([])* J UU &(PA))))? !(Oddvowel))

A complex PA word begins with an optional numeral or quantifier, fol-
lowed by a core PA0 or KOU1 word, which may be linked by CA0 connectives
to further possibly negated PA0/KOU1 words, then may optionally close with
a ZI qualifier or with JUU (possibly preceded by a pause) followed by an-
other PA word. JUU is a new device enabling one to separate adjacent PA
words without pausing (although one can still also separate such words with
an explicit pause).

12/6/2014 eliminated the option of an initial NOI, which can be ambigu-
ous with a preceding A connective such as ANOI

12/18/2014 optional NO and NOI attached to CA0 are now internal to
that class

5/15 updates to prevent spaces internal to words. !Predicate often re-
places LWinit in definitions of word components.

49

5/16 a PA word not closed with ZI or JUU forms cannot be followed by
whitespace and another PA: PA words must be conglomerated where not
explicitly separated with commas as part of the no spaces in words reform.

PA2 <- ((__LWinit PA __LWbreak)

((!(PAUSE) freemod))?)

A PA word as a preposition, so to speak.

GA <- (__LWinit (G a) __LWbreak)

PA1 <- (((PA2 / (GA (freemod)?)) __LWbreak)

((!(PAUSE) freemod))?)

A PA word as a predicate marker (a tense, so to speak). GA is the purely
grammatical predicate marker with no semantic freight.

ZI <- !Predicate ((Z i) / (Z a) / (Z u))

qualifying suffixes for tense and location words.
5/16 guarded against being initial in a predicate.

2.2.6 Articles and quotation constructions

Below, find a block of articles, in the most general sense, including quotation
constructions.

LE <- (__LWinit ((L EA) / (L EU)

/ (L OE) / (L EE) / (L AA) / (L e)

/ (L o) / (L a)) ((DA1 / TAI0))?

(PA)? __LWbreak)

50

The commonest class of argument constructors. These can be adorned
with an optional pronoun followed by an optional tense/location/relation
operator.

LA <- (__LWinit (L a)

((DA1 / TAI0))?

!([]+ PA) (PA)? __LWbreak)

The name constructor. It also belongs to LE and can be adorned simi-
larly, but there are some specifically LA constructions. The details of this
separation are new features (or at least adjustments and clarifications) of
this grammar.

5/16 PA suffix component further guarded in a way which I am not sure
has any actual grammatical effect.

(* LEPO <- (__LWinit ((L e)

/ (L o) / (NI1)+ / RA) PO1 __LWbreak) *)

LEFORPO <- (__LWinit ((L e) / (L o)

/ (NI1)+ / RA) __LWbreak)

The abstraction designation constructors. lepo is the commonest, but
examination of the rule will reveal other forms. The 9/20/2014 modification
removes this class. LEFORPO describes the operators which can appear
initially to an abstract clause description as of 9/20/2014. It includes some
quantifier words as in SUPO. The components of what used to be a LEPO
word are now separate words and can for example be separated by a pause.

LIO <- (__LWinit (L IO) __LWbreak)

The numeral article.

51

LAU <- (__LWinit ((L AU) / (L OU)) __LWbreak)

LUA <- (__LWinit ((L UA) / (L UO)) __LWbreak)

Left and right boundary markers for explicit sets and lists above.
Below, the beginning of quotation constructions.

Quotemod <- (((Z a) / (Z i)) !(Oddvowel))

affixes (in the true sense) which can qualify the sense of a quotation (as
text or sound)

LI1 <- (L i)

LU1 <- (L u)

LI <- (__LWinit LI1 !(V2) (Quotemod)?

((([,])? ([])+))? utterance0 (’, ’)?

__LWinit LU1 __LWbreak)

Above is the construction for quoting a Loglan utterance, li utterance
lu. The convention of enclosing the quoted text in explicit pauses is allowed
but not required.

stringnospaces <- ([,]? ([]+ (![,] !period .)+)

(([,]? []+ &letter)/&period/!.))

a block of text beginning with whitespace or an explicit pause and ending
with whitespace, an explicit pause, or before terminal punctuation or end of
text, and containing no commas or terminal punctuation otherwise. It may
contain other symbols or non-Loglan letters. Initial and final whitespace
must be expressed phonetically as a pause.

52

LAO1 <- (L AO)

LAO <- ([]* (LAO1 stringnospaces

([y] stringnospaces)*))

JCB advertises this as the Linnaean biological name construction, but
it is actually a perfectly general device for constructing foreign names in
general (Steve Rice noted this in L3). A name is lao followed by one or
more stringnospaces blocks. If there is more than one block, they must be
separated by y bounded with pauses. JCB does not require writing the y

but for the moment I do. One must pause explicitly at the end of a LAO
construction.

I propose that if one wants to construct names by look rather than sound,
one should use lao.

LIE1 <- (L IE)

CII1 <- ((C II) / [y])

LIE <- ([]* LIE1 ([] !NI)? Quotemod?

stringnospaces (CII1 ([] !NI)? stringnospaces)*)

This is my strong quotation construction, a new proposal, quite different
from and intended to completely replace the L1 strong quotation proposal.
The format is very similar to LAO (accidentally, I was not aware of the
latest LAO specification). The format is lie (quoted text), with quoted text
broken by cii where breaks occur. Quoted text may not contain commas
(commas like whitespace to be replaced by cii) or terminal punctuation.
The initial lie may be qualified with Quotemod and/or with a numeral to
indicate nested quotation. cii may also be numeral qualified to indicate
level of nesting of quotation. Essay promised with all details.

LW <- (&(caprule) (((!(Predicate) V2 V2))+

53

/ ((!(Predicate) (V2)? ((!(Predicate) LWunit))+) / V2)))

LIU0 <- ((L IU) / (N IU))

LIU1 <- (__LWinit ((LIU0 !(V2) (Quotemod)?

((([,])? ([])+))? (Name / Predicate

/ (LW (([,] ([])+ !([,])) / &(period)

/ !(.) / &((([])* Predicate))))))

/ (L II (Quotemod)? TAI __LWbreak)))

This is the single word quotation construction. Oddly, this is the only
place where the rule LW implementing the NB3 definition of compound cma-
pua is used, and so it appears here. A single name, predicate, or compound
cmapua word may be quoted. liu (compound cmapua) must be comma ter-
minated except when followed by a predicate or terminal punctuation. LIP
appears to quote only actual compound cmapua (which is the basis of my
claim that LIP makes no use of the compound cmapua phonetic algorithm
anywhere). Mine will quote any phonetically possible cmapua. One can use
niu to indicate that the quoted word is not actually a Loglan word.

lii (name of a letter) gives an actual name for a letter (letterals being
pronouns when unadorned).

SUE <- (__LWinit ((S UE)/(S AO))

stringnospaces)

This handles two quite different functions with the same grammar (not
quotation constructions but similar in handling non Loglan text). sao (for-
eign word) constructs a predicate synonymous with the foreign word. sue

(transcribed sound) constructs an onomatpoeic predicate meaning to make
the given sound.

2.2.7 Assorted grammatical particles, somewhat classified

Below, find a block of terminators and boundary markers with various gram-
matical functions. These are best understood by looking at their use in the
grammar.

54

CI <- (__LWinit (C i) __LWbreak)

CUI <- (__LWinit (C UI) __LWbreak)

GA2 <- (__LWinit (G a) __LWbreak)

GE <- (__LWinit (G e) __LWbreak)

GEU <- (__LWinit ((C UE) / (G EU)) __LWbreak)

GI <- (__LWinit ((G i) / (G OI)) __LWbreak)

GO <- (__LWinit (G o) __LWbreak)

GU <- (__LWinit (G u) __LWbreak)

GUI <- (__LWinit (G UI) __LWbreak)

GUO <- (__LWinit (G UO) __LWbreak)

GUU <- (__LWinit (G UU) __LWbreak)

GUE <- (__LWinit (G UE) __LWbreak)

More grammatical particles below. These ones construct subordinate
clauses (strictly speaking je/jue constructions are tightly bound arguments).
We also class the dio case tags as clause constructors or modifiers.

JE <- (__LWinit (J e) __LWbreak)

JUE <- (__LWinit (J UE) __LWbreak)

je and jue link arguments very tightly to predicates (or modifiers, ac-
cording to a new proposal). je links first terms after the predicate, jue links
second and subsequent items.

55

JI <- (__LWinit ((J IE) / (J AE) / (P e) / (J i) / (J a)) __LWbreak)

JIO <- (__LWinit ((J IO) / (J AO)) __LWbreak)

The two classes above construct subordinate clauses, the first with terms
or predicates, the second with sentences. See the grammar.

DIO <- (__LWinit ((B EU) / (C AU)

/ (D IO) / (F OA) / (K AO) / (J UI)

/ (N EU) / (P OU) / (G OA) / (S AU)

/ (V EU) / (Z UA) / (Z UE) / (Z UI)

/ (Z UO) / (Z UU) / (L AE) / (L UE))

__LWbreak)

These are the case tags, including the positional ones (and the lae and
lue constructions which are rather different in intent but have the same
grammar).

Grammatical particles below used to construct or modify predicates.

ME <- (__LWinit ((M EA) / (M e)) __LWbreak)

convert descriptions to predicates.

NU0 <- (((N UO) / (F UO) / (J UO) / (N u) / (F u) / (J u)) !(Oddvowel))

NU <- (__LWinit ((NU0 (NI)? (freemod)?))+ __LWbreak)

rearrange order of or duplicate arguments (conversion). These can be
composed.

56

PO1 <- (__LWinit ((P o) / (P u) / (Z o)) !(Oddvowel))

POSHORT1 <- (__LWinit ((P OI) / (P UU)

/ (Z OO)) !(Oddvowel))

PO <- (__LWinit PO1 __LWbreak)

POSHORT <- (__LWinit POSHORT1 __LWbreak)

Construct abstraction predicates from ordinary predicates. POSHORT
is inhabited by experimental forms which are always short-scope and cannot
be put into LEPO words. See the grammar.

9/20/2014 the long scope PO words are now always long-scope, so they
are removed from the POSHORT class.

Below find grammatical particles used in the construction of freemods.

DIE <- (__LWinit ((D IE) / (F IE) / (K AE) / (N UE) / (R IE)) __LWbreak)

register markers (indications of attitude)

HOI <- (__LWinit (H OI) __LWbreak)

the vocative marker

JO <- (__LWinit ((NI0 / RA))? (J o) __LWbreak)

the right scare quote

KIE <- (__LWinit (K IE) __LWbreak)

KIU <- (__LWinit (K IU) __LWbreak)

57

quotes for forming parenthetical expressions as freemods.

SOI <- (__LWinit (S OI) __LWbreak)

a device for forming spoken smilies.

UI0 <- ((UA / UE / UI / UO / UU

/ OA / OE / OI / OU / IA / II

/ IO / IU / EA / EI / EO / EU

/ AE / AI / AO / AU / AA/ EE/OO/(B EA)

/ (B UO) / (C EA) / (C IA) / (C OA)

/ (D OU) / (F AE) / (F AO) / (F EU)

/ (G EA) / (K UO) / (K UU) / (R EA)

/ (N AO) / (N IE) / (P AE) / (P IU)

/ (S AA) / (S UI) / (T AA) / (T OE)

/ (V OI) / (Z OU) / (L OI) / (L OA)

/ (S IA) / (S II) / (T OE) / (S IU)

/ (C AO) / (C EU) / (S IE)) !(Oddvowel))

NOUI <- ((__LWinit (N o) ([])* !(Predicate)

UI0 __LWbreak) / (__LWinit UI0 N OI __LWbreak))

UI1 <- (__LWinit (UI0 / (NI F i)) __LWbreak)

The VV attitudinals (including negative and compound forms). Also the
discursive (numeral)fi operators. I just dropped NAHU words from this
class per John’s proposal and will watch for problems.

12/18/2014 AA, EE, OO added.

HUE <- (__LWinit (H UE) __LWbreak)

The inverse vocative marker.

58

The final item in the lexer section is the logical negation operator. Initial
NO in certain classes of words and before subordinate clauses must be ex-
clused from this class. 5/15 NO cannot be followed by a space then a KOU
word (to avoid confusion with NOKOU words).

NO1 <- (__LWinit !(KOU1)

!(NOUI) (N o) !(__LWinit KOU) !((([])* (JIO / JI))) __LWbreak)

2.2.8 The two large word classes

Here are classes associated with the large classes of words (names and pred-
icates).

AcronymicName <- (Acronym (!(.) / ’,’ / &(period) / &(Name) / &(CI)))

DJAN <- (Name / AcronymicName)

A string of class DJAN is either a name or an acronym with the same
terminal conditions as a name (except for not being consonant final). Note
that there is no reason to impose stress rules on these acronyms now that
they are names rather than predicates.

BI <- (__LWinit ((B IA) / (B IE)

/ (C IE) / (C IO) / (B [i])) __LWbreak)

these are the words with the grammar of the identity predicate bi.

LWPREDA <- (((H e) / (D UA) / (D UI)

/ (B UA) / (B UI)) !(Oddvowel))

PREDA <- (([])* &(caprule)

(Predicate / LWPREDA

59

/ (!([]) NI RA)) !((A / ICI / ICA / IGE / I))

((’,’ ([])+ &((V2 / A))))? ((!(PAUSE) freemod))?)

The class PREDA includes more than predicate words. It includes predi-
cate variables and interrogatives (class LWPREDA) and the numerical pred-
icates. 8/1 the acronymic predicates have been removed. It should be noted
that I have done nothing to enforce stress rules on predicates other than
predicate words proper. I note that he cannot satisfy them as it is a mono-
syllable! But I should make some provision to require penultimate stress in
the other forms.

2.3 Loglan Grammar Proper

2.3.1 Introductory Remarks

This section is edited from the previous official Loglan grammar. There
certainly are material changes from the trial.85 grammar, some of which
are embodied in proposals already passed, but this level of the grammar is
better documented in previous versions. Much of the material here is a direct
translation from the BNF grammar of trial.85 to PEG form. Some bugs have
been in the past found to lurk in my choice of order in lists of alternatives.

6/9: as with the previous two sections, I have rewritten this completely
as comments on a recent text of Loglan.peg, making occasional changes as
I went through. The commonest issues were right grouping instead of left
and leaving out optional freemods. This version gives a narrative of my
understanding of the grammar as it goes through: it is at least the skeleton
of the reference grammar in my head. It should be possible to identify the
changes I am proposing to make, at any rate; for the most part it is quite
conservative.

In general, this document needs a further pass giving examples!
6/9, rewriting the grammar section of the Grand Proposal for readability.

2.3.2 Closing forms

guo <- ((((PAUSE)? (GUO / GU) (PAUSE)?) / PAUSE) (freemod)?)

gui <- ((((PAUSE)? (GUI / GU) (PAUSE)?) / PAUSE) (freemod)?)

60

gue <- ((((PAUSE)? (GUE / GU) (PAUSE)?) / PAUSE) (freemod)?)

guu <- ((((PAUSE)? (GUU / GU) (PAUSE)?) / PAUSE) (freemod)?)

guu1 <- ((((PAUSE)? GUU (PAUSE)?) / PAUSE) (freemod)?)

Variants of the closing comma GU for closing specific constructions. GUO
closes LEPO clauses and now also PO predicates. GUI closes argmods (sub-
ordinate clauses). GUE closes sets of links marked with je/jue. GUU closes
termsets. Each of these may in certain circumstances be represented by a
pause. An explicit word of any of these forms consumes a pause that either
precedes or follows it (I do not allow a word of one of these kinds followed
by a pause to count double, for example).

GUU1 is a special variant of GUU: a modifier consisting of a PA word by
itself cannot be closed with gu, only with guu or pause (a new rule, related
to our device for closing APA words and kin).

lua <- LUA

geu <- GEU

LUA closes explicit sets and lists.
GEU closes predicate constructions beginning with GE. The new form

geu and the original form cue in L1 are both supported.

gap <- ((((PAUSE)? GU (PAUSE)?) / PAUSE) (freemod)?)

The general grammatical “comma” gu, used to close many constructions.
It can often be expressed as a pause. An explicit gu word consumes any
pauses adjacent to it: unlike JCB, I will not allow a gu(pause) to count as
two gu’s: it is quite natural to pause next to such a word.

The special class GUU1 and differences in detail of pause/GU equivalence
are new features in this subsection.

61

2.3.3 Tightly bound terms and modifiers with JE/JUE

juelink <- (JUE (freemod)? term)

links1 <- (juelink (((freemod)? juelink))* (gue)?)

links <- ((links1 / (KA (freemod)? links KI (freemod)? links1))

(((freemod)? A1 (freemod)? links1))*)

jelink <- (JE (freemod)? term)

linkargs1 <- (jelink (freemod)? (links)? (gue)?)

linkargs <- ((linkargs1 / (KA (freemod)? linkargs

KI (freemod)? linkargs1)) (((freemod)? A1 (freemod)? linkargs1))*)

je followed by a term or modifier is a first argument after a predicate,
bound very tightly. jue followed by a term or modifier is a second argument
or further argument after a predicate, bound very tightly. jue links can be
conglomerated with logical connectives, both forethought and afterthought.
A logical conglomeration of [je arguments followed by a sequence of (logi-
cally conglomerated) jue links] , possibly terminated with GUE, is a general
construction of this kind.

The ability to use modifiers as well as terms with je and jue is a new
feature.

2.3.4 Basic predicate constructions

predunit1 <- ((SUE / (NU (freemod)? GE (freemod)?

despredE (freemod)? (geu)?) / (NU (freemod)? PREDA)

/ (GE (freemod)? descpred (freemod)? (geu)?)

/ (PO (freemod)? uttAx (guo)?)

/ (PO (freemod)? sentence (guo)?) /

(ME (freemod)? argument (gap)?) / PREDA)

((!(PAUSE) freemod))?)

62

This is a list of predicates which are atomic in a sense. The NU GE and
GE clauses are as it were parenthesis constructions which allow somewhat
more complicated predicates to be packaged as basic units of predicate con-
structions. 9/20/2014 added PO sentence predicates closed with GUO to
this class.

predunit2 <- (((NO1 (freemod)?))* predunit1)

NO2 <- (!(predunit2) NO1)

Negating a predunit1 one or more times gives a predunit2.
NO2 is a negation which will not be tightly absorbed by a following

predunit2 (a negation of an entire predicate rather than of a component of
a metaphor).

predunit3 <- ((predunit2 linkargs) / predunit2)

Attaching tightly bound arguments with JE/JUE to a predunit2 gives a
predunit3.

predunit <- (((POSHORT ((!(PAUSE) freemod))?))?

predunit3)

A predunit is either a predunit3 or a (short-scope) abstraction from a
predunit3.

This is an important stopping point, as this is the kind of predicate which
is allowed to appear as a component in a serial name. It is important to notice
that such a predicate can have no metaphorical connections (modifications
of one predicate by another) except inside a GE construction.

kekpredunit <- (((NO1 (freemod)?))* KA (freemod)?

predicate KI (freemod)? predicate)

63

A kekpredunit is a (possibly multiply negated) forethought logically con-
nected pair of top level predicates. Notice the reentry of the yet-to-be-defined
full complexity of predicates into this construction.

There follows a series of rules developing the class of predicates which can
appear in descriptions, which differ from sentence predicates in being permit-
ted to have a forethought construction as an initial element of a metaphor.

Explicit pauses are not permitted between components of metaphors of
this kind, because such a pause inside a description will break its end off as
a sentence predicate. The ability to pause is controlled by the presence of
optional freemods.

despredA <- (predunit/kekpredunit) (freemod?

CI !(comma? name) freemod? (predunit/kekpredunit))*

A despredA is a most tightly bound metaphor construction: it is a series of
predunits and kekpredunits bound with the grammatical hyphen CI. Explicit
pauses next to CI are permitted here.

despredB <- ((!(PREDA) CUI (freemod)? despredC (freemod)?

CA (freemod)? despredB) / despredA)

This rule allows the use of the left boundary marker CUI for grouping of
modifiers in a metaphor.

despredC <- (despredB)+

A chain of despredB’s modifying one another in a metaphor, used for
grouping after CUI in the previous rule. Understood as grouped to the left.
I could theoretically allow explicit pauses in this class, but I do not.

despredD <- (despredB (((freemod)? CA (freemod)? despredB))*)

64

Top level logical connection with CA in metaphors in descriptions. Un-
derstood as grouped to the left.

despredE <- (despredD)+

Top level chaining of predicates modifying one another in a metaphor in
a description. Note that explicit pauses are not permitted.

descpred <- ((despredE (freemod)? GO (freemod)? descpred)

/ despredE)

The top level class of predicates used in descriptions. The final construc-
tion is attachment of a top level description predicate as a modifier in final
position using GO.

There follows the parallel construction of classes of predicates which can
be used in sentences. These differ in not allowing initial forethought con-
nected predicates in a chain of modifications in a metaphor and in permitting
explicit pauses in chains of predicates modifying one other.

senpred1 <- predunit (freemod? CI !(comma? name) freemod? predunit)*

despredA, without the kekpredunits.

senpred2 <- (senpred1 / (CUI (freemod)? despredC

(freemod)? CA (freemod)? despredB))

senpred3 <- (senpred2 (((freemod)?

CA (freemod)? despredB))*)

senpred4 <- (senpred3 (((freemod)? despredD))*)

sentpred <- ((senpred4 (freemod)?

GO (freemod)? barepred) / senpred4)

65

The rest of the construction of the class sentpred precisely parallels the
construction of descpred. Note that optional freemods are provided so that
one can pause. Note also that tails of these sentence predicates are descrip-
tion predicates as kekpredunits are permitted to appear in positions other
than the initial ones. I am uncertain whether this will lead to restrictions
on the ability to pause explicitly which will be noticeable to any significant
extent in speech or writing; I could write separate classes for tails of sentence
predicates that did allow pauses but I will not do it unless it becomes clear
that it is actually needed.

The construction of sentence predicates will continue below after the abil-
ity to attach sets of terms is set up.

2.3.5 Modifiers (prepositional phrases)

mod1 <- ((PA2 argument (gap)?)

/ (PA2 !(barepred) (guu1)?))

mod1 is a very general class of prepositional phrases. The case of a
PA2 (tense/location/relation/causal) word by itself is special: it is guarded
against being followed by a predicate to avoid confusion with predicate mark-
ers and may not be terminated by gu (use guu or pause) to avoid confusion
with the tail of an APA word. The latter is a new feature.

kekmod <- (((NO1 (freemod)?))*

(KA (freemod)? modifier KI (freemod)? mod))

This class supports repeated negations of forethought connections of mod-
ifiers. This is a new feature or a repair of the trial.85 grammar, which had
very restricted forethought connections.

mod <- (mod1 / (((NO1 (freemod)?))* mod1) / kekmod)

modifier <- ((mod / kekmod) ((A1 (freemod)? mod))*)

66

These two classes complete the ability to afterthought connect modifiers.
modifier is the top level class of this kind (logical conglomerations of prepo-
sitional phrases).

2.3.6 Names and vocatives

namemarker <- (([])* ((L a) / (H OI)

/ (C i) / (H UE) / (L IU) / (G AO)))

nonamemarkers <- (([])* ((!((namemarker

DJAN)) Letter))+ !(Letter))

The name markers are the privileged class of words after which a name
word may appear without a preceding pause. LA is the name article; HOI
and HUE are the vocative and inverse vocative markers; CI is used as a
hyphen in serial names; LIU is single word quotation and GAO can form a
letteral from a name.

i was a name marker for JCB and is not for us. SIA and SIU were
name markers for JCB and SIE by extension would be, for good reasons,
which could be implemented by in effect allowing these words to be used as
vocative markers. I have not done this (one must for the moment say Sia

hoi Djan) but this looks like a virtuous change (FIX).
nonamemarkers expresses the condition on a name word that there is no

occurrence of a name marker in the word in non-initial position whose end
starts a shorter name word. This is a weaker condition than the old condition
of containing a name marker, but in fact it is all that is needed. (It is a
strictly weaker condition because we now impose phonetic shape on names;
some occurrences of name markers as in Uacinton are clearly harmless: the
occurrence of ci is followed by nton which is not a name word.

name <- ((DJAN (((([])* (freemod)?

CI ((’,’ ([])+))? DJAN) / ((([])* (freemod)?

CI (freemod)? predunit)

!((&(nonamemarkers) !(AcronymicName) DJAN)))

/ (&(nonamemarkers) !(AcronymicName) DJAN)))*) (freemod)?)

67

This is the serial name construction. A serial name is a sequence of
items, the first of which is a name word, which may include name words
and predunits. Predunit items must be marked with CI (recently approved).
Name words which do not satisfy the nonnamemarkers condition must be
marked with CI (Appendix H, but modified). Any item following a predunit
item must be marked with CI (new). Everything is set up here with the
idea that any name word will appear marked either by a name marker or a
preceding name, or an explicit initial pause.

Name words in serial names do not have to be separated by explicit
commas, though the pauses are still there (and one is permitted to write
them). There is only one pause phoneme: the pauses in serial names are not
of a shorter variety as in Appendix H.

8/3 acronymic names, like those with false name markers, must be marked
with CI if they appear as sutori components of serial names.

LA0 <- (L a)

LANAME <- (([])* LA0 ((’,’ ([])+))? name (gap)?)

Where LA appears followed by something which can be read as a serial
name (possibly with an intervening pause), it is read that way. Where this is
an unintended reading, perhaps the speaker should have paused somewhere.
This is part of the subject of the promised essay on names.

HOI0 <- (H OI)

voc <- ((([])* HOI0 ((’,’ ([])+))? name (gap)?)

/ (HOI (freemod)? descpred (gap)?)

/ (HOI (freemod)? argument (gap)?) / (HOI (gap)?))

The class of vocatives (a sort of free modifier). Notice that HOI ener-
getically looks for serial names as LA does. I am considering adding SIA,
SIU, SIE as alternative vocative markers. Could the register markers also be
vocative markers?

Note that all vocatives must be marked. A name by itself does not even
parse as an utterance.

68

2.3.7 Arguments and terms

descriptn <- (!(LANAME) ((LE (freemod)? descpred)

/ (LE (freemod)? mex (freemod)? descpred)

/ (LE (freemod)? arg1 descpred) / (LE (freemod)? mex (freemod)? arg1a)

/ (GE (freemod)? mex (freemod)? descpred)))

Basic sorts of descriptive phrase. As I make this more like a reference
grammar, I should give examples of these. I do not know exactly what the
GE initial form is for, though I can imagine.

arg1 <- ((LEFORPO (freemod)? PO freemod? uttAx (guo)?)

/ (LEFORPO (freemod)? PO freemod? sentence (guo)?)

/ (LIO (freemod)? descpred (gap)?)

/ (LIO (freemod)? term (gap)?) / (LIO (freemod)? mex (gap)?)

/ LAO / LANAME / (descriptn ((!(PAUSE) freemod))? (((((comma)? CI comma?)

/ (comma &(nonamemarkers) !(AcronymicName))) name))? (gap)?) / LIU1 / LIE / LI)

More descriptions. Note that LANAME is read in preference to descriptn
(la is still in class LE so if what follows it is not a serial name it can be read
as a more complex construction). The optional name which can follow a
descriptn here is preceded by an explicit pause or a CI marker (required
if the name is acronymic or contains a false name marker), completing the
solution to the name marker problem (essay promised). No occurrence of a
name word occurs in the grammar which is not marked by a name marker
word or a preceding explicit pause.

9/20/2014 changed structure of abstraction arguments. It is important to
note that the LEFORPO PO sentence GUO construction does not contain a
PO sentence GUO predicate as a constituent. If one has a PO sentence GUO
predicate as a proper initial component of a predicate from which one wishes
to construct a description, prefix it with GE to avoid it being absorbed into an
abstract description construction. LEFORPO also contains some quantifier
words to allow things like SUPO.

69

arg1a <- ((DA / TAI / arg1

/ (GE (freemod)? arg1a)) ((!(PAUSE) freemod))?)

More arguments. More attachments of GE, of which I need to contem-
plate examples. The pronouns get into this class.

argmod1 <- (((__LWinit (N o) ([])*))? ((JI (freemod)? predicate (gui)?)

/ (JIO (freemod)? sentence (gui)?) / (JIO (freemod)? uttAx (gui)?)

/ (JI (freemod)? modifier gui?) / (JI (freemod)? argument gui?)))

argmod <- (argmod1 ((A1 (freemod)? argmod1 (gap)?))*)

Subordinate clauses made from terms using JI words or sentences using
JIO words. These can be negated (already possible in LIP but invisible in the
grammar: it was hidden in the lexer). These can be linked with afterthought
connectives (is there any particular reason we cannot use forethought con-
nectives?). Note that the dedicated word GUI is used to terminate these
clauses.

6/10: I am allowing GUI to terminate (JI argument) and (JI modifier) as
well. I am convinced that we want this by actually trying to write something.

arg2 <- (arg1a ((argmod (gap)?))*)

An arg2 is an arg1a possibly with subordinate clauses attached.

arg3 <- (arg2 / (mex (freemod)? arg2))

An arg3 is an arg2 or an arg2 preceded by a quantifier.

indef1 <- (mex (freemod)? descpred)

70

indef2 <- (indef1 (gap)? ((argmod (gap)?))*)

indefinite <- indef2

an indef2 or indefinite is a descriptive predicate preceded with a quantifier
instead of an article, possibly with subordinate clauses.

arg4 <- ((arg3 / indefinite) ((ZE2 (freemod)? (arg3 / indefinite)))*)

an arg4 is a chain of arg3’s or indefinites linked with ZE (mixed argu-
ments).

arg5 <- (arg4 / (KA (freemod)? argument KI (freemod)? argx))

an arg5 is an arg4 or a general argument forethought connected to an
argx (not far below).

arg6 <- (arg5 / (DIO (freemod)? arg6) / (IE1 (freemod)? arg6))

an arg6 is an arg5 possibly modified by a case tag or the operator IE
(interrogative which). Repeated modifications are supported.

argx <- (((NO1 (freemod)?))* arg6)

An argx is a possibly multiply negated arg6.

arg7 <- (argx ((ACI (freemod)? arg7))?)

arg8 <- (!(GE) (arg7 ((A1 (freemod)? arg7))*))

argument <- (((LAU wordset) / (arg8 AGE (freemod)? argument)

/ arg8) ((GUU (freemod)? argmod (gap)?))*)

71

Afterthought logical linkage of arguments. ACI binds most tightly, fol-
lowed by the usual A1. The arg8 construction which has possible A1 linkages
cannot start with GE since in the next rule it can be linked with AGE. AGE
linkage is damaged in trial.85; it is fully capable here (and right grouping
rather than left grouping, as it is completely afterthought).

GUU may be used to attach a subordinate clause to a complex argument
at the very top level. I am not sure of the effects of this.

Why do LAU constructions appear here – why for example can one not
use case tags with them? I have left the whole issue of explicit sets and lists
uncommented so far; it needs study.

term <- (argument / modifier)

terms <- term (freemod? term)*

modifiers <- modifier (freemod? modifier)*

A term is an item which can be attached to the predicate of a sentence,
either an argument of the predicate or a prepositional phrases. The class
terms just gives a sequence of terms.

word <- ((arg1a (gap)?) / (UI1 (gap)?) / (NI (gap)?)

/ (PA2 (gap)?) / (DIO (gap)?) / (predunit1 (gap)?) / indef2)

words <- (word)+

wordset <- ((words)? lua)

Innards of explicit set and list constructions, which I am leaving uncom-
mented for now.

termset1 <- ((terms (guu)?)

/ (KA (freemod)? termset2 (freemod)? KI (freemod)? termset1))

72

termset2 <- (termset1 ((A1 (freemod)? termset1))*)

termset <- ((terms (freemod)?

GO (freemod)? barepred) / termset2 / guu)

The termset which can appear after a predicate. Series of arguments
and modifiers possibly terminated with GUU, then forethought logically con-
nected, then afterthought logically connected. The final move is to allow a
final predicate with GO after a termset which modifies the predicate to which
the termset is attached, an odd move but quite usable.

The explicit empty termset (just a GUU) is surprisingly useful.

2.3.8 Advanced predicates

It should be noted that I have made systematic changes in this section, and
also that they have much less impact than one might think. I do not draw
any distinction between marked and unmarked predicates after markpred
and barepred classes themselves, and it is provable (easily) that the further
distinctions between marked and unmarked classes in trial.85 are redundant.
Further, I privilege ACI connectives completely as a family of connectives
binding more tightly than A1 connectives, which means that the name of the
backpred class is motivated purely historically.

The more complex changes, which nonetheless probably will never have
much effect on what one speaks or writes, have to do with attachment of
additional termsets to logically linked predicates with termsets of their own.
The rule handling this in LIP is elegant, complete, and entirely impossible
to implement in a PEG, because of its degree of left recursion. My original
implementation gave exactly the right class of strings (provably) but struc-
tured them entirely misleadingly. The solution I give here ought to work for
all practical purposes. There are no examples of this kind of construction in
the NB3 corpus; I should write some.

Under all ordinary circumstances, this should behave exactly as the core
LIP predicate functions do.

kekpred <- (kekpredunit (((freemod)? despredD))*)

73

A forethought connected predicate. I am not sure I follow the reasons for
the precise form given. But apparently kekked head modifiers are allowed
(as of trial.85), with restrictions to prevent the right hand part from coming
apart.

barepred <- ((sentpred (freemod)? (termset)?)

/ (kekpred (freemod)? (termset)?))

A sentence predicate with no tense marker followed by a termset.

markpred <- (PA1 barepred)

A sentence predicate with a tense marker or an abstraction predicate
(over a sentence). PO sentence predicates moved to predunit1 (and closed
with GUO) 9/20/2014.

backpred1 <- (((NO2 (freemod)?))* (barepred / markpred))

backpred <- (((backpred1 ((ACI (freemod)? backpred1))+ (freemod)?

(termset)?) ((((ACI (freemod)? backpred))+ (freemod)? (termset)?))?)

/ backpred1)

predicate2 <- (!(GE) (((backpred ((A1 !(GE) (freemod)? backpred))+

(freemod)? (termset)?)

((((A1 (freemod)? predicate2))+ (freemod)? (termset)?))?)

/ backpred))

This is the locus of the differences between my approach and the trial.85
approach. First of all it is more compact (no distinctions drawn between
marked and unmarked classes). Secondly, ACI is a fully privileged connective.
Thirdly, attaching additonal terms to termsets to connected predicates is
handled differently (and supported for ACI as well).

74

backpred1 is a backpred or markpred, possibly repeatedly negated using a
NO which is not consumed by a following predunit2 (so modifying the entire
predicate rather than the head modifier).

backpred is a backpred1 or a backpred1 followed possibly by backpred1’s
linked with ACI connectives followed by a termset (to be attached to all
the backpred1s) followed possibly by backpreds linked with ACI connectives
followed by a termset. For the shared termset to attach properly may require
that empty termsets (just GUU) be attached to the final linked backpred or
backpred1.

predicate2 cannot begin with GE (to avoid ambiguity when linked with
AGE) and otherwise is constructed by logical linkage with A1 connectives
from backpred exactly as backpred is from backpred1.

This is quite baroque and needs a suite of examples to be understood
properly. The peculiar approach of adding linked backpred1’s first with
shared termset then linked backpreds (in the case of building backpreds)
is driven by the need to preserve left grouping of logical connectives while
allowing some nesting of the construction. An essay is promised. My con-
jecture is that for all the complications, this is a difference that makes no
difference: in practice, shared further termsets will be rare and those that
appear should be simple.

predicate1 <- ((predicate2 AGE (freemod)? predicate1)

/ predicate2)

identpred <- (((NO1 (freemod)?))*

(BI (freemod)? termset))

predicate <- (predicate1 / identpred)

The construction of top level predicates is completed. predicate2’s can
be afterthought/right-grouped connected with AGE, with no consideration
of shared termsets. Identity predicates (possibly negated) appear as a final
alternative.

2.3.9 Sentences

75

gasent <- (((NO1 (freemod)?))*

(PA1 (freemod)? barepred (GA2 (freemod)? terms)?))

This is a verb initial sentence (VOS): it is optionally multiply negated,
followed by a tense marker, followed by a bare predicate (including final
termset), followed by GA2 followed by initial terms. The use of a different
class name for ga in this case signals a different function.

statement <- (gasent / (modifiers (freemod)? gasent)

/ (terms (freemod)? predicate))

A statement is a gasent, or a gasent with additional terms before the
predicate (OV(O)S(O))), or a predicate with a set of terms before it (SV or
SOV). 9/12/2015 modifications to this in order to eliminate imperatives with
marked predicates (entered belatedly)

keksent <- (((NO1 (freemod)?))*

((KA (freemod)? sentence KI (freemod)? uttA1)

/ (KA (gap)? sentence KI (freemod)? uttA1)

/ (KA (freemod)? headterms (freemod)? sentence KI (freemod)? uttA1)))

A forethought linked sentence. The extreme freedom allowed for what the
final item is is rather odd (look at class uttA1). The class sentence appears
below (sentences built with ICA connectives).

sen1 <- (modifiers freemod? !gasent predicate/ statement / predicate / keksent)

A large class of sentences (a solitary predicate is an imperative) to be
linked with ICA in the next rule. 9/12/2015: modifiers !gasent predicate
captures imperatives with fronted modifiers.

76

sentence <- (sen1 ((ICA (freemod)? sen1))*)

sentences linked with afterthought sentence connectives 8/2 fixed missing
freemod

headterms <- ((terms GI))+

uttAx <- (headterms (freemod)? sentence (gap)?)

Attach fronted final arguments to a (possibly ICA linked!) sentence to
get, among other things, OSV sentences. I have only now realized that the
headterms here are potentially a shared termset among sentences linked with
sentence level connectives!

Here is a good place to note that I am not happy with the convention
that the fronted set of terms must contain the last argument (since some
predicates have quite unfamiliar and rarely used last arguments). I suggest
allowing use of a positional case tag to set the position of the first term in a
headterms set. This is a semantic, not a parser issue.

2.3.10 Utterances

freemod <- ((NOUI / UI1 / (SOI (freemod)? descpred (gap)?)

/ DIE / (NO1 DIE) / (KIE utterance0 KIU)

/ (([])* (H UE) ((’,’ ([])+))? name (gap)?)

/ (HUE (freemod)? statement (gap)?) / (HUE (freemod)? terms (gap)?)

/ voc / CANCELPAUSE / PAUSE / JO) (freemod)?)

The free modifiers. There are a lot of them, which ought to be carefully
listed here as this becomes more like a reference grammar. The most impor-
tant one to note specifically is the explicit pause; it is to control the use of
pauses that optional freemods appear in most medial positions in rules, but
not in final positions (or in final positions with the pause option excluded)
so that gap and related rules have a chance to consume pauses for pause/GU
equivalence purposes.

77

uttA <- ((A1 / IE1 / mex) ((!(PAUSE) freemod))?)

uttA1 <- ((sen1 / uttAx / NO1 / links / linkargs

/ argmod / (terms (freemod)? keksent) / terms / uttA) (period)?)

Fragmentary utterances, I believe mostly provided as answers to ques-
tions. These can disguise parse failures – some parse errors will not cause
you not to say anything, but to do something like utter a list of terms instead
of a sentence. The complete sentences sen1 are included in uttA1 so it is a
more general utterance class.

neghead <- (NO1 gap)

uttC <- ((neghead uttC) / uttA1)

An uttC is a possibly repeatedly negated uttA1. Notice that the utterance
level negation must be followed by gu or a pause. Typically, omitting this
pause will still negate a sentence, by negating the first argument, which has
the same logical effect – but not all sentences begin with an argument, so be
careful!

uttD <- (uttC ((ICI (freemod)? uttD))*)

uttE <- (uttD ((ICA (freemod)? uttD))*)

uttF <- (uttE ((I (freemod)? uttF))*)

These classes are linked by progressively looser classes of connectives. ICI
connectives are more tightly binding logical connectives; ICA are the vanilla
logical sentence connectives; I are the usual top level utterance separators
(but a higher level class IGE appears below!)

78

utterance0 <- !GE ((!(PAUSE) freemod (period)? utterance0)

/ (!(PAUSE) freemod (period)?) / (uttE IGE utterance0)

/ (I (freemod)?) / uttF / (I (freemod)? uttF) / (ICA (freemod)? uttF))

utterance <- !GE ((!(PAUSE) freemod (period)? utterance)

/ (!(PAUSE) freemod (period)? !(.)) / (uttE IGE utterance)

/ (I (freemod)? (period)? !(.)) / (uttF !(.)) / (I (freemod)? uttF !(.))

/ (ICA (freemod)? uttF !(.)))

Here are the top level utterance constructions. Utterance0 appears in
embedded utterances (as in quotations or parenthetical remarks); class ut-
terance proper is required to end at the end of text. An utterance may not
begin with GE (to avoid ambiguity with the IGE connective). They may be
freemods or have initial freemods. Otherwise they are built in natural ways
which can be read from the rule.

3 List of Subproposals of the Grand Proposal

In this section I am going to try to break down the various suggestions em-
bodied in the three Grand Proposal sections and add reference and examples.

Many actions which I took which might be regarded as changes, I view
as making precise what was never made precise, or hidden in the innards of
the phonological or lexing components of LIP.

I may also have failed to notice some local items.

Phonology: The phonology section is really a fairly faithful implementation
of the phonology in L1 and NB3 (mod my choosing to make things
precise which seemed to be underspecified: I do add though that in
many cases my precise version of JCB’s apparently vague formulations
is exactly supported somewhere else; our Founder knew what he was
about). There are some proposed changes.

irregular letters removed: qwx are no longer Loglan letters.

change in the vowel grouping rules: Streams of vowels in borrow-
ings and names are grouped differently, in the way described un-

79

der the rule Nextvowels above. Vowels in cmapua continue to be
grouped in pairs in lockstep.

names are pronounceable: names must be parsed into syllables in a
way similar to that used for borrowings. In practice, this appears
not to exclude any name appearing in the corpus, as long as the
following rule is followed.

syllabic consonants are always doubled: this convention, proposed
already in L1, has been adopted.

final consonant restriction: The last two consonants in a syllable
cannot be a non-continuant followed by a continuant (as this would
essentially force another syllable).

new notation and rules for juncture and stress: New notation is
introduced for junctures and stress, and rules are imposed on op-
tional insertion of syllable breaks and stresses. In no case do these
affect what words can be parsed (in intention). In particular, syl-
lables cannot cross djifoa boundaries in complex predicates. Mul-
tiple options are often supported for placement of junctures. The
intention is to support parsing of “phonetic transcripts”, defined
as strings in which stresses are explicitly shown and whitespace
occurs only after explicit comma pauses.

reminder of changes made already since L1: One needs to recall
that we have already imposed the rule that predicates with more
than six letters cannot start with CVCC or VCCV where the CC
is an initial pair, and forbidden CCVV borrowings, as well as
forbidding repeated vowels that force stress in borrowings. These
rulings have effects in the corpus.

Subproposals in the lexing section:

JUU separates adjacent PA words: JUU is now a break between
PA words only, rather than a general substitute for structure word
breaks.

Close APA words and kin: APA words are now APAGU or APA(pause);
CAPA or ICAPA becomes (I)CAPAGU or (I)CAPA(pause), IPA
becomes IPAGU or IPA(pause). A solitary PA word as a modifier
must be closed with GUU or pause, not GU (GU would only end

80

the word). Untensed A words may also be closed with GU which
is potentially useful in linking modifiers.

No VCV letterals?: I propose to eliminate the VCV letter names
for vowels, though I leave them in for now and add the ZIV and
ZIVma replacements I have in mind as alternatives. VCV letter-
als are the only feature of the grammar which can create Cvv/V
junctures in little words, apart from single letter abbreviations of
vowels in acronyms, which I have eliminated.

What is the name for y? (ZIY(MA)) qwx need CVV names.

multizero forms: MO for 000 is replaced with MOA. MA for 00 re-
mains the same. These forms can only appear after a digit (this
prevents any conflict with the other use of MA). 4/24 improved
form of powers of ten (see rule NI1), allowing for example nemoato
for one million or tomamoate for one hundred billion.

math forms: are more or less the same except that acronyms used as
dimensions are prefixed with mue. PUI is now a break between
math words, part of elimination of structure word breaks 4/24.
4/24 improvements to powers of ten.

acronyms: I eliminated single letter abbreviations for vowels in acronyms;
abbreviation with a preceding Z is supported. Of the three uses
of acronyms, one is eliminated (there are no multiletter pronouns;
I am not sure that JCB envisaged these, either), acronymic predi-
cates are replaced by acronymic names (front marked with a name
marker or pause, end marked with a pause) and acronymic dimen-
sions in NI words have front marker MUE (actually part of the
acronym) and are closed with a mandatory pause.

letteral pronouns: are single letters, possibly with numerical suffixes
attached with CI. No pause is required between a series of letters
used as pronouns. This is important. Fluent handling of series of
single letter pronouns are much more important than supporting
a class of multiletter pronouns which would seldom be used and
would cause headaches for the more common usage.

removed KAPA, KIPA words: These cause really confusing unin-
tended parses when one attempts to link modifiers logically in the
current LIP.

81

quotation: The LIU single word quotation operator (with NIU as a
variant) will quote any phonologically acceptable cmapua, using
the NB3 phonetic definition rather than attempting to recognize
current cmapua as LIP does. There are serious advantages to this
in discussing such things as proposed words. ZIY is allowed as a
LWunit, ensuring that LIU ZIY(MA) parses.

There is an entirely new strong quotation proposal. The existing
one is not PEG parsable. This will get a separate essay.

Other quotation operators are more or less the same.

RANA words: proposal withdrawn.

(CA)PA words: We give an exact grammatical definition which is
similar in concept but gives more words than LIP does. I think
that we actually have the same A series words, but more CA series
words. Reverting to my original idea that compound PA words
are linked with (NO)CA(NOI) terms (in particular, NOI-initial
compounds are outlawed).

logical compounds of NI words: Added the ability to logically link
quantifiers with (NO)CA(NOI) forms.

LA and LE are somewhat separate again: LA is in class LE but
has special uses which are checked for first in constructing names.
The name marker restriction no longer exists: names can include
name markers, though such may need additional markers or pauses
to be used in some contexts. This requires a detailed essay.

cancelling GU pauses: The species of pauses which can replace GU
can be cancelled (one can pause accidentally or for effect without
unwanted grammar effects) by following the pause with the little
word CUU or with y followed by a pause.

Subproposals found in the grammar section:

PAUSE: PAUSE is a freemod. freemods in final positions in class
definitions are mostly forbidden to be pauses to allow pause/GU
equivalence to operate. General modifications are made to ensure
that explicit commas can appear whereever a pause is allowed or
required, to support the phonetic style of orthography.

linking modifiers with JE and JUE: This earlier proposal is im-
plemented in the provisional grammar.

82

full use of forethought connectives on modifiers: The rules for
use of KA...KI...with modifiers were so restricted as to be almost
useless. Full ability to use these connectives with modifiers is now
supported.

name marker list extended: There are more name markers (words
which can immediately precede a name word without a pause).

serial name repair: CI must precede predunit components in serial
names. Proposal 8, approved. There is no longer a special pause
phoneme used in serial names. CI must precede a name component
which includes a name marker which is followed by a well formed
name (Appendix H requires use of CI if the name contains a name
marker at all, but the weaker condition stated here is all that
is needed) CI precedes name components which follow predunit
components (new).

LANAME: LA possibly followed by a comma marked pause followed
by a name word is parsed as a name (regardless of ways in which
the name segment could be parsed by the grammar); this class
is tested for before other description classes. In general, rules
involving name are arranged to that all names are marked with
either name markers or pauses. In constructions like LE BLANU,
DJAN the name must be preceded by an explicit pause.

unmarked vocatives eliminated: This is essential to eliminating the
name marker restriction on names. Allowing unmarked vocatives
can cause vast parts of sentences to be parsed unintentionally as
names. This change is already approved. (It is still possible to
make errors in enunciation which can cause unintended parses of
large parts of sentences as names; the phonetic parser makes it
easier to study when this happens, and I believe that sensible
conventions can be stated to avoid this naturally).

forethought logical connection of subordinate clauses?: I didnt
change this, but I wonder why we cannot forethought connect
argmods. Note that we can negate them (we already could in LIP
but this was hidden in the lexer).

argument fixed so that AGE can be chained: This seemed like an
error – one could not connect more than two arguments with AGE.

83

classes markfront/markekpred and barefront/bareekpred eliminated:
The distinction between them plays no role in the grammar even
in trial.85. Their interactions are now covered by the interaction
between the classes backpred and predicate2.

ACI rationalized and termset attachment supported: ACI is now
a fully privileged logical connective and termsets may be attached
to sets of predicates linked with ACI.

attachment of termsets to A-linked predicates slightly different:
The original rule is highly left recursive. I wrote one that is slightly
different and that I think is usable in practice and much more PEG
friendly. An essay with examples is called for.

in arguments and predicates, classes linked with AGE exclude initial GE:
its all in the title. This removes a potential ambiguity, and one
would not expect GE groups to be initial anyway.

scope of PO words: The words PO, PU, ZO always have long scope.
The words POI, PUU, ZOO always have short scope. The syntac-
tical privileges of PO predicates are normalized (they can modify
and be modified for example). There are no longer LEPO words
but PO X and LE PO X are separate constructions both closed
with GUO (Lojban has a double closure problem in this context).
This eliminates the LE, PO problem, though that was not the
reason (and not even to my mind sufficient reason) for doing this:
the real reason I did it was that the status of PO (sentence) predi-
cates was absurd. In the LE PO X class there is actually a special
class LEFORPO of articles allowed, including some quantifiers.

4 Essays (pending)

In this section I have given the headings for the essays I have promised to
write.

4.1 On Quotation (pending)

This essay should describe my strong quotation proposal and perhaps talk
about other related issues (such as the question of what is a word to be
quoted by LIU).

84

4.2 On Names (zero draft)

Loglan names in this version are required to be resolvable into syllables.
Names must be consonant final, with the exception of acronymic names (the
former acronymic predicates, the subject of another essay). This reduces the
scope of the name marker problem: an occurrence of one of the name marker
words in a name with the further property that what follows is a well-fomed
name is called a false name marker . Phonetic occurrences of name markers
which are not false name markers in this sense do not create a problem (as
in Uacinton).

In this grammar, we are allowing the use of names which contain false
name markers. We need to investigate how this is made safe. The general
problem is how to determine the left boundary of a name word: the right
boundary is always evident, being either end of text or a comma or a space
followed by a name or a space followed the word CI, preceded by a consonant
(except in the special case of an acronymic name).

As before, a name can occur without preceding pause only after a name
marker. But further, the situations in which a name word can appear not fol-
lowing a name marker (possibly with a preceding pause) are quite restricted.

In this grammar, unmarked vocatives have been excluded. The only
names which can appear without preceding markers are names which are
not acronymic and which do not contain false name markers, and which are
immediately preceded by another name (and so by a pause) or by a descrip-
tion (into which they are incorporated, as in le blanu, Djan, in which case
they are preceded by an explicit pause. In both of these contexts, one also
has the option of marking the name with CI instead (and an acronymic or
false-name-marker-infested name must be so marked). To disambiguate the
latter situation, the occurrences of CI which link predicates cannot precede
a phonetic name. This allows le blanu ci redroladjan to be parsed cor-
rectly as containing the name redroladjan (however bizarre this is), while
le blanu ci redro, ladjan parses correctly as Le blanu ci redro, la

Djan, which is a pair of terms (the final ladjan cannot be a name word
so cannot be appended to the description because it contains a false name
marker and so must be marked).

Subject to these rules, the left end of a name is as far to the left as
possible. A false name marker can be forced to become a true name marker
by pausing after it, which is always supported (one can always insert an
explicit pause after a name marker in this parser, mod bugs, without affecting

85

its performance as a name marker), so we can always fix the left end to be
in the right place by pausing suitably.

We now discuss the pragmatics of saying what you mean to say. First
of all, if one always pauses before a name whether it is marked or not, all
problems are avoided. But it doesn’t seem that this is necessary.

Secondly, a breathgroup ending in a consonant which contains a name
marker but does not begin with a name marker cannot be a name unless
it is preceded immediately by a name marker followed by a pause. Ladjan,

clu’valameris parses correctly as “John loves Mary” because clu’valameris,
while it is a name word, can never appear unmarked. It is quite typical, as
here, that a name marker problem is not at all visible in standard orthogra-
phy: La Djan, cluva la Meris is quite clear. It is in phonetic transcripts
that these difficulties become visible (audible?)

A strategy which removes many problems is to pause after a vowel as soon
as possible after a breathgroup which ends with a consonant: this prevents
it absorbing a following breathgroup ending in a consonant, as a further
component of a serial name, by accident.

It is always possible to force the beginning of a name to be where you
desire it to be, by pausing directly in front of it.

A general warning is that sensible orthography generally parses complex
name situations without any difficulty. To really explore the potential diffi-
culties, one should work with a phonetic transcript so that one can see what
spaces actually should be comma-marked. It would be handy if the parser
would force one to put an an explicit pause somewhere in an interval where
one is needed for name marker reasons, and it may be possible to do this.

Although I do not propose this, requiring that all names be penultimately
or finally stressed would remove all errors involving peeling a predicate off
the front of a name.

4.3 On Acronyms (zero draft)

This essay reflects recent conversations on the Loglan list. John Cowan
pointed out that acronyms really ought to be designators not predicates
(speaking of the acronymic predicates, not of the dimensions in dimensioned
numbers, which are a different problem). I agree with him, but I further
stipulate that acronyms should not be pronouns either (they should not live
in the same space as the letterals). In fact, the clear solution is that they
should be names .

86

Replacing acronymic predicates with acronymic names creates no seman-
tic problems: JCB’s Dainaiza (or my mie Dainaiza of previous versions)
becomes mela Dainaiza. And JCB’s lo Dainaiza becomes our la Dainaiza.
[note that my front marker mie for acronymic predicates is now not needed
at all; the front marker for dimensions is still needed.] Further, I think that
acronyms in English are clearly proper names grammatically (while letters
in mathematical English are very closely analogous to Loglan letteral pro-
nouns).

Acronymic names are naturally left and right marked: we require them
always to be preceded by a name marker, and always followed by a pause
or end of text (they are a species of name word and share most of their
properties in this respect).

The reason that acronymns should not be pronouns and should always be
clearly left and right marked is that the use of a pause free sequence of letters
as a sequence of arguments as in Mi donsu bai cai is far more important
grammatically than any use of acronyms. A solution which requires pauses
between such arguments is damaging a basic central feature of the language
in the service of a peripheral feature.

To prevent acronyms of length one from being confused with letterals,
we provide an optional front marker mue internal to the acronym which is
mandatory if there is only one letter in the acronym. This is used in la

Muesai, sulfur.
The other use of acronyms is as dimensions in NI class words. We require

that all dimensions begin with mue whatever their length, and that dimen-
sions end with explicit pauses. This prevents any conflicts of acronymic
dimensions with letterals or numerals.

Use of mue removes problems with distinguishing todai (two of D, D
being a letteral) from tomuedai (two dollars).

On the phonetic level, we propose that the names of the vowels are
ziV(ma) (MA inducing capitalization) and that these can be abbreviated
to zV in acronyms but never to just V. This prevents the Cvv-V situation
from occurring in acronyms (and thus from occurring anywhere in my cur-
rent version of the grammar, though I leave it as a possibility). I seriously
deprecate the VCV vowel names.

87

4.4 On Syllables (pending)

This essay should discuss rules for placement of syllable junctures and their
rationale (and how little they matter?)

4.5 On Negation (pending)

This essay should discuss Loglan negation. I don’t propose changes; I think
the current situation is manageable, but an overview should be given. The
semantics of negative arguments should be discussed. The issue of whether
we need some other related constructions could also be discussed; Lojban
has quite different notions of negation built in.

4.6 On Pauses

A comprehensive essay on uses of pauses, phonetic, freemod and gap (PAUSE/GU
equivalence).

4.7 On Linking Termsets

Title is tentative. This is an essay on the very nasty structure of predicate2,
which I have modified. The collapse of certain distinctions in trial.85 (some
were redundant), the regularization of the ACI connectives, and changes to
the way termsets are attached to logically linked predicates, with examples.
This will be technical.

4.8 On ME

An argument between JCB and myself about me (the operator constructing
predicates from arguments), not high priority.

5 Appendix: Grammatical Vocabulary

It is a good thing for us to have grammatical terms in our own language.

katpua: B is the predicate/word with meaning F and number of places X
in (Loglandical) language Y

88

cmapua: B is a structure word of grammar class F with meaning/function
X in Loglan family language S.

djifoa: V is a combining form or “affix” (deprecated Loglan jargon) of B in
context X in language Y

furdjifoa: X is a complex (Loglan grammatical term) containing primitive
Y via affix Z in loglandical language W

giurpua: X is a primitive predicate (root word) with meaning Y, number of
places Z, in language W

nampua: X is a name word (in L, a consonant final single word) naming Y
in language Z

purkle: X is the word class of word Y in language Z

nurcmapua: X is the structure word class of structure word Y in language
Z

takfoa: B is an expression/utterance/speech form of grammar class X in
language F.

nurtakfoa: X is the grammar class of utterance Y in language Z

purtcu: X is a metaphor (in the sense of Loglan grammar) in which predi-
cate Y modifies predicate Z

Note that nufu purtcu means that Y modifies Z in metaphor X

We need more of these. I have in mind nercmapua for unit cmapua for
example.

89

