
A New Systematic Grammar of TLI Loglan

Randall Holmes

August 29, 2021

2

Chapter 1

Introduction

This is a new grammar of TLI Loglan. The intention is to present a coherent
picture of my provisional adjustments of the language. The organizational
principle is that I follow the structure of the Parsing Expression Grammar
(PEG) which is used to generate the computer grammar.

There will be observations on points of difference with earlier versions of
the language as necessary.

This document speaks authoritatively, but not all these proposals have
been approved by the TLI Loglan community. I am writing this in hope
of providing support for a consensus that this is the way to proceed. The
membership is welcome to offer criticisms, whether general or of particular
points.

The reader can safely ignore comments in footnotes unless already profi-
cient in Loglan or interested in the history of the language.

This document now contains the current text of the file

draft-grammar-with-comments-alternative,

with word wrap and line numbers. This means that if you want to compile
this file yourself, you need not only its source but the current PEG source.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Phonetics and Orthography

In this chapter, we discuss the rules for writing and pronouncing Loglan, and
the way in which a stream of speech sounds or letters is formally resolved into
Loglan words (with the proviso that grammar rather than phonetics dictates
word boundaries between structure words).

2.1 Phonetic and orthographic components

2.1.1 Loglan letters and punctuation

The letters of the Loglan alphabet are the 23 letters of the Roman alphabet
excluding q, w, x.

The foreign letters q, w, x can only occur in “alien text” embedded in
Loglan.1

The vowels are a, e, i, o, u, y. The first five are the regular vowels.

The consonants are b, c, d, f, g, h, j, k, l, m, n, p, r, s, t, v, z

The Loglan name of a vowel V has two forms (legacy and modern2):
legacy uppercase is Vma and lowercase is Vfi, and modern uppercase is
ziVma and lowercase ziV. The legacy forms are fully supported, but they

1These letters were originally not included in Loglan, then they were added with strange
pronunciations in the 1980’s and 90’s, then they were largely eliminated from the dictionary
in the late 90’s; after 2013, we proceeded to eliminate them completely again. Names for
these letters (usable as pronouns) will be presented later.

2The modern forms were suggested by us after 2013, but we have fully accommodated
the phonetics to the original forms.

5

6 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

are phonetically irregular as Loglan words, and there are contexts where the
modern forms must be used.

The Loglan name of a consonant C is Cai (uppercase) or Cei (lowercase).
There are some other series of letter names to be introduced below. The

primary function of these words is not phonetic, but as variables (pronouns),
as will be explained later.

The junctures, indicating syllable breaks or stress are -, ’, *. The hyphen
- is a simple syllable break.3 ’ is a syllable stress marker, which may appear
in place of (not in addition to) a hyphen after a stressed syllable, or in final
position in a word after a stressed syllable. * is a symbol for emphatic syllable
stress, with the same grammar as ’. A juncture is never followed by another
juncture; a hyphen can be followed only by a letter (the hyphen, unlike the
stress marks, never appears in final position).

We define a phonetic block as a sequence of letters and junctures (re-
ferred to collectively as “characters”), with the junctures giving information
about syllable breaks and stress. A phonetic block is always intended to be
pronounced without pause.

The terminal punctuation marks of Loglan are .:?!;#.
The comma , is an especially important punctuation mark, with the pho-

netic meaning of a pause in the flow of speech. A comma is always followed
by whitespace followed by a phonetic block or alien text (ignoring any initial
parentheses or double quotes appearing before the block or alien text). A
phonetic pause is always denoted either by whitespace or a comma followed
by whitespace; in some contexts the comma-marked pause is mandatory.
Whitespace may or may not denote a pause; there are some contexts where
whitespace must denote a pause.4

The double hyphen – is an independent punctuation mark, not a syllable
break: it represents a pause, probably longer than the pause represented by a
comma, and in some cases may be used in place of a comma where a pause is
required. The ellipsis . . . is an independent punctuation mark, not terminal
punctuation, similarly representing a pause and occasionally usable in place
of a comma.

Parentheses and double quotes may enclose Loglan or alien text under
some circumstances described in the grammar. These are generally ignored

3The use of the hyphen to abbreviate the phonetic hyphen y found in earlier sources
is not accepted here; in general, we do not pronounce punctuation.

4Uses of a close comma without a following space in earlier versions of Loglan are
entirely replaced with uses of the hyphen as a syllable break.

2.1. PHONETIC AND ORTHOGRAPHIC COMPONENTS 7

for phonetic purposes. They are not pronounced: punctuation marks are
never intended to be pronounced in the version of Loglan described here,
though they may dictate pauses.

The letters have lowercase forms and uppercase forms and there is a
capitalization rule applying to phonetic blocks. The formal capitalization
rule is quite complex: the basic idea is that an uppercase letter will not
appear immediately following a lowercase letter unless it is the first letter
of a phonetic copy of a letter name (class TAI0 to be discussed below; the
letter names given above are words of this class), and a vowel may appear
capitalized after z (for malicious reasons to be explained later). There is
no restriction on capitalization resuming after a juncture. This allows the
usual sort of capitalization, and also allows all-caps, and where junctures
are present individual blocks of letters may be capitalized in different styles
independently. The special treatment of letter names will be motivated in
examples when these words appear.5

2.1.2 Pronunciation of Loglan letters

The regular vowels have typical continental European (not English!) pro-
nunciation. The irregular vowel y may be pronounced with the indistinct
schwa sound. Unstressed regular vowels do not become schwa (English and
Russian speakers note!) A more distinct pronunciation for y (the vowel in
English “look”6 or the vowel written bI in Cyrillic) might be preferred.

The pronunciations of b, d, f, g, k, l, m, p, r, s, t, v, z require no
special comment (except to note that g is always hard).

The letters c, j have unusual pronunciations, c being English “sh” in
“ship”, and j being the voiced version of the same sound, the “z” in “azure”.
English “ch” and “j” are the diphthongs tc and dj respectively.

The letter h has the typical English pronunciation, except in syllable
final position, where it has the sound of “ch” in Scottish “loch”. The latter
pronunciation is actually permitted in other positions as well.7

5The approach to punctuation which we have taken has been driven partially by our
own design decisions and partly by the punctuation and capitalization practices in the
Visit to Loglandia.

6A suggestion of John Cowan.
7Syllable-final h did not exist in previous versions of Loglan. The pronunciation of h

which is mandatory in final position might be preferred by speakers of some languages in
other positions.

8 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

The letter n is pronounced as usual in English, and (as usual in English
as well!) is pronounced as the “ng” in “sing” when it occurs before g, k, or
the alternative pronunciation of h.

The vowels i and u are sometimes pronounced as English “y” and “w”.
as will be explained below.

The consonants l, m, n, r are sometimes syllabic (“vocalic”). When they
are used syllabically, they are always doubled.8

We neither reject nor support complex alternative schemes of pronunci-
ation of the language outlined in older sources; the alternatives we propose
here seem sufficient.

2.1.3 Alien text

We describe the rules for embedding alien text in Loglan.9 For such text,
rules of pronunciation are not supplied by Loglan. It is required that alien
text (however it is pronounced) be preceded by a pause (regarded as part of
the alien text) and followed by a pause or end of text or speech (not regarded
as part of the alien text): a pause may be expressed either by whitespace
or by a comma or terminal punctuation (terminal punctuation only after
the alien text, of course) followed by whitespace, and end of text or speech
simply by end of text or by terminal punctuation. The body of the alien
text between the initial pause and the final pause or end may be text not
containing double quotes enclosed in double quotes, or it may consist of one
or more blocks of text excluding commas, spaces and terminal punctuation
marks, separated by the word y, which must be preceded and followed by
pauses in speech, which are independently expressible by whitespace or by a
comma-marked pause. Examples are “War and Peace” and War y and
y Peace. When alien text is enclosed in quotes, occurrences of y between
pause-separated components of the alien text may be omitted in writing but

8The rule that syllabic continuants must be doubled forces changes of spelling in names
in legacy Loglan text in many cases. Syllabic consonants in borrowed predicates were
already doubled, and Brown suggested in Loglan 1 that this might be a good rule to adopt
in general.

9The model for these rules is actually the final state of the rule for Linnaean names with
lao (now foreign names in general) given in the late 90’s. We require that the occurrences
of y there suggested merely for speech also be expressed in writing. The use of double
quotes is a novelty but seems natural. The strong quotation scheme of 1989 Loglan is
abandoned, essentially by giving lie the same phonetic grammar as lao.

2.1. PHONETIC AND ORTHOGRAPHIC COMPONENTS 9

must appear in speech: the two examples are pronounced in the same way.
Some contexts require double quoted alien text in writing.

Alien text is always preceded by one of the alien text markers hoi, hue,
lie, lao, lio, sao, sue, whose grammar and semantics will be discussed
below. Alien text marked with hoi or hue must be double-quoted. The
parser identifies blocks of alien text by looking for these markers (some of
the markers have multiple functions and will not always be followed by alien
text).

Examples of alien text in Loglan utterances will appear when we discuss
the grammatical constructions that use them.

2.1.4 Vocalic diphthongs

In this section, we describe two-letter forms which may appear as the “vowel”
component of a syllable.

The consonants l, m, n, r we call continuants. A doubled continuant
ll, mm, nn, rr represents a syllabic continuant, which may serve as the
vocalic component of a syllable. A syllabic continuant may not be followed or
preceded by another instance of the same continuant without an intervening
pause in speech.

We now consider how to pronounce sequences of regular vowels not sepa-
rated by junctures. The issue is how to resolve such a sequence into syllables.
The irregular vowel y is usually a single syllable, except for occurrences of
syllables iy and uy in rare structure words, which will be discussed later.

We first consider sequences of two regular vowels. Some of these sequences
are mandatory monosyllables, some are optional monosyllables, and some
cannot be read as monosyllables.

There are four mandatory diphthongs ai, ei, oi, ao. The diphthong
ao has the irregular pronunciation of “ow” in English “cow”. The pairs of
letters ai, ei, oi are not mandatory diphthongs when followed by i without
an intervening juncture: aii is grouped a-ii.

The forms a-i, e-i, o-i, a-o (the hyphens may be replaced with other
junctures), called broken monosyllables, can only occur in names (we do not
regard a-ii and its kin as containing broken monosyllables, but here we are
talking about more than two letters). One may write any other pair of regular
vowels separated by a juncture, with the effect of enforcing the two syllable
pronunciation (where it is optional).

10 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

There are six optional diphthongs, made up of i or u followed by a regular
vowel. (forms iy and uy also occur in special contexts, to be discussed later).
If these are pronounced as a single syllable, initial i is pronounced as English
“y” and initial u is pronounced as English “w”. The disyllable pronunciation
can be compelled by writing a syllable break. Monosyllabic iu cannot be
followed without a juncture by u and monosyllabic ui cannot be followed
without a juncture by i (so, for example, if iuu is encountered it will be read
i-uu). As a rule, the speaker has a choice when presented with an optional
monosyllable of pronouncing it as one or two syllables; sometimes the context
forces one of the pronunciations.

Other pairs of adjacent vowels are pronounced as two separate syllables;
the use of a glottal stop to separate the components of a disyllabic vowel pair
is permitted, but not expressed in the orthography. The glottal stop is not
allowed as an allophone of the pause phoneme; all required pauses must be
distinct, if sometimes brief.10

A pair of identical adjacent vowels not pronounced as a monosyllable
has the characteristic that one of the vowels must be stressed and the other
unstressed. This always holds for aa, ee, oo and sometimes holds for ii, uu
(special rules stated above are designed to encourage pronunciation of the
latter two pairs as monosyllables whenever possible!)

For a three-vowel sequence appearing in a predicate or name word, the
general rule is that formation of monosyllabic ii or uu is the highest priority
(so in aii, forming ii wins over forming ai, which in this context is not a
mandatory monosyllable anyway, producing a-ii), followed by formation of
a mandatory monosyllable (recalling that i-final mandatory monosyllables
are not followed by i; aoi is grouped ao-i and is not considered to contain
a broken monosyllable): e.g., aiu is grouped ai-u), followed by formation
of an optional monosyllable (which is often an optional preference for the
speaker; the parser does exercise this preference). An extreme example of
speaker freedom is iue, which the parser will resolve into two syllables iu-e
(choosing to group the first two when both pairs have the same precedence)
but which the speaker can resolve into two or three syllables in any of the
three possible ways.

10Previous versions of Loglan do not allow the glottal stop to appear medially in disylla-
bles (we allow it but also allow the traditional Loglan pronunciation, a smooth glide from
one vowel to the other); previous versions of Loglan allowed the glottal stop as an allophone
of pause, and we do not. Lojban uses the h sound medially in disyllables, which would be
allowed for a Loglan speaker who chose always to use the alternative pronunciation of h.

2.1. PHONETIC AND ORTHOGRAPHIC COMPONENTS 11

We present a formal rule11 for reading the next syllable from a sequence
of regular vowels of any length written without junctures, which is used in
resolving predicates and names into syllables. A mandatory diphthong is
read as the first syllable if it is present (recalling that if the pair of vowels
ends in i and is followed by another i it is not a mandatory diphthong); a
single vowel is read if it is not initial in a mandatory diphthong and the next
two vowels form a mandatory diphthong; if neither of the previous two cases
holds an optional diphthong is read by preference by the parser (though a
disyllabic reading is permitted); as the final option a single vowel is chosen,
subject to the rule that i or u (when not part of a diphthong) cannot be
followed by an intervening juncture and a consonantal occurrence of the
same vowel (this situation will cause parse failure). The process of resolution
of the first syllable from a stream of vowels is repeated until the stream of
vowels is completely resolved into syllables. This rule may look forbidding,
but it should be noted that sequences of four or more vowels are quite rare in
Loglan predicates or names, so the two and three vowel accounts will usually
be quite enough.

There is a separate rule, used in resolving certain structure words, in
which a sequence of vowels of even length is parsed into vowel pairs, each
of which is read as monosyllable or disyllable as the rules require or permit.
There is a further special rule for certain structure words with three-vowel
sequences, which does not conform with the rule stated above for resolving
vowel sequences in predicates and names, which will be stated when these
structure words are described.

When the vowel component of a syllable is read, this will be either a
syllabic continuant, or y, or a vowel or vowel diphthong chosen using the
appropriate one of the rules above.

One should note that the rules presented here are not of interest to readers
and writers, speakers and listeners, very directly; but they are certainly of
interest to word makers, and might briefly be of interest to a dictionary
reader encountering a word for the first time. Such phonetic rules exist in
natural languages, whose speakers are not necessarily even aware of them;
one could imagine that the native Loglander, though her speech will conform
perfectly to the rules stated above, will not know much about them unless

11The formal rule for reading long sequences of vowels in names appearing in Loglan 1
is incredible, as it requires indefinite lookahead; of course it was also really intended only
for use with three or perhaps four vowels.

12 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

she is a grammarian!

2.1.5 Consonant grouping

There are different rules for syllable-initial and syllable-final consonant group-
ing. It is worth noting that consonant grouping only occurs in regular Loglan
text in predicates and names. Syllables with final consonants also occur only
in predicates and names.

These are governed by two sets of phonetic rules. There is a list of permit-
ted initial pairs of consonants12. The initial group of consonants in a syllable
consists of a single consonant, or a permissible initial pair of consonants, or
a triple of consonants in which each adjacent pair of consonants is an initial
pair.13 We refer to a pair of consonants which would be a permissible initial
pair if an intervening juncture were removed as a “broken initial pair”.

There is a list of forbidden medial pairs14 and a list of forbidden medial
triples15. These cannot occur even if broken by a juncture.

There can be one or two final consonants in a syllable, which cannot be
part of a forbidden medial pair or triple whether together (if there are two of
them) or combined with consonants taken from the beginning of the following
syllable. A pair of final consonants cannot be a non-continuant followed by a
continuant (this appears to be pronounceable only as a separate syllable). A
final consonant cannot be followed by a regular vowel or a syllabic continuant,
even with an intervening juncture (in other words, such a consonant should
be read as part of the following syllable).16

A new (2/13/2021) rule forbids a pair of final consonants to consist of one

12The initial pairs are bl br ck cl cm cn cp cr ct dj dr dz fl fr gl gr jm kl kr mr pl
pr sk sl sm sn sp sr st sv tc tr ts vl vr zb zl zv

13The rule for initial consonant groups appears in Notebook 3.
14The impermissible medial pairs consist of all doubled consonants, any pair beginning

with h, any pair both of which are taken from cjsz, fv, kg, pb, td, any of (fkpt) followed
by either of (jz), bj, and sb.

15cdz, cvl, ndj, ndz, dcm, dct, dts, pdz, gts, gzb, svl, jdj, jtc, jts, jvr, tvl, kdz,
vts, and mzb

16The rules forbidding final consonants from participating in illegal medial pairs or
triples are found in our sources. The rule forbidding a pair of final consonants from being
a non-continuant followed by a continuant seems quite natural but is ours; no word was
proposed that violated it, in any case. Other rules that we state depend on a precise
definition of the syllable, which appears nowhere in Loglan sources, although the notion
of syllable is important in the definition of borrowed predicates in Notebook 3.

2.1. PHONETIC AND ORTHOGRAPHIC COMPONENTS 13

of ptksfh and one of bdgzv, in either order. This forbids a voiced and an
unvoiced consonant to occur together in a pair of final consonants, if neither
is a continuant.

A consonant in either of these sorts of groups which is a continuant cannot
be adjacent to another copy of the same continuant, within or without the
cluster, even if separated by a juncture. An initial consonant triple cannot
be followed by a syllabic continuant at all.

2.1.6 The Loglan syllable

A Loglan syllable consists of three parts.
There is an optional initial group of one, two or three consonants governed

by rules stated in the previous subsection.
This is followed by the mandatory vocalic component of the syllable,

which is either a pair of identical continuants, a single regular vowel, a vowel
diphthong, or y (iy or uy occur only in syllables (C)iy and (C)uy which are
directly allowed as units in structure words but not supported in the formal
syllable definition).

This is followed optionally by one or two final consonants, for which rules
are stated above, with the additional remark that unless the syllable is of the
shape CVC with the vowel regular, no final consonant in the syllable (neither
of them, if there are two) may be readable as standing at the beginning of
a following syllable (in other words, except in the case of CVC syllables,
the automatic placement of syllable breaks where an explicit juncture is not
present is as early as possible; but a CVC syllable is preferred to a CV
syllable where possible). Explicit junctures will override the preferred syllable
breaks, but there are subtle rules about where explicit junctures can be
placed: sometimes they will simply cause parse errors.17

It is worth noting that previous versions of Loglan had no official formal
definition of the syllable, though the syllable did play a role in the definition
of some word classes.18

17The subtleties have to do with the fact that a borrowed predicate cannot resolve
into djifoa (see below for these terms); an apparently legal borrowing predicate written
with explicit junctures will be rejected if moving some of the junctures would create a
legal complex predicate. These are issues which mostly affect the word designer. If you
are trying to write a complex predicate from the dictionary with explicit syllable breaks,
make sure that the breaks you supply conform with djifoa boundaries and these issues will
not arise.

18The lack of felt need for a formal definition of the syllable may have come from the fact

14 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

2.1.7 Pauses and whitespace: general principles

A pause is always expressed as either a comma followed by whitespace (which
must be followed by a phonetic block) or simply whitespace, which must be
followed by a phonetic block. The former is always a pause; the latter may
sometimes not be a pause.

Whitespace at the beginning or the end of alien text must represent an
actual pause.

Whitespace after a consonant and/or before a vowel must represent an
actual pause.

Names are the only consonant-final words in regular Loglan text, and
they must be followed by comma-marked pauses, terminal punctuation, or
end of text, or by whitespace followed by another name word or the structure
word ci.

Logical connective words of class A, some but not all of which are vowel-
initial, and sentence connectives of classes I and ICA must be preceded by
comma-marked pauses. The APA and IPA logical and sentence connectives,
to be discussed below, and the ICA and ICAPA sentence connectives must
be followed either by the suffix fi or a comma-marked pause. The issues in
this paragraph are handled entirely in the grammar section.

Words quoted with liu must be followed by a comma-marked pause (or
terminal punctuation or end of text).

If the final syllable of a structure word is stressed and it is followed by
a predicate, it must be followed by a comma-marked pause. This rule is of
course only enforced in our orthography if we actually write explicit stress.19

In general, certain lexicographic issues tend to force explicit comma-
marked pauses. If a pause in a sequence of structure word syllables breaks a

that structure words and complex predicates resolve into units which are not themselves
necessarily syllables, but which are expected to conform with syllable boundaries; it is
with the introduction of borrowed predicates that a precise notion of the syllable became
essential to someone who wanted to parse words, and once this notion was in hand, it
became natural to require that names (which were just consonant final strings of phonemes
in earlier versions of Loglan) be resolvable into syllables as well. The accuracy of our
implementation can be gauged by the fact that almost all words in the dictionary parsed
correctly when we ran a test, and the ones which did not parse had recognizable errors
which needed to be fixed. It should be noted that we cannot have three final consonants
in a syllable, and this is not uncommon in names. This can usually be fixed by doubling a
continuant, as in Hollmz, Marrks, but some names may be found to be definitely foreign.

19This rule goes back to the beginnings of Loglan, but as no earlier parser had explicit
indications of stress, there was never any occasion for an earlier parser to enforce it.

2.2. PHONETIC WORD FORMS 15

word, it must be explicitly comma-marked as a rule, since if it were written
as mere whitespace, not pausing would cause a different interpretation of the
utterance. There will be a discussion of multi-syllable structure words in the
lexicography section which lays out the situations under which this issue can
occur.20

The “false name marker” problem creates further need of explicit pauses,
which will be discussed below.

This version of Loglan supports a form of orthography known as “phonetic
transcript” in which no whitespace appears but comma-marked pauses. This
means that we require that in every place where we can or must pause, it
must be possible to replace whitespace with a comma-marked pause. It is
mostly but not entirely true that every place whitespace is written is a place
where one can pause: it is possible to create situations with the APA and
IPA connectives in their legacy form where a whitespace that one can write
cannot represent a pause, and there is a rule that one should not pause
after the structure word ci before a consonant unless the pause is comma-
marked. This whitespace can, however, be omitted. Whitespace which does
not represent pauses can always be omitted, though in the case of whitespace
after predicates, this may require the writer to insert explicit indications of
stress so that the reader can tell where the predicate ends. Whitespace which
cannot be omitted can always be replaced with an explicit comma-marked
pause.

Because we have phonetic transcript, we do not need a special notation
for expressing pronunciation.21

2.2 Phonetic word forms

2.2.1 The four forms, and general principles

There are four basic word forms in Loglan:

1. Items of alien text (with their preceding alien text markers), already
described above.

20In Lojban, apparently all structure word syllables are separate words, but this is not
the case in Loglan.

21Brown’s phonetic notation in the sources is ad hoc and reveals such things as very
inconsistent notions about syllable breaks.

16 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

2. Phonetic names (name words accompanied with their required preced-
ing pauses or name marker words with intervening optional pause).

3. Structure words

4. Predicates, further subdivided into complexes and borrowings.

These classes of words have general characteristics which allow us to dis-
tinguish them We leave aside the case of alien text which we have already
analyzed.

1. Name words are the only consonant-final words in Loglan (other than
alien text). They are thus followed by pauses in speech (and usually by
explicit pauses in writing). This makes the right boundary of a name
word easy to recognize. One must also pause at the beginning of a name
word, unless it is preceded by one of a limited class of name markers.
There are few contexts in which a name word can appear without an
immediately preceding name marker word, and if a name word hap-
pens to include a phonetic copy of a name marker word (a “false name
marker”) it must be immediately preceded by a name marker word (an
intervening pause being permitted). Where a name marker word occurs
which is not immediately followed by a name word but followed by a
name word starting later, a comma-marked explicit pause (or terminal
punctuation) must appear somewhere between the name marker word
not serving as such and the following name word: this prevents pro-
nunciation of the text in a way which causes everything between the
name marker word and the end of the later name word to be construed
as a single longer name word.

2. Predicates end with a regular vowel (so they are not names), are penul-
timately stressed (with qualifications to be stated later); this allows the
right boundary of a predicate word to be recognized in speech, or in
phonetic transcript), and contain adjacent consonants (in some cases
the pair of consonants may be separated by y). The left boundary
of a predicate is determined by the fact that it must begin CC or
(C)VnC(y)C. in the latter case with some conditions ensuring that the
(C)Vn cannot be construed as a structure word. Predicates can more
rarely begin (CVVy)n((C)Vm)CC.

2.2. PHONETIC WORD FORMS 17

3. Structure words (Loglan cmapua) are not names or predicates (actu-
ally some are semantically names or predicates, but this is a matter for
the grammar). In addition, we specify that they resolve into phonetic
units of the shapes V, VV, CV, CVV (where the VV may be a mono-
syllable or a disyllable, and iy, uy are permitted), and the rare Cvv-V,
where the vv is a monosyllable (mandatory or optional, but in any case
pronounced as such). Further, a V unit may only occur initially, and
any structure word which contains a VV unit consists entirely of VV
units (except that we allow words of the shapes no-VV and VV-noi).
A sequence of VV units is resolved into syllables by pronouncing each
unit as one or two syllables as the grammar requires or permits. Note
that the unit cmapua are not necessarily syllables, but their boundaries
are syllable boundaries in a structure word. Where a structure word is
followed by a predicate beginning with CC, stressing its last cmapua
unit might create the possibility of reading the last cmapua unit and
the first syllable of the intended predicate word as a predicate: to avert
this, we require that a finally stressed structure word must be sepa-
rated from a following predicate word (not just a CC-initial one) by a
comma-marked pause.

It should be noted that the classes of words here should be qualified as
phonetic names, phonetic predicates, and phonetic structure words, as there
are cases where “words” which are phonetically of one of these shapes are
used in a way associated with one of the others.

2.2.2 Phonetic Names

We distinguish between a name word, such as Djan, and a phonetic name,
such as la Djan Braon, which comes equipped with the name marker word
or initial pause that a name word requires in its context, and may contain
more than one name word after the name marker.

A name word is a phonetic block which resolves into syllables, the last of
which ends in a consonant (possibly with a final stress).

A possible name word is a name word, or a name word modified by
insertion of whitespace at junctures preceded by a vowel and succeeded by a
consonant (so that the whitespace does not necessarily represent a pause).

A marked name is a name marker word followed by a consonant initial
name word, possibly with intervening whitespace between the two.

18 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

A falsely marked name is a name word with a proper final segment which
is a marked name: that is, it is a name word with a false name marker in
it. Notice that a phonetic occurrence of a name marker word is not a false
name marker unless what follows it is a consonant-initial name word.22

The name marker words are la, hoi, hue, ci, liu, gao, mue. A subtle
point is that ci is only a name marker when followed by a pause (an explicit
comma-marked pause or whitespace followed by a vowel): this allows us
to avoid difficult-to-predict needs for pauses after the many uses of ci. It
does mean that when whitespace is written after ci before a consonant, we
presume that the speaker does not pause.

A phonetic name (including its name marker or preceding pause if there
is one) is of one of the following kinds:

1. a marked name as described above (a name marker followed by possible
whitespace followed by a consonant-initial name word).

2. a vowel initial name word which is not a falsely marked name, or a
comma-marked pause followed by a name word which is not a falsely
marked name.

3. a name marker followed by optional whitespace or explicit pause fol-
lowed by a name word, with the additional proviso that the optional
whitespace or pause must be present if the name word is vowel-initial.

To any of these, a series of name words marked with ci and unmarked
name words which are not falsely marked, may be appended as part of the
phonetic name, so la Djan Braon is a phonetic name, and so is la Pierr ci,
Laplas. In the last example one pauses both before and after ci; the second
comma must be written, and the use of ci is necessary because Laplas is a
falsely marked name.

22In early versions of Loglan, falsely marked names were simply forbidden, but la is very
common. Later, they were admitted and some effort was made to avoid problems with
them. The idea that a falsely marked name must be marked appeared in the context of
implementation of serial names (falsely marked names in a serial name had to be marked
with ci; we required after 2013 that predicate components of serial names be marked with
ci as well to avoid the need for two pause phonemes to avoid confusion of serial names
with sentences.) We extended the idea that falsely marked names must be marked to all
contexts, and in addition reduced the distribution of unmarked names to very few contexts
by forbidding unmarked vocatives.

2.2. PHONETIC WORD FORMS 19

It is then required that this be followed either by an explicit pause, ter-
minal punctuation, end of text, or whitespace followed by ci followed by a
predicate of class predunit, a peek forward at the grammar. Note that the
following explicit pause or punctuation or ci phrase is not part of the pho-
netic name: this is information about the context in which a phonetic name
can appear.

Names may contain explicit junctures, including ones which form broken
monosyllables, and junctures may be required features of name words: Lo-is
and Lois are different names.23

2.2.3 Phonetic structure words (cmapua)

Phonetic structure words are sequences of cmapua units as sketched above;
we give more details.

Cmapua units are of the shapes V, VV, CV, CVV, Cvv-V, where vv
stands for a monosyllable and VV (in VV and CVV units) includes iy, uy.
y is also accepted as a V unit.24

A phonetic structure word is a string of cmapua units. A cmapua unit
not of VV form cannot be followed by a vowel, even with an intervening
juncture: this helps to enforce the condition that vowel-initial words must
be preceded by pauses in speech, represented at least by whitespace.

Each cmapua unit is restricted by lookahead tests for other classes. A
cmapua unit cannot be an alien text marker actually followed by alien text.
A cmapua unit cannot be an occurrence of li or kie which actually stands
at the beginning of a quotation or parenthetical free modifier (for the uses
of these words, see the grammar section). A cmapua unit cannot be a name
marker followed with optional pause by a possible name word (this excludes
both actual phonetic names and strings which could be misread as phonetic
names by ignoring instances of whitespace one of which should be made an
explicit pause).25 A cmapua unit cannot stand at the beginning of a legal

23This goes back to previous versions of Loglan, but we use hyphens instead of close
commas.

24The practical reason for allowing y to occur above is to support names of the letter
y, legacy yfi and modern ziy (pronounced “zyuh”!). It seemed more principled to install
general phonetic conditions that allowed these forms than to allow them individually by
fiat.

25This is our definitive solution to the false name marker problem. Difficulties created
by the markers other than ci should generally be easy to anticipate, by following style rules

20 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

predicate (the parser does a lookahead test which identifies strings which can
only be predicates if they are grammatical and not possible phonetic names;
we describe this test below at the beginning of the discussion of predicates).

A cmapua unit cannot be stressed and then followed by optional whites-
pace and the start of a consonant-initial predicate (as detected by the test
above).

We then provide a phonetic test for the logical and sentence connective
classes which must be preceded by a pause. A phonetic connective starts
possibly with whitespace followed by possibly by an occurrence of no (not
starting a predicate) followed definitely by a regular V syllable or ha26, nuu
(not starting a predicate), not followed by a vowel, and not followed by fi,
ma, or zi, which would make a V unit into a legacy letteral (none of these
starting a predicate).

We can now describe a phonetic structure word. It takes one of five forms.

1. a VV unit (here and in all clauses here including iy, uy) followed by
noi (noi not starting a predicate).

2. no (not starting a predicate) followed by a VV unit

3. a sequence of VV units

4. a regular or irregular V unit

5. an optional regular or irregular V unit followed by a sequence of one
or more consonant-initial cmapua units

A cmapua unit absorbs a following juncture.
Each cmapua unit is blocked from being followed by a vowel without

intervening whitespace or by optional whitespace then a phonetic connective;
this forces explicit pauses before the logical and sentence connectives.

The phonetic structure words defined here have boundaries dictated en-
tirely by phonetic convenience; the actual boundaries of cmapua words in the
proper sense are dictated by rules stated in the lexicography chapter. Some
words which appear in other structures, such as the name markers, alien

such as “always pause after a predicate name”. The word ci presented special difficulties
as a name marker because it has a wide variety of uses some of which have nothing to do
with names. Viewing it as a name marker only when followed by a pause seems to be the
final refinement of our solution.

26Note that we are ruling here that ha and its derivatives must be preceded by a pause.

2.2. PHONETIC WORD FORMS 21

text markers, and y, and some others, are from a lexicographic standpoint
structure words and do look like them phonetically.

2.2.4 Primitive Predicates and Combining Forms (dji-
foa)

The basic “native” predicates of Loglan are of the five letter forms CCVCV
and CVCCV. The original stock of native predicates was generated by a
rather ad hoc statistical comparison with words in major natural languages
on which we have no intention of commenting, as we expect it never to be
used again.

Each of the native predicates has one or more combining forms (originally
called “affixes”, a deprecated usage; now usually called djifoa, the Loglan
word for these forms).

Each five-letter native predicate has a djifoa formed by replacing its final
vowel with y. This does mean that five letter predicates which have the same
final vowel must be semantically very closely related (words for animals and
languages can be given fine shades of meaning by adjusting the final letter;
we do not intend to create further declensions of this kind, but we see nothing
wrong with the ones we have).

In addition, many five-letter djifoa have one or more than one associated
three letter djifoa, of one of the forms CVV, CVC, or CCV, which is formed by
choosing three letters from the five letter djifoa in order of their occurrence.
The process of choosing these djifoa is not likely to be modified or extended
at this point, though there is some tension about the ones with doubled
vowels which force stress.

There is also a short list of three-letter djifoa built from CV cmapua, by
appending r, which we supply:

fer: from fe, five

for: from fo, four

fur: from fu, 3d place passive

jur: from ju, 4th place passive

ner: from ne, one

nir: from ni, zero

22 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

nor: from no, logical negation

nun: from nu, 2nd place passive, beforer

nur: from nu, 2nd place passive, not before r

por: from po, state particle

rar: from ra, all

rer: from re, most of

ror: from ro, many of

ser: from se, seven

sor: from so, six

sur: from su, at least one of, some

ter: from te, three

tor: from to, two

ver: from ve, nine

vor: from vo, eight

Further, every CV cmapua unit has a corresponding CVh djifoa. CVV
cmapua may be extended with (h)y (not with n or r) and used as djifoa:
thus zaiytrena, A-train. This must be done with care as there may be djifoa
derived from cmapua of the same shape.

Loglan complex predicates (native compound predicates) are built from
sequences of these djifoa (in which the last item may be a full primitive or
borrowed predicate). There are also borrowing djifoa built from borrowed
predicates, which we discuss in the next section.

It is necessary to supply additional phonetic glue so that sequences of
these djifoa actually can produce predicate words. Each three-letter djifoa
has an alternative form with suffixed y. CVCy djifoa can be broken into
syllables either as CVC-y or as CV-Cy. CVV djifoa in initial position will
“fall off”: so CVVr is available as an alternative form (which will form a
consonant pair with the following djifoa or predicate word), and CVVn is

2.2. PHONETIC WORD FORMS 23

available as an alternative form when it is followed by r. Other problems are
that CVC djifoa may not occur in final position, and CVV djifoa which have
a doubled vowel can only occur in final or in penultimate position, because
a predicate word can only contain one stress in a penultimate position. We
propose for CVVy the alternative form CVVhy: a predicate starting this
way will not be confused with any other kind of word, and this should be
easier to pronounce distinctly.

A pronunciation difficulty with CVVr extended djifoa (at least for English
speakers) is fixed by a permission which will probably seldom be expressed
in writing, but can be: CVVr can take the alternative form CVV-rr when
the VV is a mandatory monosyllable. If this is stressed, the stress falls on
the VV and the vocalic continuant is an additional unstressed syllable before
the final unstressed regular syllable.

Broken djifoa forms are also available to the parser, obtained from legal
djifoa by inserting junctures (C-CV or C-VV or CV-C, for example). These
are used to enforce the condition that borrowed predicates cannot decompose
into djifoa, and it should not be possible to convert a complex (especially
one which is illegal for reasons peculiar to complexes) to a legal borrowed
predicate by moving junctures around.

The general point about syllable breaks is that while djifoa are not syl-
lables, the boundaries between djifoa will be syllable breaks in a legal com-
plex. Internal breaks are sometimes optional: a CVV djifoa with an optional
monosyllable has two possible forms. The CVCCV five letter predicates may
admit two forms CVC-CV and CV-CCV if the medial CC is an initial pair.
The parser prefers the first form for technical reasons; it can be coerced by
writing an explicit syllable break, and the latter version is often easier to
pronounce.

2.2.5 Phonetic predicate words: general principles, and
recognizing the beginning of a predicate

A phonetic predicate word ends with a regular vowel (so it is not a phonetic
name), contains an adjacent pair of consonants (so it is not a structure word),
and has penultimate stress (with the exception that an additional unstressed
syllable with y or a vocalic continuant may intervene between the stressed
and the final syllable), so that one can tell where it ends.

The part of the predicate before the consonant pair can be null (the

24 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

predicate may start with an initial pair or triple of consonants). This will
be followed by a regular vowel, and there are no CC(C)V(V) predicates, in
which the initial consonant group is followed just by one or two vowels.

The initial segment before the consonant pair can be an optional conso-
nant followed by one to three regular vowels27 This is the only alternative
which can occur in a borrowed predicate. This can be ensured if the string
starting with the consonant group doesn’t satisfy the conditions given above
to be the start of a predicate: the predicate must then begin with the initial
(C)V(V)(V) (it cannot begin with part of the vowel sequence because one
must pause before a vowel-initial word). It can also be ensured if the final
syllable of the initial (C)V(V)(V) is stressed: if it were the end of a cmapua,
it could only be followed by a predicate, and one cannot have a stressed
cmapua followed by a predicate without pause. There is a further technical
issue, which is explained below in the discussion of borrowing djifoa: for
technical reasons, if the (C)V(V)(V) is not of one of the forms CV or CVV,
the consonant group cannot be an initial pair followed by a regular vowel.

In a complex, there are other possibilities. A complex might start with
one or more CVVy djifoa; no other sort of word can start this way. It might
start with a CVCCy djifoa; no other sort of word can start this way. It might
start with a an extended CVC djifoa: CVCy. Again, no other Loglan word
can start in this way.

We describe a lookahead test: a string which is already known not to be
a possible phonetic name cannot be anything but a predicate (or ill-formed)
if one of the following things are true (and one of these things will be true of
any actual predicate):

1. It begins with a permissible initial group of two or three consonants and
is followed by a regular vowel, but not by one or two vowels (with pos-
sible junctures) followed by a non-character, nor by a stressed vowel
followed by a vowel not in a diphthong (short words of the shapes
CC(C)V(V) are not predicates). Junctures may appear after the vow-
els. This clause of the test ignores any junctures which may appear in
the initial group of consonants (to support its use in following clauses).

2. It begins with CV(V) followed by a consonant group, with either the
final syllable in the CV(V) [which might extend to a juncture in the

27Previous versions of Loglan have allowed arbitrarily long sequences of vowels after the
initial consonant in this case, but these have never been used and I like the bound on
lookahead in this test obtained by forbidding more than three vowels.

2.2. PHONETIC WORD FORMS 25

consonant group] stressed or the part of the word beginning at the
consonant group not meeting the test to start a predicate above. Junc-
tures may appear after the vowels, and there might be a juncture in
the consonant group, which will be ignored in testing whether it begins
a predicate.

3. It begins with (C)V(V)(V) followed by a consonant group which is not
an initial pair (even one broken by a juncture) followed by a regular
vowel, with either the final syllable in the (C)V(V)(V) [which might
extend to a juncture in the consonant group] stressed or the part of the
word beginning at the consonant group not meeting the test to start a
predicate above. Junctures may be inserted after the vowels or there
might be one in the consonant group, which will be ignored in testhing
whether it begins a predicate.

4. It begins with a consonant and a regular vowel, followed by a regular
vowel followed by y [or hy], or a consonant or pair of consonants fol-
lowed by y (with possible intervening junctures). Both of these initial
sequences are possible beginnings for a predicate complex, and what
follows the CVn could not start any legal word in that context.

The point of including this list is making it clear that it is fairly easy to
see or hear the beginning of a predicate word (though the detailed description
of the cases is admittedly annoying!)

2.2.6 Borrowed Predicates and Borrowing Djifoa

After all that about djifoa, we discuss borrowings first!
A borrowing must resolve into syllables. It must end in a regular vowel.

Any explicit stress must be on the second-to-last syllable, not counting syl-
lables with vocalic continuants (one such unstressed syllable may intervene
between the stressed syllable and the unstressed final syllable). The end of a
predicate is determined by either non-characters such as whitespace or punc-
tuation, or by an explicit stress. A borrowing cannot be followed without
intervening whitespace or explicit pause by a vowel, nor by optional whites-
pace followed by a connective. An explicit stress may force monosyllabic
pronunciation on a last syllable which could otherwise be pronounced as a
disyllable. There can be only one explicit stress in a borrowing. The deduced

26 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

stresses in doubled vowels do not play a role in parsing borrowings, as disyl-
labic doubled vowels are forbidden in borrowings. It is permissible to write
a borrowing with explicit junctures, but this cannot change the meaning of
the word, and broken monosyllables are not permitted. A borrowing must
parse correctly in the absence of explicit junctures.

The beginning of a borrowed predicate must pass the test for beginnings
of predicates given above. Since borrowed predicates cannot contain y, this
enforces the condition that there be a pair of adjacent consonants in a bor-
rowed predicate. We reiterate that a borrowed predicate cannot have the
shape CC(C)VV (which is of course not resolvable into djifoa, so could not
be the shape of a complex predicate).

There are some restrictions on the phonetics of borrowed predicates. Bor-
rowed predicates may not contain y or any doubled vowel other than mono-
syllabic ii and uu.28 Borrowed predicates may contain syllables with vocalic
continuants. These never follow a vowel and so far never precede a conso-
nant, and such a syllable is always medial (not first or last). There may not
be two such syllables in succession, and such a syllable cannot be stressed.
The point of such syllables is that they cannot occur in complexes (with
one minor exception which cannot be confused with occurrences of syllabic
continuants in borrowings: a CVVr djifoa may be expressed as CVVrr, in
which the syllabic continuant follows a vowel). A borrowed predicate may
not resolve into djifoa, including resolutions involving broken forms in which
junctures are misplaced.

Borrowing djifoa are formed from borrowings by adding final y and mov-
ing the stress to the final syllable of the borrowing (still penultimate in the
borrowing djifoa). It is permitted to stress the penultimate syllable in a bor-
rowing djifoa and pause after the y, if what follows the borrowing djifoa con-
tains a penultimate stress. Thus one may pronounce bakteriyrodhopsini
as bakteri’y, rodhopsi’ni, but one may not pronounce iglluymao with a
pause. The stress shift is a strong signal that one is not saying bakte’ri but
its djifoa.29

28Forbidding doubled vowels in borrowings was an action of ours: admitting them made
reasoning about the penultimate stress in a borrowing more difficult. Exactly one predicate
alkooli had to be changed to the better alkoholi.

29Nothing in this situation is due to me! The strange provision to pause after a borrowing
djifoa is in Loglan 1. The definition of borrowing djifoa we use was given in the 1990’s.
I do not know if anyone noticed the stress shift caused by the change in the definition of
borrowing djifoa, but it is all a logical consequence of the way things stood at Brown’s

2.2. PHONETIC WORD FORMS 27

The reason for the difference between the treatment of CV(V) and other
(C)V(V)(V) prefixes in the predicate start rules is caused by the danger
that a borrowing djifoa for a (C)VnCCV predicate might turn into a cmapua
followed by a stressed CCVy djifoa when a borrowing djifoa was formed (this
requires the CC to be an initial pair, of course). This is not a danger when
the consonant is present and n = 1 or 2 because a borrowing will not be of
the shape CV(V)CCV with the CC initial. Thus a string (C)VnCCV with
the CC an initial pair is not allowed to start a predicate unless the initial
consonant is present and n is 1 or 2.

2.2.7 Complex Predicates

A complex predicate is formed from a sequence of djifoa in which the final
element may be a full primitive or borrowed predicate (and if it is a djifoa
may not be CVC, nor may it be extended with r, n or y, nor may it contain y
at all). A complex may not be formed entirely from CVVy djifoa and a final
CVV (this prevents forms without adjacent consonants; adjacent consonants
may be separated by y as in mekykiu). A complex must pass the predicate
start test. CVV djifoa may need to be extended with r, n, or y when they
appear in initial position to keep from being read as cmapua. CVC djifoa in
initial position of a complex not of one of the six-letter forms CVCCVV or
CVCCCV must be extended with y if the final consonant of the djifoa and
the following consonant would form an initial pair (a juncture does not affect
this): this prevents the complex from being read as a CV djifoa followed
by a borrowing.30 Thus ficynirli, mermaid. A CVC djifoa may need to
be extended with y to prevent formation of an illegal consonant group with
the following consonant. Thus mekykiu, eye doctor. Regular djifoa must be
extended with y when they appear before borrowing djifoa: since borrowings
cannot contain y, this gives us precise information about their boundaries.

Complexes must have penultimate stress among those syllables not con-
taining y: an unstressed syllable containing y (or a syllable rr serving as glue
to a stressed CVV) may intervene between the stressed syllable and the un-

death.
30This rule superseded the historical slinkui test, which prevented the CV from falling

off the front of a CVCC... complex with the CC an initial pair by forbidding the formation
of borrowed predicates obtained by extending a complex initially with a single consonant
forming an admissable pair: instead of forbidding paslinkui in favor of pasylinkui,
paslinkui was permitted and slinkui was forbidden to be a borrowing.

28 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

stressed final syllable. The parser does know about the doubled vowel stress
rule, and will not accept a complex with a CVV with a doubled vowel unless
one of the vowels can carry the penultimate stress. If a CVV with doubled
vowel is followed by a CVV with optional monosyllable, the monosyllabic
pronunciation is forced; otherwise a CVV with optional monosyllable gives
the speaker a choice about where to place the stress. The parser determines
where a predicate ends either by the occurrence of explicit stress or by the
occurrence of a non-character from which it back-figures the location of the
stress. The only stresses in a predicate are its penultimate stress and op-
tionally stresses in its borrowing djifoa (mandatory if the borrowing djifoa is
followed by a pause).

A complex may not be followed without intervening space (a juncture
doesn’t help) by a vowel. A complex may not be followed by whitespace
followed by a connective.

An alternative formulation allows the formation of a complex from a se-
quence of cmapua units and predicate words in which the last item is a
predicate word, with successive items separated by the “word” zao, option-
ally flanked on either side by whitespace or comma-marked pauses. This
form might be used to avoid borrowing djifoa. I can also imagine its use to
clarify the meaning of a complex by replacing its constituent djifoa with the
corresponding predicates in full.31

Our general view is that the replacement of a djifoa in a complex by
another djifoa for the same predicate or even by the full predicate linked
with zao gives another form for the same predicate word: such forms should
not appear as separate dictionary items.32

2.2.8 Phonetic Quotes and Parenthetical Expressions

A phonetically valid quoted utterance begins with li and ends with lu with
optional pauses after li and before lu and with the intervening text, which
must be a phonetic utterance, optionally enclosed in double quotes (the
quotes being between li and lu). Replace li and lu with kie and kiu and op-
tonal use of quotes with optional use of parentheses (opening with an open

31This is a proposal of John Cowan.
32For example, we think the word heirslicui, molasses, presents difficulties for an En-

glish speaker and she might want to say hekryslicui instead; this is precisely the same
word.

2.3. HISTORICAL AND PHILOSOPHICAL NOTE 29

parenthesis, closing with a closing parenthesis, and you have the rule for
spoken parenthetical expressions.33

We give examples: li, la Djan, lu; li “la Djan”, lu; kie (ji cluva mi)
kiu.

2.2.9 Phonetically valid utterances

A phonetically valid unit phonetic utterance is a phonetic name, phonetic
structure word, marked alien text item, phonetic predicate word, quoted
or parenthesized expression, hyphen, or ellipsis, possibly with initial whites-
pace. A phonetic utterance is a sequence of unit phonetic utterances, explicit
comma pauses, and items of terminal punctuation. Any Loglan utterance
must be a phonetic utterance: of course it must also be grammatically cor-
rect, a matter for subsequent chapters. 34

It is useful to be aware that the parser proceeds in effect in two passes:
it checks an entire utterance for phonetic validity, then checks whether it is
grammatical in another pass.

2.3 Historical and philosophical note

Loglan phonetics is to our mind rather weird and wonderful.
James Jennings has commented that the choice to recognize word classes

by patterns of consonants and vowels in the first instance was the “original sin
of the language”. Perhaps so, but once this sin was committed, it could not
be undone without discarding everything and creating a different language.

1975 Loglan had a very simple procedure for resolution of words, but a
method for construction of new predicates which was ultimately found unsat-
isfactory. The great morphological revolution which consisted in introducing
complex predicates as predicates built from djifoa and borrowings as all the
phonetically acceptable predicates which were not complexes made the defi-
nition of the predicate much more complicated, and more of a challenge for
the parser builder.

33The use of punctuation here is a proposal of ours: it is quite natural but did necessitate
the phonetic parser knowing about these forms.

34We note that CCV djifoa are alse unit phonetic utterances, strictly so that they may
be quoted with liu. CVV djifoa are also cmapua, and CVC djifoa are also names, so they
can be liu-quoted without special ceremony.

30 CHAPTER 2. PHONETICS AND ORTHOGRAPHY

The problem of false name markers also led to a certain amount of ex-
citement, once it was decided that la was too common to ban from names.

We find Loglan phonetics charming as well as weird; the language has
a definite phonetic flavor and avoids monotonous regularity. We would not
say that it is always easy to pronounce, and its resemblance to a Romance
language can be overstated: it does allow quite a lot of consonant clustering.
A further charm is that the baroque rules, however arbitrary they may seem,
actually work out as almost inevitable consequences of a fairly small number
of design decisions. We hope that we have given some hint in our discussion
of what these design decisions were.

Chapter 3

The Grammar Proper

In this section, we will present the grammar, pausing now and then to intro-
duce word classes that are needed; we will give short lists of commonly used
words in the grammar text and full word lists in an appendix.

3.1 Simple sentence shapes

It is an interesting question where to start. We will begin with the basic
Loglan sentence, and work upward to more complicated utterances and other
kinds of utterance fragments, and downward to sentence components.

The simplest kind of Loglan sentence is examplified by La Djan, kamla
(John comes) and La Djan, donsu le bakso, la Meris (John gave Mary
the box). This is an S(VO) sentence: each of these consists of a subject (la
Djan in both cases), a species of noun phrase, followed by a verb phrase,
which is a verb (kamla) in the first, donsu in the other), followed optionally
by a list of “objects” (noun phrases, none in the first example, two, la Meris
(Mary) and le bakso (the box) in the second.

We pause here to discuss grammatical terminology. We have used the
words “noun” and “verb” though Loglan actually has no such word classes.
It does however have those functional roles, and we will use (hopefully with
care) these words to help communicate what is going on in the grammar.
The words kamla, donsu, and bakso all belong to the same word class,
Loglan predicates, and can appear in any of the roles. Ti bakso (this is
a box) is a sentence in which the very nounish (to the English mind) word
bakso appears...as the verb! What we call a “noun phrase” can also be

31

32 CHAPTER 3. THE GRAMMAR PROPER

called an “argument” (terminology taken from logic and also already used in
Loglan grammar). Loglan grammarians have up until now used “predicate”
indifferently for predicate words and for what we call “verbs” and “verb
phrases”; we will continue to use “verb” and “verb phrase” as grammatical
terms.

We discuss the difference between this kind of basic sentence and atomic
sentences of predicate logic. An atomic sentence of predicate logic is of a
form Mx (x is a man), Bxy (x is bluer than y), Gxyz (x gives y to z).
There is a predicate (M , B, G) and argument lists (x, xy, xyz). A sentence
like Bxy might parse (B)(x)(y) or perhaps (B)((x)(y)); the predicate and the
individual arguments might be components at the same level or the predicate
and the argument list might be components (the list further resolving into
individual arguments).

The Loglan parse is different, in a way which brings Loglan closer to
natural languages: da mrenu: xM , da blanu de: x((B)(y)), da donsu de
di: (x)G((y)(z)). The weird thing here, from the standpoint of a logician, is
the very special role of the subject: the whole sentence breaks at the top into
the noun phrase subject and the verb phrase containing the verb and a list of
the second and subsequent arguments. The oddities of the way this breaks
down become clearly important later when we discuss logically connected
predicates.

3.1.1 A brief review of components we use in example
sentences

To support examples, we should say something about the components of this
sentence and what we are currently putting in for these components.

Any Loglan predicate word can play the role of the “verb”. There are
more complicated verbs than single predicate words, and we will see some
possible additional complexities quite soon. A name such as la Meris, la
Djan Braon is eligible to be a noun phrase (either a subject or an object).
Pronouns such as ti, ta (this, that), or da, de, di, do du (pronouns referring
to recently mentioned noun phrases by a scheme we will discuss below), or
letter names (referring to recently mentioned noun phrases with the given
initial), or noun phrases built from predicates such as le mrenu, (the man),
are other possible arguments we may use before we have fully explained the
range of possibilities for noun phrases.

3.1. SIMPLE SENTENCE SHAPES 33

3.1.2 Changes of argument order and omission of ar-
guments

The sentence “I am better than you” is expressedMi gudbi tu. The sentence
“You are better than me” can of course be expressed Tu gudbi mi, but
it can also be expressed Mi nu gudbi tu. nu gudbi is a verb, just as
gudbi is. The effect of the particle nu is to reverse the first and second
arguments. The particle fu interchanges the first and third arguments; the
particle ju interchanges the first and fourth arguments. Compounds are
possible: nufunu interchanges the second and third arguments, for example:
La Meris, nufunu donsu la Djan, le bakso (Mary gave John the box).
No one is going to carry out the transformation expressed by nufunu in
three separate steps in their head during a conversation: it should be learned
as a separate dictionary word. But if you work it out step by step, you will
find that that is what it does. These contructions implement what would be
“passives” in other languages: the Loglan term is “conversion”.

A variation implements “reflexives”. nuo, fuo, juo have the effect of
eliminating the second, third, fourth argument, respectively, by supplying
the subject as that argument. La Meris, nuo donsu la Djan (Mary
gave herself to John) or la Meris, fuo donsu le bakso (Mary gave herself
the box) exemplify this transformation. Compounds can be formed using the
reflexives: for example nufuonu eliminates the third argument by identifying
it with the second.

Any Loglan predicate word has a certain number of arguments, which
have a certain order in the situation it represents, which can be seen in
its dictionary entry. Without special contrivances, you cannot supply the
predicate withmore arguments. But you can supply it with fewer arguments.
Mi gudbi tu means “I am better than you”. Just Mi gudbi means “I am
good”, with the underlying assertion being “I am better than someone”.
Another example La Meris, donsu le bakso: “Mary gave the box away
(gave it to someone)”.

This can be combined with changes of argument order: Mi nu gudbi, “I
am bad” (I am worse than someone); La Meris, nufunu donsu la Djan:
“Mary gave (something) to John.”. The argument omitted is always the last
one, but if one changes the order of the arguments, one can put an argument
one wishes to omit in the last position.

If the reader wonders why we introduce this transformation of verbs here,
they should note two things: as we will see later, this is one of the most

34 CHAPTER 3. THE GRAMMAR PROPER

tightly binding operations on verbs, and further, it acts exactly on the very
simplest features of the structure of the simple Loglan sentence.

3.1.3 Tenses and variations

In this section we introduce tenses of the Loglan verb, which do not neces-
sarily have anything to do with time. Tense is achieved using a structure
word (either ga or a word of the PA class): the simplest examples are na,
pa, fa. the present, past, and future tenses. A nontemporal examples is vi
(here). There is also a null tense ga, which is used in situations where it
is grammatically useful to have a tense but we do not actually want to say
anything about the time, place or conditions of the assertion.

la Meris, pa cluva la Djan Mary loved John

Mi fa nufunu donsu tu I will give you something

La Ailin, vi danse Eileen dances here

Le mrenu ga sadji The man is wise (in general, no commitment to a
particular time). Here the ga is grammatically a tense but it doesn’t add
anything to the semantics. It is needed, because as we will see later, le
mrenu sadji is not a sentence, but a noun phrase, “the wise man”.

We aren’t introducing tenses at length: we actually need to introduce
them in order to describe a further manipulation of basic sentences. Notice
that nufunu donsu is tensed, rather than fa donsu being converted: the
tense is much more loosely attached than the conversion operator. In fact,
the tense attaches to the verb phrase as a whole rather than to the verb.1

3.1.4 Variations in sentence order

We can put the subject in a sentence after the verb in two ways.

The first kind of sentence we can produce has a tensed verb phrase with
its objects (it might be tensed with ga strictly for grammatical purposes)
followed optionally by ga then the subject:

Ga gudbi tu ga mi I am better than you

Ga gudbi tu There are better than you (here the subject is omitted!)

Ga donsu le bakso la Djan, ga la Meris Mary gave the box to John

1It is actually possible to convert a sort-of-tensed verb but it is tricky: Mi nufunu ge
donsu je fa gue tu, in which quite a lot is going on which we will not explain yet!

3.1. SIMPLE SENTENCE SHAPES 35

Nia nu gudbi tu ga mi You are being better than me (combining
conversion of the predicate with reordering of sentence components!) The
tense word nia is the present progressive.

The second kind of sentence with subject delay consists of a tensed verb
phrase with no objects followed by ga then all the arguments in the sentence.

Ga donsu ga la Meris, le bakso la Djan.
This allows us to achieve VOS and VSO word orders.2

We can put some objects before the verb, if we separate those objects
from the subject with the particle gio.

Mi gio le bakso ga donsu tu I give the box to you (the tense ga is
actually needed to keep from saying le bakso donsu.the boxy giver), or

Mi gio le bakso tu ga donsu
This supports SOV(O) sentence order.
The particle gio may optionally be used to set the subject apart from the

objects in a VSO sentence:
Ga donsu ga la Meris, gio le bakso la Djan.
There is another device for modifying sentence order by bringing objects

to the front, but this device cannot be properly introduced until after we
discuss logically connected sentences.

3.1.5 Modifiers and tagged arguments

Tense, location and modal operators (the same words which can decorate
verb phrases as tenses) can form sentence modifiers which are rather like
additional arguments which can be supplied with any verb. In English gram-
mar, these would be “prepositional phrases”.

Relative modifiers and arguments (including the tagged arguments intro-
duced below) are called terms. The subject and the list of objects in a verb
phrase are both term lists (of slightly different kinds, as we will see). The
subject is an arbitrary list of terms containing at least one argument and no

2It is a reform of ours to require that gasents (the Loglan jargon for subject-delayed
sentences) must have either exactly one argument delayed or all arguments delayed. We
want to avert listeners being forced to retroactively change their understanding of the
meanings of arguments appearing earlier as in ∗Ga donsu le bakso, ga mi tu in which
one would reasonably start out thinking that le bakso was the object being given (the
second argument) but the presence of two arguments after ga (permitted in 1989 Loglan)
forces the listener to revise this: the actual meaning of the sentence would be “I gave you
to the box”.

36 CHAPTER 3. THE GRAMMAR PROPER

more than one untagged argument. It is important to notice that if the list
of terms before the verb in a sentence does not contain any arguments, the
sentence will be either a gasent (if tensed) or an imperative (if not tensed).
The object list can contain no more than four untagged arguments (since
there is no predicate taking more than five arguments).

Formally, a relative modifier is either a word of class PA (a tense, location
or modal operator) followed by a noun phrase, followed optionally by the
particle guua3 or the general right closer particle gu, or simply a PA word
followed optionally by gu. In the last kind of sentence modifier, you should
suppose that the omitted argument of the PA word is the present situation
in which the speaker is delivering their speech (the referent of the pronoun
tio).

Lists of PA words will appear in the next section.

Examples of such modifiers:

Vi la Djan, mi bleka le nirda Near John I watched the bird

mi bleka le nirda, vi la Djan

Mi godzi na I go now (here the “now” is not a tense but a sentence
modifier).

The relationship of a sentence modifier to the sentence is exactly the same
no matter where it appears in the sentence. It modifies the verb phrase, or
equivalently, the entire situation represented by the sentence, not an argu-
ment it happens to be near.

Mi bleka le nirda vi la Djan means that I was near John when I was
watching the bird.

Mi bleka le nirda ji vi la Djan means that I was watching the bird
which was near John (a different grammatical construction, the subordinate
clause, which we have not seen yet).

A modifier or modifiers may appear before the ga or tense in a subject-
delayed sentence.

Na la Ven, pa kamla ga la Djan John will come at nine

Tagged arguments are arguments which are allowed to float free in a
sentence in the same way that relative modifiers do. This can be done with
numerical place tags or case tags.

The numerical place tags zua, zue, zui, zuo, zuu are signs of the first,
second, third, fourth and fifth argument of a predicate. This allows argu-

3guua and some other right closers are new; we did a survey of grammatical construc-
tions closable with gu and provided special forms for most of them.

3.1. SIMPLE SENTENCE SHAPES 37

ments to be freely reordered and moreover allows medial arguments to be
omitted.

Zui la Djan, donsu zua la Meris Mary gave (something) to John.
It also allows arguments to be placed with the subject, as long as at most

one argument in the subject is untagged:
La Meris, zui la Djan, pa donsu le bakso
It also allows more than one argument to be supplied for the same place.
Zua la Meris, zua la Djan, cluva la Ailin Mary and John love Eileen.
Untagged arguments are taken as usual to represent the places of the

argument in order, skipping places corresponding to numerical place tags (or
case tags) which have already appeared earlier in the sentence. We do not
require a listener or reader to displace a sequence of arguments when a zua
is encountered at the end of a sentence. Numerical place tags have a special
effect in term lists appearing before the particle gi, which we will describe
below.

The case tags are a bizarre idea which we would not have installed in
this language. This is not to say that similar ideas do not occur in natural
languages. With each place of a Loglan predicate, a case is associated in
the dictionary, and that case tag may be used to reference that argument
of that particular predicate in the same way the appropriate numerical case
tag would reference it. Another possible use of a case tag is to suggest an
argument whose place the speaker has forgotten, or perhaps an argument of
the predicate which does not appear in the dictionary!

There is a further issue that the dictionary includes words in which dis-
tinct arguments have the same case. To support this, we have recently pro-
vided forms which reference the first, second, third, etc. argument of a given
case.

The list of case tags will appear in the next section.
We give examples of use of these tags.
La Djan, dio la Meris, cluva John loves Mary. This is another way to

get SOV order, and notice that gio is not needed.
Dio la Meris, (kao) la Djan, cluva, with the same meaning. The

nominative case tag kao is optional: it can be used, which illustrates the
fact that the subject needs to contain at least one argument and at most one
untagged argument (two tagged arguments are all right).

La Djan, pa donsu dio la Meris, le bakso John gave the box to
Mary. The dio indicates which argument la Meris is (she is not being given
as a gift) and le bakso falls tidily into the first unused argument place.

38 CHAPTER 3. THE GRAMMAR PROPER

Dio la Meris, beu le bakso, donsu la Djan means the same thing as
the previous sentence.

3.1.6 Imperatives (and observatives)

An untensed sentence consisting of a verb followed by an object list, with
possibly some modifiers before the verb, is an imperative.

Donsu le bakso la Djan! Give the box to John.
Na la Ven, donsu le bakso la Djan! At nine, give the box to John.
If a tensed verb followed by an object list (possibly preceded by modifiers)

is given, this is actually a subject-delayed sentence with the subject omitted.
We call this an observative: we note it as a special form mostly to indicate
that such sentences are not imperatives.

Na crina It is raining (literally, someone is being rained on). This is a
shortening of Na crina ga ba

Na donsu le bakso la Djan Someone is giving the box to John.
As an experiment, Loglan has borrowed a concept from Lojban and in-

stalled the imperative pronoun koo. This is used just like tu (you) with the
extra force that the usual referent of tu is commanded to make the statement
true.

Koo donsu le bakso la Djan! Give the box to John!
but also
La Meris, cluva koo! Make Mary love you!
Mi jupni lepo koo gudbi! Make me think well of you! (lit. Make me

think you are good).
The imperatives with koo are sentences of perfectly general structure and

do not belong to the imperative grammatical class which is the subject of
this section, usually, though consider

Cluva koo! Love yourself!

3.2 Logically connected sentences

3.2.1 Forethought connected sentences

Chapter 4

Lexicography Appendix: full
word lists

4.1 Case tags and indirect reference particles

The case tags, including the positional ones are listed:

beu: (patients/parts),

cau: (quantities/amounts/values),

dio: (destinations/receivers),

foa: (wholes/sets/collectives),

kao: (actors/agents/doers),

jui: (lessers),

neu: (conditions/circumstances/fields),

pou: (products/purposes),

goa: (greaters),

sau: (sources/reasons/causes),

veu: (effects/states/effects/deeds/means/routes),

39

40 CHAPTER 4. LEXICOGRAPHY APPENDIX: FULL WORD LISTS

zua: (first argument),

zue: (second argument),

zui: (third argument),

zuo: (fourth argument),

zuu: (fifth argument),

lae: (lae X = what is referred to by X),

lue: (lue X = something which refers to X)

The operators of indirect reference lae and lue are a different sort of creature,
which originally had the same grammar as case tags, but now have somewhat
different behavior. The latter two operators can be iterated (and so can case
tags, probably indicating that more than one applies to the same argument).

For each semantic case tag there are forms like beuzi, beucine to ref-
erence the first argument with that tag, beuza, beucito to reference the
second argument with that tag, and beuzu, beucite to reference the third
argument with that tag. Forms like beucifo, beucife are theoretically pos-
sible.

Chapter 5

The Formal Grammar in PEG
Notation

This chapter contains the actual Parsing Expression Grammar (PEG) no-
tation in which the formal grammar is represented: this is the source from
which the computer parser is constructed. It is also intended to be the basis
of the presentation of the grammar.

I found a package which makes it so that this file can be included here in a
way which does not run off the margins. Lines are numbered, but this should
not be taken too seriously. Certainly any line number references in the text
above should be checked whenever the grammar file source is modified. We
do not have the text embedded in this file: the current contents of the file
are read in.

1 # In this file I will develop the entire Loglan

grammar on top of the phonetic proposal

2
3 # Dated updates now to appear here

4
5 # 2/4/2021 Imposed the rule that two final

consonants cannot be consonants from voiced/

unvoiced pairs

6 # with different voice. Also forbid second final

consonant to be h.

7
8 # I have further fine -tuning of djifoa gluing in

41

42 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

mind.

9 # Allow the -r glue to be expressed as

10 # -rr after all mandatory monosyllables , removing

the annoying pronunciation problem?

11 # I was thinking of allowing -hy gluing in other

contexts , but it is actually a bad idea.

12
13 # 9/15/2019 installed semantic case tags with order

distinctions for use with predicates with more

than one argument of the same case.

14 # one solution is beucine , beucito ... another is

beuzi , beuza , beuzu.

15
16
17 # 4/28/2019 Various debugging of the new predicate

algorithm. Added CVVhy as a glued form for CVV

djifoa.

18 # added capitalization of djifoa glue! Confirming

my apparent earlier decision that a CVV(h)y

djifoa must be followed

19 # by a full predicate complex.

20
21 # 4/26/2019: this incorporates various revisions to

the phonetics , correcting errors or clarifying

rules ,

22 # motivated by my development of the phonetics

section of a new grammar document. The one

notable

23 # change is that <ci> is now only a name marker if

followed by an explicit pause. This only

requires

24 # changes in writing in serial names. In speech , it

is recommended that one not pause after <ci>

25 # except before a name word. The benefit is that

non -serial -name related uses of <ci > no longer

26 # threaten mysterious needs to add explicit pauses

before following name words.

27

43

28 # I want to add the <zao > proposal of John Cowan.

Done , 4/15/2019. the imperative pronoun <koo >

has been added though not officially. I should

also add <dao > for the dummy argument , but not

today (it is in as of 4/18)

29
30 #4/25 Making note of the idea that <ci > should not

be a name marker unless followed

31 # by a pause. This would require that one pause

before ci-marked names and it would

32 # remove some very confusing corrections for the

false name marker problem. If we

33 # required the pause to be explicit we would be

imposing the expectation that whitespace

34 # after <ci> is not a pause. Otherwise we could

encourage writing a juncture after <ci>

35 # to deny presence of a pause , which is reasonable

considering the meanings of <ci >.

36 # I am implementing the version with explicit pauses

between <ci> and names

37 # and the directive not to pause after <ci > without

explicit indication. This solution

38 # involves rewriting existing text only in the rare

instances where <ci> precedes a name.

39
40 # 4/25/2019 Corrected some instances of (expanded)

badstress. Now forbidding (C)VVVV initial

predicates. Probably I should use class

badstress systematically in defining cmapua.

41
42 # 4/24/2019 Final consonants in syllables cannot be

followed by syllabic continuants.

43 # this rationalizes the definition of SyllableA.

44
45 # 4/22 I am thinking of explicitly flagging

imperative sentences; not changing

46 # the grammar but making this visible in the parse.

This might also have some

44 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

47 # effects on logical connections. 4/23 created an

imperative class for atomic

48 # imperative sentences; this has no actual effect

on parses , just

49 # organizes them in a more enlightening way.

50
51 # 4/17 -18 2019: updates commented out which make

sentpred linkable with forethought

52 # and afterthought connectives (making some uses of

<guu > to share arguments

53 # unnecessary). There are subtleties. Basically ,

untensed predicates without

54 # argument lists will be linked by A and KA series

connectives. Such a linked

55 # set can be tensed as a whole. Such a linked set

will share a following termset.

56 # This will probably change many parses in the Visit

and other legacy sources.

57 # This required some really subtle adjustments to

work right , divinable from

58 # the actual rules given. Definitely experimental.

59
60 # 3/9/2019 further , extended LIU1 to handle <ainoi >

and its kin

61 # (actual mod is to class Cmapua) Further , fixing

mismatch

62 # between connective and A classes. One does now

have to pause

63 # before <ha> and its compounds.

64
65 # 3/9/2019 repaired bugs in negative attitudinals.

A pause

66 # in a negative attitudinal of the <no , ui > form

will not break

67 # it. <ainoi > didnt work for two reasons: the

clauses

68 # in the definition of NOUI were in the wrong order ,

and

45

69 # the connective class mistakenly included <noi > so

the

70 # phonetics checker was crashing! I had to move N

and NOI

71 # earlier to make this work. Not yet installed in

the other

72 # version.

73
74 # 1/26/2019 added <vie >, JCB ’s "objective

subjunctive" as a PA

75 # class word. I should add this to the other file

as well.

76
77 # 12/22/18: just a comment: one does not have to

pause before <ha> and its compounds.

78 # I do not know whether to fix this. One did not

have to in LIP either. For the moment I will

79 # leave it as it is. As a matter of style , one

probably should pause.

80
81 # 10/6/18 minor adjustments , made only in this file

. Allow <sujo > (a wicked thing to say). Do not

82 # allow <futo >: suffixed conversion operators must

be nu + suffix.

83
84 # 6/2 fixed LIO + alien text. I also fixed some

other glitches described in the reference grammar

.

85
86 # 5/11 making version without "alternative parser"

features. This version allows GAA but it doesn ’t

87 # do anything: the definitions of argumentA and kin

are the only point of difference. Master

version:

88 # becomes "alternative" by reinstating alternative

definitions of argumentA and kin. Further , made

changes

89 # recommended in the reference grammar. ALTERNATIVE

46 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

-- this is actually my master version. Edit

90 # this and revise the argumentA and kin entries to

make the original version.

91
92 # 4/24 discovered and repaired a bug re ci -marked

names suffixed to descriptions. Discovered a bug

in numerical

93 # descriptions yet to be fixed: <lio > needs to be

an alien text marker , maybe taking double quotes.

The description -

94 # with -suffixed -name bug was actually quite gruesome

. I think it is repaired.

95
96 # 4/23 streamlined definition of descriptn. Shouldn

’t change anything. It was remarkably tricky

though; preserving the old form

97 # in case of further trouble.

98
99 # 4/22 I think this will be the master grammar file

, with alternative lines to turn off the

100 # GAA -related features.

101
102 # 4/22 allowing general predicates in gasent1. This

removes an extreme oddity in parsing of

imperatives.

103 # I do not see any new dangers from this.

104
105 # 4/22 I changed the final element of a keksent to

be a sentence (new class uttA0), not a general

sentence fragment.

106 # several parse errors in the Visit were uncovered

by this.

107
108 # 4/22: note that I still have the obligation to

restore the <zao > construction.

109
110 # 4/9/2018 the large subject marker GAA can also be

used to defend the beginnings of gasents and

47

imperatives

111 # from absorbing trailing arguments into an

unintended statement. In this context <gaa > may

be followed by <ga> ;-)

112
113 # 4/8/2018 this is an alternative version in which

an argument which starts an SVO sentence will not

be accepted

114 # as a trailing argument of a previous sentence.

This allows neat termination of <lepo > clauses

preceding

115 # a subject , for example. Unlike the previous

alternative approach , this seems to involve a

single fairly

116 # tidy change: it is all an issue of avoiding needs

for explicit closure. Further refinement: SVO

sentences

117 # can be marked with GAA (which is not a tense: it

appears optionally just before the predicate , or

just

118 # before sutori arguments marked with GIO if there

are any), the "large subject marker ": an

argument which

119 # starts an SVO sentence *not marked with GAA* will

not be accepted as a trailing argument of a

previous

120 # sentence. This is a sufficiently complex grammar

change that it requires thought: it is not

conservative

121 # in my usual sense. The fact that GAA carries a

mandatory stress is virtuous. Its resemblance to

the

122 # particle GA when used as a tense is not a bad

thing: it would often be used instead of GA to

close

123 # a <lepo > clause appearing as a subject , and it is

perhaps better for that purpose. Note that GAA

can

48 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

124 # and often will be followed by a tense. This

grammar change depends strongly on the previous

ruling that the O in

125 # SOV(O) sentences must be marked with <gio >: S gio

O^n V (O^m).

126
127 # nuu is an atomic A core and there is no nu-affix

to A connectives and their kin

128
129 # 1/20/2018 redefined CA cores to include a possible

NU prefix. This allows more logically connected

tenses , for example.

130
131 # 1/13/2018 reorganized the internals of class PA in

a way which should allow more things and not

forbid anything legal now.

132 # this is pursuant on an analysis of the classes NI

and PA as phrases , rather than words , as I start

writing a global lexicography

133 # proposal document. Enforced explicit pauses after

PA phrases appearing as arguments with a

following modifier with an argument.

134
135 # 12/30/2017 fixed a problem with name markers in

the clas NameWord and made a slight change to the

new option in NI (names

136 # as dimensions).

137
138 # 12/27/2017 installing an alternative treatment of

acronyms under which they are simply names (

suffix -n to acronyms in all uses).

139 # supporting this requires no change at all to

acronymic name usage (just use the -n versions

with the usual rules for names),

140 # and for dimension usage requires <mue > to be a

name marker and support for <mue > PreName as an

alternative suffix to NI.

141

49

142 # 12/27/2017 Frivolously fooling with the

capitalization conventions. They ought to work

better now ...but I could have broken something.

143 # the main new idea was to require that a

capitalized embedded letteral actually be

followed by lowercase if it was preceded by

lowercase

144 # (with the obvious exception for a letteral

followed by a letteral). Also changed the rules

for diphthongs in cmapua to make all -caps

145 # legal for cmapua. The general idea is that one

can start with a capital letter and stay

capitalized until one hits a lower case letter ,

146 # at which point one can jump back up to caps only

at a juncture (after which you can remain

capitalized) or temporarily for a vowel

147 # after z- (after which lower case resumes) or an

embedded literal (after which lowercase resumes).

The total effect is that this allows

148 # attested capitalization patterns in Loglan (

including capitalization of embedded literals as

in possessive articles and acronyms)

149 # and also allows all -caps for individual words (

attested in Leith but suppressed in my version)

and supports capitalization of components

150 # of names as in <la Beibi -Djein > (by artful use of

syllable breaks: Leith just has BeibiDjein ,

which does not work for me).

151
152 # 12/26/2017 Installed <niu > (quotation of

phonetically legal but so far non -Loglan words).

I did not make <niu > a name marker , so if one

were to

153 # use it with names (where it isn ’t really

appropriate), one would have to pause initially:

<niu , Djan >.

154
155 # I note in this connection that quotation of names

50 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

with li...lu remains limited , since names by

themselves are not

156 # utterances: one needs the <la >. I fixed this as

an exception in the previous parser; I may do it

here or I may

157 # not , haven ’t decided. Single name words can be

quoted with <liu >, of course , but not serial

names.

158
159 # 12/24/2017 Refined treatment of vowel pairs for

Cvv -V cmapua units. First 12/24 version rather

disastrously

160 # broken: this should be fixed!

161
162 # 12/23/2017 This is now completely commented , with

minor local exceptions to which I will return

later.

163 # This document is the basis on which I will build

all subsequent parsers , with due modifications to

the comments.

164 # The Python PEG engine and preamble files contain

commands for constructinging a Python parser from

it directly.

165
166 # 12/22/2017 major progress on commenting the

grammar

167
168 # yet later 12/20: no change in performance of the

grammar , extensive commenting in the

169 # grammar section. Considerable changes in

arrangement: for example , vocatives , inverse

vocatives ,

170 # and free modifiers are moved to a much earlier

point. I’m hoping to get a genuinely almost

readable

171 # commented grammar ...

172
173 # later 12/20 starting the process of commenting

51

and editing the grammar , starting

174 # at basic sentence structures. Notably rewrote the

class [keksent] more compactly ,

175 # one hopes with no actual effect on parses.

176
177 # 12/20/2017 Do not require expression of pause

after finally stressed cmapua before

178 # vowel initial predicate as a comma , since the

initial vowel signals the pause anyway.

179 # Allow final stress in names. Fixed bug in

CVVHiddenStress. Prevented

180 # broken monosyllables in finally stressed CVV

djifoa. refinement of caprule

181
182 # 12/19/2017 seem to have had a versioning failure

and lost the fix which requires

183 # CVVy djifoa to be followed by complete complexes.

Restored.

184
185 # 12/18/2017 fixed a bug in treatment of stressed

syllables in recognizing predicate starts. Also

186 # narrowed the generalized VCCV rule to allow more

of the quite unlikely space of predicates with

lots

187 # of vowels before the CC pair. Probably they

should be banned (and none have ever been

proposed with

188 # more than three) but that rule is not the context

in which to arbitrarily ban half of them. Some

cleanup

189 # of the display of parses , for which updated

version of logicpreamble.py should also be

uploaded. A refinement

190 # to class "connective" checking that apparent

logical connectives are not initial segments of

predicates.

191 # This has the effect of delaying the declaration of

"connective" until after the declaration of

52 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

192 # "predstart ".

193
194 # 12/17/2017 further refinement of the 12/16 version

: a couple of bugs spotted.

195
196 # 12/16/2017 There should be no change in parsing

behavior , but the predstart ruleset is shorter

197 # and more intelligible , and I realized that Complex

doesnt need a check for the anti -slinkui test

198 # (the requirement that certain initial CVC cmapua

be y hypenated which replaces the slinkui test))

199 # at all: the way predstart works already ensures

that initial CV cmapua fall off in the excluded

200 # cases , the idea being that we test the front of a

predicate without lookahead in all cases. Also

201 # addressed the subtle point that one wasn ’t forced

to pause after a predicate before following y

202 # (not likely to arise as a problem).

203
204
205 # 12/14/2017 Corrected vowel grouping to avoid

paradoxical vowel triples which are default

206 # grouped in a way which becomes illegal if made

explicit. SyllableA really should contain a

final

207 # consonant: the previous form was messing up vowel

grouping. Serious bug where end of djifoa

208 # and syllable resolution of a predicate may fail to

agree. I think I blocked this by ensuring that

209 # final djifoa are not followed by vowels. Other

fine tuning of the complex algorithm. Also had

210 # to repair the check for CVCCCV and CVCCVV

predicates.

211
212
213 # 12/13/2017: added kie (utterance) kiu to class

LiQuote. Did fine tuning to ensure

214 # that cmapua streams stop before or <kie >,

53

that names can stop at double quotes or close

215 # parentheses , and that the capitalization rule

ignores opening parentheses as well as double

216 # quotes. One can now adorn li lu with quotes (on

the inside) in a reasonable way

217 # and adorn kie kiu with parentheses (on the inside)

in a reasonable way. One cannot

218 # *replace* these words (or any words) with

punctuation in my model of Loglan. Also ,

219 # updates to comments , and # (end of utterance)

added as a marker of terminal punctuation.

220
221 # END of dated updates

222
223 # This is now done , in a first pass. That is, the

grammar is adapted and appears to work , more or

less.

224 # What is needed is comments on the lexicography and

the grammar ... Phonetics has now pretty clearly

been sorted

225 # from the grammar (there are some places where the

phonetics accept grammar information with regard

to punctuation).

226
227 # Alien text is now handled somewhat differently.

Some issues to do with quoting names are not

finalized and have not been tested.

228
229 # I added -iy and -uy as VV forms allowed in general

in cmapua but not in other words; they are

always monosyllabic. What this

230 # immediately allows me to do is to give Y a name

which is not phonetically irregular! <ziy > is

supported: <yfi > is too , now.

231
232 # capitalization is roughly back to where it was in

the original , but all -caps are allowed.

233

54 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

234 # acronyms are liable to be horrible.

235
236 # Fixed the recursion problem in a way which will

not be visible in ordinary parses. Streams of

cmapua will always

237 # be broken at name or alien text markers (instead

of using lookahead to check that we do not stand

at the beginning

238 # of a name word or alien text word). The next

cycle will then check for a name or alien text ,

and also check for

239 # badnamemarkers; no lookahead is happening while a

stream of cmapua is being read except checking

for

240 # the markers of names and alien text. This will

change the way phonetic parses look (streams of

cmapua will

241 # break (and sometimes resume) at name markers or

alien text markers , but it will not change any

grammatical

242 # parses.

243
244 #Part I Phonetics

245
246 # Mod bugs , I have implemented all of Loglan

phonetics as described in my proposal. Borrowing

djifoa are pretty tricky.

247
248 # I have now parsed all the words in the dictionary ,

and all single words of appropriate classes

parse successfully.

249 # I have added alien text and quotation

constructions which do not conform to these rules

; so actually

250 # all Loglan text should parse , mod some

punctuation and capitalization issues. The

conventions for

251 # alien text here are not the same as those in the

55

current provisional parser.

252
253 # I believe the conventions for forcing comma pauses

before vowel initial cmapua and after names

254 # except in special contexts have been enforced. In

a full grammar , one probably would want

255 # to disable pauses before vowel initial letterals (

done). This grammar also does not support the

lingering

256 # irregularities in acronyms (and won ’t).

257
258 # This grammar (in Part I) is entirely about

phonetics: all it does is parse text into names

(with associated initial

259 # pauses or name markers), cmapua (qua unanalyzed

streams of cmapua units),

260 # borrowings and complexes , along with interspersed

comma pauses and marks

261 # of terminal punctuation. It does support

conventions about where commas are required

262 # and a simple capitalization rule. Streams of

cmapua break when markers initial

263 # in other forms are encountered (and may in some

cases resume when the markers

264 # are a deception).

265
266 # a likely locus for odd bugs is the group of

predstartX rules which detect apparent cmapua

which

267 # are actually preambles to predicates. These are

tricky! (and I did indeed find some lingering

268 # problems when I parsed the dictionary). Another

reason to watch this rule predstart

269 # is that it carries a lot of weight: !predstart is

used as a lightweight test

270 # that what follows is a cmapua (a point discussed

in more detail later).

271

56 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

272 # In reviewing this , I think that very little is

different from 1990’s Loglan (the borrowing

djifoa

273 # are post -1989 L1, but not my creation). Some

things add precision without making anything in

1990’s Loglan incorrect.

274 # The requirement that syllabic consonants be

doubled is new , and makes some 1990’s Loglan

names incorrect.

275 # The requirement that names resolve into syllables

is new , and makes some 1990’s Loglan names

incorrect ,

276 # usually because they end in three consonants.

277 # The rule restricting final consonant pairs from

being noncontinuant/continuant is new , but

278 # does not affect any actual predicate ever

proposed.

279 # Enhancing the VccV rule to also forbid CVVV ...ccV

caused one predicate to be changed

280 # (<haiukre > became <haiukrre >, and haiukre was a

novelty anyway , using a new name for X in X-ray)

281 # The exact definition of syllables and use of

syllable breaks and stress marks is new (the

close comma

282 # was replaced with the hyphen , so Lo,is becomes Lo

-is); but this does not make anything in 1990’s

Loglan

283 # incorrect , it merely increases precision and

makes phonetic transcript possible.

284 # Forbidding doubled vowels in borrowings was new ,

was already approved , and caused us to change

285 # <alkooli > to <alkoholi >.

286 # Formally allowing the CVccVV and CVcccV predicates

without y-hyphens took a proposal in 2013

because

287 # Appendix H was careless in describing their

abandonment of the slinkui test , but the

dictionary

57

288 # makes it evident that this was their intent all

along. The slinkui test had already been

289 # abandoned in the 1990s.

290 # Formally abandoning qwx was already something that

the dictionary workers in the 1990’s were

working

291 # on; we completed it.

292 # Allowing glottal stop in vowel pairs and

forbidding it as an allophone of pause is a new

phonetic

293 # feature in the proposal but not reflected in the

parser , of course. Alternative pronunciations

of

294 # y and h and allowing h in final position are

invisible or do not make any 1990’s Loglan

incorrect.

295 # Permitting false name markers in names was already

afoot in the 1990’s and the basic outlines of

our

296 # approach were already in place. The rule

requiring explicit pauses between a name marker

not starting

297 # a name word and the beginning of the next name

word is new , but reflects something which was

already

298 # a fact about 1990’s Loglan pronunciation: those

pauses had to be made in speech

299 # (and in the 1990’s they had no tools to do

relevant computer tests)! The requirement

300 # that names resolve into syllables restricts which

literal occurrences of name markers are actually

301 # false name markers (the tail they induce in the

name must itself resolve into syllables).

302 # Working out the full details of borrowing djifoa

was interesting: I’m not sure that I’ve done

anything

303 # *new* there; explicitly noting the stress shift

in borrowing djifoa might be viewed as something

58 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

304 # new but it is a logical consequence of JCB ’s

permission to pause after a borrowing djifoa ,

which contains

305 # explicit language about how it is to be stressed ,

and the

306 # final definition of a borrowing djifoa as simply

a borrowing followed by -y. The shift strikes

307 # me as a really good idea anyway , because it marks

djifoa with a pause after it as phonetically

different

308 # in an additional way other than ending with the

very indistinct vowel y. My rules as given here

do not

309 # directly enforce the rule that a borrowing djifoa

must be preceded by y but I think they

indirectly

310 # enforce it in all or almost all cases: the

parser tries to read a borrowing djifoa before

reading

311 # any other kind of djifoa , so it is hard to see

how to deploy a short djifoa in such a way that

it would

312 # fall off the head of a borrowing without using y.

313 # These phonetics do not support certain

irregularities in acronyms. We note that

314 # it is now allowed to insert <, mue > into an

acronym , which would be necessary for example

315 # between a Ceo letteral and a following VCV

letteral.

316
317 #Sounds

318
319 #all vowels

320
321 V1 <- [aeiouyAEIOUY]

322
323 #regular vowels

324

59

325 V2 <- [aeiouAEIOU]

326
327 #consonants

328
329 C1 <- [bcdfghjklmnprstvzBCDFGHJKLMNPRSTVZ]

330
331 #consonants in voiced/unvoiced pairs

332
333 Cvoiced <- [bdgjvzBDGJVZ]

334
335 Cunvoiced <- [ptkcfsPTKCFS]

336
337 # bad voice pair (or pair second term of which is h)

338 # forbidden as pairs of final consonants

339
340 Badvoice <- (Cvoiced (Cunvoiced /[Hh])/Cunvoiced (

Cvoiced /[Hh]))

341
342 # letters

343
344 letter <- (![qwxQWX] [a-zA -Z])

345
346 # a capitalization convention which allows what our

current one allows and also allows all -caps.

347 # if case goes down from upper case to lower case ,

it can only go back up in certain cases. This

348 # does allow capitalization of initial segments of

words. There is a forward reference to the

grammar

349 # in that free capitalization of embedded literals

is permitted , and capitalization of vowels

350 # guarded with z in literals as in DaiNaizA.

351
352 lowercase <- (![qwx] [a-z])

353
354 uppercase <- (![QWX] [A-Z])

355
356 caprule <- [\"(]? &([z] V1 (! uppercase /&TAI0)/

60 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

lowercase TAI0 (! uppercase /&TAI0)/!(lowercase

uppercase).) letter (&([z] V1 (! uppercase /&TAI0)/

lowercase TAI0 (! uppercase /&TAI0)/!(lowercase

uppercase).) (letter/juncture))* !(letter/

juncture)

357
358 # syllable markers: the hyphen is always medial so

must be followed by a letter.

359 # the stress marks can be syllable final and word

final. A juncture is never followed

360 # by another juncture.

361
362 juncture <- (([-] &letter)/[\ ’*]) !juncture

363
364 stress <- [’*] !juncture

365
366 # terminal punctuation

367
368 terminal <- ([.:?!;#])

369
370 # characters which can occur in words

371
372 character <- (letter/juncture)

373
374 # to really get all Loglan text , we should add the

alien text constructions and the markers of alien

text ,

375 # <lie >, <lao >, <sao >, <sue > and certain quotations

which violate the phonetic rules.

376
377 # we adopt the convention that all alien text may be

but does not have to be enclosed in quotes.

378 # it needs to be understood that in quoted alien

text , whitespace is understood as <, y,>; in the

unquoted

379 # version this is shown explicitly. This handling

of alien text is taken from the final 1990’s

treatment

61

380 # of Linnaeans = foreign names , and extended by us

to replace the impossible treatment of strong

381 # quotation in 1989 Loglan.

382
383 # this is a little different from what is allowed in

the previous provisional parser , but similar.

384 # A difference is that all the alien text markers

are allowed to be followed by the same sorts of

alien text.

385
386 # the forms with <hoi > and <hue > are required to

have following quotes in written form to avoid

387 # unintended parses , which otherwise become likely

in case of typos in non -alien text cases.

388
389 AlienText <- ([,]? []+ [\"] (![\"].)+ [\"]/ [,]? [

]+ (![,]! terminal .)+ ([,]? []+ [y] [,]? []+

(![,]! terminal .)+)*)

390
391 AlienWord <- &caprule ([Hh] [Oo] [Ii] juncture?

&([,]? []+ [\"]) /[Hh][Uu] juncture? [Ee]

juncture? &([,]? []+ [\"]) / [Ll] [Ii] juncture?

[Ee]juncture? /[Ll] [Aa] [Oo]juncture? /[Ll] [Ii

] juncture? [Oo] juncture? /[Ss] [Aa] [Oo]

juncture ?/[Ss] [Uu] juncture? [Ee]juncture ?)

AlienText

392
393 # while reading streams of cmapua , the parser will

watch for the markers of alien text.

394
395 alienmarker <- ([Hh] [Oo] [Ii] juncture? &([,]? []+

[\"])/[Hh][Uu] juncture? [Ee] juncture? &([,]? [

]+ [\"]) / [Ll] [Ii] juncture? [Ee] juncture? /[

Ll] [Aa] [Oo] juncture? /[Ll] [Ii] juncture? [Oo]

juncture? /[Ss] [Aa] [Oo] juncture ?/[Ss] [Uu]

juncture? [Ee] juncture ?) !V1

396
397 # 5/11/18 added <lio > as an alien text marker , to

62 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

support numerals.

398
399 # the continuant consonants and the syllabic pairs

they can form

400
401 continuant <- [mnlrMNLR]

402
403 syllabic <- (([mM] [mM] !(juncture? [mM]))/([nN] [nN

] !(juncture? [nN]))/([rR] [rR] !(juncture? [rR])

)/([lL] [lL] !(juncture? [lL])))

404
405 # the obligatory monosyllables , and these syllables

when broken by a usually bad syllable juncture.

406 # The i-final forms are not obligatory mono when

followed by another i.

407
408 MustMono <- (([aeoAEO] [iI] ![iI]) /([aA] [oO]))

409
410 BrokenMono <- (([aeoAEO] juncture [iI] ![iI])/([aA]

juncture [oO]))

411
412 # the obligatory and optional monosyllables.

Sequences of three of the same letter

413 # are averted. Avoid formation of doubled i or u

after ui or ui.

414
415 Mono <- (MustMono /([iI] !([uU] [uU]) V2)/([uU] !([iI

] [iI]) V2))

416
417 # vowel pairs of the form found in cmapua and djifoa

.

418 # (other than the special IY, UY covered in the

cmapua rules)

419
420 # The mysterious prohibition controls a permitted

phonetic exception in djifoa gluing.

421 # compua are never followed directly by vocalic

continuants in any case.

63

422
423 VV <- !(! MustMono V2 juncture? V2 juncture? [Rr] [Rr

]) (! BrokenMono V2 juncture? V2)

424
425 # the next vocalic unit to be chosen from a stream

of vowels

426 # in a predicate or name. This is different than in

our Sources

427 # and formally described in the proposal.

428
429 NextVowels <- (MustMono /(V2 &MustMono)/Mono /!([Ii]

juncture [Ii] V1) !([Uu] juncture [Uu] V1) V2)

430
431 # 5/11/18 forbidding consonantal vowels to follow

the same vowel.

432
433 # the doubled vowels that trigger the rule that one

of them must be stressed

434
435 DoubleVowel <- (([aA] juncture? [aA])/([eE] juncture

? [eE])/([oO] juncture? [oO])/([iI] juncture [iI

])/([uU] juncture [uU])/[iI] [Ii] &[iI]/[Uu] [uU]

&[uU])

436
437 # the mandatory "vowel" component of a syllable

438
439 Vocalic <- (NextVowels/syllabic /[Yy])

440
441 # the permissible initial pairs of consonants , and

the same pairs possibly

442 # broken by syllable junctures.

443
444 Initial <- (([Bb] [Ll])/([Bb] [Rr])/([Cc] [Kk])/([Cc

] [Ll])/([Cc] [Mm])/([Cc] [Nn])/([Cc] [Pp])/([Cc]

[Rr])/([Cc] [Tt])/([Dd] [Jj])/([Dd] [Rr])/([Dd]

[Zz])/([Ff] [Ll])/([Ff] [Rr])/([Gg] [Ll])/([Gg] [

Rr])/([Jj] [Mm])/([Kk] [Ll])/([Kk] [Rr])/([Mm] [

Rr])/([Pp] [Ll])/([Pp] [Rr])/([Ss] [Kk])/([Ss] [

64 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

Ll])/([Ss] [Mm]) /[Ss] [Nn]/([Ss] [Pp])/([Ss] [Rr

])/([Ss] [Tt])/([Ss] [Vv])/([Tt] [Cc])/([Tt] [Rr

])/([Tt] [Ss])/([Vv] [Ll])/([Vv] [Rr])/([Zz] [Bb

])/([Zz] [Ll])/([Zz] [Vv]))

445
446 MaybeInitial <- (([Bb] juncture? [Ll])/([Bb]juncture

? [Rr])/([Cc]juncture? [Kk])/([Cc] juncture? [

Ll])/([Cc]juncture? [Mm])/([Cc]juncture? [Nn])

/([Cc]juncture? [Pp])/([Cc]juncture? [Rr])/([Cc

]juncture? [Tt])/([Dd]juncture? [Jj])/([Dd]

juncture? [Rr])/([Dd]juncture? [Zz])/([Ff]

juncture? [Ll])/([Ff]juncture? [Rr])/([Gg]

juncture? [Ll])/([Gg]juncture? [Rr])/([Jj]

juncture? [Mm])/([Kk]juncture? [Ll])/([Kk]

juncture? [Rr])/([Mm]juncture? [Rr])/([Pp]

juncture? [Ll])/([Pp]juncture? [Rr])/([Ss]

juncture? [Kk])/([Ss]juncture? [Ll])/([Ss]

juncture? [Mm]) /[Ss] juncture? [Nn]/([Ss]

juncture? [Pp])/([Ss]juncture? [Rr])/([Ss]

juncture? [Tt])/([Ss]juncture? [Vv])/([Tt]

juncture? [Cc])/([Tt]juncture? [Rr])/([Tt]

juncture? [Ss])/([Vv]juncture? [Ll])/([Vv]

juncture? [Rr])/([Zz]juncture? [Bb])/([Zz]

juncture? [Ll])/([Zz] juncture? [Vv]))

447
448 # the permissible initial consonant groups in a

syllable. Adjacent consonants should be initial

pairs.

449 # The group should not overlap a syllabic pair.

Such a group is of course followed by a vocalic

unit.

450
451 # this rule for initial consonant groups is stated

in NB3.

452
453 # I forbid a three -consonant initial group to be

followed by a syllabic pair. This seems obvious.

454

65

455 InitialConsonants <- ((! syllabic C1 &Vocalic)/(!(C1

syllabic) Initial &Vocalic)/(& Initial C1 !(C1

syllabic) Initial !syllabic &Vocalic))

456
457 # the forbidden medial pairs and triples. These are

forbidden regardless of placement

458 # of syllable breaks.

459
460 # each of these is actually a single consonant

followed by an initial , and the idea was to

identify CVC -CCV junctions which

461 # would be hard to pronounce. But the placement of

the syllable break is not relevant to the

exclusion of the sequence.

462 # Notice that the continuant syllabic pairs are

excluded: this prevents final consonants from

being included in such pairs.

463
464 NoMedial2 <- (([Bb] juncture? [Bb])/([Cc] juncture?

[Cc])/([Dd] juncture? [Dd])/([Ff] juncture? [Ff])

/([Gg] juncture? [Gg])/([Hh] juncture? C1)/([Jj]

juncture? [Jj])/([Kk] juncture? [Kk])/([Ll]

juncture? [Ll])/([Mm] juncture? [Mm])/([Nn]

juncture? [Nn])/([Pp] juncture? [Pp])/([Rr]

juncture? [Rr])/([Ss] juncture? [Ss])/([Tt]

juncture? [Tt])/([Vv] juncture? [Vv])/([Zz]

juncture? [Zz])/([CJSZcjsz] juncture? [CJSZcjsz])

/([Ff] juncture? [Vv])/([Kk] juncture? [Gg])/([Pp

] juncture? [Bb])/([Tt] juncture? [Dd])/([

FKPTfkpt] juncture? [JZjz])/([Bb] juncture? [Jj])

/([Ss] juncture? [Bb]))

465
466 NoMedial3 <- (([Cc] juncture? [Dd] juncture? [Zz])

/([Cc] juncture? [Vv] juncture? [Ll])/([Nn]

juncture? [Dd] juncture? [Jj])/([Nn] juncture? [

Dd] juncture? [Zz])/([Dd] juncture? [Cc] juncture

? [Mm])/([Dd] juncture? [Cc] juncture? [Tt])/([Dd

] juncture? [Tt] juncture? [Ss])/([Pp] juncture?

66 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

[Dd] juncture? [Zz])/([Gg] juncture? [Tt]

juncture? [Ss])/([Gg] juncture? [Zz] juncture? [

Bb])/([Ss] juncture? [Vv] juncture? [Ll])/([Jj]

juncture? [Dd] juncture? [Jj])/([Jj] juncture? [

Tt] juncture? [Cc])/([Jj] juncture? [Tt] juncture

? [Ss])/([Jj] juncture? [Vv] juncture? [Rr])/([Tt

] juncture? [Vv] juncture? [Ll])/([Kk] juncture?

[Dd] juncture? [Zz])/([Vv] juncture? [Tt]

juncture? [Ss])/([Mm] juncture? [Zz] juncture? [

Bb]))

467
468 # The syllable.

469
470 # there are no formal rules about syllables as such

in our Sources , which is odd since

471 # the definition of predicates depends on the

placement of stresses on syllables.

472
473 # The first rule enforces the special point needed

in complexes that

474 # a CVC syllable is preferred to a CV syllable where

possible; we economically apply

475 # the same rule for default placement of syllable

breaks everywhere , which is , with

476 # that exception , that the break comes as soon as

possible.

477
478 # the SyllableB approach is taken if the following

syllable would otherwise start with a syllabic

pair.

479
480 # the reason for this approach is that if one

syllabizes a well formed complex in this way ...

481 # the syllable breaks magically fall on the djifoa

boundaries. This does mean that the

482 # default break in <cabro > is <cab -ro>, which feels

funny but is harmless. Explicitly breaking

483 # it <ca-bro > will also parse correctly.

67

484
485 SyllableA <- (C1 V2 FinalConsonant (! Syllable

FinalConsonant)?)

486
487 SyllableB <- (InitialConsonants? Vocalic (! Syllable

FinalConsonant)? (! Syllable FinalConsonant)?)

488
489 Syllable <- ((SyllableA/SyllableB) juncture ?)

490
491 # The final consonant in a syllable. There may be

one or two final consonants. A pair of final

492 # consonants may not be a non -continuant followed by

a continuant. A final consonant may not

493 # start a forbidden medial pair or triple.

494
495 # The rule that a final consonant pair may not be a

non -continuant followed by a continuant

496 # is natural and obvious but not in our Sources.

Such a pair of consonants would seem to

497 # naturally form another syllable.

498
499
500 # a pair of final consonants cannot be differently

voiced

501
502 FinalConsonant <- !syllabic !(& Badvoice C1 !Syllable

) (!(! continuant C1 !Syllable continuant) !

NoMedial2 !NoMedial3 C1 !(juncture? (V2/syllabic)

))

503
504 #!((! MaybeInitial)C1 juncture? !syllabic C1 juncture

? !syllabic C1) !(& MaybeInitial C1 juncture C1 !(

juncture? C1))

505
506 # Here are various flavors of syllable we may need.

507
508 # this is a portmanteau definition of a bad syllable

(the sort not allowed in a borrowing).

68 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

509
510 SyllableD <- &(InitialConsonants? ([Yy]/ DoubleVowel/

BrokenMono /&Mono V2 DoubleVowel /! MustMono &Mono

V2 BrokenMono)) Syllable

511
512 # this (below) is the kind of syllable which can

exist in a borrowed predicate:

513 # it cannot start with a continuant pair , it cannot

have a y as vocalic unit ,

514 # and its vocalic unit (whether it has one or two

regular vowels)

515 # cannot be involved in a double vowel or an

explicitly broken

516 # mandatory monosyllable.

517
518 BorrowingSyllable <- !syllabic (! SyllableD) Syllable

519
520 # this is the final syllable of a predicate. It

cannot be followed

521 # without pause by a regular vowel.

522
523 VowelFinal <- InitialConsonants? Vocalic juncture? !

V2

524
525 # syllables with syllabic consonant vocalic units

526 # this class is only used in borrowings , and we *

could* reasonably

527 # require it to be followed by a vowel. But I won ’t

for now.

528 # for gluing this restriction would work , but we

might literally borrow predicates

529 # with syllabic continuant pronunciations.

530
531 SyllableC <- (&(InitialConsonants? syllabic)

Syllable)

532
533 # syllables with y

534

69

535 SyllableY <- (&(InitialConsonants? [Yy]) Syllable)

536
537 # an explicitly stressed syllable.

538
539 StressedSyllable <- ((SyllableA/SyllableB) [\ ’*])

540
541 # a final syllable in a word , ending in a consonant.

542
543 NameEndSyllable <- (InitialConsonants? (syllabic/

Vocalic &FinalConsonant) FinalConsonant?

FinalConsonant? stress? !letter)

544
545 # the pause classes actually hang on the letter

before the pause.

546
547 # whitespace which might or might not be a pause.

548
549 maybepause <- (V1 [\’*]? []+ C1)

550
551 # explicit pauses: these are whitespace before a

vowel or after a consonant , or comma marked

pauses.

552
553 pause <- ((C1 [\’*]? []+ &letter)/(letter [\’*]? [

]+ &V1)/(letter [\ ’*]? [,] []+ &letter))

554
555 # these are final syllables in words followed by

whitespace which might not be a pause.

556 # the definition actually doesnt mention the

maybepause class.

557
558 MaybePauseSyllable <- InitialConsonants? Vocalic

[’*]? &([]+ &C1)

559
560 # The full analysis of names.

561
562 # a name word (without initial marking) is

resolvable into syllables and ends with a

70 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

consonant.

563
564 PreName <- ((Syllable &Syllable)* NameEndSyllable)

565
566 # this is a busted name word with whitespace in it

-- but not whitespace at which one has to pause.

567
568 BadPreName <- (MaybePauseSyllable []+/ Syllable &

Syllable)* NameEndSyllable

569
570 # This is a name marker followed by a consonant

initial name word without pause.

571
572 # I deployed a minimal set of name marker words; I

can add the others whenever.

573 # I have decided (see below) to retain the social

lubrication words as vocative markers

574 # *without* making them name markers , so one must

pause <Loi , Djan >. By not allowing

575 # freemods right after vocative markers in the

vocative rule , I make <Loi hoi Djan > work as well

,

576 # without pause.

577
578 # MarkedName <- &caprule ((([Ll] !pause [Aa]

juncture ?)/ ([Hh] [Oo] !pause [Ii] juncture ?) /

([Hh] [Uu] juncture? !pause [Ee] juncture ?) / ([

Cc] !pause [Ii] juncture ?)/([Ll] [Ii] juncture? !

pause [Uu] juncture ?)/[Gg][Aa] !pause [Oo]

juncture ?/[Mm][Uu] juncture? !pause [Ee] juncture

?) []* &C1 &caprule PreName)

579
580 MarkedName <- &caprule ((([Ll] !pause [Aa] juncture

?)/ ([Hh] [Oo] !pause [Ii] juncture ?) / ([Hh] [

Uu] juncture? !pause [Ee] juncture ?) /([Ll] [Ii]

juncture? !pause [Uu] juncture ?)/[Gg][Aa] !pause

[Oo] juncture ?/[Mm][Uu] juncture? !pause [Ee]

juncture ?) []* &C1 &caprule PreName)

71

581
582
583 # This is an unmarked name word with a false name

marker in it.

584
585 FalseMarked <- (& PreName (! MarkedName character)*

MarkedName)

586
587 # This is the full definition of name words. These

are either marked consonant initial names without

pause defined above ,

588 # names without false name markers beginning with

explicit pauses (either comma marked or vowel -

initial)

589 # and name markers followed , with or without pause ,

by name words. In the latter case there must be

at least

590 # whitespace before a vowel initial name.

591
592 # a series of names without false name markers and

names marked with ci , separated by spaces , may be

appended.

593
594 # there is a look ahead at the grammar: a NameWord

can be followed without explicit pause (there is

whitespace and

595 # a pause in speech !) by another

596 # kind of utterance only in a serial name when what

follows is of the form <ci> predunit , to be

included

597 # in the name.

598
599 NameWord <- (& caprule MarkedName /([,] []+ !

FalseMarked &caprule PreName)/(&V1 !FalseMarked &

caprule PreName)/& caprule ((([Ll] [Aa] juncture ?)

/([Hh] [Oo] [Ii] juncture ?)/([Cc] &pause [Ii]

juncture ?)/([Ll] [Ii] juncture? [Uu] juncture ?)/[

Mm] [Uu] juncture? [Ee] juncture ?/[Gg] [Aa] [Oo]

72 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

juncture ?) !V1 [,]? []* &caprule PreName))([,]?[

]+ !FalseMarked &caprule PreName /[,]?[]+ &([Cc]

&pause [Ii]) NameWord)* &([]* [Cc] [Ii]

predunit /&([,] []+/ terminal /[\")]/!.) ./!.)

600
601 # this is the minimal set of name marker words we

are using. We may add more.

602
603 # I am contemplating adding the words of social

lubrication as name markers , but in a more

restricted

604 # way that in the last provisional parser , in which

I made them full -fledged vocative markers. [

Actually ,

605 # I preserved their status as vocative markers

without restoring their status as name markers ,

in the latest version].

606
607 # adding <mue > as a name marker

608
609 namemarker <- ([Ll] [Aa] juncture ?/[Hh][Oo][Ii]

juncture ?/([Hh] [Uu] juncture? [Ee] juncture ?)/[

Cc] &pause [Ii] juncture ?/[Ll][Ii] juncture? [Uu]

juncture ?/[Gg][Aa][Oo] juncture ?/[Mm] [Uu]

juncture? [Ee] juncture ?) !V1

610
611 # this is the bad name marker phenomenon that needs

to be excluded. This captures the idea

612 # that what follows the name could be pronounced

without pause as a name word according to the

613 # orthography , but the fact that whitespace is

present shows that this is not the intention.

614
615 # it is worth noting that name markers at heads of

name words pass this test

616 # (because I omitted the test that what follows is

not a PreName in the interests

617 # of minimizing lookahead);

73

618 # but this test is only applied to strings that have

already been determined not to

619 # be of class NameWord.

620
621 badnamemarker <- namemarker !V1 [,]? []*

BadPreName

622
623 # we test for the bad name marker condition at the

beginning of each stream of cmapua ,

624 # and streams of cmapua stop before name markers (

and may resume at a name marker

625 # if neither a NameWord nor the bad marker condition

is found).

626
627 # We have at any rate completely solved the phonetic

problem of names and their markers.

628
629 # predicate start tests: the idea is the same as

class "connective" above , to recognize

630 # the start of a predicate without recursive appeals

to the whole nasty definition of predicate.

631 # The reason to do it is to recognize when CV^n

followed by CC cannot be a cmapua unit.

632
633 # New implementation 4/28/2019. This allows only (C

)V(V)(V) before the pair of vowels , for much less

634 # potential lookahead.

635
636 Vthree <- (V2 juncture ?) (V2 juncture ?) (V2 juncture

?)

637
638 Vfour <- (V2 juncture ?) (V2 juncture ?) (V2 juncture

?) (V2 juncture ?)

639
640 # predicate starting with two or three consonants:

rules out CC(C)V(V) forms. Junctures in

641 # the initial consonant group ignored.

642

74 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

643 predstartA1 <- (& MaybeInitial C1 juncture?

MaybeInitial/MaybeInitial) &V2 !(V2 stress !Mono

V2) !(V2 juncture? V2 !character) !(V2 juncture?

!character)

644
645 # an apparent cmapua unit followed by a consonant

group which cannot start a predicate -- CV(V)

case

646
647 predstartA2 <- C1 V2 juncture? (V2 juncture ?)? !

predstartA1 C1 juncture? C1

648
649 # a stressed CV^n before a consonant group (CV(V)

case)

650
651 predstartA3 <- C1 !Vthree (! StressedSyllable V2

juncture ?)? &StressedSyllable V2 V2? juncture? C1

juncture? C1

652
653 # other (C)V^n followed by nonpredicate

654
655 predstartA4 <- C1? V2 juncture? (V2 juncture ?)? (V2

juncture ?)? !predstartA1 !(MaybeInitial V2) C1

juncture? C1

656
657 # other stressed (C)V^n followed by consonant group

658
659 predstartA5 <- C1? !Vfour (! StressedSyllable V2

juncture ?)? (! StressedSyllable V2 juncture ?)? &

StressedSyllable V2 V2? juncture? !(MaybeInitial

V2) C1 juncture? C1

660
661 # forms with y; implemented CVVhy alternative for

CVV cmapua

662
663 predstartA6 <- C1 (V2 juncture ?) (V2 juncture? [Hh

]?/C1 juncture? (C1 juncture ?)?) [Yy]

664

75

665 predstart <- predstartA1/predstartA2/predstartA3/

predstartA4/predstartA5/predstartA6

666
667 # it is worth noting that in the sequel we have

systematically replaced tests &Cmapua

668 # with !predstart. The former involves lots of

lookahead and was causing recursion crashes

669 # in Python. The phonetics and the grammar are both

structured so that any string

670 # starting with a name marker is tested for NameWord

-hood before it is tested for

671 # cmapua -hood; the only thing it is tested for later

is predicate -hood , and predstart

672 # is a rough and ready test that something might be

a predicate (and at any rate

673 # cannot be a cmapua).

674
675 # this class requires pauses before it, after all

the phonetic word classes.

676 # what is being recognized is the beginning of a

logical connective.

677
678 # To avoid horrible recursion problems , giving this

a concrete phonetic definition

679 # without much lookahead. This can go right up in

the phonetics section if it works

680 # (and here it is!).

681
682 # single vowel cmapua syllables early for

connectives

683
684 a <- ([Aa] !badstress juncture? !V1)

685
686 e <- ([Ee] !badstress juncture? !V1)

687
688 i <- ([Ii] !badstress juncture? !V1)

689
690 o <- ([Oo] !badstress juncture? !V1)

76 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

691
692 u <- ([Uu] !badstress juncture? !V1)

693
694
695 Hearly <- (! predstart [Hh])

696
697 Nearly <- (! predstart [Nn])

698
699
700 # these appear here for historical reasons and could

be moved later

701
702
703 connective <- []* !predstart ([Nn] [Oo] juncture ?)?

(a/e/o/u/Hearly a/Nearly UU) juncture? !V2 !(!

predstart [Ff] [Ii]) !(! predstart [Mm] [Aa]) !(!

predstart [Zz] [Ii])

704
705
706 # cmapua units starting with consonants. This is

the exact description from NB3. The fancy tail

in each of the

707 # three cases is enforcing the rule about pausing

before a following predicate if stressed.

708
709 # consonant initial cmapua units may not be followed

by vowels without pause.

710
711 # I am adding <iy > and <uy> (always monosyllable ,

yuh and wuh) as vowel pairs permitted in VV and

CVV cmapua units.

712 # it is worth noting that the "yuh" and "wuh"

pronunciations of these diphthongs

713 # are surprising to the English -reading eye.

714 # The use for this envisaged is that the name <ziy >

of Y becomes easy to introduce. Adding word

space

715 # is always nice , and these words seem pronounceable

77

. I also made <yfi > possible: Y now has

phonetically

716 # regular names.

717
718 CmapuaUnit <- (C1 Mono juncture? V2 !([’*] []* &C1

predstart) juncture? !V1/C1 (VV/[Ii][Yy]/[Uu][Yy

]) !([’*] []* &C1 predstart) juncture? !V1/C1 V2

!([’*] []* &C1 predstart) juncture? !V1)

719
720 # A stream of cmapua is read until the start of a

predicate or a name marker word or an alien text

marker word or a quote or parenthesis marker word

is encountered.

721 # the stream might resume with a name marker word if

it does not in fact start a name word and does

not potentially start a name

722 # word due to inexplicit whitespace (doesn ’t satisfy

the bad name marker condition).

723
724 # we force explicit comma pauses before logical

connectives , but not before vowel initial cmapua

in general;

725 # other conditions force at least whitespace , which

does stand for a pause , before such words.

726
727 # detect starts of quotes or parentheses with

or <kie >

728
729 likie <- ([Ll] [Ii] juncture? !V1/[Ki] [Ii] juncture

? [Ee] juncture? !V1)

730
731 # a special provision is made for NO UI forms as

single words. <yfi > is supported.

732
733 Cmapua <- &caprule !badnamemarker (! predstart (VV/[

Ii][Yy]/[Uu][Yy]) !([’*] []* &C1 predstart)

juncture? NOI/! predstart [Nn] [Oo] juncture? !

predstart (VV/[Ii][Yy]/[Uu][Yy]) !([’*] []* &C1

78 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

predstart) juncture ?/((! predstart (VV/[Ii][Yy]/[

Uu][Yy]) !([’*] []* &C1 predstart) juncture ?)+ /

((! predstart V1 !([’*] []* &C1 predstart)

juncture ?)/ !predstart CmapuaUnit) (! namemarker !

alienmarker !likie !predstart CmapuaUnit)*)/!

predstart V2 !([’*] []* &C1 predstart) juncture

?) !V1 !(C1+ juncture) !([]* connective)

734
735 # I have apparently now completely solved the

problem of parsing cmapua as well as name words.

736
737 # Now for predicates.

738
739 # the elementary djifoa (not borrowings)

740
741 # various special flavors of these djifoa will be

needed.

742 # These are the general definitions.

743
744 # The NOY and Bad forms are for use for testing

candidate borrowings for resolution

745 # with bad syllable break placements. Borrowings do

not contain Y...

746
747 # CVV djifoa with phonetic hyphens.

748
749 # added checks to all cmapua classes: the vowel

final ones , when not phonetically hyphenated ,

cannot

750 # be followed by a regular vowel. This is crucial

for getting the syllable analysis and the djifoa

751 # analysis to end at the same point.

752
753 # allowing h to be inserted before y in CVVy djifoa

for a CVVhy form.

754
755 # allowing -r glue to be expressed as -rr

756

79

757 CVV <- C1 VV (juncture? [Hh]? [Yy] [-]? &(Complex) /

juncture? [Rr] [Rr]? juncture? &C1/[Nn] juncture?

&[Rr]/ juncture? !V2)

758
759 CVVNoHyphen <- C1 VV juncture? !V2

760
761 CVVHiddenStress <- C1 &DoubleVowel V1 [-]? V1 ([-]?

[Hh]? [Yy] [-]? &Complex /[Rr] [-]? &C1/[Nn] [-]?

&[Rr]/[-]? !V2)

762
763 CVVFinalStress <- C1 VV ([’*] [Hh]? [Yy] [-]? &

Complex /[Rr] [’*] &C1/[’*] [Rr] [Rr] juncture? &

C1/[Nn] [’*] &[Rr]/[’*] !V2)

764
765 CVVNOY <- C1 VV (juncture? [Rr] [Rr]? juncture? &C1

/[Nn] juncture? &[Rr]/ juncture? !V2)

766
767 CVVNOYFinalStress <- C1 VV ([Rr] [’*] &C1/[’*] [Rr]

[Rr] juncture? &C1/[Nn] [’*] &[Rr]/[’*] !V2)

768
769 CVVNOYMedialStress <- C1 !BrokenMono V2 [’*] V2 [-]?

!V2

770
771 # CCV djifoa with phonetic hyphens.

772
773 CCV <- Initial V2 (juncture? [Yy] [-]? &letter/

juncture? !V2)

774
775 CCVStressed <- Initial V2 ([’*] [Yy] [-]? &letter

/[’*] !V2)

776
777 CCVNOY <- Initial V2 juncture? !V2

778
779 CCVBad <- MaybeInitial V2 juncture? !V2

780
781 CCVBadStressed <- MaybeInitial V2 [’*] !V2

782
783

80 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

784 # CVC djifoa with phonetic hyphens. These cannot be

final and are always followed by a consonant (

well , the

785 # -y form may be followed by a vowel ...

786 # an eccentric syllable break is supported if the

CVC is y-hyphenated:

787 # <me-ky -kiu > and <mek -y-kiu > are both legal. The

default is the latter.

788
789 CVC <- (C1 V2 !NoMedial2 !NoMedial3 C1 (juncture? [

Yy] [-]? &letter/juncture? &C1)/C1 V2 juncture C1

[Yy] [-]? &letter)

790
791 CVCStressed <- (C1 V2 !NoMedial2 !NoMedial3 C1 ([’*]

[Yy] [-]? &letter /[’*] &letter)/C1 V2 [’*] C1 [

Yy] [-]? &letter)

792
793 CVCNOY <- C1 V2 !NoMedial2 !NoMedial3 C1 juncture? &

C1

794
795 CVCBad <- C1 V2 !NoMedial2 !NoMedial3 juncture? C1 &

C1

796
797 CVCNOYStressed <- C1 V2 !NoMedial2 !NoMedial3 C1

[’*] &C1

798
799 CVCBadStressed <- C1 V2 !NoMedial2 !NoMedial3 [’*]

C1 &C1

800
801 # the five letter forms (always final in complexes)

802
803 CCVCV <- Initial V2 juncture? C1 V2 [-]? !V2

804
805 CCVCVStressed <- Initial V2 [’*] C1 V2 [-]? !V2

806
807 CCVCVBad <- MaybeInitial V2 juncture? C1 V2 [-]? !V2

808
809 CCVCVBadStressed <- MaybeInitial V2 [’*] C1 V2 [-]?

81

!V2

810
811 CVCCV <- (C1 V2 juncture? Initial V2 [-]? !V2/C1 V2

!NoMedial2 C1 juncture? C1 V2 [-]? !V2)

812
813 CVCCVStressed <- (C1 V2 [’*] Initial V2 [-]? !V2/C1

V2 !NoMedial2 C1 [’*] C1 V2 [-]? !V2)

814
815 # the medial five letter djifoa

816
817 CCVCY <- Initial V2 juncture? C1 [Yy] [-]?

818
819 CVCCY <- (C1 V2 juncture? Initial [Yy] [-]?/C1 V2 !

NoMedial2 C1 juncture? C1 [Yy] [-]?)

820
821 CCVCYStressed <- Initial V2 [’*] C1 [Yy] [-]?

822
823 CVCCYStressed <- (C1 V2 [’*] Initial [Yy] [-]?/C1 V2

!NoMedial2 C1 [’*] C1 [Yy] [-]?)

824
825 # to reason about resolution of borrowings into both

syllables and djifoa (we want to exclude the

latter

826 # but we need to define it adequately) we need to

recognize where to stop. A predicate word ends

either

827 # at a non -character (not a letter or syllable mark:

whitespace , comma or terminal punctuation) or it

828 # has an explicit or deducible penultimate stress.

Borrowings do not contain doubled vowels , so they

829 # have to have explicit stress in the latter case.

830
831 # analysis: the stressed tail consists of a

stressed syllable followed by an unstressed

syllable.

832 # identifying an unstressed final syllable is

complicated by recognizing which CVV combinations

can

82 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

833 # be one syllable. This will either be an

explicitly stressed syllable followed by a single

syllable

834 # or a syllable suitable to be stressed followed by

an explicitly final syllable. CVV djifoa can

835 # contain both syllables in a tail and of course the

five letter djifoa have to be tails. A never

stressed

836 # SyllableC (with a continuant) may intervene.

837
838 # tail of a borrowing with an explicit stress

839
840 BorrowingTail1 <- !SyllableC &StressedSyllable

BorrowingSyllable (! StressedSyllable &SyllableC

BorrowingSyllable)? !StressedSyllable &

BorrowingSyllable VowelFinal

841
842 # tail of a borrowing or borrowing djifoa with no

explicit stress

843
844 BorrowingTail2 <- !SyllableC BorrowingSyllable (!

StressedSyllable &SyllableC BorrowingSyllable)? !

StressedSyllable &BorrowingSyllable VowelFinal

(&[Yy]/! character)

845
846 # tail of a stressed borrowing djifoa , different

because stress is shifted to the end

847
848 BorrowingTail3 <- !SyllableC !StressedSyllable

BorrowingSyllable (! StressedSyllable &SyllableC

BorrowingSyllable)? &BorrowingSyllable

InitialConsonants? Vocalic [’*] &[Yy]

849
850 BorrowingTail <- BorrowingTail1 / BorrowingTail2

851
852 # short forms that are ruled out: CCVV and CCCVV

forms.

853

83

854 CCVV <- (InitialConsonants V2 juncture? V2 juncture?

!character / InitialConsonants V2 [’*] !Mono V2

juncture ?)

855
856 # VCCV and some related forms are ruled out (rule

predstartF above is about this)

857
858 # a continuant syllable cannot be initial in a

borrowing and there cannot be successive

continuant

859 # syllables. There really ought to be no more than

one!

860
861 # borrowing , before checking that it doesnt resolve

into djifoa

862
863 PreBorrowing <- &predstart!CCVV!Cmapua!SyllableC (!

BorrowingTail !(StressedSyllable)!(SyllableC

SyllableC)BorrowingSyllable)* BorrowingTail

864
865 # ditto for an explicitly stressed borrowing

866
867 StressedPreBorrowing <- &predstart!CCVV!Cmapua!

SyllableC (! BorrowingTail !(StressedSyllable)!(

SyllableC SyllableC)BorrowingSyllable)*

BorrowingTail1

868
869 # borrowing djifoa without explicit stress (before

resolution check)

870
871 PreBorrowing2 <- &predstart!CCVV!Cmapua!SyllableC (!

BorrowingTail !(StressedSyllable)!(SyllableC

SyllableC)BorrowingSyllable)* BorrowingTail2

872
873 # stressed borrowing djifoa (before resolution check

).

874
875 PreBorrowing3 <- &predstart!CCVV!Cmapua!SyllableC (!

84 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

BorrowingTail3 !(StressedSyllable)!(SyllableC

SyllableC)BorrowingSyllable)* BorrowingTail3

876
877 # Now comes the problem of trying to say that a

preborrowing cannot resolve into cmapua. The

difficulty is with

878 # recognizing the tail , so making sure that the two

resolutions stop in the same place.

879
880 # we know because it is a borrowing that there is at

most one explicit stress , and it has to fall

881 # in one of the cmapua! This should make it doable.

882
883 # borrowing djifoa are terminated with y, so the

final djifoa needs to take this into account

884
885 # the idea behind both djifoa analyses is the same.

If we end with a final djifoa followed by

886 # a non -character , we improve our chances of ending

the syllable analysis at the same point. We

control

887 # this by identifying djifoa with stresses in them:

a medially stressed djifoa must be the last one

888 # (and the syllable analysis will find its stressed

syllable and end at its final syllable , the fact

889 # that djifoa cannot be followed by vowels ensuring

that the syllable analysis cannot overrun its end

.

890 # When the djifoa is finally stressed , the complex

analysis ends with a further djifoa guaranteed to

have

891 # just one syllable , and the syllable analysis again

will stop in the same place. The medial five

letter forms

892 # and borrowing djifoa of course are finally

stressed mod an additional unstressed syllable

which is skipped

893 # by the syllable analysis , because it allows one to

85

ignore an actually penultimate syllable with y

or

894 # a syllabic consonant. In the case where we never

find a stress and end up at a final djifoa , the

syllable

895 # analysis will carry right through to the same

final point.

896
897 # in the attempted resolution of borrowings , our

life is easier because we do not have

898 # borrowing djifoa or medial five letter forms to

consider , or any forms with y-hyphens.

899
900 RFinalDjifoa <- (CCVCVBad/CVCCV/CVVNoHyphen/CCVBad/

CVCBad) (&[Yy]/! character)

901
902 RMediallyStressed <- (CCVCVBadStressed/CVCCVStressed

/CVVNOYMedialStress)

903
904 RFinallyStressed <- (CVVNOYFinalStress/

CCVBadStressed/CVCBadStressed/CVCNOYStressed)

905
906 BorrowingComplexTail <- (RMediallyStressed/

RFinallyStressed (&(C1 Mono) CVVNoHyphen/CCVBad)/

RFinalDjifoa)

907
908 ResolvedBorrowing <- (! BorrowingComplexTail(CVVNOY/

CCVBad/CVCBad))* BorrowingComplexTail

909
910 # borrowed predicates

911
912 Borrowing <- !ResolvedBorrowing &caprule

PreBorrowing !([]* (connective))

913
914 # explicitly stressed borrowed predicates

915
916 StressedBorrowing <- !ResolvedBorrowing &caprule

StressedPreBorrowing !([]* &V1 Cmapua)

86 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

917
918 #This is the shape of non -final borrowing djifoa.

Notice that a final stress is allowed.

919 #The curious provision for explicitly stressing a

borrowing djifoa and pausing is supported.

920
921 # borrowing djifoa without explicit stress (stressed

ones are not of this class !)

922 # Note that one can pause after these (explicitly ,

with a comma , in which case the stress must be

explicit too)

923
924 BorrowingDjifoa <- !ResolvedBorrowing &caprule

PreBorrowing2 ([’*] [y] [,] []+/ juncture? [y]

[-]?)

925
926 # stressed borrowing djifoa finally implemented!

927
928 StressedBorrowingDjifoa <- !ResolvedBorrowing &

caprule PreBorrowing3 [y] [-]? ([,] []+)?

929
930 # We resolve complexes twice , once into syllables

and once into djifoa. We again have to ensure

that

931 # we end up in the same place! The syllable

resolution is very similar to that of borrowings;

932 # the unstressed middle syllable of the tail can be

a SyllableY , and can also be a

933 # SyllableC if the final djifoa is a borrowing.

934
935 # A stressed borrowing djifoa with the property that

the tail is still a phonetic complex is

936 # a unit for this analysis.

937
938 # note here that I specifically rule out a complex

being followed without pause by y. I do not rule

939 # this out for the vowel final djifoa because they

can be followed by y at the end of a borrowing

87

940 # djifoa.

941
942 PhoneticComplexTail1 <- !SyllableC !SyllableY &

StressedSyllable Syllable (! StressedSyllable &(

SyllableC/SyllableY) Syllable)? !StressedSyllable

!SyllableY VowelFinal !V1

943
944 PhoneticComplexTail2 <- !SyllableC !SyllableY

Syllable (! StressedSyllable &(SyllableC/SyllableY

) Syllable)? !StressedSyllable !SyllableY

VowelFinal !character

945
946 PhoneticComplexTail <- PhoneticComplexTail1 /

PhoneticComplexTail2

947
948 # note the explicit predstart test here.

949
950 PhoneticComplex <- &predstart!CCVV!Cmapua!SyllableC(

StressedBorrowingDjifoa &PhoneticComplex /!

PhoneticComplexTail !(StressedSyllable)!(SyllableC

SyllableC) Syllable)* PhoneticComplexTail

951
952 # the analysis of final djifoa and stressed djifoa

differs only in details from

953 # what is above for resolution of borrowings. The

issues about CVV djifoa with doubled

954 # vowels are rather exciting.

955
956 # a stressed borrowing djifoa with the tail still a

phonetic complex is a black box unit for

957 # this construction.

958
959 # My approach imposes the restriction on JCB ’s "

pause after a borrowing djifoa" idea that what

follows

960 # the pause must itself contain a penultimate stress

: <igllu ’ymao > is a predicate but <igllu ’y, mao >

is not.

88 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

961 # while <iglluy ’, gudmao > is a predicate.

962
963 # the analysis of the djifoa resolution process is

the same as above , with additional remarks

964 # about doubled vowel syllables: notice that where

the complex tail involved a doubled vowel

syllable

965 # without explicit stress , we insist on that djifoa

or the single -syllable next djifoa ending in

966 # a non -character: in the absence of explicit

stress , we always rely on whitespace or

punctuation

967 # to indicate the end of the predicate.

968
969 # all sorts of subtleties about borrowings and

borrowing djifoa are finessed by always looking

for

970 # them first. There are no restrictions re fronts

of borrowings or borrowing djifoa looking like

regular

971 # djifoa; the fact that borrowing djifoa end in y

and borrowings do not contain y makes it always

972 # possible to tell when one is looking at the head

of a borrowing djifoa. Regular djifoa just

before a borrowing

973 # djifoa need to be y-hyphenated so as not to be

absorbed into the front of the borrowing (I don ’t

believe

974 # that I actually need to impose a formal rule to

this effect , though I am not absolutely certain;

it would

975 # be difficult to formulate [and does appear in the

previous version , where it is a truly

unintelligible piece

976 # of PEG code]).

977
978 FinalDjifoa <- (Borrowing/CCVCV/CVCCV/CVVNoHyphen/

CCVNOY) !character

89

979
980 MediallyStressed <- (StressedBorrowing/CCVCVStressed

/CVCCVStressed/CVVNOYMedialStress)

981
982 FinallyStressed <-(StressedBorrowingDjifoa/

CCVCYStressed/CVCCYStressed/CVVFinalStress/

CCVStressed/CVCStressed)

983
984 ComplexTail <- (CVVHiddenStress (&(C1 Mono)

CVVNoHyphen/CCVNOY) !character/FinallyStressed

(&(C1 Mono) CVVNoHyphen/CCVNOY)/MediallyStressed/

FinalDjifoa)

985
986 PreComplex <- (! CVVHiddenStress (! ComplexTail)(

StressedBorrowingDjifoa &PhoneticComplex/

BorrowingDjifoa/CVCCY/CCVCY/CVV/CCV/CVC))*

ComplexTail

987
988 # originally I had complicated tests here for the

conditions under which an initial

989 # CVC cmapua has to be y-hyphenated: I was being

wrong headed , the predstart rules

990 # already enforce this (in the bad cases , the

initial CV- falls off). The user will

991 # simply find that they cannot put the word together

otherwise. The previous version

992 # did need this test because it actually used full

lookahead to check for the start of a predicate.

993
994 Complex <- &caprule &PreComplex PhoneticComplex !([

]* (connective))

995
996 # format for the LI quote and KIE parenthesis

997
998 LiQuote <- (& caprule [Ll][Ii]juncture? comma2? [\"]

phoneticutterance [\"] comma2? &caprule [Ll][Uu]

juncture? !([]* connective)/(& caprule [Kk][Ii]

juncture ?[Ee]juncture? comma2? [(]

90 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

phoneticutterance [)] comma2? &caprule [Kk][Ii]

juncture ?[Uu]juncture? !([]* connective)))

999
1000 # the condition on Word that a Cmapua is not

followed by another Cmapua

1001 # with mere whitespace between was used by <liu >

quotation , but is now redundant ,

1002 # because I have required that <liu > quotations be

closed with explicit pauses in all cases.

1003
1004 Word <- (NameWord / Cmapua !([]* Cmapua)/ Complex/

CCVNOY)

1005
1006 # it is an odd point that all borrowings parse as

complexes -- so when I parsed all the words the

first time they all

1007 # parsed as complexes. A borrowing is a complex

consisting of a single final borrowing djifoa!

1008 # I did redesign this so that borrowings are parsed

as borrowings. (This is the class

1009 # I used to parse the dictionary).

1010
1011 # Yes , CVC djifoa do get parsed as names in the

dictionary , so the CVC case here is redundant. I

actually

1012 # think that only the CCV djifoa actually get parsed

as such.

1013
1014 SingleWord <- (Borrowing !./ Complex !./ Word !./

PreName !. /CCVNOY) !.

1015
1016 # name word appearing initially without leading

spaces is important , because one type of NameWord

includes a leading comma.

1017
1018 phoneticutterance1 <- (NameWord /[]* LiQuote /[]*

NameWord /[]* AlienWord /[]* Cmapua /[]* ’--’/[]*

’...’/[]* Borrowing ![y]/[]* Complex /[]* (

91

CCVNOY))+

1019
1020 phoneticutterance <- (phoneticutterance1 /[,][]+/

terminal)+

1021
1022 # consonants and vowel groups in cmapua

1023
1024 # as noted above , !predstart stands in for the

computationally disastrous &Cmapua

1025
1026 badstress <- [’*] []* &C1 predstart

1027
1028 B <- (! predstart [Bb])

1029
1030 C <- (! predstart [Cc])

1031
1032 D <- (! predstart [Dd])

1033
1034 F <- (! predstart [Ff])

1035
1036 G <- (! predstart [Gg])

1037
1038 H <- (! predstart [Hh])

1039
1040 J <- (! predstart [Jj])

1041
1042 K <- (! predstart [Kk])

1043
1044 L <- (! predstart [Ll])

1045
1046 M <- (! predstart [Mm])

1047
1048 N <- (! predstart [Nn])

1049
1050 P <- (! predstart [Pp])

1051
1052 R <- (! predstart [Rr])

1053

92 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1054 S <- (! predstart [Ss])

1055
1056 T <- (! predstart [Tt])

1057
1058 V <- (! predstart [Vv])

1059
1060 Z <- (! predstart [Zz])

1061
1062 # the monosyllabic classes may be followed by one

vowel

1063 # if they start a Cvv -V cmapua unit; the others may

never

1064 # be followed by vowels. Classes ending in -b are

1065 # used in Cvv -V cmapua units.

1066
1067 # the single vowel classes were moved before the

class

1068 # connective in the phonetics section.

1069
1070
1071 V3 <- juncture? V2 !badstress

1072
1073 AA <- ([Aa] juncture? [Aa] !badstress juncture? !V1)

1074
1075 AE <- ([Aa] juncture? [Ee] !badstress juncture? !V1

)

1076
1077 AI <- ([Aa] [Ii] !badstress juncture? !(V1))

1078
1079 AO <- ([Aa] [Oo] !badstress juncture? !(V1))

1080
1081 AIb <- ([Aa] [Ii] !badstress juncture? &(V2

juncture? !V1))

1082
1083 AOb <- ([Aa] [Oo] !badstress juncture? &(V2

juncture? !V1))

1084
1085 AU <- ([Aa] juncture? [Uu] !badstress juncture? !V1

93

)

1086
1087 EA <- ([Ee] juncture? [Aa] !badstress juncture? !V1

)

1088
1089 EE <- ([Ee] juncture? [Ee] !badstress juncture? !V1

)

1090
1091 EI <- ([Ee] [Ii] !badstress juncture? !(V1))

1092
1093 EIb <- ([Ee] [Ii] !badstress juncture? &(V2

juncture? !V1))

1094
1095 EO <- ([Ee] juncture? [Oo] !badstress juncture? !V1

)

1096
1097 EU <- ([Ee] juncture? [Uu] !badstress juncture? !V1

)

1098
1099 IA <- ([Ii] juncture? [Aa] !badstress juncture? !(

V1))

1100
1101 IE <- ([Ii] juncture? [Ee] !badstress juncture? !(

V1))

1102
1103 II <- ([Ii] juncture? [Ii] !badstress juncture? !(

V1))

1104
1105 IO <- ([Ii] juncture? [Oo] !badstress juncture? !(

V1))

1106
1107 IU <- ([Ii] juncture? [Uu] !badstress juncture? !(

V1))

1108
1109 IAb <- ([Ii] juncture? [Aa] !badstress juncture?

&(V2 juncture? !V1))

1110
1111 IEb <- ([Ii] juncture? [Ee] !badstress juncture? &(

94 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

V2 juncture? !V1))

1112
1113 IIb <- ([Ii] juncture? [Ii] !badstress juncture? &(

V2 juncture? !V1))

1114
1115 IOb <- ([Ii] juncture? [Oo] !badstress juncture? &(

V2 juncture? !V1))

1116
1117 IUb <- ([Ii] juncture? [Uu] !badstress juncture?

&(V2 juncture? !V1))

1118
1119 OA <- ([Oo] juncture? [Aa] !badstress juncture? !V1

)

1120
1121 OE <- ([Oo] juncture? [Ee] !badstress juncture? !V1

)

1122
1123 OI <- ([Oo] [Ii] !badstress juncture? !(V1))

1124
1125 OIb <- ([Oo] [Ii] !badstress juncture? &(V2

juncture? !V1))

1126
1127 OO <- ([Oo] juncture? [Oo] !badstress juncture? !V1

)

1128
1129 OU <- ([Oo] juncture? [Uu] !badstress juncture? !

V1)

1130
1131 UA <- ([Uu] juncture? [Aa] !badstress juncture? !(

V1))

1132
1133 UE <- ([Uu] juncture? [Ee] !badstress juncture? !(

V1))

1134
1135 UI <- ([Uu] juncture? [Ii] !badstress juncture? !(

V1))

1136
1137 UO <- ([Uu] juncture? [Oo] !badstress juncture? !(

95

V1))

1138
1139 UU <- ([Uu] juncture? [Uu] !badstress juncture? !(

V1))

1140
1141 UAb <- ([Uu] juncture? [Aa] !badstress juncture?

&(V2 juncture? !V1))

1142
1143 UEb <- ([Uu] juncture? [Ee] !badstress juncture? &(

V2 juncture? !V1))

1144
1145 UIb <- ([Uu] juncture? [Ii] !badstress juncture?

&(V2 juncture? !V1))

1146
1147 UOb <- ([Uu] juncture? [Oo] !badstress juncture? &(

V2 juncture? !V1))

1148
1149 UUb <- ([Uu] juncture? [Uu] !badstress juncture? &(

V2 juncture? !V1))

1150
1151 # adding the new IY and UY, which might see use some

time.

1152 # they are mandatory monosyllables but do not take a

possible additional

1153 # following vowel as the regular ones do. So far

only used in <ziy >.

1154
1155 IY <- [Ii] [Yy] !badstress juncture? !V1

1156
1157 UY <- [Uu] [Yy] !badstress juncture? !V1

1158
1159 # this is a pause not required by the phonetics.

This is the only

1160 # sort of pause which could in principle carry

semantic freight (the

1161 # pause/GU equivalence beloved of our Founder) but

we have abandoned

1162 # this. There is one place , after initial <no> in

96 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

an utterance , where

1163 # a pause can have effect on the parse (but not on

the meaning , I believe ,

1164 # unless a word break is involved).

1165
1166 # this class should NEVER be used in a context which

might follow

1167 # a name word. In previous versions , pauses after

name words were included

1168 # in the name word; this is not the case here , so a

PAUSE

1169 # after a name word would not be recognized as a

mandatory pause.

1170
1171 # in any event , as long as we stay away from pause/

GU equivalence , this

1172 # is not a serious issue!

1173
1174 # this class does do some work in the handling of

issues surrounding the legacy

1175 # shape of APA connectives , concerning which the

less said , the better.

1176
1177 PAUSE <- [,] []+ !(V1/connective) &caprule

1178
1179 # more punctuation

1180
1181 comma <- [,] []+ &caprule

1182
1183 comma2 <- [,]? []+ &caprule

1184
1185 # Part II Lexicography

1186
1187 # In this section I develop the grammar of words in

Loglan. I’ll work by editing the original

provisional PEG grammar.

1188
1189 # I place the start of this section exactly here ,

97

just before two final items of

1190 # punctuation , because these items of punctuation

look forward not only to lexicography

1191 # but to the full grammar!

1192
1193 # the end of utterance symbol <#> should be added in

the phonetics

1194 # section as a species of terminal marker. Done. We

do *not* actually

1195 # endorse use of this marker , but we can notionally

support it and it is in

1196 # our sources.

1197
1198 end <- (([]* ’#’ []+ utterance)/([]+ !.) /!.)

1199
1200 # this rule allows terminal punctuation to be

followed by an inverse vocative ,

1201 # a frequent occurrence in Leith ’s novel , and

something which makes sense.

1202
1203 period <- (([!.:;?] (&end/([]+ &caprule))) (invvoc

period ?)?)

1204
1205 # Letters with y will be special cases

1206 # idea: allow IY and UY (always monosyllables) as

vowel combinations in cmapua only.

1207 # done: Y has a name now. <yfi > is also added.

1208
1209 # the classes in this section after this point are

the cmapua word classes of Loglan (if they begin

with []* or a word class).

1210 # I suppose the alien text classes are not really

word classes , but they are lexicographic items ,

as it were.

1211 # Paradoxically , the PA and NI classes admit

internal explicit pauses. So of course do

predicate words!

1212

98 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1213 # Loglan does admit true multisyllable cmapua:

there are words made of cmapua units which have

joints between

1214 # units at which one cannot pause without breaking

the word. Lojban , I am told , does not.

1215
1216 # this version has the general feature that the

quotation and alien text constructions are not

hacked:

1217 # they are supported by the phonetic rules (as dire

exceptions , of course) and the grammatical

constructions

1218 # conform with the phonetic layer. Alien text and

utterances quoted with ...<lu > can be

enclosed in double quotes.

1219 # LI only supports full utterances , for the moment.

All alien text constructors take the same class

as argument:

1220 # the vocative and inverse vocative *require* quotes

to avoid misreading ungrammatical expressions

with typos

1221 # as correct (inverse) vocatives.

1222
1223 # the names <yfi >, <ziy > for Y are supported. The

Ceo names are left as they are. I decided that a

second short series

1224 # of letteral pronouns is actually a reasonable use

of short words , and the Ceio words are there for

other uses.

1225
1226 TAI0 <- (V1 juncture? M a/V1 juncture? F i/V1

juncture? Z i/! predstart C1 AI/! predstart C1 EI/!

predstart C1 AIb u/! predstart C1 EIb (u)/!

predstart C1 EO/ Z [Ii] V1 !badstress juncture? !

V1 (M a)?)

1227
1228 # a negative suffix used in various contexts.

Always a suffix: its use as a prefix in tenses

99

was a mistake in NB3 and I

1229 # think still supported in LIP. Ambiguities

demonstrably followed from this usage (an example

of how the demonstration

1230 # of non -ambiguity of 1989 Loglan was compromised by

the opaque lexicography).

1231
1232 NOI <- (N OI)

1233
1234 # the logical connectives. [A0] is the class of

core logical connectives. [A] is the fully

decorated logical connective with

1235 # possible nu- (always in nuno - or nuu) and no-

prefixes , possible -noi suffix , and possible (

problematic) PA suffix , closed

1236 # with -fi (our new proposal) or an explicit pause.

1237
1238 A0 <- &Cmapua (a/e/o/u/H a/N UU)

1239
1240 A <- []* !predstart !TAI0 (N [o])? A0 NOI? !([]+

PANOPAUSES PAUSE) !(PANOPAUSES !PAUSE [,]) (

PANOPAUSES ((F i)/& PAUSE))?

1241
1242 # 4/18 in connected sentpreds , fi must be used to

close , not a pause.

1243
1244 # A2 <- []* !predstart !TAI0 (N [o])? A0 NOI? !([

]+ PANOPAUSES PAUSE) !(PANOPAUSES !PAUSE [,]) (

PANOPAUSES (F i))?

1245
1246
1247
1248 # A not closed with -fi or a pause

1249
1250 ANOFI <- []* (! predstart !TAI0 ((N [o])? A0 NOI?

PANOPAUSES ?))

1251
1252 A1 <- A

100 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1253
1254 # versions of A with different binding strength

1255
1256 ACI <- (ANOFI C i)

1257
1258 AGE <- (ANOFI G e)

1259
1260 # a tightly binding series of logical connectives

used to link predicates

1261 # this also includes the fusion connective <ze > when

used between predicates.

1262
1263 CA0 <- (((N o)? ((C a)/(C e)/(C o)/(C u)/(Z e)/(C i

H a)/N u C u)) NOI?)

1264
1265 CA1 <- (CA0 !([]+ PANOPAUSES PAUSE) !(PANOPAUSES !

PAUSE [,]) (PANOPAUSES ((F i)/&PAUSE))?)

1266
1267 CA1NOFI <- (CA0 PANOPAUSES ?)

1268
1269 CA <- ([]* CA1)

1270
1271 # the fusion connective when used in arguments

1272
1273 ZE2 <- ([]* (Z e))

1274
1275 # sentence connectives. [I] is the class of

utterance initiators (no logical definition).

1276 # the subsequent classes are inhabited by sentence

logical connectives with various binding

1277 # strengths.

1278
1279 I <- ([]* !predstart !TAI0 i !([]+ PANOPAUSES

PAUSE) !(PANOPAUSES !PAUSE [,]) (PANOPAUSES ((F

i)/&PAUSE))?)

1280
1281 ICA <- ([]* i ((H a)/CA1))

1282

101

1283 ICI <- ([]* i CA1NOFI? C i)

1284
1285 IGE <- ([]* i CA1NOFI? G e)

1286
1287 # forethought logical connectives

1288
1289 KA0 <- ((K a)/(K e)/(K o)/(K u)/(K i H a)/(N u K u))

1290
1291 # causal and comparative modifiers

1292
1293 KOU <- ((K OU)/(M OI)/(R AU)/(S OA)/(M OU)/(C IU))

1294
1295 # negative and converse forms

1296
1297 KOU1 <- (((N u N o)/(N u)/(N o)) KOU)

1298
1299 # the full type of forethought connectives , adding

the causal and comparative connectives

1300
1301 KA <- ([]* ((KA0)/((KOU1/KOU) K i)) NOI?)

1302
1303 # the last component of the KA...KI... structure of

forethought connections

1304
1305 KI <- ([]* (K i) NOI?)

1306
1307 # causal and comparative modifiers which are *not*

forethought connectives

1308
1309 KOU2 <- (KOU1 !KI)

1310
1311 # a test used to at least partially enforce the

penultimate stress rule on quantifier predicates

1312
1313 BadNIStress <- ((C1 V2 V2? stress (M a)? (M OA)? NI

RA)/(C1 V2 stress V2 (M a)? (M OA)? NI RA))

1314
1315 # root quantity words , including the numerals

102 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1316
1317 NI0 <- (! BadNIStress ((K UA)/(G IE)/(G IU)/(H IE)/(H

IU)/(K UE)/(N EA)/(N IO)/(P EA)/(P IO)/(S UU)/(S

UA)/(T IA)/(Z OA)/(Z OO)/(H o)/(N i)/(N e)/(T o)

/(T e)/(F o)/(F e)/(V o)/(V e)/(P i)/(R e)/(R u)

/(S e)/(S o)/(H i)))

1318
1319 # the class of SA roots , which modify quantifiers

1320
1321 SA <- (! BadNIStress ((S a)/(S i)/(S u)/(IE (comma2?

!IE SA)?)) NOI?)

1322
1323 # the family of quantifiers which double as suffixes

for the quantifier predicates

1324 # this class perhaps should also include some other

quantifier words. <re> for example ought to be

handled in the same way as <ra,ri,ro >.

1325 # No action here , just a remark.

1326
1327 RA <- (! BadNIStress ((R a)/(R i)/(R o)/R e/R u))

1328
1329 # re and ru added to class RA 5/11/18

1330
1331 # quantifier units consisting of a NI or RA root

with <ma> 00 or <moa > 000 appended; to <moa > one

can further

1332 # append a digit to iterate <moa >: <fomoate > is

four billion , for example. <rimoa >, a few

thousand.

1333
1334 # a NI1 or RA1 may be followed by a pause before

another NI word other than a numerical predicate;

1335 # one is allowed to breathe in the middle of long

numerals. I question whether the pause

1336 # provision makes sense in RA1.

1337
1338 NI1 <- ((NI0 (! BadNIStress M a)? (! BadNIStress M OA

NI0*)?) (comma2 !(NI RA) &NI)?)

103

1339
1340 RA1 <- ((RA (! BadNIStress M a)? (! BadNIStress M OA

NI0*)?) (comma2 !(NI RA) &NI)?)

1341
1342 # a composite NI word , optional SA prefix before a

sequence of NI words or a RA word ,

1343 # or a single SA word [which will modify a default

quantifier not expressed],

1344 # possibly negated , connected with CA0 roots to

other such constructs.

1345
1346 NI2 <- (((SA? (NI1+/RA1))/SA) NOI? (CA0 ((SA? (NI1

+/RA1))/SA) NOI?)*)

1347
1348 # a full NI word with an acronymic dimension (

starting with <mue >, ending with a pause) or <cu>

appended. I need to look up <cu>

1349 # and figure out its semantics. An arbitrary name

word may now be used as a dimension , as well.

1350
1351 NI <- ([]* NI2 (&(M UE) Acronym (comma/&end/& period

) !(C u)/comma2? M UE comma2? PreName !(C u))? (C

u)?)

1352
1353 # mex is now identical with NI , but it’s in use in

later rules.

1354
1355 mex <- ([]* NI)

1356
1357 # a word used for various tightly binding

constructions: a sort of verbal hyphen.

1358 # also a name marker , which means phonetic care is

needed (pause after constructions with <ci >).

1359
1360 CI <- ([]* (C i))

1361
1362 # Acronyms , which are names (not predicates as in

1989 Loglan) or dimensions (in NI above).

104 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1363 # units in acronym are TAI0 letterals , zV short

forms for vowels , the dummy unit <mue >, and NI1

1364 # quantity units. NI1 quantity units may not be

initial. <mue > units may be preceded by pauses.

1365 # An acronym has at least two units.

1366
1367 # it is worth noting that acronyms , once viewed as

names , could be entirely suppressed as a feature

of the

1368 # grammar by really making them names (terminate

them with -n). I suppose a similar approach

would work

1369 # for dimensions , allowing any name word to serve as

a dimension. <mue > would be a name marker for

use

1370 # with dimensions in this case. <temuedain >, three

dollars. Now supported.

1371
1372 Acronym <- ([]* &caprule ((M UE)/TAI0/(Z V2 !V2))

((comma &Acronym M UE)/NI1/TAI0/(Z V2 (!V2/(Z &V2

))))+)

1373
1374 # the full class of letterals , including the <gao >

construction whose details I should look at.

1375
1376 TAI <- ([]* (TAI0 /((G AO) !V2 []* (PreName/

Predicate/CmapuaUnit))))

1377
1378 # atomic non -letteral pronouns.

1379
1380 #4/15/2019 reserved <koo > for a Lojban style

imperative pronoun , though not officially

adopting it. Also adding <dao > for a default ,

don ’t care argument , another Lojban feature.

1381
1382 DA0 <- ((T AO)/(T IO)/(T UA)/(M IO)/(M IU)/(M UO)/(M

UU)/(T OA)/(T OI)/(T OO)/(T OU)/(T UO)/(T UU)/(S

UO)/(H u)/(B a)/(B e)/(B o)/(B u)/(D a)/(D e)/(D

105

i)/(D o)/(D u)/(M i)/(T u)/(M u)/(T i)/(T a)/(M

o)/(K OO)/(D AO))

1383
1384 # letterals (not including <gao > constructions and

atomic pronouns optionally suffixed with a digit.

One should pause after the

1385 # suffixed forms , because <ci > is a name marker.

1386
1387 DA1 <- ((TAI0/DA0) (C i ![] NI0)?)

1388
1389 # general pronoun words.

1390
1391 DA <- ([]* DA1)

1392
1393 # roots for PA words: tense and location words ,

prepositions building relative modifiers. All

can optionally be negated with -noi. They may

also be quantified. They may also be closed with

ZI class affixes. PA cores.

1394
1395 PA0 <- (NI2? (N u !KOU)? ((G IA)/(G UA)/(P AU)/(P IA

)/(P UA)/(N IA)/(N UA)/(B IU)/(F EA)/(F IA)/(F UA

)/(V IA)/(V II)/(V IU)/(C OI)/(D AU)/(D II)/(D UO

)/(F OI)/(F UI)/(G AU)/(H EA)/(K AU)/(K II)/(K UI

)/(L IA)/(L UI)/(M IA)/(N UI)/(P EU)/(R OI)/(R UI

)/(S EA)/(S IO)/(T IE)/ (V IE)/(V a)/(V i)/(V u)

/(P a)/(N a)/(F a)/(V a)/(KOU !(N OI) !KI)) (N OI

)? ZI?)

1396
1397 # the form used for actual prepositions and suffixes

to A words , with minimal pauses allowed.

1398 # these are built by concatenating KOU2 and PA0

units , then linking these with CA0 roots (which

can take

1399 # no- prefixes and -noi suffixes , and next to which

one *can* pause), optionally suffixed with a

class ZI suffix.

1400

106 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1401 PANOPAUSES <- ((KOU2/PA0)+ ((comma2? CA0 comma2 ?) (

KOU2/PA0)+)*)

1402
1403 # prepositional words

1404
1405 PA3 <- ([]* PANOPAUSES)

1406
1407 # class PA can appear as tense markers or as

relative modifiers without arguments; here pauses

1408 # are allowed not only next to CA0 units but between

KOU2/PA units. Like NI words , PA

1409 # words are a class of arbitrary length

constructions , and we think breaths within them

1410 # (especially complex ones) are natural.

1411
1412 PA <- ((KOU2/PA0)+ (((comma2? CA0 comma2 ?)/(comma2 !

mod1a)) (KOU2/PA0)+)*) !modifier

1413
1414 PA2 <- ([]* PA)

1415
1416 GA <- ([]* (G a))

1417
1418 # the class of tense markers which can appear before

predicates.

1419
1420 PA1 <- ((PA2/GA))

1421
1422 # suffixes which indicate extent or remoteness/

proximity of the action of prepositions.

1423
1424 ZI <- ((Z i)/(Z a)/(Z u))

1425
1426 # the primitive description building "articles ".

These include <la> which requires special

1427 # care in its use because it is a name marker.

1428
1429 LE <- ([]* ((L EA)/(L EU)/(L OE)/(L EE)/(L AA)/(L e

)/(L o)/(L a)))

107

1430
1431 # articles which can be used with abstract

descriptions: these include some quantity words.

1432 # this means that some abstract descriptions are

semantically indefinites: I wonder if this

1433 # could be improved by having a separate abstract

indefinite construction.

1434
1435 LEFORPO <- ([]* ((L e)/(L o)/NI2))

1436
1437 # the numerical/quantity article.

1438
1439 LIO <- ([]* (L IO))

1440
1441 # structure words for the ordered and unordered list

constructions.

1442
1443 LAU <- ([]* (L AU))

1444
1445 LOU <- ([]* (L OU))

1446
1447 LUA <- ([]* (L UA))

1448
1449 LUO <- ([]* (L UO))

1450
1451 ZEIA <- ([]* Z EIb a)

1452
1453 ZEIO <- ([]* Z EIb o)

1454
1455 # initial and final words for quoting Loglan

utterances.

1456
1457 LI1 <- (L i)

1458
1459 LU1 <- (L u)

1460
1461 # quoting Loglan utterances , with or without

explicit double quotes (if they appear , they must

108 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1462 # appear on both sides). The previous version

allowed quotation of names; likely this should

1463 # be restored.

1464
1465 LI <- ([]* LI1 comma2? utterance0 comma2? LU1/[]*

LI1 comma2? [\"] utterance0 [\"] comma2? LU1)

1466
1467 # the foreign name construction. This is an alien

text construction

1468
1469 LAO <- ([]* &([Ll] [Aa] [Oo]juncture ?) AlienWord)

1470
1471 # the strong quotation construction. This is an

alien text construction.

1472
1473 LIE <- ([]* &([Ll] [Ii] juncture? [Ee]juncture ?)

AlienWord)

1474
1475 LIO1 <- ([]* &([Ll] [Ii] juncture? [Oo]juncture ?)

AlienWord)

1476
1477
1478
1479 # I am not sure this class is used at all.

1480
1481 LW <- Cmapua

1482
1483 # articles for quotation of words

1484
1485 LIU0 <- ((L IU)/(N IU))

1486
1487 # this now imposes the condition that an explicit

comma pause (or terminal punctuation , or end)

must appear at the end of the

1488 # Word or PreName quoted with <liu >. This seems

like a good idea , anyway.

1489
1490 # this class appeals to the phonetics. Words and

109

PreNames can be quoted. The ability to quote

names

1491 # here may remove the need to quote them with ...<lu >. Of course , some Words are in fact

phrases rather

1492 # than single words: we will see whether the

privileges afforded are used. The final clause

allows

1493 # use of letterals as actual names of letters.

1494
1495 # added <niu >: didn ’t make it a name marker.

1496
1497 LIU1 <- ([]* ([Ll]/[Nn])[iI] juncture? [Uu]

juncture? !V1 comma2? (PreName/Word) &(comma/

terminal/end) /[]*(L II TAI))

1498
1499 # the construction of foreign and onomatopoeic

predicates. These are alien text constructions.

1500
1501 SUE <- ([]* &([Ss] [Uu] juncture? [Ee] juncture ?/[

Ss] [Aa] [Oo] juncture ?) AlienWord)

1502
1503 # left marker in a predicate metaphor construction

1504
1505 CUI <- ([]* (C UI))

1506
1507 # other uses of GA

1508
1509 GA2 <- ([]* (G a))

1510
1511 # ge/geu act as "parentheses" to make an atomic

predicate from a complex metaphorically

1512 # and logically connected predicates; <ge > has

other left marking uses.

1513
1514 GE <- ([]* (G e))

1515
1516 GEU <- ([]* ((C UE)/(G EU)))

110 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1517
1518 # final marker of a list of head terms

1519
1520 GI <- ([]* ((G i)/(G OI)))

1521
1522 # used to move a normally prefixed metaphorical

modifier after what it modifies.

1523
1524 GO <- ([]* (G o))

1525
1526 # marker for second and subsequent arguments before

the predicate; NEW

1527
1528 GIO <- ([]* (G IO))

1529
1530 # the generic right marker of many constructions.

1531
1532 GU <- ([]* (G u))

1533
1534 # various flavors of right markers.

1535
1536 # It should be noted that at one point I executed a

program of simplifying these to

1537 # reduce the likelihood that multiple <gu >’s would

ever be needed to close an utterance.

1538 # first of all , I made the closures leaner , moving

them out of the classes closed

1539 # to their clients so that they generally can be

used only when needed.

1540 # Notably , the grammar of <guu > is quite different.

Second ,

1541 # I introduced some new flavors of right marker.

All can be realized with <gu >,

1542 # but if one knows the right flavor one can close

the right structure with a single

1543 # right closure.

1544
1545 # right markers of subordinate clauses (argument

111

modifiers).

1546 # <gui > closes a different class than in the trial

.85 grammar , with

1547 # similar but on the whole better results.

1548
1549 GUIZA <- ([]* (G UI) (Z a))

1550
1551 GUIZI <- ([]* (G UI) (Z i))

1552
1553 GUIZU <- ([]* (G UI) (Z u))

1554
1555 GUI <- (!GUIZA !GUIZI !GUIZU ([]* (G UI)))

1556
1557 # right markers of abstract predicates and

descriptions.

1558 # probably the forms with z are to be preferred (and

the other

1559 # two are not needed) but I preserve all five

classes for now.

1560
1561 GUO <- ([]* (G UO))

1562
1563 GUOA <- ([]* (G UOb a/G UO Z a))

1564
1565 GUOE <- ([]* (G UOb e))

1566
1567 GUOI <- ([]* (G UOb i/G UO Z i))

1568
1569 GUOO <- ([]* (G UOb o))

1570
1571 GUOU <- ([]* (G UOb u/G UO Z u))

1572
1573 # right marker used to close term (argument/

predicate modifier) lists.

1574 # it is important to note that in our grammar GUU is

not a component of

1575 # the class termset , nor is it a null termset: it

appears in other classes

112 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1576 # which include termsets as an option to close them.

The effects are similar

1577 # to those in the trial .85 grammar , but there is

less of a danger that

1578 # extra unexpected closures will be needed.

1579
1580 GUU <- ([]* (G UU))

1581
1582 # a new closure for arguments in various contexts

1583
1584 GUUA <- ([]* (G UUb a))

1585
1586 # a new closure for sentences. In particular , it

1587 # may have real use in closing up the scope of a

list of

1588 # fronted terms before a series of logically

connected sentences.

1589
1590 GIUO <- ([]* (G IUb o))

1591
1592 # right marker used to close arguments tightly

linked with JE/JUE.

1593
1594 GUE <- ([]* (G UE))

1595
1596 # a new closure for descpreds

1597
1598 GUEA <- ([]* (G UEb a))

1599
1600
1601 # used to build tightly linked term lists.

1602
1603 JE <- ([]* (J e))

1604
1605 JUE <- ([]* (J UE))

1606
1607 # used to build subordinate clauses (argument

modifiers).

113

1608
1609 JIZA <- ([]* ((J IE)/(J AE)/(P e)/(J i)/(J a)/(N u

J i)) (Z a))

1610
1611 JIOZA <- ([]* ((J IO)/(J AO)) (Z a))

1612
1613 JIZI <- ([]* ((J IE)/(J AE)/(P e)/(J i)/(J a)/(N u

J i)) (Z i))

1614
1615 JIOZI <- ([]* ((J IO)/(J AO)) (Z i))

1616
1617 JIZU <- ([]* ((J IE)/(J AE)/(P e)/(J i)/(J a)/(N u

J i)) (Z u))

1618
1619 JIOZU <- ([]* ((J IO)/(J AO)) (Z u))

1620
1621 JI <- (!JIZA !JIZI !JIZU ([]* ((J IE)/(J AE)/(P e)

/(J i)/(J a)/(N u J i))))

1622
1623 JIO <- (!JIOZA !JIOZI !JIOZU ([]* ((J IO)/(J AO)))

)

1624
1625 # case tags , both numerical position tags and the

optional semantic case tags.

1626
1627 DIO <- ([]* ((B EU)/(C AU)/(D IO)/(F OA)/(K AO)/(J

UI)/(N EU)/(P OU)/(G OA)/(S AU)/(V EU)/(Z UA)/(Z

UE)/(Z UI)/(Z UO)/(Z UU))) (C i ![] NI0/ZI)?

1628
1629 # markers of indirect reference. Originally these

had the same grammar as case tags ,

1630 # but they are now different.

1631
1632 LAE <- ([]* ((L AE)/(L UE)))

1633
1634 # <me> turns arguments into predicates , <meu > closes

this construction.

1635

114 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1636 ME <- ([]* ((M EA)/(M e)))

1637
1638 MEU <- ([]* M EU)

1639
1640 # reflexive and conversion operators: first the

root forms , then those with

1641 # optional numerical suffixes.

1642
1643 NU0 <- ((N UO)/(F UO)/(J UO)/(N u)/(F u)/(J u))

1644
1645 NU <- []* (((N u/N UO) !([]+ (NI0/RA)) (NI0/RA)?)/

NU0)+ freemod?

1646
1647 # abstract predicate constructors (from sentences)

1648
1649 # I do *not* think

1650 # that <poia > will really be confused with <po ia >,

particularly

1651 # since we do require an explicit pause before <ia >

in the latter case ,

1652 # but I record this concern: the forms with z might

be preferable.

1653
1654 PO1 <- ([]* ((P o)/(P u)/(Z o)))

1655
1656 PO1A <- ([]* ((P OIb a)/(P UIb a)/(Z OIb a)/(P o Z

a)/(P u Z a)/(Z o Z a)))

1657
1658 PO1E <- ([]* ((P OIb e)/(P UIb e)/(Z OIb e)))

1659
1660 PO1I <- ([]* ((P OIb i)/(P UIb i)/(Z OIb i)/(P o Z

i)/(P u Z i)/(Z o Z i)))

1661
1662 PO1O <- ([]* ((P OIb o)/(P UIb o)/(Z OIb o)))

1663
1664 PO1U <- ([]* ((P OIb u)/(P UIb u)/(Z OIb u)/(P o Z

u)/(P u Z u)/(Z o Z u)))

1665

115

1666 # abstract predicate constructor from simple

predicates

1667
1668 POSHORT1 <- ([]* ((P OI)/(P UI)/(Z OI)))

1669
1670 # word forms associated with the above abstract

predicate root forms

1671
1672 PO <- ([]* PO1)

1673
1674 POA <- ([]* PO1A)

1675
1676 POE <- ([]* PO1E)

1677
1678 POI <- ([]* PO1E)

1679
1680 POO <- ([]* PO1O)

1681
1682 POU <- ([]* PO1U)

1683
1684 POSHORT <- ([]* POSHORT1)

1685
1686 # register markers

1687
1688 DIE <- ([]* ((D IE)/(F IE)/(K AE)/(N UE)/(R IE)))

1689
1690 # vocative forms: I still have the words of social

lubrication as

1691 # vocative markers.

1692
1693 HOI <- ([]* ((H OI)/(L OI)/(L OA)/(S IA)/(S IE)/(S

IU)))

1694
1695 # the verbal scare quote. The quantifier suffix

indicates how many preceding words are affected;

1696 # this is an odd mechanism.

1697
1698 JO <- ([]* (NI0/RA/SA)? (J o))

116 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1699
1700 # markers for forming parenthetical utterances as

free modifiers.

1701
1702 KIE <- ([]* (K IE))

1703
1704 KIU <- ([]* (K IU))

1705
1706 KIE2 <- []* K IE comma2? [(]

1707
1708 KIU2 <- []* [)] comma2? K IU

1709
1710 # marker for forming smilies.

1711
1712 SOI <- ([]* (S OI))

1713
1714 # a grab bag of attitudinal words , including but not

restricted to the VV forms.

1715
1716 UI0 <- (! predstart (!([Ii] juncture? [Ee]) VV

juncture ?/(B EA)/(B UO)/(C EA)/(C IA)/(C OA)/(D

OU)/(F AE)/(F AO)/(F EU)/(G EA)/(K UO)/(K UU)/(R

EA)/(N AO)/(N IE)/(P AE)/(P IU)/(S AA)/(S UI)/(T

AA)/(T OE)/(V OI)/(Z OU)/((L OI))/((L OA))/((S IA

))/(S II)/(T OE)/((S IU))/(C AO)/(C EU)/((S IE))

/(S EU)/(S IEb i)))

1717
1718 # negative forms of the attitudinals. The ones with

<no > before the two vowel forms are a phonetic

exception. The others

1719 # should also be (though they present no

pronunciation problem) so that they are resolved

as single words.

1720
1721 NOUI <- (([]* UI0 NOI)/([]* N [o] juncture? comma?

[]* UI0))

1722
1723 # all attitudinals (adding the discursives nefi ,

117

tofi ... etc)

1724 # there is a technical problem with mixing UI0 roots

of VV and CVV shapes.

1725
1726 UI1 <- ([]* (UI0 +/(NI F i)))

1727
1728 # the inverse vocative marker

1729
1730 HUE <- ([]* (H UE))

1731
1732 # occurrences of <no> as a word rather than an affix

.

1733
1734 NO1 <- ([]* !KOU1 !NOUI (N o) !(comma2? Z AO comma2

? Predicate) !([]* KOU) !([]* (JIO/JI/JIZA/

JIOZA/JIZI/JIOZI/JIZU/JIOZU)))

1735
1736 # a technical closure for the alternative parser

approach: the "large subject marker"

1737
1738 GAA <- (NO1 freemod ?)* ([]* (G AA))

1739
1740
1741 # Names , acronyms and PreNames from above.

1742
1743 AcronymicName <- Acronym &(comma/period/end)

1744
1745 DJAN <- (PreName/AcronymicName)

1746
1747 # predicate words which are phonetically cmapua

1748
1749 # "identity predicates ". Converses are provided as

a new proposal.

1750
1751 BI <- ([]* (N u)? ((B IA)/(B IE)/(C IE)/(C IO)/(B

IA)/(B [i])))

1752
1753 # interrogative and pronoun predicates

118 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1754
1755 LWPREDA <- ((H e)/(D UA)/(D UI)/(B UA)/(B UI))

1756
1757 # here I should reinstall the <zao > proposal.

1758
1759 # the predicate words defined above in the phonetics

section

1760
1761 Predicate <- (CmapuaUnit comma2? Z AO comma2 ?)*

Complex (comma2? Z AO comma2? Predicate)?

1762
1763 # predicate words , other than the "identity

predicates" of class [BI]

1764 # these include the numerical predicates (NI RA),

also cmapua phonetically.

1765
1766 # we are installing John Cowan ’s <zao > proposal here

, experimentally , 4/15/2019

1767
1768 PREDA <- ([]* &caprule (Predicate/LWPREDA /(![] NI

RA)))

1769
1770 # Part 3: The Grammar Proper

1771
1772 # right markers turned into classes.

1773
1774 guoa <- (PAUSE? (GUOA/GU) freemod ?)

1775
1776 guoe <- (PAUSE? (GUOE/GU) freemod ?)

1777
1778 guoi <- (PAUSE? (GUOI/GU) freemod ?)

1779
1780 guoo <- (PAUSE? (GUOO/GU) freemod ?)

1781
1782 guou <- (PAUSE? (GUOU/GU) freemod ?)

1783
1784 guo <- (!guoa !guoe !guoi !guoo !guou (PAUSE? (GUO/

GU) freemod ?))

119

1785
1786 guiza <- (PAUSE? (GUIZA/GU) freemod ?)

1787
1788 guizi <- (PAUSE? (GUIZI/GU) freemod ?)

1789
1790 guizu <- (PAUSE? (GUIZU/GU) freemod ?)

1791
1792 gui <- (PAUSE? (GUI/GU) freemod ?)

1793
1794 gue <- (PAUSE? (GUE/GU) freemod ?)

1795
1796 guea <- (PAUSE? (GUEA/GU) freemod ?)

1797
1798 guu <- (PAUSE? (GUU/GU) freemod ?)

1799
1800 guua <- (PAUSE? (GUUA/GU) freemod ?)

1801
1802 giuo <- (PAUSE? (GIUO/GU) freemod ?)

1803
1804 meu <- (PAUSE? (MEU/GU) freemod ?)

1805
1806 geu <- GEU

1807
1808 # Here note the absence of pause/GU equivalence.

1809
1810 gap <- (PAUSE? GU freemod ?)

1811
1812 # this is the vocative construction. It can appear

early because all of its components are marked.

1813
1814 # the intention is to indicate who is being

addressed. This can be handled via a name , a

descriptive argument , a predicate or an

1815 # alien text name (the last must be quoted). The

complexities of these grammatical constructions

can be deferred until they are

1816 # introduced.

1817

120 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1818 # HOI0 <- []* [Hh] [Oo] [Ii] juncture?

1819
1820 # restore words of social lubrication as vocative

markers but not as name markers: <loi , Djan >

1821
1822 # I do not allow a freemod to intervene between a

vocative marker and the associated

1823 # utterance , to avoid unintended grabbing of

subjects by the words of social lubrication when

they are used

1824 # as vocative markers. This lets <Loi , Djan > and <

Loi hoi Djan > be equivalent. The comma needed in

the

1825 # first because the social lubrication words are in

this version not name markers.

1826
1827 HOI0 <- ([]* ((([Hh] OI)/([Ll] OI)/([Ll] OA)/([Ss]

IA)/([Ss] IE)/([Ss] IU)))) juncture? !V1

1828
1829 voc <- (HOI0 comma2? name /(HOI comma2? descpred

guea? namesuffix ?)/(HOI comma2? argument1 guua?)

/[]* &([Hh] [Oo] [Ii] juncture ?) AlienWord)

1830
1831 # this is the inverse vocative. It can appear early

because all of its components are marked.

1832
1833 # the intention is to indicate who is speaking. The

range of ways this can be handled is similar to

the range of ways it can be

1834 # handled for the vocative; there is the further

option of a sentence (the [statement] class) and

there is a strong closure option

1835 # for the case where an argument is used (to avoid

it inadvertantly expanding to a sentence).

1836
1837 HUE0 <- []* &caprule [Hh] [Uu] juncture? [Ee]

juncture? !V1

1838

121

1839 invvoc <- (HUE0 comma2? name/HUE freemod? descpred

guea? namesuffix ?/(HUE freemod? statement giuo?)

/(HUE freemod? argument1 guu?)/[]* &([Hh] [Uu]

juncture? [Ee] juncture ?) AlienWord)

1840
1841
1842 # this is the class of free modifiers. Most of its

components are head marked (those that aren ’t

appear just above),

1843 # and it is useful for it to appear early because

these things appear everywhere in subsequent

constructions. A free modifier ,

1844 # of whatever sort , is a freely insertable gadget

which modifies the immediately preceding

construction , or the entire utterance

1845 # if it is initial.

1846
1847 # NOUI is a negated attitudinal word. UI1 is an

attitudinal word: these express an emotional

attitude toward the

1848 # assertion (noting that EI marks questions (yes or

no answer expected) and SEU marks utterances as

answers).

1849
1850 # SOI creates smilies in a general sense: <soi

crano > indicates that the listener should imagine

the speaker smiling;

1851 # similarly for other predicates.

1852
1853 # DIE and NO DIE are register markers , communicating

the social attitude of the speaker toward the

one addressed: <die > for

1854 # example is "dear"

1855
1856 # KIE ... KIU constructs a full parenthetical

utterance as a comment , which can be enclosed in

actual parentheses inside

1857 # the marker words.

122 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1858
1859 # JO is a scare quote device.

1860
1861 # the comma is a freemod with no semantic content:

this is a device for discarding phonetically

required pauses

1862 # and the speaker ’s optional pauses alike. The

pause before a non -pause marked prename is part

of the NameWord and so

1863 # is excluded. Ellipses and dashes are fancy pauses

supported as freemods.

1864
1865 freemod <- ((NOUI/(SOI freemod? descpred guea?)/DIE

/(NO1 DIE)/(KIE comma? utterance0 comma? KIU)/(

KIE2 comma? utterance0 comma? KIU2)/invvoc/voc/(

comma !(! FalseMarked PreName))/JO/UI1/([]* ’...’

([]* &letter)?)/([]* ’--’ ([]* &letter)?))

freemod ?)

1866
1867 # the classes juelink to linkargs describe very

tightly bound arguments which can be firmly

attached to predicates in

1868 # the context of metaphorical modifications and the

use of predicates in descriptive arguments.

1869
1870 # note that we allow predicate modifiers (

prepositional phrases) to be bound with <je/jue >

which is not

1871 # allowed in 1989 Loglan , but which we believe is

supported in Lojban.

1872
1873 juelink <- (JUE freemod? (term/(PA2 freemod? gap?)))

1874
1875 links1 <- (juelink (freemod? juelink)* gue?)

1876
1877 links <- ((links1 /(KA freemod? links freemod? KI

freemod? links1)) (freemod? A1 freemod? links1)*)

1878

123

1879 jelink <- (JE freemod? (term/(PA2 freemod? gap?)))

1880
1881 linkargs1 <- (jelink freemod? (links/gue)?)

1882
1883 linkargs <- ((linkargs1 /(KA freemod? linkargs

freemod? KI freemod? linkargs1)) (freemod? A1

freemod? linkargs1)*)

1884
1885 # class abstractpred supports the construction of

event , property , and quantity predicates from

sentences. These are

1886 # closable with <guo > if introduced with <po,pu ,zo>

and closable with suffixed variants of <guo > if

introduced with suffixed

1887 # variants of <po,pu,zo > (a NEW idea but it is clear

that closure of these predicates (and of the

more commonly

1888 # used associated descriptions) is an important

issue).

1889
1890 abstractpred <- ((POA freemod? uttAx guoa?)/(POA

freemod? sentence guoa?)/(POE freemod? uttAx guoe

?)/(POE freemod? sentence guoe?)/(POI freemod?

uttAx guoi?)/(POI freemod? sentence guoi?)/(POO

freemod? uttAx guoo?)/(POO freemod? sentence guoo

?)/(POU freemod? uttAx guou?)/(POU freemod?

sentence guou?)/(PO freemod? uttAx guo?)/(PO

freemod? sentence guo?))

1891
1892 # predunit1 describes the truly atomic forms of

predicate.

1893
1894 # PREDA is the class of predicate words (the

phonetic predicate words along with the special

phonetic cmapua which are predicates , listed

1895 # above under the PREDA rule. NU PREDA handles

permutations and identifications of arguments of

PREDAs.

124 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1896
1897 # SUE contains the alien text constructions with <

sao > and <sue >, semantically quite different but

syntactically handled

1898 # in the same way.

1899
1900 # <ge >...<geu/cue > (the closing optional) can

parenthesize a fairly complex predicate phrase

and turn it into an atomic form. These

1901 # forms can have conversion or reflexive operators (

NU) applied. I should look into why the class

handled in the conversion case

1902 # is different. An important use of this is in

metaphor constructions , but it has other

potential uses.

1903
1904 # abstractpred is the class of abstraction

predicates just introduced above. These are

treated as atomic in this grammar: it should

1905 # be noted that their privileges in the trial .85

grammar are (absurdly) limited.

1906
1907 # <me >...<meu > (the closing optional , but important

to have available) forms predicates from

arguments , the predicate being true of the

1908 # objects to which the argument refers. <Ti me le

mrenu > : this is one of the men we are talking

about.

1909
1910 predunit1 <- ((SUE/(NU freemod? GE freemod? despredE

(freemod? geu comma ?)?)/(NU freemod? PREDA)/(

comma? GE freemod? descpred (freemod? geu comma?)

?)/abstractpred /(ME freemod? argument1 meu?)/

PREDA) freemod ?)

1911
1912 # <no> binds very tightly to predunit1: a possibly

multiply negated predunit1 (or an unadorned

predunit1) is a predunit2.

125

1913
1914 predunit2 <- ((NO1 freemod ?)* predunit1)

1915
1916 # an instance of NO2 is one not absorbed by a

predunit. Example: <Da no kukra prano > X is a

slow (not -fast) runner vs

1917 # <Da no ga kukra prano > (X is not a fast runner ,

and in fact may not run at all).

1918
1919 NO2 <- (! predunit2 NO1)

1920
1921 # a predunit3 is a predunit2 with tightly attached

arguments.

1922
1923 predunit3 <- ((predunit2 freemod? linkargs)/

predunit2)

1924
1925 # a predunit is a predunit3 or a predunit3 converted

by the short -scope abstraction operators

1926 # <poi/pui/zoi > to an abstraction predicate. This

is the kind of predicate which can appear as

1927 # a component in a serial name.

1928
1929 predunit <- ((POSHORT freemod ?)? predunit3)

1930
1931 # a further "atomic" (because tightly packaged) form

is a forethought connected pair

1932 # of predicates (this being the full predicate class

defined at the end of the process)

1933 # possibly closed with <guu >, possibly multiply

negated as well.

1934
1935 # the closure with guu eliminated the historic rule

against kekked heads of metaphors.

1936
1937 kekpredunit <- ((NO1 freemod ?)* KA freemod?

predicate freemod? KI freemod? predicate guu?)

1938

126 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

1939 # there follows the construction of metaphorically

modified predicates ,

1940 # along with tightly logically linked predicates.

1941
1942 # CI and simple juxtaposition of predicates both

represent modification of the second

1943 # predicate by the first. We impose no semantic

conditions on this modification ,

1944 # except in the case of modification by predicates

logically linked with CA,

1945 # which do distribute logically in the expected way

both as modifiers and as modified.

1946 # We do not regard <preda1 preda2 > as necessarily

implying preda2: we do regard

1947 # it as having the same place structure as preda2.

It is very often but not always

1948 # a qualification or kind of preda2; in any case it

is a relation analogous to preda2.

1949
1950 # modification with CI binds most tightly.

1951
1952 # we eliminated the distinction between the series

of sentence and description

1953 # predicate preliminary classes: there seems to be

no need for it even in the

1954 # trial .85 grammar.

1955
1956 despredA <- ((predunit/kekpredunit) (freemod? CI

freemod? (predunit/kekpredunit))*)

1957
1958 # this is logical connection of predicates with the

tightly binding CA

1959 # series of logical connectives. CUI can be used to

expand the scope of

1960 # a CA connective over a metaphor on the left. <ge

>...<geu > is used to expand

1961 # scope on the right (and could also be used on the

left , it should be noted).

127

1962 # descpredC is an internal of despredB assisting the

function of CUI.

1963 # the !PREDA in front of CUI is probably not needed.

1964
1965 despredB <- ((! PREDA CUI freemod? despredC freemod?

CA freemod? despredB)/despredA)

1966
1967 despredC <- (despredB (freemod? despredB)*)

1968
1969 # tight logical linkage of despredB ’s

1970
1971 despredD <- (despredB (freemod? CA freemod? despredB

)*)

1972
1973 # chain of modifications of despredD ’s (grouping to

the left)

1974
1975 despredE <- (despredD (freemod? despredD)*)

1976
1977 # the GO construction allows inverse modification:

<preda1 GO preda2 > is <preda2 preda1 > as it were.

1978 # there are profound effects on grouping.

1979
1980 descpred <- ((despredE freemod? GO freemod? descpred

)/despredE)

1981
1982 # this version which appears in sentence predicates

as opposed to descriptions differs

1983 # in allowing loosely linked arguments (termsets)

instead of those linked with <je/jue > for the

predicate

1984 # moved to the end by GO.

1985
1986 # 4/17/2019 shared argument experiment

1987
1988 # sentpred <- (((KA freemod? sentpred freemod? KI

freemod? sentpred !guu)/ (despredE freemod? GO

freemod? barepred)/despredE)) (A2 freemod? ((

128 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

despredE freemod? GO freemod? barepred)/despredE)

)*

1989
1990 sentpred <- ((despredE freemod? GO freemod? barepred

)/despredE)

1991
1992 # sentpred <- ((despredE freemod? GO freemod?

barepred)/despredE) (A1 ((despredE freemod? GO

freemod? barepred)/despredE))*

1993
1994 # the construction of predicate modifiers (

prepositional phrases usable as terms along with

arguments).

1995
1996 mod1a <- (PA3 freemod? argument1 guua?)

1997
1998 # note special treatment of predicate modifiers

without actual arguments.

1999 # the !barepred serves to distinguish these

predicate modifiers from actual

2000 # "tenses" (predicate markers).

2001
2002 mod1 <- ((PA3 freemod? argument1 guua?)/(PA2 freemod

? !barepred gap?))

2003
2004 # forethought connection of modifiers. There is

some subtlety in

2005 # how this is handled.

2006
2007 kekmod <- ((NO1 freemod ?)* (KA freemod? modifier

freemod? KI freemod? mod))

2008
2009 mod <- (mod1 /((NO1 freemod ?)* mod1)/kekmod)

2010
2011 # afterthought connection of modifiers

2012
2013 modifier <- (mod (A1 freemod? mod)*)

2014

129

2015 # the serial name is a horrid heterogenous

construction! It can involve

2016 # components of all three of the major phonetic

classes essentially!

2017
2018 # However , I believe I have the definition right ,

with all the components

2019 # correctly guarded :-)

2020
2021 name <- (PreName/AcronymicName) (comma2? !

FalseMarked PreName/comma2? &([Cc] [Ii]) NameWord

/comma2? CI predunit !(comma2? (! FalseMarked

PreName))/comma2? CI AcronymicName)* freemod?

2022
2023 LA0 <- []* [Ll] [Aa] juncture?

2024
2025 LANAME <- (LA0 comma2? name)

2026
2027 # general constructions of arguments with "articles

".

2028
2029 # the rules here have the "possessive" construction

as in <lemi hasfa; le la Djan , hasfa > embedded.

These are not the same

2030 # construction in 1989 Loglan , though speakers might

think they are. Here they are indeed the same.

The "possessor" cannot

2031 # be "indefinite" (cannot start with a quantifier

word); the possessor can be followed by a tense ,

as in

2032 # <le la Djan , na hasfa >, "John ’s present house", by

analogy with <lemina hasfa >, which is accepted

by LIP (because

2033 # LIP accepts <lemina > as a word).

2034
2035 # there are other subtleties to be reviewed.

2036
2037 #descriptn <- (! LANAME ((LAU wordset1)/(LOU wordset2

130 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

)/(LE freemod? ((!mex arg1a freemod ?)? (PA2

freemod ?)?)? mex freemod? descpred)/(LE freemod?

((! mex arg1a freemod ?)? (PA2 freemod ?)?)? mex

freemod? arg1a)/(GE freemod? mex freemod?

descpred)/(LE freemod? ((!mex arg1a freemod ?)? (

PA2 freemod ?)?)? descpred)))

2038
2039 descriptn <- (! LANAME ((LAU wordset1)/(LOU wordset2)

/(LE freemod? ((!mex arg1a freemod ?)? (PA2

freemod ?)?)? (mex freemod? arg1a/mex freemod?

descpred/descpred))/(GE freemod? mex freemod?

descpred)))

2040
2041
2042 # abstract descriptions. Note that abstract

descriptions are closed with <guo > entirely

independently of abstract predicates:

2043 # <le po preda guo > does not have a grammatical

component <po preda guo >. This avoids the double

closure often apparently necessary

2044 # in Lojban.

2045
2046 abstractn <- ((LEFORPO freemod? POA freemod? uttAx

guoa?)/(LEFORPO freemod? POA freemod? sentence

guoa?)/(LEFORPO freemod? POE freemod? uttAx guoe

?)/(LEFORPO freemod? POE freemod? sentence guoe?)

/(LEFORPO freemod? POI freemod? uttAx guoi?)/(

LEFORPO freemod? POI freemod? sentence guoi?)/(

LEFORPO freemod? POO freemod? uttAx guoo?)/(

LEFORPO freemod? POO freemod? sentence guoo?)/(

LEFORPO freemod? POU freemod? uttAx guou?)/(

LEFORPO freemod? POU freemod? sentence guou?)/(

LEFORPO freemod? PO freemod? uttAx guo?)/(LEFORPO

freemod? PO freemod? sentence guo?))

2047
2048 # a wider class of basic argument constructions.

Notice that LANAME is always read by preference

to descriptn.

131

2049
2050 namesuffix <- (&(comma2 !FalseMarked PreName /[]* [

Cc][Ii] juncture? comma2? (PreName/AcronymicName)

) ([]* [Cc][Ii] juncture? comma2 ?/ comma2)? name)

2051
2052 arg1 <- (abstractn /(LIO freemod? descpred guea?)/(

LIO freemod? argument1 guua?)/(LIO freemod? mex

gap?)/LIO1/LAO/LANAME /(descriptn guua? namesuffix

?)/LIU1/LIE/LI)

2053
2054 # this adds pronouns (incl. the fancy <gao >

letterals) and the option of left marking an

argument with <ge >

2055
2056 arg1a <- ((DA/TAI/arg1/(GE freemod? arg1a)) freemod

?)

2057
2058 # argument modifiers (subordinate clauses)

2059
2060 argmod1 <- ((([]* (N o) []*)? ((JI freemod?

predicate)/(JIO freemod? sentence)/(JIO freemod?

uttAx)/(JI freemod? modifier)/(JI freemod?

argument1)))/(([]* (N o) []*)? (((JIZA freemod?

predicate) guiza?)/((JIOZA freemod? sentence)

guiza?)/((JIOZA freemod? uttAx) guiza?)/((JIZA

freemod? modifier) guiza?)/(JIZA freemod?

argument1 guiza?)))/(([]* (N o) []*)? ((JIZI

freemod? predicate guizi?)/(JIOZI freemod?

sentence guizi?)/(JIOZI freemod? uttAx guizi?)/(

JIZI freemod? modifier guizi?)/(JIZI freemod?

argument1 guizi?)))/(([]* (N o) []*)? ((JIZU

freemod? predicate guizu?)/(JIOZU freemod?

sentence guizu?)/(JIOZU freemod? uttAx guizu?)/(

JIZU freemod? modifier guizu?)/(JIZU freemod?

argument1 guizu?))))

2061
2062 # we improved the trial .85 grammar by closing not

argmod1 but argmod with <gui >. But the labelled

132 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

argument modifier constructors

2063 # when building an argmod1 have the argmod1

construction closed with the corresponding

labelled right marker , of course. Thus

2064 # gui and guiza actually have different grammar.

2065
2066 # trial .85 did not provide forethought connected

argument modifiers , and we also see no need for

them ,

2067 # though they could readily be added.

2068
2069 argmod <- (argmod1 (A1 freemod? argmod1)* gui?)

2070
2071 # affix argument modifiers to a definite argument

2072
2073 arg2 <- (arg1a freemod? argmod *)

2074
2075 # build a possibly indefinite argument from an

argument: to le mrenu

2076
2077 arg3 <- (arg2/(mex freemod? arg2))

2078
2079 # build an indefinite argument from a predicate

2080
2081 indef1 <- (mex freemod? descpred)

2082
2083 # affix an argument modifier to an indefinite

argument

2084
2085 indef2 <- (indef1 guua? argmod *)

2086
2087 indefinite <- indef2

2088
2089 # link arguments with the fusion connective <ze >

2090
2091 arg4 <- ((arg3/indefinite) (ZE2 freemod? (arg3/

indefinite))*)

2092

133

2093 # forethought connection of arguments. Note use of

argx

2094
2095 arg5 <- (arg4/(KA freemod? argument1 freemod? KI

freemod? argx))

2096
2097 # arguments with possible negations followed by

possible indirect reference constructions.

2098
2099 argx <- ((NO1 freemod ?)* (LAE freemod ?)* arg5)

2100
2101 # afterthought connection with the tightly binding

ACI connectives

2102
2103 arg7 <- (argx freemod? (ACI freemod? argx)?)

2104
2105 # afterthought connection with the usual A

connectives. Can ’t start with GE

2106 # to avoid an ambiguity (to which 1989 Loglan is

vulnerable) involving AGE connectives.

2107
2108 arg8 <- (!GE (arg7 freemod? (A1 freemod? arg7)*))

2109
2110 # afterthought connection (now right grouping ,

instead of the left grouping above)

2111 # using the AGE connectives. GUU can be used to

affix an argument modifier at this top level.

2112
2113 argument1 <- (((arg8 freemod? AGE freemod? argument1

)/arg8) (GUU freemod? argmod)*)

2114
2115 # possibly negated and case tagged arguments. We (

unlike 1989 Loglan) are careful

2116 # to use argument only where case tags are

appropriate.

2117
2118 argument <- ((NO1 freemod ?)* (DIO freemod ?)*

argument1)

134 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

2119
2120
2121
2122
2123
2124
2125 # an argument which is actually case tagged.

2126
2127 argxx <- (&((NO1 freemod ?)* DIO) argument)

2128
2129 # arguments and predicate modifiers actually

associated with predicates.

2130
2131 term <- (argument/modifier)

2132
2133 # a term list consisting entirely of modifiers.

2134
2135 modifiers <- (modifier (freemod? modifier)*)

2136
2137 # a term list consisting entirely of modifiers and

tagged arguments.

2138
2139 modifiersx <- ((modifier/argxx) (freemod? (modifier/

argxx))*)

2140
2141 # the subject class is a list of terms (arguments

and predicate modifiers) in which all but

possibly one

2142 # of the arguments are tagged , and there is at least

one argument , tagged or otherwise.

2143
2144 subject <- ((modifiers freemod ?)? ((argxx subject)/(

argument (modifiersx freemod ?)?)))

2145
2146 # this case is identified as an aid to experimental

termination of argument lists

2147
2148 statement1 <- (subject freemod? (GIO freemod? terms1

135

)? predicate)

2149
2150 # these classes are exactly argument , but are used

to signal

2151 # which argument position after the predicate an

argument occupies.

2152 # I think the grammar is set up so that these will

actually

2153 # never be case tagged , though the grammar does not

expressly forbid it.

2154
2155 # I am trying a simple version of the "alternative

parser" approach:

2156 # a term list will refuse to digest an argument

which starts a new

2157 # SVO sentence (statement1).

2158
2159 argumentA <- !statement1 argument

2160
2161 # argumentA <- argument

2162
2163 argumentB <- !statement1 argument

2164
2165 # argumentB <- argument

2166
2167 argumentC <- !statement1 argument

2168
2169 # argumentC <- argument

2170
2171 argumentD <- !statement1 argument

2172
2173 # argumentD <- argument

2174
2175 # for argument lists not guarded against absorbing a

following subject

2176
2177 argumentA1 <- argument

2178

136 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

2179 argumentB1 <- argument

2180
2181 argumentC1 <- argument

2182
2183 argumentD1 <- argument

2184
2185 # a general term list. It cannot contain more than

four untagged arguments (they will be labelled

2186 # with the lettered subclasses given above).

2187
2188 terms <- ((modifiersx? argumentA (freemod?

modifiersx)? argumentB? (freemod? modifiersx)?

argumentC? (freemod? modifiersx)? argumentD ?)/

modifiersx)

2189
2190 # terms list not guarded against absorbing a

following subject

2191
2192 terms1 <- ((modifiersx? argumentA1 (freemod?

modifiersx)? argumentB1? (freemod? modifiersx)?

argumentC1? (freemod? modifiersx)? argumentD1 ?)/

modifiersx)

2193
2194 # innards of ordered and unordered list

constructions. These are something I totally

rebuilt , as they were in a totally

2195 # unsatisfactory state in trial .85. Note the use of

comma words to separate items in lists.

2196
2197 word <- (arg1a/indef2)

2198
2199 words1 <- (word (ZEIA word)*)

2200
2201 words2 <- (word (ZEIO word)*)

2202
2203 wordset1 <- (words1? LUA)

2204
2205 wordset2 <- (words2? LUO)

137

2206
2207 # the full term set type to be affixed to predicates

.

2208
2209 # forethought connection of term lists

2210
2211 termset1 <- (terms /(KA freemod? termset2 freemod?

guu? KI freemod? termset1))

2212
2213 # afterthought connection of term lists. There are

cunning things going on here getting <guu >

2214 # to work correctly. Note that <guu > is NOT a null

term list as it was in trial .85.

2215
2216 termset2 <- (termset1 (guu &A1)? (A1 freemod?

termset1 (guu &A1)?)*)

2217
2218 # there is an interesting option here of a list of

terms followed by <go > followed by a predicate

2219 # intended to metaphorically modify the predicate to

which the terms are affixed. Is there a reason

2220 # why we cannot have a more complex construction in

place of terms?

2221
2222 termset <- ((terms freemod? GO freemod? barepred)/

termset2)

2223
2224 # this is the untensed predicate with arguments

attached. Here is the principal locus

2225 # of closure with <guu >, but it is deceptive to say

that <guu > merely closes barepred ,

2226 # as we have seen above , for example in [termset2].

2227
2228 # modified for 4/17/2019 shared argument experiment

2229
2230 barepred <- (sentpred freemod? ((termset guu?)/(guu

(& termset)))?)

2231

138 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

2232 # barepred <- (sentpred freemod? ((termset guu?)/(

guu (& termset /&A1)))?)

2233
2234 # tensed predicates

2235
2236 markpred <- (PA1 freemod? barepred)

2237
2238 # there follows an area in which my grammar looks

different from trial .85. Distinct parallel forms

for

2239 # marked and unmarked predicates are demonstrably

not needed even in trial .85. The behavior of the

ACI

2240 # connectives is plain weird in trial .85; here we

treat ACI connectives in the same way as A

connectives , but

2241 # binding more tightly.

2242
2243 # units for the ACI construction following --

possibly multiply negated bare or marked

predicates.

2244
2245 # adding shared termsets to logically connected

predicates are handled differently here than in

trial.85,

2246 # which uses a very elegant but dreadfully left -

grouping rule which a PEG cannot handle. Any

realistic situation

2247 # should be manageable.

2248
2249 backpred1 <- ((NO2 freemod ?)* (barepred/markpred))

2250
2251 # ACI connected predicates. Shared termsets are

added. Notice how we first group backpred1 ’s

then recursively

2252 # group backpreds.

2253
2254 backpred <- (((backpred1 (ACI freemod? backpred1)+

139

freemod? ((termset guu?)/(guu &termset))?) ((ACI

freemod? backpred)+ freemod? ((termset guu?)/(guu

&termset))?)?)/backpred1)

2255
2256 # A connected predicates; same comments as just

above. Cannot start with GE to fix ambiguity

with AGE connectives.

2257
2258 predicate2 <- (!GE (((backpred (A1 !GE freemod?

backpred)+ freemod? ((termset guu?)/(guu &termset

))?) ((A1 freemod? predicate2)+ freemod? ((

termset guu?)/(guu &termset))?)?)/backpred))

2259
2260 # predicate2 ’s linked with right grouping AGE

connectives (A and ACI are left grouping).

2261
2262 predicate1 <- ((predicate2 AGE freemod? predicate1)/

predicate2)

2263
2264 # identity predicates from above , possibly negated

2265
2266 identpred <- ((NO1 freemod ?)* (BI freemod? argument1

guu?))

2267
2268 # predicates in general. Note that identity

predicates cannot be logically connected

2269 # except by using forethought connection (see above)

.

2270
2271 predicate <- (predicate1/identpred)

2272
2273
2274 # The gasent is a basic form of the Loglan sentence

in which the predicate leads.

2275 # The basic structure is <PA word (usually a tense)

or <ga >) followed optionally by terms followed

optionally by

2276 # <ga> followed by terms. The list of terms after <

140 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

ga > (if present) will either contain

2277 # at least one argument and no more than one

untagged argument

2278 # (a subject) [gasent1] or all the arguments of the

predicate [gasent2]. We deprecate other

arrangements possible in

2279 # 1989 Loglan because they would cause unexpected

reorientation of the arguments already given

before <ga> as second

2280 # and further arguments were read after <ga >. [

barepred] is an untensed predicate possibly with

arguments; [sentpred]

2281 # is "simply a verb", i.e., a predicate without

arguments.

2282
2283 # there is a semantic change from 1989 Loglan

reflected in a grammar change here:

2284 # in [gasent1] the final (ga subject) is optional.

When it does not appear , the resulting

2285 # sentence is an observative (a sentence with

subject omitted), not an imperative.

2286 # Imperatives for us are unmarked.

2287
2288 # In the alternative version , the use of the large

subject marker GAA can prevent inadvertant

absorption of a preceding trailing argument into

a statement

2289
2290 # 4/22 allowing general predicates in gasent.

Otherwise the spaces of observatives and

imperatives become quite confused.

2291
2292 #gasent1 <- ((NO1 freemod ?)* (GAA? freemod? PA1

freemod? barepred (GA2 freemod? subject)?))

2293
2294 gasent1 <- ((NO1 freemod ?)* (GAA? freemod? &markpred

predicate (GA2 freemod? subject)?))

2295

141

2296 gasent2 <- ((NO1 freemod ?)* (GAA? PA1 freemod?

sentpred modifiers? (GA2 freemod? subject freemod

? GIO? freemod? terms?)))

2297
2298 gasent <- (gasent2/gasent1)

2299
2300 # this is the simple Loglan sentence in various

basic orders. The form "gasent" is discoussed

just above.

2301 # Predicate modifiers

2302 # can be prefixed to the gasent. The final form

given here is the basic SVO sentence. The "

subject" class is a list of terms

2303 #(arguments and predicate modifiers) containing at

most one un-case -tagged argument. The most

general SVO form is subject , followed optionally

2304 #by <gio > followed by a list of terms (1989 Loglan

allowed more than one untagged argument before

the predicate , but this leads to practical

problems

2305 #in which preceding constructions with errors in

them may supply extra unintended arguments. It

should be noted in NB3 that JCB envisioned

2306 #a single argument before the predicate , followed by

the predicate , which may itself contain further

arguments. A gasent nay optionally be negated

2307 #(even multiple times).

2308
2309 # re <gio > and some other changes , in his comments

on the NB3 grammar JCB often notes restrictions

on appearances of term lists which he

2310 # intends but which he thought were hard to

implement in the machine grammar. The appearance

of just one argument before the "verb"

2311 # in an SVO sentence was one of these (though later

he takes it as a virtue that the actual machine

grammar supports SOV: we did not

2312 # consider it a virtue to have unmarked SOV after

142 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

observing unintended parses appearing in the

Visit text). Another example of this

2313 # (which would not have been hard for JCB to

implement , in fact) is our restriction of the

form "terms gasent" to "modifiers gasent ".

2314 # His comments make it clear that he does not want

arguments among those terms.

2315
2316 statement <- (gasent /(modifiers freemod? gasent)/(

subject freemod? GAA? freemod? (GIO freemod?

terms1)? predicate))

2317
2318 # this is a forethought connected basic sentence.

It is odd (and actual odd results can be

exhibited) that the final segment in both

2319 # of these rules is of the very general class uttA1 ,

which includes some quite fragmentary utterances

usually intended as answers.

2320
2321 # 12/20/2017 I rewrote the rule in a more compact

form. This rule looks ahead to the class [

sentence] which we now develop;

2322 # for the moment notice that [sentence] will include

[statement].

2323
2324 # 4/14 tentatively allowing initial modifiers here

and leaving this out of uttA0 which replaces

uttA1 below.

2325 # The intention is to eliminate weird sentence

fragments.

2326
2327 keksent <- modifiers? freemod? (NO1 freemod ?)* (KA

freemod? headterms? freemod? sentence freemod? KI

freemod? uttA0)

2328
2329 # sentence negation. We allow this to be set off

from the main sentence with a mere pause , because

generally

143

2330 # it does not differ in meaning from the result of

negating the first argument or predicate modifier

.

2331
2332 neghead <- ((NO1 freemod? gap)/(NO2 PAUSE))

2333
2334 # this class includes [statement], predicate

modifiers preceding a predicate (which may

contain arguments), a statement ,

2335 # a predicate , and a keksent. Of these , the first

and third are imperatives.

2336
2337 # in the alternative version , the large subject

marker GAA can prevent inadvertant absorption of

preceding trailing arguments into a statement

2338
2339 # 4/23/2019 added actual rule for imperative

sentences. This should not

2340 # affect the parse in any essential way.

2341
2342 imperative <- ((modifiers freemod ?)? GAA? !gasent

predicate)

2343
2344 sen1 <- (neghead freemod ?)* (imperative/statement/

keksent)

2345
2346 # sen1 <- ((neghead freemod ?)* ((modifiers freemod?

GAA? !gasent predicate)/statement/GAA? predicate/

keksent))

2347
2348 # the class [sentence] consists of sen1 ’s

afterthought connected with A connectives

2349
2350 sentence <- (sen1 (ICA freemod? sen1)*)

2351
2352 # [headterms] is a list of terms (arguments and

predicate modifiers) ending in <gi >. Preceding a

[sen1] with these

144 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

2353 # causes all predicates in the [sen1] to share these

arguments. We propose either that the headterms

arguments be directly

2354 # appended to the argument list of each component of

the [sen1], or that there is an argument with a

numbered case tag at the beginning

2355 # of the headterms list , and the list is inserted at

the appropriate position in each component

sentence. Neither of these is

2356 # the condition described in Loglan I, which

presupposes that we always know what the last

argument of each predicate used is.

2357
2358 headterms <- (terms GI)+

2359
2360 # this is the previous class prefixed with a list of

fronted terms.

2361 # we think the <giuo > closure might prove useful.

2362
2363 uttAx <- (headterms freemod? sentence giuo?)

2364
2365 # weird answer fragments

2366
2367 uttA <- ((A1/mex) freemod ?)

2368
2369 # a broad class of utterances , including various

things one would usually only say as answers.

Notice

2370 # that this utterance class can take terminal

punctuation.

2371
2372 uttA0 <- sen1/uttAx

2373
2374 uttA1 <- ((sen1/uttAx/links/linkargs/argmod /(

modifiers freemod? keksent)/terms/uttA/NO1)

freemod? period ?)

2375
2376 # possibly negated utterances of the previous class.

145

2377
2378 uttC <- ((neghead freemod? uttC)/uttA1)

2379
2380 # utterances linked with more tightly binding ICI

sentence connectives. Single sentences are of

this class

2381 # if not linked with ICI or ICA.

2382
2383 uttD <- ((sentence period? !ICI !ICA)/(uttC (ICI

freemod? uttD)*))

2384
2385 # utterances of the previous class linked with ICA.

I went to some trouble to ensure that a

freestanding

2386 # [sentence] is actually parsed as a sentence , not a

composite uttD , which was a deficiency , if not

an ambiguity of

2387 # LIP and of the trial .85 grammar.

2388
2389 uttE <- (uttD (ICA freemod? uttD)*)

2390
2391 # utterances of the previous class linked with I

sentence connectives.

2392
2393 uttF <- (uttE (I freemod? uttE)*)

2394
2395 # the utterance class for use in the context of

parenthetical freemods or quotations , in which it

does not go to end of text.

2396
2397 utterance0 <- (!GE ((! PAUSE freemod period?

utterance0)/(! PAUSE freemod period ?)/(uttF IGE

utterance0)/uttF/(I freemod? uttF?)/(I freemod?

period ?)/(ICA freemod? uttF)) (&I utterance0)?)

2398
2399 # Notice that there are two passes here: the parser

first checks that the entire utterance

2400 # is phonetically valid , then returns and checks for

146 CHAPTER 5. THE FORMAL GRAMMAR IN PEG NOTATION

grammatical validity.

2401
2402 # the full utterance class. This goes to end of

text , and incorporates the phonetics check. This

incorporates the only situations

2403 # in which a freemod is initial. The IGE

connectives bind even more loosely than the I

connectives and right -group instead of

2404 # left grouping.

2405
2406 utterance <- &(phoneticutterance !.) (!GE ((! PAUSE

freemod period? utterance)/(! PAUSE freemod period

? (&I utterance)? end)/(uttF IGE utterance)/(I

freemod? period? (&I utterance)? end)/(uttF (&I

utterance)? end)/(I freemod? uttF (&I utterance)?

end)/(ICA freemod? uttF (&I utterance)? end)))

