
Marcel Lab Manual and Technical Reference

M. Randall Holmes

February 2, 2018

Contents

1 Introduction 3

2 Prover notation 4

3 Sample propositional logic lab with extended examples 7
3.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Exercises for Lab I on propositional logic (lots more could be

added here) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Examples and exercises for a quantifier lab 56
4.1 Quantifier lab exercises (lots more could be added here) . . . . 90

5 Technical Reference 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Sequent Rules in General . . . . . . . . . . . . . . . . . . . . . 92
5.3 Specific Sequent Rules: Connectives . . . . . . . . . . . . . . . 93
5.4 Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Left rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Right rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7 More Sequent Rules . . . . . . . . . . . . . . . . . . . . . . . . 94
5.8 Rules for Quantifiers . . . . . . . . . . . . . . . . . . . . . . . 94

5.8.1 Left Rules . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.8.2 Right Rules . . . . . . . . . . . . . . . . . . . . . . . . 95

1



5.8.3 Comments on Quantifier Rules . . . . . . . . . . . . . 95
5.9 Rules for Membership . . . . . . . . . . . . . . . . . . . . . . 95

5.9.1 Left Rule . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.9.2 Right Rule . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Rules for Equality . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10.1 Left Rule . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10.2 Right Rule . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10.3 Comments on Equality Rules . . . . . . . . . . . . . . 96

5.11 Global Substitution, manual and automatic . . . . . . . . . . 97
5.12 Cut and “Theorem Cut” . . . . . . . . . . . . . . . . . . . . . 97
5.13 Command Reference . . . . . . . . . . . . . . . . . . . . . . . 99

2



1 Introduction

This document is intended as a basic introduction to the use of the Marcel
theorem prover which I have been developing for the last few years, in the
Python version which I developed for delivery through Sage (but which is
also usable as a freestanding Python program, available on my web page),
with a full technical description appended.

The Python version of the Marcel theorem prover is maintained at

http://math.boisestate.edu/~holmes/marcelstuff/pythonmarcel.py

The way I usually run it is either to open it in Sage or to edit the file in
IDLE amd “run module”. One can then type commands at the prompt. It
is useful to edit your own files in IDLE with

from pythonmarcel import *

at the head; one can then edit and otherwise play with a separate file
without risking damaging the prover source.

3



2 Prover notation

For purposes of the first labs, we summarize the logical notation of Marcel.

propositional variables: A propositional variable (corresponding to a cap-
ital letter used to represent an unknown statement) is a string of lower
case letters followed by a question mark. p? is a typical propositional
variable. abc? is also a propositional variable. P? is not a propositional
variable.

propositional operations: A negation ¬P translates to ∼p?. A conjunc-
tion P ∧ Q translates to p? & q?. A disjunction P ∨ Q translates to
p? V q? (note that a capital V denotes disjunction). An implication
P → Q translates to p? -> q?. A biconditional P ↔ Q translates to
p? == q?

spacing: Where operators are adjacent to one another, one needs to insert
a space. P ∧¬Q translates to p? & ∼q?, not p? &∼q?.This is the only
case where explicit spacing is actually needed: Marcel parses p?&q? or
p?& ∼q? perfectly happily.

parentheses and order of operations: You can use parentheses (or brack-
ets or braces) to force desired grouping. Marcel understands that nega-
tion binds most tightly, followed by conjunction, followed by disjunc-
tion, followed by the biconditional. Marcel will supply spaces in its
display only when it determines that they are necessary, so its display
may have fewer parentheses than yours (and will only use parentheses
for grouping of propositions in its display). Conjunction and disjunc-
tion group to the left (e.g., p? & q? & r? is read as (p? & q?) & r?);
implication and biconditional group to the right.

Our advice to users is to use as much extra explicit grouping with paren-
theses, braces and/or brackets as you need until you are comfortable
with how Marcel groups things.

object variables and constants: An object bound variable is either a sin-
gle lower-case letter or a string of one or more lower-case letters followed
by a numeral (a string of digits). The integer value of the numeral com-
ponent determines the type of the variable. A single letter variable such
as x is of type 0 and is in fact synonymous for the prover with x0.

4



The types of bound variables are not important in the initial labs on
propositional and quantifier logic, and indeed the single letter variables
will suffice for all our purposes in the first labs. The basic idea of the
types is that type 0 variables stand for objects not understood as sets
or functions, while type n+1 objects stand for sets of type n objects or
functions taking type n objects to type n objects. Constant expressions
or free variables representing objects do not however have type in our
logic.

Object constants are strings of more than one lower case letter not
followed by a numeral or strings of digits. String constants must be
declared to be used. Numerals are understood by Marcel as predeclared
constants (eventually we intend to install arithmetic knowledge into
Marcel but for the moment it merely recognizes the constants).

Object free variables are of two kinds. They consist of a string of lower
case letters followed by either or $ then by a string of digits (an
index). The ones with underscores are “arbitrary objects”; the ones
with dollars signs are “instantiables”. a 3 is a typical arbitrary object;
b$5 is a typical instantiable. Note again that these terms do not have
type: their final digit has a different function.

operators: An operator is of one of two forms, either a string of capital let-
ters or a string of special characters, either of which may optionally be
followed by an underscore and a string of digits (an index). Operators
must be declared. Only nonindexed operators can be declared (using
various commands illustrated where needed); once a nonindexed opera-
tor is declared, indexed operators with the same initial component can
be used freely and will have the same type as their nonindexed com-
ponent (types of operators to be discussed later). Indexed operators
are variable operators (theorems about them are general facts about
all operators of that type). Operators may be syntactically unary or
binary (this is part of their type information) and their operator prece-
dence may be set by the user. Additional operators can be declared or
defined needed. See the technical reference for full details.

Predeclared operators are ∼ (negation), & (conjunction), V, (disjunc-
tion) -> (implication), == (biconditional), A (universal quantifier), E

(existential quantifier), = (equality), ‘ (infix operator of function appli-
cation), IN (membership) and THE (the definite description operator).

5



Full information about types and precedences of these operators will
be given in the technical reference. The symbols : (set abstractor) and
:> (function abstractor) behave syntactically like operators.

quantifier notation: The quantifiers ∀ and ∃ are denoted by A and E, re-
spectively. (∀x.x = x) translates to Ax : x = x. The notation
x : x = x is actually notation for the set {x | x = x} and the quan-
tified sentence is read as applying the operator ∀ to this set, but ev-
erything is designed so that this can be ignored. The unary operators
A and E and the binary operator : have the lowest possible precedence
and group to the right (it is probably best to simply use parentheses
to mark the scope of each quantifier, though Marcel may remove some
of them). Marcel will only accept a single variable left of the operator
:.

notation for sets and functions: A bound variable followed by : fol-
lowed by a sentence is a set notation; a bound variable followed by
:> followed by an object expression is a function notation. Examples
of these notations will appear later.

6



3 Sample propositional logic lab with extended

examples

In this section we provide a sample Lab I on propositional logic. We open
with extended examples illustrating the main points of reasoning in propo-
sitional logic with Marcel.

3.1 Example 1

>>>Start(’(p?Vq?)&(r?V~p?)&(s?V~q?)->(r?Vs?)’)

Line 1:

-------------------

1: (p? V q?) & (r? V ~p?) & (s? V ~q?) -> r? V s?

We introduce the first Marcel command, the Start or s command. This
is a Marcel function which takes a string as an argument, parses it as a
sentence in the logical language of Marcel and sets up an environment in
which to prove it. Of course it will give various errors if the string does
not parse correctly. Notice that Python expects the string to be enclosed in
single quotes (the usual double quotes will also work).

7



>>> r()

Line 2

prove

(p? V q?) & (r? V ~p?) & (s? V ~q?) -> r? V s?

by assuming

(p? V q?) & (r? V ~p?) & (s? V ~q?)

and deducing

r? V s?:

1: (p? V q?) & (r? V ~p?) & (s? V ~q?)

-------------------

1: r? V s?

The next Marcel command we introduce is the Right() or r() command.
This is a Python function without an input (but Python wants the empty
parentheses).

Notice that the format of the Marcel display is a list of numbered as-
sumptions above and a conclusion to be proved below. The effect of the r()

command is to apply an appropriate logical rule to the conclusion. Notice
that the prover generates a note in English describing the proof strategy that
it is using.

8



>>> r()

Line 3

prove

r? V s?

by denying

s?

and showing

r?:

1: (p? V q?) & (r? V ~p?) & (s? V ~q?)

2*: ~s?

-------------------

1: r?

Here we use the r() command again. What is actually going on here is
that either the conclusion r or the conclusion s will hold if the assumption
1 holds. But the display handles the second and subsequent alternative
conclusions by assuming that they are false and attempting to deduce the
first conclusion. Internally, Marcel has a second alternative conclusion s,
but it displays it as a negative assumption ∼s. Marcel does have a display
mode which would show multiple conclusions, but it does not sell as well to
introductory logic students.

9



>>> l()

Line 4

use

(p? V q?) & (r? V ~p?) & (s? V ~q?)

by breaking it into its parts

(p? V q?) & (r? V ~p?)

and

s? V ~q?:

1: (p? V q?) & (r? V ~p?)

2: s? V ~q?

2*: ~s?

-------------------

1: r?

Here we introduce another user command Left() or l(). This comand
acts on the first assumption in a way dictated by its logical form; in this case
it breaks a conjunction apart.

The names Right() and Left() are dictated by the habit of writing
arguments in which a conclusion C is to be deduced from premises P1, . . . , Pn

on a single line in the format P1, . . . , Pn ` C (such an expression is called
a sequent). The premises are on the left and the conclusion is on the right
(and there is an extended format in which one might have many alternative
conclusions on the right).

10



>>> l()

Line 5

use

(p? V q?) & (r? V ~p?)

by breaking it into its parts

p? V q?

and

r? V ~p?:

1: p? V q?

2: r? V ~p?

3: s? V ~q?

2*: ~s?

-------------------

1: r?

We apply Left() again. It should be clear why we want conjunction to
group to the left , so that each application of Left moves a single conjunct
to the second position.

11



>>> gl(2)

Line 5

use

(p? V q?) & (r? V ~p?)

by breaking it into its parts

p? V q?

and

r? V ~p?:

1: r? V ~p?

2: s? V ~q?

3: p? V q?

2*: ~s?

-------------------

1: r?

Since our aim is to prove ∼r?, we want to manipulate the second as-
sumption rather than the first. The command gl (for “get left”) brings
the assumption numbered by its argument to the front. We can then apply
Left().

This command does not generate comments.

12



>>> l()

Line 6

using hypothesis

r? V ~p?

first part: assume case 1,

r?:

1: r?

2: s? V ~q?

3: p? V q?

2*: ~s?

-------------------

1: r?

We use a disjunctive hypothesis, and we should expect a proof by cases.
In fact, the proof breaks into two parts: the first one is presented here, and
the second one will appear when this part of the proof has been finished, and
we will be able to recognize it from the initial notes.

13



>>> Done()

Line 7

using hypothesis

r? V ~p?

second part: assume case 2,

~p?:

1: ~p?

2: s? V ~q?

3: p? V q?

2*: ~s?

-------------------

1: r?

Notice on the previous page that the conclusion to be proved is the same
as the first premise. In this case we can issue the command Done() and the
prover moves to the next part of the proof it needs you to complete, in this
case the second case.

14



>>> l()

Line 8

use

~p?

by denying conclusion and proving

p?:

1: s? V ~q?

2: p? V q?

2*: ~r?

3*: ~s?

-------------------

1: p?

Notice that the left rule for negation creates a new conclusion (for the
sake of a contradiction, as it were) and so increases the number of alternative
conclusions.

15



>>> gl(2)

Line 8

use

~p?

by denying conclusion and proving

p?:

1: p? V q?

2: s? V ~q?

2*: ~r?

3*: ~s?

-------------------

1: p?

Now we bring the hypothesis which mentions p? to the front.

16



>>> l()

Line 9

using hypothesis

p? V q?

first part: assume case 1,

p?:

1: p?

2: s? V ~q?

2*: ~r?

3*: ~s?

-------------------

1: p?

>>> Done()

We use the disjunctive hypothesis, getting a proof by cases, the first case
of which is trivial (so apply Done()).

17



Line 10

using hypothesis

p? V q?

second part: assume case 2,

q?:

1: q?

2: s? V ~q?

2*: ~r?

3*: ~s?

-------------------

1: p?

Now we have the second case.

18



>>> gl(2)

Line 10

using hypothesis

p? V q?

second part: assume case 2,

q?:

1: s? V ~q?

2: q?

2*: ~r?

3*: ~s?

-------------------

1: p?

We don’t have any assumption mentioning the conclusion, so we bring
forward the assumption mentioning the first hypothesis.

19



>>> l()

Line 11

using hypothesis

s? V ~q?

first part: assume case 1,

s?:

1: s?

2: q?

2*: ~r?

3*: ~s?

-------------------

1: p?

>>> gr(3)

Line 11

using hypothesis

s? V ~q?

first part: assume case 1,

s?:

1: s?

2: q?

2*: ~s?

3*: ~p?

-------------------

1: r?

The negative assumption (disguising an alternative conclusion) 2* seems
the only thing we can work with, but how do we get at it?

20



Line 11

using hypothesis

s? V ~q?

first part: assume case 1,

s?:

1: s?

2: q?

2*: ~p?

3*: ~r?

-------------------

1: s?

>>> Done()

The gr (for “get right”) command performs a contrapositive maneuver,
negating the current conclusion and pulling out the alternative conclusion
numbered by its input. The resulting goal is trivial so we apply Done().

We now have all the commands strictly needed in propositional proofs.

21



Line 12

using hypothesis

s? V ~q?

second part: assume case 2,

~q?:

1: ~q?

2: q?

2*: ~r?

3*: ~s?

-------------------

1: p?

>>> l()

Line 13

use

~q?

by denying conclusion and proving

q?:

1: q?

2*: ~p?

3*: ~r?

4*: ~s?

-------------------

1: q?

>>> Done()

Q. E. D.

When the Done() command is executed and there is no further goal to
prove, the prover displays Q. E. D., signalling that the proof of the initially
entered theorem is complete.

22



The Showall() command will show the entire state of the proof in progress.
In this case, run at the end of the whole process, it gives a theoretically read-
able argument for the theorem we have proved. It can also be run during an
incomplete proof, and will then show which lines we have not finished prov-
ing. The order in which the lines are presented in this output is sometimes
unexpected.

The latest updates “prune” the output of the Showall command, remov-
ing premises and conclusions which are not used in the argument. This makes
the output shorter and perhaps more human-readable. You can see this if
you run the commands given under a later version.

>>> Showall()

Line 1:

-------------------

1: (p? V q?) & (r? V ~p?) & (s? V ~q?) -> r? V s?

proved

by Line 2

Line 2

prove

(p? V q?) & (r? V ~p?) & (s? V ~q?) -> r? V s?

by assuming

(p? V q?) & (r? V ~p?) & (s? V ~q?)

and deducing

r? V s?:

1: (p? V q?) & (r? V ~p?) & (s? V ~q?)

-------------------

23



1: r? V s?

proved

by Line 3

Line 3

prove

r? V s?

by denying

s?

and showing

r?:

1: (p? V q?) & (r? V ~p?) & (s? V ~q?)

2*: ~s?

-------------------

1: r?

proved

by Line 4

Line 4

use

(p? V q?) & (r? V ~p?) & (s? V ~q?)

by breaking it into its parts

(p? V q?) & (r? V ~p?)

and

s? V ~q?:

24



1: (p? V q?) & (r? V ~p?)

2: s? V ~q?

2*: ~s?

-------------------

1: r?

proved

by Line 5

Line 5

use

(p? V q?) & (r? V ~p?)

by breaking it into its parts

p? V q?

and

r? V ~p?:

1: r? V ~p?

2: s? V ~q?

3: p? V q?

2*: ~s?

-------------------

1: r?

proved

25



by Line 6

AND

Line 7

Line 6

using hypothesis

r? V ~p?

first part: assume case 1,

r?:

1: r?

2: s? V ~q?

3: p? V q?

2*: ~s?

-------------------

1: r?

proved

trivial

Line 7

using hypothesis

r? V ~p?

second part: assume case 2,

~p?:

1: ~p?

2: s? V ~q?

3: p? V q?

2*: ~s?

26



-------------------

1: r?

proved

by Line 8

Line 8

use

~p?

by denying conclusion and proving

p?:

1: p? V q?

2: s? V ~q?

2*: ~r?

3*: ~s?

-------------------

1: p?

proved

by Line 9

AND

Line 10

Line 9

using hypothesis

p? V q?

27



first part: assume case 1,

p?:

1: p?

2: s? V ~q?

2*: ~r?

3*: ~s?

-------------------

1: p?

proved

trivial

Line 10

using hypothesis

p? V q?

second part: assume case 2,

q?:

1: s? V ~q?

2: q?

2*: ~r?

3*: ~s?

-------------------

1: p?

28



proved

by Line 11

AND

Line 12

Line 11

using hypothesis

s? V ~q?

first part: assume case 1,

s?:

1: s?

2: q?

2*: ~p?

3*: ~r?

-------------------

1: s?

proved

trivial

Line 12

using hypothesis

s? V ~q?

second part: assume case 2,

~q?:

1: ~q?

2: q?

29



2*: ~r?

3*: ~s?

-------------------

1: p?

proved

by Line 13

Line 13

use

~q?

by denying conclusion and proving

q?:

1: q?

2*: ~p?

3*: ~r?

4*: ~s?

-------------------

1: q?

proved

trivial

>>>

30



3.2 Example 2

The example given above shows all the commands used. A couple of shorter
examples are useful to bring out particular points.

The point of the second example is to illustrate how Marcel uses im-
plications as assumptions. Our basic rule for using an implication as an
assumption is modus ponens, which uses two different hypotheses, of forms
A and A→ B, to deduce B.

Marcel’s approach is modified because Marcel only wants to break down
one hypothesis at a time. In outline, when it is trying to prove a conclusion
C from a hypothesis A → B, it first tries to prove either C or A from the
other hypotheses; if it proves C it is of course done; if it proves A we get B
by modus ponens. It then tries to prove C from the other hypotheses and
B: if it succeeds in doing this, we see that C follows from A→ B, and there
is an application of modus ponens hiding under the hood, as it were.

>>>Start(’(p?->q?) & (q?->r?) -> p?->r?’)

Line 1:

-------------------

1: (p? -> q?) & (q? -> r?) -> p? -> r?

The start command, already seen.

31



>>> r()

Line 2

prove

(p? -> q?) & (q? -> r?) -> p? -> r?

by assuming

(p? -> q?) & (q? -> r?)

and deducing

p? -> r?:

1: (p? -> q?) & (q? -> r?)

-------------------

1: p? -> r?

>>> r()

Line 3

prove

p? -> r?

by assuming

p?

and deducing

r?:

1: p?

2: (p? -> q?) & (q? -> r?)

-------------------

1: r?

The right rule for implication twice already seen, which is our familiar strat-
egy for proving an implication.

32



>>> gl(2)

Line 3

prove

p? -> r?

by assuming

p?

and deducing

r?:

1: (p? -> q?) & (q? -> r?)

2: p?

-------------------

1: r?

>>> l()

Line 4

use

(p? -> q?) & (q? -> r?)

by breaking it into its parts

p? -> q?

and

q? -> r?:

1: p? -> q?

2: q? -> r?

3: p?

-------------------

1: r?

Bring the conjunction of implications to the first hypothesis position and
break it up.

33



>>> l()

Line 5

use

p? -> q?

, first part, showing that

p?

or the desired conclusion holds:

1: q? -> r?

2: p?

2*: ~r?

-------------------

1: p?

We use the implication P → Q: in the first part, we prove either P or the
desired conclusion, and clearly we can prove P (trivially).

34



>>> gl(2); Done()

Line 5

use

p? -> q?

, first part, showing that

p?

or the desired conclusion holds:

1: p?

2: q? -> r?

2*: ~r?

-------------------

1: p?

Line 6

use

p? -> q?

second part, show that the desired conclusion follows from

q?:

1: q?

2: q? -> r?

3: p?

-------------------

1: r?

We point out to the prover that we already have the desired conclusion
P among our hypotheses. Notice that Python allows us to issue more than
one command on a line (separated by semicolons). The next goal comes up.

35



>>> gl(2)

Line 6

use

p? -> q?

second part, show that the desired conclusion follows from

q?:

1: q? -> r?

2: p?

3: q?

-------------------

1: r?

Now we get the second part of the application of P → Q, which is to prove
our desired conclusion from Q. We move the hypothesis Q→ R to the front.

We do not comment the rest of this proof, which repeats the same maneu-
vers for the hypothesis Q→ R. Examination of our analysis of the strategy
above and this example should give an idea of how to approach modus ponens

arguments under Marcel.

36



>>> l()

Line 7

use

q? -> r?

, first part, showing that

q?

or the desired conclusion holds:

1: p?

2: q?

2*: ~r?

-------------------

1: q?

37



>>> gl(2)

Line 7

use

q? -> r?

, first part, showing that

q?

or the desired conclusion holds:

1: q?

2: p?

2*: ~r?

-------------------

1: q?

38



>>> Done()

Line 8

use

q? -> r?

second part, show that the desired conclusion follows from

r?:

1: r?

2: p?

3: q?

-------------------

1: r?

>>> Done()

Q. E. D.

>>>

39



3.3 Example 3

The next example illustrates the proof of a biconditional (which takes the
expected form) and issues to do with using and proving negations, including
a feature of the display which has not yet occurred in our examples.

>>>Start(’p?->q? == ~q? -> ~p?’)

Line 1:

-------------------

1: p? -> q? == ~q? -> ~p?

40



>>> r()

Line 2

proving biconditional

p? -> q? == ~q? -> ~p?

Part I =>

:

1: p? -> q?

-------------------

1: ~q? -> ~p?

There should be nothing surprising about the appearance of this goal
here. You should expect to see the converse goal later.

41



>>> r()

Line 4

prove

~q? -> ~p?

by assuming

~q?

and deducing

~p?:

1: ~q?

2: p? -> q?

-------------------

1: ~p?

No surprises here.

42



>>> r()

Line 5

prove

~p?

by assuming

p?

and deducing a contradiction or alternative conclusion:

1: p?

2: ~q?

3: p? -> q?

------------------

_|_

This is a feature we haven’t seen yet. When a negative conclusion is
proved and no alternative conclusion can slide into its place, we get (for-
mally speaking) no conclusion. This means that our goal is to show that
the hypotheses lead to a contradiction; Marcel displays this in a way which
suggests this, using ⊥ as a symbol for the absurd conclusion.

43



>>> gl(2)

Line 5

prove

~p?

by assuming

p?

and deducing a contradiction or alternative conclusion:

1: ~q?

2: p? -> q?

3: p?

------------------

_|_

44



>>> l()

Line 6

use

~q?

by denying conclusion and proving

q?:

1: p? -> q?

2: p?

-------------------

1: q?

Acting on a negative hypothesis gives us a new conclusion.

45



>>> l()

Line 7

use

p? -> q?

, first part, showing that

p?

or the desired conclusion holds:

1: p?

2*: ~q?

-------------------

1: p?

>>> Done()

We are arguing by modus ponens here.

46



Line 8

use

p? -> q?

second part, show that the desired conclusion follows from

q?:

1: q?

2: p?

-------------------

1: q?

>>> Done()

Completing a trivial example of m.p.

47



Line 3

proving biconditional

p? -> q? == ~q? -> ~p?

Part II <=

:

1: ~q? -> ~p?

-------------------

1: p? -> q?

The second half of the biconditional pops up when the first is completed.

48



>>> r()

Line 9

prove

p? -> q?

by assuming

p?

and deducing

q?:

1: p?

2: ~q? -> ~p?

-------------------

1: q?

Expected.

49



>>> gl(2)

Line 9

prove

p? -> q?

by assuming

p?

and deducing

q?:

1: ~q? -> ~p?

2: p?

-------------------

1: q?

Bring the implication we want to use to the front.

50



>>> l()

Line 10

use

~q? -> ~p?

, first part, showing that

~q?

or the desired conclusion holds:

1: p?

2*: ~q?

-------------------

1: ~q?

This looks superficially like a Done() situation, but it isn’t.

51



>>> r()

Line 12

prove

~q?

by assuming

q?

and deducing a contradiction or alternative conclusion:

1: q?

2: p?

-------------------

1: q?

>>> Done()

But it easily becomes one. Acting on the negative conclusion brings its
positive component into the hypothesis, whereupon the last alternative con-
clusion slides into place, and the first hypothesis and conclusion are the same
as desired.

52



Line 11

use

~q? -> ~p?

second part, show that the desired conclusion follows from

~p?:

1: ~p?

2: p?

-------------------

1: q?

From contradictory hypotheses, anything, even Q, follows.

53



>>> l()

Line 13

use

~p?

by denying conclusion and proving

p?:

1: p?

2*: ~q?

-------------------

1: p?

>>> Done()

Q. E. D.

>>>

Action on the negated statement from the contradictory pair of hypothe-
ses moves its positive component into the conclusion, which gives the desired
Done() condition.

54



3.4 Exercises for Lab I on propositional logic (lots more
could be added here)

1. Here are some examples with commands set up.

#Examples for you to try out

#Start(’p?&(p?->q?)->q?’)

#Start(’((p?&q?)->r?)==(p?->(q?->r?))’)

#Start(’p?Vq?== ~(~p?& ~q?)’)

2. Set up the other deMorgan law in Marcel and prove it.

3. Show the validity of the rule of constructive dilemma: from P ∨Q,
P → R and Q → S, derive R ∨ S. To do this, you not only need to
translate the notations for the individual propositions, but also write
a single larger proposition to prove.

4. Write out the theorem of Example 1 in standard propositional logic
notation and write a paper proof.

5. (optional) Start(’((a? == b?) == c?) == (a? == (b? == c?))’)

55



4 Examples and exercises for a quantifier lab

We begin with some declarations. Propositional logic doesn’t need these,
but for predicate logic we need to declare some operators as properties and
relations.

declareproperty (’P’)

declareproperty(’Q’)

declareproperty(’S’)

These commands ensure that the parser understands P, Q and S as pred-
icates (of a single object). In fact the parser would also understand P1, Q1
and S1 as predicates and if we were really proving this theorem for further
use we would use the indexed forms (because they could then be replaced
with other predicates as needed). But we will keep things simple.

Our example has the merit of being obvously true.

>>>Start(’(Ax : Px -> Qx) & (Ay: Qy-> Sy) -> (Ax : Px -> Sx)’)

Line 1:

-------------------

1: (Ax : Px -> Qx) & (Ay : Qy -> Sy) -> (Ax : Px -> Sx)

We’ve seen a Start command before.

56



>>> r()

Line 2

prove

(Ax : Px -> Qx) & (Ay : Qy -> Sy) -> (Ax : Px -> Sx)

by assuming

(Ax : Px -> Qx) & (Ay : Qy -> Sy)

and deducing

Ax : Px -> Sx:

1: (Ax : Px -> Qx) & (Ay : Qy -> Sy)

-------------------

1: Ax : Px -> Sx

Standard strategy for proving an implication.

57



>>> r()

Line 3

prove the universal

Ax : Px -> Sx

by proving an arbitrary instance

:

1: (Ax : Px -> Qx) & (Ay : Qy -> Sy)

-------------------

1: Px_1 -> Sx_1

The strategy of universal generalization: strip off the quantifier from the
universal conclusion and replace the bound variable with a fresh arbitrary
object (Marcel automatically generates new indices, ensuring that each arbi-
trary object or instantiable it introduces is fresh).

58



>>> r()

Line 4

prove

Px_1 -> Sx_1

by assuming

Px_1

and deducing

Sx_1:

1: Px_1

2: (Ax : Px -> Qx) & (Ay : Qy -> Sy)

-------------------

1: Sx_1

Standard strategy for proving an implication.

59



>>> gl(2)

Line 4

prove

Px_1 -> Sx_1

by assuming

Px_1

and deducing

Sx_1:

1: (Ax : Px -> Qx) & (Ay : Qy -> Sy)

2: Px_1

-------------------

1: Sx_1

Bring the complex hypothesis to the front.

60



>>> l()

Line 5

use

(Ax : Px -> Qx) & (Ay : Qy -> Sy)

by breaking it into its parts

Ax : Px -> Qx

and

Ay : Qy -> Sy:

1: Ax : Px -> Qx

2: Ay : Qy -> Sy

3: Px_1

-------------------

1: Sx_1

Break up the complex (conjunctive) hypothesis.

61



>>> l()

Line 6

use the universal hypothesis

Ax : Px -> Qx

by creating an instance to be further specified and used:

1: Px$2 -> Qx$2

2: Ax : Px -> Qx

3: Ay : Qy -> Sy

4: Px_1

-------------------

1: Sx_1

Use the universal hypothesis. The quantifier is stripped off and the variable
can then be replaced by anything – Marcel allows us to delay our choice
of example of the universal statement by replacing the variable with an in-
stantiable, which can later be replaced by any desired witness which could
have be written at this point throughout the proof.

62



>>> Inst(’x_1’,’x$2’)

Line 6

use the universal hypothesis

Ax : Px -> Qx

by creating an instance to be further specified and used:

1: Px_1 -> Qx_1

2: Ax : Px -> Qx

3: Ay : Qy -> Sy

4: Px_1

-------------------

1: Sx_1

A new user command is introduced. Inst takes two arguments, an expression
for an object and an instantiable, and replaces the instantiable with the
object expression throughout the current proof (including inside other parts
of the proof which we cannot see). Any free variables occurring in the object
expression (whether arbitrary objects or instantiables) must have lower index
than the instantiable for which we are making the substition (the object
expression needs to be one we could have intended as a witness as the time
the instantiable was created).

63



>>> l()

Line 7

use

Px_1 -> Qx_1

, first part, showing that

Px_1

or the desired conclusion holds:

1: Ax : Px -> Qx

2: Ay : Qy -> Sy

3: Px_1

2*: ~ Sx_1

-------------------

1: Px_1

64



>>> gl(3)

Line 7

use

Px_1 -> Qx_1

, first part, showing that

Px_1

or the desired conclusion holds:

1: Ay : Qy -> Sy

2: Px_1

3: Ax : Px -> Qx

2*: ~ Sx_1

-------------------

1: Px_1

Modus ponens at work

65



Line 7

use

Px_1 -> Qx_1

, first part, showing that

Px_1

or the desired conclusion holds:

1: Px_1

2: Ax : Px -> Qx

3: Ay : Qy -> Sy

2*: ~ Sx_1

-------------------

1: Px_1

>>> Done()

Modus ponens finished

66



Line 8

use

Px_1 -> Qx_1

second part, show that the desired conclusion follows from

Qx_1:

1: Qx_1

2: Ax : Px -> Qx

3: Ay : Qy -> Sy

4: Px_1

-------------------

1: Sx_1

We repeat the same maneuver

67



>>> gl(3)

Line 8

use

Px_1 -> Qx_1

second part, show that the desired conclusion follows from

Qx_1:

1: Ax : Px -> Qx

2: Ay : Qy -> Sy

3: Px_1

4: Qx_1

-------------------

1: Sx_1

gl(3) actually works by two rotations of the premises

68



Line 8

use

Px_1 -> Qx_1

second part, show that the desired conclusion follows from

Qx_1:

1: Ay : Qy -> Sy

2: Px_1

3: Qx_1

4: Ax : Px -> Qx

-------------------

1: Sx_1

We have the desired premise in first position

69



>>> l()

Line 9

use the universal hypothesis

Ay : Qy -> Sy

by creating an instance to be further specified and used:

1: Qy$3 -> Sy$3

2: Ay : Qy -> Sy

3: Px_1

4: Qx_1

5: Ax : Px -> Qx

-------------------

1: Sx_1

Introduce an instantiable as before

70



>>> Inst(’x_1’,’y$3’)

Line 9

use the universal hypothesis

Ay : Qy -> Sy

by creating an instance to be further specified and used:

1: Qx_1 -> Sx_1

2: Ay : Qy -> Sy

3: Px_1

4: Qx_1

5: Ax : Px -> Qx

-------------------

1: Sx_1

Set the instantiable to x1 as before, and the rest is propositional logic.

71



>>> l()

Line 10

use

Qx_1 -> Sx_1

, first part, showing that

Qx_1

or the desired conclusion holds:

1: Ay : Qy -> Sy

2: Px_1

3: Qx_1

4: Ax : Px -> Qx

2*: ~ Sx_1

-------------------

1: Qx_1

72



>>> gl(3)

Line 10

use

Qx_1 -> Sx_1

, first part, showing that

Qx_1

or the desired conclusion holds:

1: Px_1

2: Qx_1

3: Ax : Px -> Qx

4: Ay : Qy -> Sy

2*: ~ Sx_1

-------------------

1: Qx_1

73



Line 10

use

Qx_1 -> Sx_1

, first part, showing that

Qx_1

or the desired conclusion holds:

1: Qx_1

2: Ax : Px -> Qx

3: Ay : Qy -> Sy

4: Px_1

2*: ~ Sx_1

-------------------

1: Qx_1

>>> Done()

74



Line 11

use

Qx_1 -> Sx_1

second part, show that the desired conclusion follows from

Sx_1:

1: Sx_1

2: Ay : Qy -> Sy

3: Px_1

4: Qx_1

5: Ax : Px -> Qx

-------------------

1: Sx_1

>>> Done()

Q. E. D.

>>>

It is worth pointing out that order matters here. Arbitrary objects must
be introduced before instantiables which might need to depend on them. We
repeat the opening of the previous proof with a subtle change.

>>>Start(’(Ax1 : Px1 -> Qx1) & (Ay1: Qy1-> Sy1) -> (Ax1 : Px1 -> Sx1)’)

Line 1:

-------------------

75



1: (Ax1 : Px1 -> Qx1) & (Ay1 : Qy1 -> Sy1) -> (Ax1 : Px1 -> Sx1)

>>> r()

Line 2

prove

(Ax1 : Px1 -> Qx1) & (Ay1 : Qy1 -> Sy1) -> (Ax1 : Px1 -> Sx1)

by assuming

(Ax1 : Px1 -> Qx1) & (Ay1 : Qy1 -> Sy1)

and deducing

Ax1 : Px1 -> Sx1:

1: (Ax1 : Px1 -> Qx1) & (Ay1 : Qy1 -> Sy1)

-------------------

1: Ax1 : Px1 -> Sx1

As before

76



>>> l()

Line 3

use

(Ax1 : Px1 -> Qx1) & (Ay1 : Qy1 -> Sy1)

by breaking it into its parts

Ax1 : Px1 -> Qx1

and

Ay1 : Qy1 -> Sy1:

1: Ax1 : Px1 -> Qx1

2: Ay1 : Qy1 -> Sy1

-------------------

1: Ax1 : Px1 -> Sx1

As before

77



>>> l()

Line 4

use the universal hypothesis

Ax1 : Px1 -> Qx1

by creating an instance to be further specified and used:

1: Px$1 -> Qx$1

2: Ax1 : Px1 -> Qx1

3: Ay1 : Qy1 -> Sy1

-------------------

1: Ax1 : Px1 -> Sx1

We try using the universal hypothesis before setting up the proof of the
universal conclusion . . .

78



>>> r()

Line 5

prove the universal

Ax1 : Px1 -> Sx1

by proving an arbitrary instance

:

1: Px$1 -> Qx$1

2: Ax1 : Px1 -> Qx1

3: Ay1 : Qy1 -> Sy1

-------------------

1: Px_2 -> Sx_2

As before, though belated

79



>>> Inst(’x_2’,’x$1’)

substitution fails because term is newer than instantiable

Line 5

prove the universal

Ax1 : Px1 -> Sx1

by proving an arbitrary instance

:

1: Px$1 -> Qx$1

2: Ax1 : Px1 -> Qx1

3: Ay1 : Qy1 -> Sy1

-------------------

1: Px_2 -> Sx_2

>>>

And the Inst command fails. The problem is that x2 is an object that one
could not have chosen as a witness when the instantiable x$1 was created.

The following is a truly strange example.

>>>Start(’Ex:Ay:Py -> Px’)

Line 1:

-------------------

1: Ex : Ay : Py -> Px

80



>>> r()

Line 2

prove the existential

Ex : Ay : Py -> Px

by introducing an instance to be further specified then proved:

2*: ~ Ex : Ay : Py -> Px

-------------------

1: Ay : Py -> Px$1

81



>>> r()

Line 3

prove the universal

Ay : Py -> Px$1

by proving an arbitrary instance

:

2*: ~ Ex : Ay : Py -> Px

-------------------

1: Py_2 -> Px$1

82



>>> r()

Line 4

prove

Py_2 -> Px$1

by assuming

Py_2

and deducing

Px$1:

1: Py_2

2*: ~ Ex : Ay : Py -> Px

-------------------

1: Px$1

83



>>> gr(2)

Line 4

prove

Py_2 -> Px$1

by assuming

Py_2

and deducing

Px$1:

1: Py_2

2*: ~ Px$1

-------------------

1: Ex : Ay : Py -> Px

84



>>> r()

Line 5

prove the existential

Ex : Ay : Py -> Px

by introducing an instance to be further specified then proved:

1: Py_2

2*: ~ Ex : Ay : Py -> Px

3*: ~ Px$1

-------------------

1: Ay : Py -> Px$3

85



>>> r()

Line 6

prove the universal

Ay : Py -> Px$3

by proving an arbitrary instance

:

1: Py_2

2*: ~ Ex : Ay : Py -> Px

3*: ~ Px$1

-------------------

1: Py_4 -> Px$3

86



>>> r()

Line 7

prove

Py_4 -> Px$3

by assuming

Py_4

and deducing

Px$3:

1: Py_4

2: Py_2

2*: ~ Ex : Ay : Py -> Px

3*: ~ Px$1

-------------------

1: Px$3

87



>>> Inst(’y_2’,’x$3’)

Line 7

prove

Py_4 -> Px$3

by assuming

Py_4

and deducing

Px$3:

1: Py_4

2: Py_2

2*: ~ Ex : Ay : Py -> Px

3*: ~ Px$1

-------------------

1: Py_2

88



>>> gl(2)

Line 7

prove

Py_4 -> Px$3

by assuming

Py_4

and deducing

Px$3:

1: Py_2

2: Py_4

2*: ~ Ex : Ay : Py -> Px

3*: ~ Px$1

-------------------

1: Py_2

>>> Done()

Q. E. D.

>>>

A feature which we quite deliberately do not use in these examples is that
the prover will automatically instantiate dollar-sign variables (instantiables)
when the Done command is issued if it can do so in a way which will cause the
initial premise and the conclusion to be identical. In proofs in pure quantifier
logic, this means that explicit use of the Inst command can be avoided. We
will see this style in later sections. The danger is that the prover will quite
happily make substitutions which turn out to be not the ones that you want.

89



4.1 Quantifier lab exercises (lots more could be added
here)

1. Prove the following theorems under Marcel. Write proofs in mathe-
matical English of the same results.

(a)
declarerelation(’R’) #this command declares a

#(binary infix) relation predicate R

Start(’(Ax : Ey : x R y) & (Ax : Ay : x R y -> y R x) \

& (Ax : Ay : Az : x R y & y R z -> x R z) -> (Ax : x R x)’)

(b) declareproperty(’F’)

declareproperty(’P’)

declarerelation(’R’)

declareproperty(’S’)

declareproperty(’T’)

Start(’(Ax:Fx -> Ay:Sy -> x R y)&(Ax:Px-> \

(Ay:xRy -> Ty))->(Ex:Fx & Px) -> (Ay:Sy->Ty)’)

(c) declarerelation(’L’)

declarerelation(’M’)

Start(’(Ey:Ax:xLy -> xMy)->(Ex:Ay:xLy) -> (Ey:Ex:xMy)’)

2. Write an English proof of the last example before the exercises.

90



5 Technical Reference

5.1 Introduction

This file is the manual for the software originally implemented in the file
marcel.sml and now implemented in pythonmarcel.py.

The program is a proof editor and checker implementing an extension
of a sequent calculus first brought to my attention by Marcel Crabbé (after
whom it was named) in his paper [?], in which he gives a semantic proof of
cut-elimination for it. The sequent calculus is an implementation of Quine’s
set theory New Foundations with no extensionality. The consistency of New
Foundations remains an open problem, but the consistency of New Founda-
tion without the axiom of extensionality was shown by Jensen in [?], in which
he actually showed the consistency of the stratified comprehension axiom of
NF with the weak form of extensionality which requires that two objects
with elements must be equal if they have the same elements. Marcel Crabbé
himself showed that NF with no extensionality axiom at all (which he calls
SF) interprets NFU, so SF and NFU have the same strength. This is the
same level of strength as Zermelo set theory with bounded quantification in
set definitions; this is more than adequate for all of mathematics except the
higher reaches of set theory (and can readily be made much stronger).

We found it easier to understand the point of the work of Crabbé on
sequent calculus with a concrete implementation of the sequent calculus in
question at hand. In the process of implementing it, we adjoined equality
(basically by defining x = y as (∀z.x ∈ z ≡ y ∈ z)) and adjoined the
weak extensionality of NFU (in pythonmarcel.py the extensionality rule is
weaker than in the usual formulations of NFU). We do not know if the system
augmented with the weak extensionality rule enjoys cut elimination.

At the same time, we discovered the charm of the implementation of mere
logic found in sequent calculus. We have now used the logical component of
the theorem prover (touching very briefly if at all on the set theory) to teach
logic at the undergraduate level and beginning graduate level several times,
with noticeable success. We have directed a master’s thesis in which an el-
ementary result of real analysis was shown using the prover. We wrote an
unsuccessful grant proposal seeking support for a research project investi-
gating the application of this system to education, and will attempt this
again.

It should be noted that as we write this manual for pythonmarcel.py we

91



have lifted the math sections straight from the manual for marcel.sml, and
the rules actually implemented in the Python version may be found to have
technical differences from the ones given here. This will be checked over in
due course.

5.2 Sequent Rules in General

We give a mathematical description of the rules by which validity of sequents
may be recognized or deduced from the postulated validity of other sequents.

We should initially say that a sequent is a notation P1, P2, P3, . . . `
Q1, Q2, Q3 . . . (in which the set of premises Pi or conclusions Q1 may have
0 or 1 elements with appropriate changes in the notation) which we say is
valid if all assignments of semantics to variable components in the sequent
which make all the premises true also make at least one of the conclusions
true. Marcel will generally display a sequent which it thinks of internally as
P1, P2, P3, . . . ` Q1, Q2, Q3 . . . in the form P1, P2, P3, . . . ,¬Q2,¬Q3, . . . ` Q1

with one conclusion (or none), though it does support a multiple-conclusion
display format.

The issue of when a sequent is an instance of a theorem will be discussed
later.

Sequents are regarded as trivial under two circumstances: a sequent
A,P2, P3, . . . ` A,Q2, Q3 . . . is recognized as valid (when the user issues the
Done command) and a sequent P1, P2, . . . ` A = A,Q2, Q3 . . . is recognized
as valid when the omnibus r command (the general command for applying
a sequent rule on the right) is issued. Identity of terms up to renaming of
bound variables is recognized.

It is a general feature of sequents that if A ` B is a valid rule, so is
Γ ∪ A ` B ∪ ∆. Sequent rules inherit a similar feature: if the validity of
A ` B can be inferred from the validity of A1 ` B1, . . . , Ai ` Bi, then the
validity of A ∪ Γ ` B ∪ ∆ can be inferred from the validity of A1 ∪ Γ `
B1∪∆, . . . , Ai∪Γ ` Bi∪∆, and we regard this as an application of the same
rule. Most of the rules we use apply to a single proposition in the sequent,
either the first on the left side or the first on the right, and the rest of the
sequent is copied into the generated premise or into each of the generated
premises. The exceptions are the triviality rule which compares the first
terms on both sides and the rules for rewriting, which allow an equation in
the first position on the left to rewrite either the second proposition on the
left or the first proposition on the right.

92



So with each basic logical operation (connective or quantifier) two rules
are associated, a left rule and a right rule. Some alternatives and refine-
ments are provided, especially in connection with equality, and there are the
additional rewrite rules as well.

5.3 Specific Sequent Rules: Connectives

We give left rules and right rules for the commonly used connectives, exclud-
ing converse implication and xor. The notations Γ and ∆ represent arbitrary
finite sets of propositions. The sentence closest to the turnstile on the right
or left is the first sentence in the right or left list in the prover’s presentation.
The premise on the left is the one which is presented first by the prover when
the rule is applied.

In our experience the rule which it is somewhat difficult to get used to is
the left rule for implication, though with a little thought it can be seen to
express the rule of modus ponens .

5.4 Axiom

Γ, A`A,∆

5.5 Left rules
Γ`A,∆

Γ,¬A`∆

Γ, A,B `∆

Γ, A ∧B `∆

Γ, A`∆ Γ, B `∆

Γ, A ∨B `∆

Γ`A,∆ Γ, B `∆

Γ, A→ B `∆

Γ, A→ B,B → A`∆

Γ, A ≡ B `∆

93



5.6 Right rules

Γ, A`∆

Γ`¬A,∆

Γ`A,B,∆
Γ`A ∨B,∆

Γ`A,∆ Γ`B,∆
Γ`A ∧B,∆

Γ, A`B,∆
Γ`A→ B,∆

Γ, A`B,∆ Γ, B `A,∆
Γ`A ≡ B,∆

5.7 More Sequent Rules

For conventions on how rules are to be read in general, see the section on
sequent rules for connectives above. It is also important to note that when
rules are applied to equations, definitional expansions are carried out on both
sides of the equation, and when rules are applied to membership statements,
definitional expansions are carried out on the right side, and any further op-
portunities to apply rules after definitional expansion are taken immediately
(including further definitional expansions!).

In the rules which follow, if φ is a formula, φ[t/x] is taken to represent
the result of substituting the term t for the variable x in φ.

5.8 Rules for Quantifiers

5.8.1 Left Rules

Γ, φ[t/x], (∀x.φ)`∆

Γ, (∀x.φ)`∆

where t is any term

Γ, φ[a/x]`∆

Γ, (∃x.φ)`∆

where a is a variable not appearing in the conclusion

94



5.8.2 Right Rules

Γ`φ[a/x],∆

Γ` (∀x.φ),∆

where a is a variable not appearing in the conclusion

Γ`φ[t/x], (∃x.φ),∆

Γ` (∃x.φ),∆

where t is any term

5.8.3 Comments on Quantifier Rules

In some quantifier rules, we have retained the quantified sentence from the
conclusion in the premise. This is so that we can avoid formalizing notions
of copying and reordering formulas in sequents: a quantified formula may
be reused several times in a proof, and if it were erased by the application
of the rule we would need to copy it explicitly. Another advantage is that
it preserves precise equivalence of the conclusion with the conjunction of all
the premises, which is a feature of all the sequent rules of Marcel.

The rules requiring input of a new variable a supply a computer-generated
variable. In the original version of this prover, the rules involving a new term
t were implemented by separate commands with the term t as a parameter.
In the current version, the computer supplies a new “unknown variable”
which can subsequently be replaced by a term: the advantage is that the
same command can then handle all basic sequent rules.

5.9 Rules for Membership

We add the remark here to be made good later that the prover supports not
only set abstraction but also function abstraction (λ-terms) and rules for this
feature should also be stated.

5.9.1 Left Rule

Γ, φ[t/x]`∆

Γ, t ∈ {x | φ} `∆

when φ is stratified

95



5.9.2 Right Rule

Γ`φ[t/x],∆

Γ` t ∈ {x | φ},∆

when φ is stratified

5.10 Rules for Equality

5.10.1 Left Rule

Γ, φ[u/x][t/y], t = u`ψ[u/x][t/y],∆

Γ, φ[t/x][u/y], t = u`ψ[t/x][u/y],∆

5.10.2 Right Rule

Γ` t = t,∆

This is an axiom: it requires no premises

Γ` (∃x.x ∈ t), t = u,∆ Γ` (Ax.x ∈ t↔ x ∈ u), t = u,∆

Γ` t = u,∆

5.10.3 Comments on Equality Rules

In the earliest versions of the prover, equality was handled by definitional
expansion: t = u was defined as (∀x.t ∈ x ↔ u ∈ x). This was used as the
left rule; the right rule looked like the second right rule here but with t = u
replaced in the premises by (∀x.t ∈ x↔ t ∈ y). This is sufficient to support
rewriting (as in the left rule given) but it is somewhat awkward.

The second rule implements the weak extensionality of NFU . This is an
extension of the logic of the prover not found in SF , and is the reason that
we do not know whether this logic has cut elimination.

t = u is retained in premises in all rules. In the left rule it is retained
because the equation may be used to rewrite again. In the right rule it is
retained because it may actually not be possible to prove t = u by the weak
extensionality rule.

The actual implementations of the equality rules do not necessarily ex-
actly resemble what is given here, but the implementations are justified by
these rules.

96



5.11 Global Substitution, manual and automatic

The left rule for the universal quantifier and the right rule for the existential
quantifier require input of a specific term t. What the prover actually supplies
is an unknown variable (recognizable because it contains a dollar sign) with
a fresh index (belonging to the same series of indices as those on the free
variables introduced by the left existential and right universal rules).

The Inst command allows the user to set the unknown variable to a
particular term. There is a restriction on what terms can replace an unknown
variable: the term must have been definable at the time that the unknown
variable Un was generated, so it cannot contain any free or unknown variables
with index higher than n.

The prover also automatically makes substitutions for unknown variables
under certain circumstances. Under most circumstances in which two terms
are to be matched (as in checking whether a sequent is an axiom or whether
a theorem or a rewrite rule applies) if the prover can make the match work
by assigning specific terms to the Un’s (with the same restrictions indicated
above) it will do so.

An advantage of this approach are that it enables one to delay the choice
of a witness: the later progress of the proof may make it more evident what
witness will work.

5.12 Cut and “Theorem Cut”

The Cut Rule

Γ`A,∆ Γ, A`∆

Γ`∆

is clearly valid. It is different from the other rules: the other rules in-
volve simplification of the conclusion in some sense, while this one involves
introduction of a completely new formula A.

Pragmatically, the Cut Rule is indispensible. It represents the process
of introducing a lemma in order to prove a theorem. Theoretically, it is
interesting that the Cut Rule is redundant in something very like our full
logic (we do not know whether this remains true when the weak extensionality
axiom is implemented).

A powerful extension of Cut is implemented by the prover’s Usethm com-
mand. This command takes the name of a theorem as a command and

97



generates a number of sequents, one a copy of the theorem with all free
variables replaced by unknown variables (so they can later be instantiated)
which is of course valid and is immediately proved, and the others, one for
each left formula of the modified theorem with that formula added to the
current sequent on the right, and one for each right formula of the modified
theorem with that formula added to the current sequent on the left.

98



5.13 Command Reference

All commands are Python functions. A function without arguments will need
to be supplied with a null argument (a pair of parentheses) as in Left().
Arguments which are Marcel identifiers or bits of Marcel text are strings
as far as Python is concerned, and should be enclosed in single or double
quotes, as in Start(’p? ->?p’) or Start("p? ->?p"). Quotes do not
appear in Marcel text, so which quotes you use should not be an issue.
Integer arguments do not need to be quoted. Arguments need to be enclosed
in parentheses and separated by commas when there are two or more of them.
It should be noted that Python is case sensitive, and so is Marcel itself.

setlog: Takes one string argument <filename>: opens the log file <filename>logfile.py.
It is really important to issue another setlog command to close the log
file you are working with when you are done: my habit is to issue
setlog(’done’) at the end of any session where I am producing log
files.

addtolog: As setlog, but appending to the file rather than initializing it.
The same remark about closing the file applies: it is really important
to issue another setlog command to close the log file you are working
with when you are done: my habit is to issue setlog(’done’) at the
end of any session where I am producing log files.

Demo: Turns demo mode on or off. In this mode, user commands are echoed
and the system pauses until the user hits return. This is a handy mode
to run log files under (insert Demo() manually at the beginning of the
file).

Back(): Moves the state of the current proof back to that before the execu-
tion of the last logged user command. Note that the Start command
clears all history. This command is entered in log files but does not
participate in demo mode nor is it entered in the history it consults (it
is semi-logged).

Forward(): Undoes immediately preceding Back() commands: the forward
history is cleared as soon as any logged user command other than Back
or Forward is executed. This command is entered in log files but does
not participate in demo mode nor is it entered in the history it consults
(it is semi-logged).

99



Forget(): Clear back and forward history. This command is entered in log
files but does not participate in demo mode nor is it entered in the
history it consults (it is semi-logged).

setprecsame: Two arguments, binary operator names: sets the precedence
of the first one to be the same as the precedence of the second one.
For all precedence commands, notice that if you set the precedence of
an operator higher than the minimum possible for its type, the system
will not allow you to set its precedence again.

setprecevenabove: Two arguments, binary operator names: sets the prece-
dence of the first one just higher than that of the second one, grouping
to the right. For all precedence commands, notice that if you set the
precedence of an operator higher than the minimum possible for its
type, the system will not allow you to set its precedence again.

setprecoddabove: Two arguments, binary operator names: sets the prece-
dence of the first one just higher than that of the second one, grouping
to the left. For all precedence commands, notice that if you set the
precedence of an operator higher than the minimum possible for its
type, the system will not allow you to set its precedence again.

setprecevenbelow: Two arguments, binary operator names: sets the prece-
dence of the first one just lower than that of the second one, grouping
to the right. For all precedence commands, notice that if you set the
precedence of an operator higher than the minimum possible for its
type, the system will not allow you to set its precedence again.

setprecoddbelow: Two arguments, binary operator names: sets the prece-
dence of the first one just lower than that of the second one, grouping
to the left. For all precedence commands, notice that if you set the
precedence of an operator higher than the minimum possible for its
type, the system will not allow you to set its precedence again.

declareproperty: One argument, an operator name. Declare a unary op-
erator with object input and proposition output.

declarefunction: One argument, an operator name. Declare a unary oper-
ator with object input and output of the same relative type.

100



declarescfunction: One argument, an operator name. Declare a unary
operator with object input and output bounded in a strongly cantorian
set.

declaretypedfunction: Two arguments, an operator name and an integer.
Declare a unary operator with object input and relative type of the
output minus the relative type of the input equal to the numeral argu-
ment.

declarerelation: One argument, an operator name, a binary operator tak-
ing two inputs of the same relative type.

declareoperation: One argument, an operator name, a binary operator
taking two inputs of the same relative type as the object output.

declarescoperation: One argument, an operator name, a binary operator
taking two inputs of the same relative type and returning an output
bounded in a strongly cantorian set.

declaretypedrelation: Two arguments, an operator name and a numeral,
a binary operator taking two inputs with the relative type of the second
differing from the relative type of the first by the numeral argument,
and output a proposition.

declaretypedoperation: Three arguments, an operator name and two nu-
merals: the first is the name of a binary operator; the second is the
displacement of the type of its first input from the type of the output;
the second is the displacement of the type of its second input from the
type of the output.

declaretypedscoperation: Two arguments, an operator name and a nu-
meral: the first is the name of a binary operator; the second is the
displacement of the type of the second input from the displacement of
the first input; the output is bounded in a strongly cantorian set.

Declareconstant: One argument, an object constant.

Oneconclusion: No arguments. Sets display to have conclusions after the
first displayed as negated hypotheses, but with underlying structure
unchanged.

101



Manyconclusions: No arguments. Sets display to have multiple conclu-
sions.

Oneconclusion2: No arguments. Sets system to automatically negate con-
clusions after the first and make them premises.

Manyconclusions2: No arguments. Turns off Oneconclusion2 mode.

Start: One argument, a proposition. Create a new proof with no premises
and the argument as the conclusion. The macro s abbreviates the same
command.

Nextgoal: No arguments. Change which goal is viewed.

Look: No arguments. View the current goal. If the proof is complete, Q.
E. D will be displayed followed by the theorem which has been proved.

Done: No arguments. Marks the current goal as proved if the first premise
and the first conclusion match (either are identical or can be unified
by suitable proof-wide substitutions for instantiables and propositional
and operator variables; be aware that automatic unification will not
act on variables appearing in the theorem to be proved). It will then
display the next unproved goal. If the proof is complete, Q. E. D will
be displayed followed by the theorem which has been proved.

Left: No arguments. Applies the appropriate logical rule to the first premise
of the current goal. The macro l() abbreviates the same command.

Right: No arguments. Applies the appropriate logical rule to the first con-
clusion of the current goal. The macro r() abbreviates the same com-
mand.

Pruneleft: Removes the first premise of the current goal.

Pruneright: Removes the first conclusion of the current goal.

Define: One argument, a Marcel binary expression with the illegal opera-
tor :=, the left input being a constant or unary or binary expression
with variable inputs (the latter two enclosed in parentheses) and the
right input being the body of the definition. Marcel will automatically
compute the correct type for unary or binary operators. The body

102



must contain no indexed constants, instantiables, free occurrences of
bound variables other than the inputs of the operation to be defined,
or propositional or operator variables.

Getleft: Rotate premises of current goal by one, moving second to first
position. Macro gl takes a numeral argument, which is the index of
the premise it brings to the front by repeating this command. In the
latest versions, gl is also a user command (and so appears in log files),
which invokes “interal” versions of Getleft, but Getleft remains a
user command.

GetleftE: Rotate premises of current goal after the first by one, moving
third to second position. Used for equational reasoning. Macro gle
takes a numeral argument, which is the index of the premise it brings
to the front by repeating this command. This macro is also a user
command.

Getleft2E: Rotate premises after the first by one, moving last to second
position. Used for equational reasoning.

Getright2: Rotate conclusions after the first, moving last to first position.

Getleft2: Rotate premises after the first by one, moving last to first position.

Getright: Rotate conclusions by one, moving second to first position. Macro
gr takes a numeral argument, which is the index of the conclusion it
brings to the front by repeating this command. In the latest versions,
gr is also a user command (and so appears in log files), which invokes
“interal” versions of Getleft, but Getleft remains a user command.

Cut: One argument, a proposition: replace current goal by two goals, one
with the argument added to premises and one with it added to the
conclusions.

Equaldr0: An equation command. The equation or biconditional is applied
by replacing left side with right side. The equation or biconditional ap-
plied is the first premise, applied to the first conclusion. All occurrences
rewritten without unification.

103



Equaldl0: An equation command. The equation or biconditional is applied
by replacing left side with right side. The equation or biconditional ap-
plied is the first premise, applied to the second premise. All occurrences
rewritten without unification.

Equalcr0: An equation command. The equation or biconditional is applied
by replacing right side with left side. The equation or biconditional ap-
plied is the first premise, applied to the first conclusion. All occurrences
rewritten without unification.

Equalcl0: An equation command. The equation or biconditional is applied
by replacing right side with left side. The equation or biconditional ap-
plied is the first premise, applied to the second premise. All occurrences
rewritten without unification.

Equaldr1: An equation command. The equation or biconditional is applied
by replacing left side with right side. The equation or biconditional
applied is the first premise, applied to the first conclusion. Leftmost
occurrence rewritten, with unification.

Equaldl1: An equation command. The equation or biconditional is applied
by replacing left side with right side. The equation or biconditional
applied is the first premise, applied to the second premise. Leftmost
occurrence rewritten, with unification.

Equalcr1: An equation command. The equation or biconditional is applied
by replacing right side with left side. The equation or biconditional
applied is the first premise, applied to the first conclusion. Leftmost
occurrence rewritten, with unification.

Equalcl1: An equation command. The equation or biconditional is applied
by replacing right side with left side. The equation or biconditional
applied is the first premise, applied to the second premise. Leftmost
occurrence rewritten, with unification.

Equaldr2: An equation command. The equation or biconditional is applied
by replacing left side with right side. The equation or biconditional
applied is the first premise, applied to the first conclusion. Rightmost
occurrence rewritten, with unification.

104



Equaldl2: An equation command. The equation or biconditional is applied
by replacing left side with right side. The equation or biconditional
applied is the first premise, applied to the second premise. Rightmost
occurrence rewritten, with unification.

Equalcr2: An equation command. The equation or biconditional is applied
by replacing right side with left side. The equation or biconditional
applied is the first premise, applied to the first conclusion. Rightmost
occurrence rewritten, with unification.

Equalcl2: An equation command. The equation or biconditional is applied
by replacing right side with left side. The equation or biconditional
applied is the first premise, applied to the second premise. Rightmost
occurrence rewritten, with unification.

Inst: Two arguments, an object term and an instantiable. The instantiable
is replaced by the term everywhere in the current proof, if the maximum
index appearing in the term is less than the index of the instantiable.

SU: One argument, a string, a Marcel term with operator :=: the right
input term replaces the left input instantiable everywhere in the proof.
A variant of Inst.

PropInst: Two arguments, a term and a propositional variable. The term
is to replace the propositional variable throughout the current proof,
subject to type conditions.

OpInst: Two arguments, an operator and an operator variable. The oper-
ator is to replace the operator variable throughout the current proof,
subject to type conditions.

Showall: Show all goals in the current proof. In the latest versions, the
proof will be automatically pruned of all premises and conclusions not
used in the proof of the sequent they inhabit once the entire theorem
is completely proved.

Saveproof: One argument, a string name under which the current proof is
to be saved.

Loadproof: One argument, a string name of the saved proof to be retrieved.

105



Savetheorem: Two arguments, a line name and a name for a new theorem.
If the line is proved, save the line with its proof as a theorem under the
name given.

Savethetheorem: One argument, the name of the theorem to be proved.
The top level sequent of the current proof is recorded as a theorem if
it has indeed been proved.

Axiom: Two arguments, a string name for an axiom and a proposition term.
Subject to type conditions, the proposition is saved as an axiom.

Usethm: One argument, a name of a theorem to be used in effect as a rule
in the current proof.

Showdef: One argument, the name of an operator whose definition is dis-
played.

Showthm: One argument, the name of a theorem which is displayed.

Showdec: One argument, the name of an operator for which internal type
and precedence information are displayed.

106


