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ABSTRACT

We describe how the theorem prover Marcel, a program written by Randall Holmes,

can be used to prove a result from introductory analysis. We were given the axioms

for an ordered field, and we completed a proof of the theorem that every positive real

number has a square root. Marcel implements first-order logic via a Gentzen-style

sequent calculus, and we first give an outline of the rules for this sequent calculus.

We go on to describe how these rules are implemented in Marcel and give example

proofs completed using Marcel. This is followed by a brief overview of the axioms for

an ordered field and how these axioms were declared in Marcel. We give an outline of

an intuitive pencil and paper-style proof of the fact that every positive number has

a square root, and we go on to describe a formal proof, completed using Marcel, of

the same fact. Finally, we give a few comments regarding the possibilities of using

Marcel as an educational tool.
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Chapter 1

INTRODUCTION

The main goal of this paper is to describe how the theorem prover Marcel [4], a

program written by Randall Holmes, was used to prove a nontrivial result from intro-

ductory analysis. We were given the axioms for an ordered field, and we completed a

proof of the theorem that every positive real number has a square root [6]. Marcel is

designed as an educational tool, and implements first-order logic via a Gentzen-style

sequent calculus.

We first give an outline of the sequent calculus. We give a set of primitive rules

and a fuller set of rules used in practice. The additional rules can each be derived

from the primitive rules and basic definitions from first-order logic, and we give an

example of such a derivation.

We then describe how the rules for our sequent calculus are implemented in Marcel,

commenting also on the notational issues which arise from the requirements of the

programming language ML in which Marcel is written, as well as the limitations

of ASCII. We then walk through three sample proofs using Marcel. The first is a

basic proof in propositional logic, which is followed by a traditional proof of the

completeness of propositional logic as implemented in Marcel. Our second example
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introduces the use of quantifiers in Marcel. Our final example was carried out within

the context of our proof that every positive real number has a square root. This

example involves the use of some of the axioms for an ordered field and also uses

theorems we had already proved using those axioms.

Following the examples in Marcel, we describe the axioms for an ordered field as

seen in a typical analysis book, then go on to discuss how these axioms were declared

in Marcel. We also touch on some difficulties we faced declaring these axioms. These

difficulties arose from the fact that Marcel is based on a logical system strong enough

to show that the universe is larger than just the set of real numbers, yet our proof

involves statements concerning only real numbers. After the axioms for an ordered

field have been declared, we walk through a traditional proof of the fact that every

positive real number has a square root. Our next task is to adapt this traditional

proof into one that can be used with Marcel. We then give a brief outline of how the

proof was completed using the theorem prover.

Lastly, we discuss some of the possible benefits, as well as the shortcomings,

of using Marcel as an educational tool. Proofs completed using Marcel have the

advantage that they are usually cleaner than hand-written proof trees, and there is

the benefit that a such a proof, if completed, is almost guaranteed to be a valid proof.

Marcel does require more rigor than is usually required for hand-written proofs, but it

also exposes students to the rigor required to complete a formal proof in logic. With
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continued use of Marcel, we hope that students will more thoroughly understand

when and how to use the rules of formal logic.
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Chapter 2

A GENTZEN-STYLE SEQUENT CALCULUS

A sequent is an expression Γ ` ∆, where Γ and ∆ are (possibly empty) finite sets of

formulas. A sequent is said to be valid if under any interpretation of the nonlogical

symbols in which all formulas in Γ are satisfied, at least one formula in ∆ is satisfied.

If we are working within a given theory, its axioms and definitions commit us to fixed

interpretations of some nonlogical symbols. We note that the sequent Γ ` ∅ is valid

only if it is not possible for all formulas in Γ to be satisfied. If the sequent ∅ ` B is

valid for a formula B, then we can take B to be a theorem. We note that we abuse

notation here by writing B instead of {B}.

Given a sequent, suppose we wish to show that it is valid (or invalid). A sequent

calculus is a collection of rules that allow us to simplify the sequent. The application

of some rules, called branching rules, result in two sequents, each of which is simpler

than the original sequent. When using a sequent calculus to show the validity of

a sequent, one is generally working backwards. We start with the sequent whose

validity is in question, and use the rules from our sequent calculus to simplify the

sequent into one or more sequents that are readily seen to be valid or invalid. We

note that the calculus is set up so that the validity of each simpler sequent implies
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the validity of the more complicated sequent at each step, and as we introduce our

rules for a Gentzen-style sequent calculus we give intuitive explanations as to why

this is the case for each rule.

This sequent calculus is set up slightly differently than a usual system of logical

reasoning because there are multiple conclusions. We point out that these are alter-

native conclusions: if our premises are satisfied we need only to satisfy one conclusion

to have a valid sequent.

2.1 Primitive Rules

We describe first the basic rules of our sequent calculus. We assume Γ and ∆ are

finite (possibly empty) sets of formulas, and A and B are formulas. These rules come

in two forms: most have one or two sequents above the line and one sequent below.

These mean that if the sequents above the line are valid, then the sequent below the

line is valid. Two rules, including the first rule, have no sequent above the line, only a

sequent below. These mean that the sequent below the line is always a valid sequent.

Our first rule is the Assumption Rule.

(Assm):

Γ, A ` A, ∆

If Γ and A are satisfied, then clearly A or some formula in ∆ is satisfied, so the

sequent is valid.
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2.1.1 Negation Rules

(¬A):

Γ ` A, ∆

Γ,¬A ` ∆

We assume Γ ` A, ∆ is valid. Now suppose all formulas in Γ are satisfied and ¬A

is satisfied. By the validity of the premise, either A is satisfied or some formula in ∆

is satisfied. But since ¬A is satisfied, A cannot be satisfied. Therefore some formula

in ∆ is satisfied and our conclusion, Γ,¬A ` ∆ is valid.

(¬S):

Γ, A ` ∆

Γ ` ¬A, ∆

We assume Γ, A ` ∆ is valid. If we assume all formulas in Γ are satisfied, we have

two possible scenarios depending on the satisfaction of A. If A is satisfied, then some

formula in ∆ is satisfied by the validity of the premise. If A is not satisfied, then

¬A is satisfied. Therefore some formula on the right of the conclusion is satisfied in

either case, and the conclusion is therefore valid.

2.1.2 Disjunction Rules

(∨A):

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆

Assume Γ, A ` ∆ and Γ, B ` ∆ are valid. Now if all formulas in Γ are satisfied

and A ∨ B is satisfied, then A is satisfied or B is satisfied. If A is satisfied, then
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since all formulas in Γ are satisfied the validity of the left-hand premise implies some

formula in ∆ is satisfied. Similarly, if B is satisfied then some formula in ∆ must be

satisfied by the validity of the right-hand premise. Therefore our conclusion is valid.

(∨S):

Γ ` A,B, ∆

Γ ` A ∨B, ∆

Assume Γ ` A,B, ∆ is valid. If all formulas in Γ are satisfied, then A is satisfied,

B is satisfied, or some formula in ∆ is satisfied. That is, A ∨ B is satisfied or some

formula in ∆ is satisfied. Therefore the conclusion Γ ` A ∨B, ∆ is valid.

2.1.3 Existential Quantifier Rules

Prior to discussing rules for dealing with existential quantifiers, we define a notation

for substitution: For a formula φ, the expression φ t
x

represents the formula φ with

each occurrence of the variable x replaced by the term t. If φ contains quantifiers there

are some subtleties involved in defining φ t
x
. We avoid discussing the details, which

essentially come down to renaming bound variables before making substitutions [3].

(∃S):

Γ ` φ t
x
,∃xφ, ∆

Γ ` ∃xφ, ∆

for any term t.

In this and one other quantifier rule, (∀A), we adopt the practice of preserving the

quantified formula in the premise of the rule. This lets us avoid having to “copy” a
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formula if we wish to instantiate it more than once during a proof. To see the validity

of this rule, assume Γ ` φ t
x
,∃xφ, ∆, and assume all formulas in Γ are satisfied. Then

by the validity of the premise, φ t
x
, ∃xφ, or some formula in ∆ must be satisfied. The

last two pose no problem, so we consider the first. If φ t
x

is satisfied, then t witnesses

the existence of an x for which φ is satisfied, therefore the conclusion ∃xφ is true.

(∃A):

Γ, φ y
x
` ∆

Γ,∃xφ ` ∆

for variable y not free in Γ, ∃xφ, or ∆.

To see the validity of this rule, assume Γ, φ y
x
` ∆ is valid and that all formulas in

Γ are satisfied. If ∃xφ is satisfied, there must be some t for which φ is true. So φ y
x

is satisfied in any interpretation under which the variable y represents this object t.

By the validity of the premise we can conclude that some formula in ∆ is satisfied,

and because ∆ does not mention y, this formula was satisfied before we assigned an

interpretation for y. Therefore our rule is valid.

2.1.4 Equality Rules

(= S):

Γ ` (t = t), ∆

We note first that this rule of reflexivity of equality is the only rule other than the

assumption rule that is an axiom in our sequent calculus. This rule is clearly valid:
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t = t is always satisfied, so if all formulas in Γ are satisfied, it is clear that t = t or

some formula in ∆ is satisfied, so our conclusion is valid.

(= A):

Γ, (t = t′) ` φ t
x
, ∆

Γ, (t = t′) ` φ t′
x
, ∆

We assume all formulas in Γ and t = t′ are satisfied. Then by the validity of the

premise, φ t
x

is satisfied. Because t = t′, we can conclude that φ t′
x

is satisfied as well,

so our rule is valid.

2.2 Derivable Rules

These rules in this section can all be derived from the primitive rules, if the connectives

involved are assumed to be defined in terms of ¬ and ∨. An example of such a

derivation is given at the end of this section. Although these rules are mathematically

derivable from the primitive rules, Marcel sees all the rules given in this section and

the previous section as having equivalent status.

2.2.1 Conjunction Rules

(∧A):

Γ, A, B ` ∆

Γ, A ∧B ` ∆

Assume Γ, A, B ` ∆ is valid. To have all formulas in Γ and A ∧B satisfied is the

same as having all formulas in Γ, A, and B satisfied. By the validity of the premise

some formula in ∆ must then be satisfied. Hence our conclusion is valid.
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(∧S):

Γ ` A, ∆ Γ ` B, ∆

Γ ` (A ∧B), ∆

Assume Γ ` A, ∆ and Γ ` B, ∆ are valid. If we assume all formulas in Γ are

satisfied, we have two possibilities depending on whether something in ∆ is satisfied.

If something in ∆ is satisfied, then our conclusion is valid. If nothing in ∆ is satisfied,

then by the validity of the premises A must be satisfied and B must be satisfied.

Therefore A ∧ B is satisfied, and our conclusion is valid. Hence our rule is valid in

either case.

2.2.2 Implication Rules

(→ A):

Γ ` A, ∆ Γ, B ` ∆

Γ, (A → B) ` ∆

Suppose Γ ` A, ∆ and Γ, B ` ∆ are valid. Now assume all formulas in Γ are

satisfied and A → B is satisfied. We have two scenarios depending on the satisfaction

of A. If A is satisfied then B is satisfied, since A → B is satisfied. Therefore some

formula in ∆ is satisfied, by the validity of the second premise. If A is not satisfied,

some formula in ∆ must be satisfied by the validity of the first premise, since all

formulas in Γ are satisfied. Therefore Γ, (A → B) ` ∆ is a valid conclusion.
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(→ S):

Γ, A ` B, ∆

Γ ` (A → B), ∆

Assume Γ, A ` B, ∆ is valid. If we assume all formulas in Γ are satisfied, we once

again have two scenarios depending on the satisfaction of A. If A is not satisfied, then

A → B is satisfied so our conclusion is valid. If A is satisfied, then by the validity of

the premise, either B is satisfied (and therefore A → B is satisfied) or some formula

in ∆ is satisfied. Therefore our conclusion is valid.

(↔ A):

Γ ` A,B, ∆ Γ, A, B ` ∆

Γ, A ↔ B ` ∆

We assume Γ ` A,B, ∆ and Γ, A,B ` ∆ are satisfied. Now if all formulas in Γ are

satisfied and A ↔ B is satisfied, we have two possibilities depending on how A ↔ B

is satisfied. If A and B are both satisfied, then some formula in ∆ is satisfied by the

validity of the second premise. If neither A nor B is satisfied, then by the validity of

the first premise, some formula in ∆ is satisfied. Our rule is valid in either case.

(↔ S):

Γ, A ` B, ∆ Γ, B ` A, ∆

Γ ` A ↔ B, ∆

We assume Γ, A ` B, ∆ and Γ, B ` A, ∆ are valid and that all formulas in Γ are

satisfied. We have several possible scenarios depending on the satisfaction of A and

B. If both A and B are satisfied, then A ↔ B is satisfied. Likewise, if neither A nor

B is satisfied, A ↔ B is satisfied. If A is satisfied but B is not satisfied, then by the
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validity of our first premise, some formula in ∆ is satisfied. Similarly, if B is satisfied

but A is not satisfied, then by the validity of our second premise some formula in ∆

is satisfied. Therefore regardless of the satisfaction of A or B, if all formulas in Γ are

satisfied then A ↔ B or some formula in ∆ is satisfied, so our rule is valid.

2.2.3 The Cut Rule

(Cut):

Γ, A ` ∆ Γ ` A, ∆

Γ ` ∆

Assume Γ, A ` ∆ and Γ ` A, ∆ are valid. Now assume all formulas in Γ are

satisfied. Then we have two possibilities, either A is satisfied or A is not satisfied. If

A is satisfied, then some formula in ∆ is satisfied by the validity of the first premise.

If A is not satisfied then some formula in ∆ is satisfied by the validity of the second

premise and the fact that all formulas in Γ are satisfied. Therefore some formula in

∆ is satisfied independent of the satisfaction of A, so our conclusion is valid.

In practice, the Cut Rule is used to introduce a lemma (the formula represented

by A above) into a proof. If we can show that the lemma follows from our premise(s),

we are then able to include the lemma as a premise in our proof. It is a technical

result beyond the scope of this paper that the Cut Rule can be derived from the

Primitive Rules stated here. As with any of the derivable rules, all proofs using the

Cut Rule in propositional and first-order logic can also be done without the Cut Rule,

although the proofs may become much longer [1].
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2.2.4 The Antecedent Rule

(Ant):

Γ ` ∆
Γ′ ` ∆′

where Γ ⊆ Γ′ and ∆ ⊆ ∆′.

To see the validity of this rule, we assume Γ ` ∆ is valid, and assume all formulas

in Γ′ are satisfied. Then all formulas in Γ are satisfied, therefore some formula in

∆ must be satisfied. Since ∆ ⊆ ∆′, at least one formula in ∆′ must be satisfied.

Therefore Γ′ ` ∆′ is a valid conclusion.

2.2.5 Universal Quantifier Rules

(∀S):

Γ ` φ y
x
, ∆

Γ ` ∀xφ, ∆

for variable y not free in Γ, ∀xφ, or ∆.

We suppose Γ ` φ y
x
, ∆ is valid and all formulas in Γ are satisfied. Then because

our premise is valid, we can conclude that φ y
x

is satisfied or some formula in ∆ is

satisfied. If some formula in ∆ is satisfied our conclusion is clearly valid. Therefore

we consider the case that φ y
x

is satisfied but no formula in ∆ is satisfied. Because y

has been given to us arbitrarily (that is, y does not appear free in Γ, ∀xφ, or ∆) it

can be assigned any interpretation without changing the satisfaction of Γ, ∀xφ, or ∆.

Therefore we can conclude that ∀xφ must be satisfied, because φ y
x

must be satisfied

for any y given to us arbitrarily, so our rule is valid in either case.
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(∀A):

Γ, φ t
x
,∀xφ ` ∆

Γ,∀xφ ` ∆

for any term t.

We assume Γ, φ t
x
,∀xφ ` ∆ is a valid sequent, and we assume all formulas in Γ

and ∀xφ are satisfied. Because ∀xφ is satisfied, φ t
x

is satisfied for any choice of t.

Therefore by the validity of the premise, some formula in ∆ is satisfied, and our

conclusion is valid. As in (∃S) we preserve the quantified formula in the premise of

the rule so that it remains available for further instantiations without the need of

explicitly copying it.

2.2.6 A Sample Derivation

We recall the rule for an implication in the antecedent:

(→ A):

Γ ` A, ∆ Γ, B ` ∆

Γ, (A → B) ` ∆

We show a derivation for this rule using only primitive rules and the definition of

implication.

(1) Γ ` A, ∆ Premise
(2) Γ, B ` ∆ Premise
(3) Γ,¬A ` ∆ (¬A) applied to (1)
(4) Γ,¬A ∨B ` ∆ (∨A) applied to (2) and (3)
(5) Γ, A → B ` ∆ Definition of →
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Alternatively, we can present this derivation as a proof tree.

Γ ` A, ∆
(¬A)

Γ,¬A ` ∆ Γ, B ` ∆
(∨A)

Γ,¬A ∨B ` ∆
(Definition of →)

Γ, A → B ` ∆
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Chapter 3

MARCEL

3.1 Implementation of the Sequent Calculus

We present an outline of the differences between the usual notation for logic which

we have been using without comment and the formal notation expected by Marcel,

which has to adapt to the limitations of ASCII.

• Negation
¬P is written ∼P

• Binary Connectives
P1 ∨ P2 is written P1 v P2

P1 ∧ P2 is written P1 & P2

P1 → P2 is written P1 -> P2

P1 ↔ P2 is written P1 == P2

• Binary Predicates
a1 = a2 is still written a1 = a2

a1 ∈ a2 becomes a1 E a2

• Quantifiers
∀x1P1(x1) is written (Ax1.P1(x1))

∃x1P1(x1) is written (Ex1.P1(x1))

We make a technical note that the parentheses and dots in the above two

examples are mandatory for quantifiers in Marcel.
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Furthermore, when working with Marcel we use certain letters to denote certain

types of variables. P1,P2,P3,... are used to represent predicate and propositional

variables, x1,x2,x3,... represent bound variables, free variables are represented by

a1,a2,a3,... , and U1,U2,U3,... are used for unknown variables.

The sequent calculus used in Marcel is mostly standard; its details are taken from

[2], whose full system includes set theory operations not discussed here (though they

are used a little in the main proof).

3.2 Examples

3.2.1 Propositional Example

We demonstrate how to use Marcel to show that the sequent

` ((P1 ∨ P2) ∧ (P1 → P3) ∧ (P2 → P3)) → P3

where Pi is a propositional variable, is valid. We enter the proposition using the

start, or s, command. This command takes as an argument a string, which will be

the proposition we wish to begin proving.

This creates a sequent with nothing on the left and the proposition entered on the

right. Alternatively we could use the StartSequent, or ss, command which takes as

an argument two string lists, the first being the left side of the sequent we wish to

prove, the second the right side.



18

- Start "((P1vP2)&(P1->P3)&(P2->P3))->P3";

Line number 1:

|-

1: (P1 v P2) & (P1 -> P3)

& (P2 -> P3) -> P3

> val it = () : unit

-

The line > val it = () : unit is a message from the ML interpreter that can

be ignored. Continuing our proof, we use the R, or r, command which is short

for “right” and will apply the relevant rule from our sequent calculus to the first

proposition on the right side of the sequent. The r command has a variety of other

uses, including expanding definitions and acting as a done command if reflexivity of

equality applies. Here the rule (→S) is applied. We note that the r command takes

no arguments, but the formal “unit” argument, represented by (), is required by the

ML programming language.

- r();

Line number 2:

1: (P1 v P2) & (P1 -> P3)

& (P2 -> P3)

|-

1: P3

> val it = () : unit

-

The L, or l, command, which stands for “left” works similarly to the r command,

applying the appropriate rule to the first proposition on the left side of the sequent.

Here (∧ A) is applied.
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- l();

Line number 3:

1: P1 v P2

2: (P1 -> P3) & (P2 -> P3)

|-

1: P3

> val it = () : unit

-

Because l works only on the first proposition on the left side of the sequent, our

next step is to move the second proposition on the left into the first position. To

do this we use the command GetLeft, or gl, which takes as an argument the line

number of the proposition to be moved to the first position. We note that reordering

the propositions in our sequent is mathematically valid because the left and right

sides of these sequents are defined as sets of formulas and have therefore no intrinsic

order. In other sequent calculi the left and right sides of sequents are defined as lists,

and issues of reordering and copying of formulas require more attention.

- GetLeft 2;

Line number 3:

1: (P1 -> P3) & (P2 -> P3)

2: P1 v P2

|-

1: P3

> val it = () : unit

-

Now l will expand the conjunction.
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- l();

Line number 4:

1: P1 -> P3

2: P2 -> P3

3: P1 v P2

|-

1: P3

> val it = () : unit

-

Again we use l. This time the appropriate rule is (→ A). This is a branching

rule, and we are given one branch to prove first. The prover saves the other branch

which we will be asked to prove once the proof of the first branch is complete.

- l();

Line number 5:

1: P2 -> P3

2: P1 v P2

|-

1: P1

2: P3

> val it = () : unit

-

Our next goal is to move the second proposition on the left to the first position,

then apply l. This can be done in one step with the command Gl, which takes as an

argument the line number of the proposition to be rotated to the first position.
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- Gl 2;

Line number 5:

1: P1 v P2

2: P2 -> P3

|-

1: P1

2: P3

Line number 7:

1: P1

2: P2 -> P3

|-

1: P1

2: P3

> val it = () : unit

-

The command l, executed within Gl, caused Marcel to apply the rule (∨A), which

is another branching rule. The first branch we are given can be immediately seen to

be valid, so we are done with this branch of the proof. To indicate to Marcel that

this branch of the proof is complete, we issue the Done, or d, command.

- d();

Line number 8:

1: P2

2: P2 -> P3

|-

1: P1

2: P3

> val it = () : unit

-

Now we must prove the second branch that resulted from our application of the

rule (→ A). Our first move in this second branch is to use Gl to expand the second
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proposition on the left. This command causes Marcel to apply the rule (→ A) which

will create two more branches in the proof.

- Gl 2;

Line number 8:

1: P2 -> P3

2: P2

|-

1: P1

2: P3

Line number 9:

1: P2

|-

1: P2

2: P1

3: P3

> val it = () : unit

-

We are again done with this branch right away.

- d();

Line number 10:

1: P3

2: P2

|-

1: P1

2: P3

> val it = () : unit

-

This second branch is a valid sequent, but because P3 appears in the second line

on the right instead of the first the prover will not recognize the done command as
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valid. We could use gr (which works just like gl, only on the right) and then done.

A shorter way is to use Triv, a command which takes two numeric arguments m and

n and has the same net effect as gl m, gr n, done.

- Triv 1 2;

Line number 10:

1: P3

2: P2

|-

1: P1

2: P3

Line number 10:

1: P3

2: P2

|-

1: P3

2: P1

Line number 6:

1: P3

2: P2 -> P3

3: P1 v P2

|-

1: P3

> val it = () : unit

-

The final branch we are given is the second branch from when we applied the rule

(∨ A), and when we enter the Done command Marcel displays Q.E.D. to indicate

that the proof of the original sequent is complete.

- Done();

Q. E. D.

> val it = () : unit
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3.2.2 Proof of Completeness

Theorem: Our sequent calculus is complete for propositional logic. More specifically,

we are able to use a finite combination of the commands l, r, gl, and gr in

Marcel to prove any valid sequent involving only propositional letters Pi, the

logical symbol ¬, and the logical connectives ∧, ∨, →, and ↔.

Proof: Assume we have a valid sequent involving only propositional letters Pi, the

logical symbol ¬, and the logical connectives ∧, ∨, →, and ↔. The proof of

our theorem is easiest if we visualize the proof of this valid sequent as a proof

tree. We then proceed by induction on the total number of logical symbols (¬,

∧, ∨, →, and ↔) in the sequent. If our sequent has no logical symbols, only

propositional letters, we claim that it is provable by the assumption rule. If

it were not provable, it would be invalid. This is because the sequent consists

only of propositional letters; if it was not provable it must be that none of the

propositional letters appear on both the left and right sides of the sequent. We

could assign all propositional letters on the left to be true and all propositional

letters on the right to be false, a counterexample that would show the sequent to

be invalid. As our induction hypothesis we assume any valid sequent involving

only propositional letters and n logical symbols is provable. Now suppose we

have a valid sequent with only propositional letters and n + 1 logical symbols.

We use gl or gr as needed to bring a nontrivial formula to the top of our list on

either the left or the right side of the sequent, then use the l or r command to
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apply an appropriate rule from our sequent calculus. Inspection of the sequent

calculus rules for the individual logical connectives will show that applying this

rule will produce premises with one fewer logical connective than the conclusion.

This reduces the number of logical symbols in each sequent by one, though it

may generate two sequents each with the n logical symbols. (If this happens

repeatedly, the size of the proof could increase exponentially, although the proof

would still terminate after a finite number of steps.) If the rule generates only

one sequent with n logical symbols, we use our induction hypothesis to show

that this sequent is provable. Otherwise, if the rule generates two sequents each

with n logical symbols, we apply our induction hypothesis to each sequent to

show both are provable. In either case, our sequent involving only propositional

letters and n + 1 logical symbols is provable.

3.2.3 Quantifier Example

We use the prover to show that the sequent

` ∃x1(∀x2(P1(x1) → P1(x2)))

where P1 is a unary predicate, is valid. Our first step is to issue the r command which

will apply the (∃S) rule. This replaces x1 with the unknown variable U1 to which

we will later assign a value. We note that the rules for our sequent calculus require

that we name our witness when we apply the rule (∃S), but the prover gives us the
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freedom to name this witness later in the proof. This is convenient if we are unsure

at this point in the proof what would be an appropriate witness.

- s "(Ex1.(Ax2.(P1(x1) ->P1(x2))))";

Line number 1:

|-

1: (Ex1.(Ax2.P1(x1) -> P1(x2)))

> val it = () : unit

- r();

Line number 2:

|-

1: (Ax3.P1(U1) -> P1(x3))

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

> val it = () : unit

-

Applying (∀S) by using the r command again replaces x3 with the free variable a2.

- r();

Line number 3:

|-

1: P1(U1) -> P1(a2)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

> val it = () : unit

-

We issue the r command yet again to apply (→ S).
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- r();

Line number 4:

1: P1(U1)

|-

1: P1(a2)

2: (Ex1.(Ax2.P1(x1)-> P1(x2)))

> val it = () : unit

-

It is not mathematically valid to set the unknown U1 to a2 because a2 did not

“exist” when we applied the (∃S) rule. The prover recognizes this, and that the a2

was introduced into the proof after the U1 is witnessed by the higher index, which is

a nice feature if we wish to use the prover for educational purposes. Our next step

is to instantiate the existential conclusion again, followed by an application of the

(→ S) rule to get the following.

- Gr 2;

Line number 4:

1: P1(U1)

|-

1: (Ex1.(Ax2.P1(x1) -> P1(x2)))

2: P1(a2)

Line number 5:

1: P1(U1)

|-

1: (Ax3.P1(U3) -> P1(x3))

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

3: P1(a2)

> val it = () : unit

- r();
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Line number 6:

1: P1(U1)

|-

1: P1(U3) -> P1(a4)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

3: P1(a2)

> val it = () : unit

- r();

Line number 7:

1: P1(U3)

2: P1(U1)

|-

1: P1(a4)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

3: P1(a2)

> val it = () : unit

-

Now we could use the SetUnknown, or su, command to set U3 to the value a2. The

SetUnknown command takes a numeric and string argument, the numeric argument

provides the index of the unknown variable whose value we wish to set and the

string argument gives the value to which the unknown variable is to be set. We

note that the SetUnknown command fixes the value for a given unknown variable

throughout the proof, not just the current sequent. This is in contrast to most

prover commands which act only “locally” on the branch of the proof in question.

However, the prover is designed to automatically set unknown variables in cases such

as this. Here, for example, if the command Triv 1 3 is issued, the propositions

listed in positions 1 on the left and position 3 on the right are not the same, but

could be made equal with appropriate values assigned to unknown variables. The

prover recognizes this and issuing the command Triv 1 3 will cause the unknown
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variable U3 to be automatically set to the value a2, and the sequent will be accepted

as valid, thus completing the proof.

- Triv 1 3;

Line number 7:

1: P1(U3)

2: P1(U1)

|-

1: P1(a2)

2: P1(a4)

3: (Ex1.(Ax2.P1(x1) -> P1(x2)))

Q. E. D.

> val it = () : unit

-

We note that there are other situations where the prover will automatically set

unknowns: we will see two of these situations shortly. We also make a technical note

that a step involving line reordering was omitted from the above screen-shot.

3.2.4 Example from the Main Proof

For our final example we consider the proof of a lemma that was completed within

the context of our main proof, that every positive real number has a square root. In

the process of this main proof we proved several necessary background lemmas, one

of which was

` 0 < a1 → 0 <
1

2
a1

the proof of which we present here.
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We input the sequent and use the r command to expand the implication on the right.

-Start "Zero < a1 -> Zero < Half*a1";

Line number 1:

|-

1: Zero < a1 -> Zero < Half * a1

> val it = () : unit

- r();

Line number 2:

1: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

-

Intuitively our plan is obvious, if 0 < a1 multiplying both sides by 1
2

will give the

desired conclusion. A theorem concerning the monotonicity of multiplication exists

in our theory and it is this theorem we introduce. We can view this theorem, which

is called MTIMES using the ThmDisplay command, as shown below.

-ThmDisplay "MTIMES";

MTIMES:

|-

1: Zero < a3 & a1 < a2 -> a1 * a3 < a2 * a3

This theorem states that multiplying both sides of an inequality by a positive

number retains the validity of the inequality. To introduce this theorem we use the
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command ThmCut which invokes the cut rule on an instance of a theorem. Because

the theorem has already been shown to be valid, or stated as an axiom as in this case,

we are immediately able to include the theorem in our premises.

- ThmCut "MTIMES";

Line number 3:

|-

1: Zero < U2 & U3 < U4 -> U3 * U2 < U4

* U2

Line number 4:

1: Zero < U2 & U3 < U4 -> U3 * U2 < U4

* U2

2: Zero < a

|-

1: Zero < Half * a1

> val it = () : unit

-

We note that when we invoke a theorem cut, the instance of the theorem to be used

is automatically generated and proved by the system which then immediately presents

an application of the theorem. Therefore it is easy to miss the actual statement of

the theorem, seen in Line 3 above.

Our plan is to use the fact that 0 < 1
2

and 0 < a1 to conclude that 0 < 1
2
a1.

So we could use SetUnknown, or su, to set U2 to be Half, U3 to be Zero, and U4 to

a1. Having Marcel set these values for us is generally a more stable course of action

because it does not require referencing the indices of the unknown variables, which

may change if we alter anything earlier in the proof that affects the variable counters.
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We expand the theorem just introduced using r and l.

Line number 7:

1: Zero < a1

|-

1: Zero < U2

2: Zero < Half * a1

> val it = () : unit

-

At this point we can use a theorem already established in our theory that 1
2

is

positive. This theorem is called HALFPOS and we can view the specific statement of

this theorem using the ThmDisplay command.

- ThmDisplay "HALFPOS";

HALFPOS:

|-

1: Zero < Half

We invoke the theorem HALFPOS with the command UseThm, which takes a string

followed by two integer lists as arguments. The lists indicate the propositions on the

left and right of the current sequent that match the theorem to be used, and this

theorem we wish to use is named by the string. If the current sequent matches the

named theorem, it is considered proved and we move to the next branch of the proof.

To use HALFPOS, we could set U2 to be Half using the SetUnknown command. This is

not necessary however, as Marcel will recognize this implicitly if we instead just ask

it to use the theorem HALFPOS on the first proposition on the right side.
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- UseThm "HALFPOS" [] [1];

Line number 8:

1: Zero < a1

|-

1: U3 < U4

2: Zero < Half * a1

> val it = () : unit

-

Here, issuing the Done command will cause the prover to recognize that setting U3

to Zero and U4 to a1 would create a valid sequent. We issue this command, therefore

setting U3 to Zero and U4 to a1 for the remainder of the proof, and we are done with

this branch of the proof.

- d();

Line number 6:

1: Zero * Half < a1 * Half

2: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

-

The first step in getting the prover to see that this is a valid sequent is to introduce

the theorem MZERO2 which states that Zero times anything is Zero.
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- ThmCut "MZERO2";

Line number 9:

|-

1: Zero * U3 = Zero

Line number 10:

1: Zero * U3 = Zero

2: Zero * Half < a1 * Half

3:Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

Now we will implicitly set U3 to Half and use the first proposition on the left to

rewrite the second proposition on the left. The command for this rewrite is Rwl, or

rwl, which takes an integer list as an argument. If the list is empty, denoted by []

or nil, each occurrence of the left side of the first equation is replaced by the right

side. If the list is nonempty, only the occurrences indexed by the terms of the list

are replaced. We note that the first proposition on the left side of the sequent must

be an equation for this command to be used. The command Crwl, or crwl, works

as rwl, but occurrences of the right side of the first equation are replaced by the left

side of the equation. The command Rwr, or rwr, works in a similar manner to rwl,

but uses the first proposition on the left to rewrite the first proposition on the right

side of the sequent. Finally, the command Crwr, or crwr, works as rwr but rewrites

the left side of the equation to the right side 1.

1For more on the rewrite rules, see Appendix A.
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- rwl [1];

Line number 11:

1: Zero * Half = Zero

2: Zero < a1 * Half

3: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

-

Because we won’t need the hypothesis Zero * Half = Zero again for this proof,

we can discard it using PruneLeft, or pl, which takes as an argument the line num-

ber of the proposition to be pruned. There is also a PruneRight, or pr, command

which acts similarly on the right side of a sequent. We note that the PruneLeft and

PruneRight commands are the prover implementation of the Antecedent Rule from

our sequent calculus.

- pl 1;

Line number 11:

1: Zero < a1 * Half

2: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

-

Our final step is to use commutativity of multiplication, an axiom already declared

in our theory, to rewrite the left side of the sequent. The appropriate theorem to

introduce is CTIMES.
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- ThmCut "CTIMES";

Line number 12:

|-

1: U3 * U4 = U4 * U3

Line number 13:

1: U3 * U4 = U4 * U3

2: Zero < a1 * Half

3: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

We use rwl to rewrite the left side of the sequent and we have a sequent the prover

will recognize as valid if issued the Triv command.

- rwl [1];

Line number 14:

1: a1 * Half = Half * a1

2: Zero < Half * a1

3: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

- Triv 2 1;

Line number 14:

1: Zero < Half * a1

2: Zero < a1

3: a1 * Half = Half * a1

|-

1: Zero < Half * a1

Q. E. D.

> val it = () : unit

-
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Because we will need this lemma later in our proof, we wish to save it as a

theorem. To do this we use the NameSequent command, which takes as arguments

the line number of the sequent to be named and the name we wish to give to the

theorem. The command Showall, which takes no argument, allows the user to scroll

through the lines of the proof if we wish to save a slightly different version of the

sequent than the one we started with. Here, for example, we actually use line two of

the proof as the sequent to be named.

- NameSequent 2 "MHALFPOS";

MHALFPOS:

1: Zero < a1

|-

1: Zero < Half * a1

> val it = () : unit

-
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Chapter 4

THE MAIN PROOF

4.1 Basic Setup

As a basis we are given the axioms for an ordered field. From these we wish to show

that every positive real number has a square root. We recall the axioms for an ordered

field as stated in a typical analysis book [5]. The objects of this universe are called

“real numbers”.

A1: a + (b + c) = (a + b) + c for all a, b, c.

A2: a + b = b + a for all a, b.

A3: a + 0 = a for all a.

A4: For each a, there is an element −a such that a + (−a) = 0.

M1: a(bc) = (ab)c for all a, b, c.

M2: ab = ba for all a, b.

M3: a · 1 = a for all a.

M4: For each a 6= 0, there is an element a−1 such that aa−1 = 1.
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DL: a(b + c) = ab + ac for all a, b, c.

NT: The system of real numbers has more than one element.

O1: Given a and b, either a ≤ b or b ≤ a.

O2: If a ≤ b and b ≤ a, then a = b.

O3: If a ≤ b and b ≤ c, then a ≤ c.

O4: If a ≤ b, then a + c ≤ b + c.

O5: If a ≤ b and 0 ≤ c, then ac ≤ bc.

CA: Every nonempty subset S of the real numbers that is bounded above has a least

upper bound. In other words, sup(S) exists and is a real number.

In the prover we first declare several basic notions, such as the constants one

and zero, the addition operation, the less than relation, and the supremum of a set.

The command for these declarations is DeclareFunction to declare a function, or

DeclarePredicate to declare a predicate, both of which are followed by the name of

the command, then an integer list gives the relative type of the output of the function

followed by the relative types of the inputs of the function 1. This implicitly defines

1All we need to know about types here is that type n + 1 consists of sets of objects of type n, so
for example, if we take real numbers to be of type zero, sets of real numbers have type one.
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the number of arguments to be one less than the length of the list. We show the

declaration of addition:

- DeclareFunction "+" [0,0,0];

and we note the list indicates that there are two inputs, each of the same relative type

as the output. This is not the case for the supremum operation, whose declaration is:

- DeclareFunction "Sup" [0,1];

Here the list indicates that the input has a type one higher than the output, which

certainly is the case for the supremum operation as the input is a set of numbers and

the output is a number.

After the addition and multiplication functions are declared, we use the

setprecrightabove command to set the precedence of multiplication to be just above

the precedence for addition, but below all higher precedences, and for multiplication to

group to the right (addition groups to the right by default). The setprecrightabove

command takes two string arguments, the first is the operation to be given precedence

over the second. (Marcel has several other precedence-setting options as well.)

With the declarations complete, we are ready to define the axioms for an ordered

field. This is done with the Axiom command, which is followed by the name of the

axiom, then two lists of strings to be parsed as formulas, representing the left and

right side of the sequent to be declared as an axiom. Because most axioms are simply

propositions, the left side is usually an empty list denoted [] or nil, and the right
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side is a one-element list. We give as an example the axiom of associativity of addition:

- Axiom "APLUS" nil ["[a1 + a2] + a3 = a1 + a2 + a3"];

We note that Marcel requires brackets, not parentheses, to be used as grouping

symbols for objects. Parentheses are used to group statements and for argument

lists. We note also that because addition groups to the right by default, no grouping

symbols are needed on the right side of the equation.

Because Marcel is based on a logical system strong enough to show that the uni-

verse is larger than just the set of real numbers, it is necessary to include additional

axioms and add extra assumptions in certain places concerning which variables rep-

resent real numbers. We assume each of our basic operations can take any sort of

object as an argument, not just real numbers, but that these operations “coerce” the

input to a real number. Therefore the first axioms we define state that the output of

all basic operations declared above are real numbers. When we state the axioms for

an ordered field, this has the effect of minimizing the need for additional assumptions

that objects are real numbers.

We also define the relation Equal to hold if two objects are “coerced to the same

real”, that is, we say x1 Equal x2 if x1 + 0 = x2 + 0, as x1 + 0 is the real number

to which x1 is coerced, and x2 + 0 is the real to which x2 is coerced. This again

minimizes the need to insert the assumption that a given object is a real number.

After giving the axioms that the output of our operations are all real numbers,

we state the axioms for a field, most of which are formulated as given above. The
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identity laws are the only axioms for which we need the assumption that the object in

question is a real number. For example, the additive identity axiom takes the form:

Axiom "IPLUS" [nil] ["Real(a1) -> a1+0 = a1"];

The multiplicative inverse axiom uses the Equal relation and has the following form:

Axiom "INV" nil ["a1 Equal Zero v a1*Inv(a1) = One"];

Following the field axioms we state the requirement that 0 6= 1, which, in the

presence of the other axioms, is equivalent to the axiom NT stated above.

Our next step is to define the order axioms. We use the strict < relation instead

of the ≤ used in the standard axioms above, so our order axioms take on a slightly

different form. We give the axiom of irreflexivity of <:

Axiom "IRR" nil ["~ a1 < a1"];

the trichotomy axiom:

Axiom "TRI" nil ["a1 Equal a2 v a1 < a2 v a2 < a1"];

the axiom of transitivity of <:

Axiom "TRANS" nil ["a1 < a2 & a2 < a3 -> a1 < a3"];
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and the axioms of monotonicity of addition and multiplication:

Axiom "MPLUS0" nil ["a1<a2 == a1+a3 < a2+a3"];

Axiom "MTIMES" nil ["0<a3 & a1<a2 -> a1*a3 < a2*a3"];

Because of technicalities involving assumptions about real numbers, the axiom MPLUS0

is stated as a biconditional. From this we show the validity of the statement

a1 < a2 -> a1 + a3 < a2 + a3

which we name MPLUS and we often use this form within proofs.

It is a relatively simple exercise to show that this formulation of the order axioms

is equivalent to the formulation given above using ≤.

Our next step is to formally define ≤ using the DefinePredicate command, which

was also used to define Equal. This command takes four arguments, the first of which

is an integer and the last three of which are strings. The first argument gives the arity

of the predicate, the second gives the name of the predicate, the third gives the left

side of the predicate to be defined, and the fourth is the right side of the definition.

DefinePredicate 2 "<=" "x1<=x2" "x1 Equal x2 v x1<x2";

The argument "<=", which may seem redundant, is needed because the third and

fourth arguments cannot be parsed until <= is declared with the arity indicated by

the first argument.



44

Finally we give the completeness axiom in two parts:

Axiom "SUP1" nil

["(Ex1.x1 E a1) & (Ax1.x1Ea1 -> x1 <= a2) -> Sup(a1) <= a2"];

Axiom "SUP2" nil

["(Ax1.x1Ea1 -> x1 <= a2)->(Ax1.x1Ea1 -> x1 <= Sup(a1))"];

The first part states that if a set a1 is nonempty and is bounded above by a2, then

the supremum of a1 is less than or equal to the upper bound a2. The second states

that if a set a1 is bounded above by a2, then the supremum of a1 is an upper bound

for a1.

4.2 Intuitive Outline of the Main Proof

In an analysis class we might define the square root of a given positive real number

x to be r := sup({z : z2 < x}). It then remains to prove that the expected condition

r2 = x actually holds. In a typical proof of this fact we derive a contradiction from

both the possibility that r2 < x and that x < r2, thereby concluding x = r2, and

so
√

x = r. To see how these contradictions arise, assume x ∈ R, x > 0, and let

r = sup{z : z2 < x}. We first consider the case that r2 < x.

Then for all 0 < ε < r, we have r < r + ε. Therefore

r2 < x ≤ (r + ε)2
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where the second inequality comes from the fact that r = sup{z : zz < x}, and if

(r + ε)2 < x, r would not be an upper bound for {z : zz < x}. Therefore we have

0 < x− r2 ≤ 2rε + ε2

but

2rε + ε2 < 3rε

so

0 < x− r2 < 3rε

and hence

0 <
x− r2

3r
< ε

for any 0 < ε < r. From this we can conclude x−r2

3r
= 0, thus x = r2. But this is a

contradiction to our assumption that r2 < x. We can show that the case x < r2 leads

to a similar contradiction. Therefore r2 = x, and thus r =
√

x.

4.3 Outline of the Main Proof as carried out in Marcel

The proof above contains several algebraic lemmas that we understand implicitly to

be true, but that we need to prove explicitly in Marcel before we actually begin our

proof of the fact that every positive real number has a square root. These lemmas,

which include the lemma discussed above that half of any positive number is positive,
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follow relatively easily from the axioms given but are necessary to prove the main

result. Some other lemmas we proved included the results that 0x = 0, x < y if and

only if −y < −x, and if x is a real number, then 0 ≤ x2.

An interesting feature of this particular proof is that it was carried out on two

different versions of Marcel. We were able to save the theory (the lemmas and the

partial proof) from the older version and load it onto the new version to complete the

proof. We note that any commands referenced apply to the new version of Marcel,

as the old version is now obsolete. The versions of the prover differ slightly in how

lemmas are proved and introduced into the proof. In the old prover, lemmas were

proved on the side, and then introduced in the proof by using ThmCut. This occasion-

ally led to a rather fragmented main proof, as one had to stop the main proof, prove

a lemma, then run the entire proof again to get to where one needed the lemma in

the first place. The new prover has a command called CutLemma that allows the user

to prove a lemma within the main proof (any irrelevant premises and conclusions are

temporarily removed). Once the lemma has been proved, the user is taken back to

where he or she started, but the lemma is included as a hypothesis. This allows for

a better flow within the main proof, but has the drawback that if a mistake is made

in proving the lemma, one has to stop the main proof and re-run everything to be in

a position to correctly prove the lemma.
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With several lemmas at our disposal, we are ready to tackle the main proof. The

exact statement we prove is introduced by the following command:

- Start "(Ax1.Real(x1)&Zero<x1 ->(Ex2.x2*x2 = x1))";

and the outline of our proof follows the intuitive proof plan above very closely. Our

first steps are to use r and l commands to apply appropriate rules from our sequent

calculus. The prover provides the witness a1 for x1 and we provide the witness

Sup({x3 | Zero < x3 & x3*x3 < a1}) for x2. For ease of notation, we let Sup(S)

denote Sup({x3 | Zero < x3 & x3*x3 < a1}).

Our next step in the proof is to introduce the trichotomy axiom using the ThmCut

command, which give us three possibilities:

• a1 Equal Sup(S)*Sup(S)

• Sup(S)*Sup(S) < a1

• a1 < Sup(S)*Sup(S)

The first scenario is easily shown to be valid, and our next step is to derive a contra-

diction from the premise Sup(S)*Sup(S) < a1. To do this we use one of the axioms

concerning suprema: SUP2 states

(Ax1.x1Ea1->x1 <= a2) -> (Ax1.x1Ea1->x1 <= Sup(a1))

so if a set is bounded above by some a2, then the set is bounded above by its supre-

mum. Our first task then is to show that this axiom applies to our set S, so we show
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S is bounded above by a1 + One. Once we have done this, we have as a premise

that any element in S is less than or equal to Sup(S) and we are back to deriving a

contradiction. In our intuitive outline above, we showed that for any 0 < ε < r,

0 <
x− r2

3r
< ε

where r = sup{z : zz < x}. To introduce this idea of an epsilon with the prover, we

use the Cut command, and we cut on the statement

(Ax2.Zero<x2 & Real(x2) & x2 < Sup(S) ->

[a1 + Minus(Sup(S)*Sup(S))]*Inv(Three*Sup(S)) <= x2)

Because we use the cut rule, we must show we have a valid sequent with this statement

added to our premises on the left and a valid sequent with this statement included in

our conclusions on the right.

The prover first gives us the statement on the right. We use the r and l rules to

expand the quantifier, implication, and conjunctions, wherein the prover instantiates

x2 with a23. This a23 will play the role usually taken by epsilon. Referring to our

intuitive proof, we see our next goal is to show that

a1 <= (Sup(S) + a23)*(Sup(S) + a23).

To do this we again introduce the trichotomy axiom using ThmCut and derive a con-

tradiction from the case that (Sup(S) + a23)*(Sup(S) + a23) < a1. This contra-

diction comes from our premise that any element of S is less than or equal to Sup(S).
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We show that if (Sup(S) + a23)*(Sup(S) + a23) < a1, then Sup(S) + a23 is in

S, and therefore Sup(S) + a23 <= Sup(S), a contradiction.

The next possibility we face is that a1 = (Sup(S) + a23)*(Sup(S) + a23). We

use lemmas we have proved to multiply out the right side and because a23 < Sup(S)

we can conclude that a1 < a23*Sup(S) + Two*a23*Sup(S) + Sup(S)*Sup(S). From

here we use the axioms we were given and lemmas we have proved to show that

[a1 + Minus( Sup(S)* Sup(S))] * Inv(Three* Sup(S)) < a23

so our cut was valid if a1 = (Sup(S) + a23)(Sup(S) + a23). We follow a similar

path and show that our cut is valid in the case that

a1 < (Sup(S) + a23)(Sup(S) + a23).

Now we are given the statement

(Ax2.Zero<x2 & Real(x2) & x2<Sup(S) ->

[a1 + Minus(Sup(S)*Sup(S))] * Inv(Three* Sup(S)) <= x2)

as a premise, and our task is to show that our original conclusion,

Sup(S)*Sup(S) = a1

is valid. As a technical note, it was at this point in the proof that we began using

the new version of Marcel. From here we use several algebraic lemmas stating such

facts as if a quotient is zero, its numerator is zero, and a lemma concerning epsilon,

which is shown below, to complete the proof for the case Sup(S)*Sup(S) < a1.



50

- ThmDisplay "EPSLEMMA";

EPSLEMMA:

1: Zero <= a1

2: Real(a1)

3: Zero < a2

4: Real(a2)

5:(Ax1.Real(x1) & Zero < x1 & x1 < a2 -> a1 <= x1)

|-

1: Zero = a1

This lemma, a version of which is at the heart of almost all proofs involving

epsilon, says that if we have a non-negative real number a1, and for any positive real

number x1 (which for technical reasons is here bounded above by the positive real

number a2), we have that a1 ≤ x1, then we can conclude that a1 = 0.

The case a1 < Sup(S)*Sup(S) follows very closely to the first case, with a few

minor changes. The process of proving the second case went much more quickly than

the first, perhaps partially due to already having proved lemmas that applied to both

cases. While we did prove several new lemmas for the second case, they all either

were closely analogous to lemmas needed in the first case or were lemmas we really

should have proved during the first case, as they made the proof more concise.
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Chapter 5

CONCLUSIONS

5.1 Prover Use Commentary

Marcel was designed as an educational tool, and as such has many possible benefits.

One of the main concerns is how “pencil and paper” proofs compare to proofs com-

pleted using Marcel. Proofs generated through the use of a theorem prover are much

“cleaner” than hand-written proof trees. Furthermore, the use of a computer allows

students to prove much more complicated sequents than it would be feasible to prove

using hand-written proof trees. Marcel also requires a rigor that is difficult to achieve

when proofs are done using the traditional “pencil and paper”. Not only does the

prover require such rigor, but it “grades” the students’ work as they go along. If a

student successfully proves a sequent, he or she is rewarded with a “QED” from the

prover. As long as there are no bugs in the theorem prover, a student receives imme-

diate feedback as to whether or not his proof is correct. Of course, the possibility of

bugs in the software is a real issue, but one that is beyond the scope of this paper.

In fact, we found a few bugs during our main proof, all of which were quickly fixed

by Holmes.
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Using a computer to assist in proving mathematical statements may seem ques-

tionable at first, and indeed there are some areas in which the proving process using

Marcel is noticeably different than the process of writing a proof-tree by hand. The

first is in working with quantifier rules. Marcel’s automation guides the student

through the process, providing a witness automatically or requiring the user to name

a specific witness, where appropriate. With sufficient practice using Marcel, a stu-

dent should be more likely to take the correct action when dealing with quantifier

rules in a pencil and paper proof. After all, it is these hand-written proofs we hope

the prover will eventually benefit, as they make up the majority of a math student’s

proving experience.

One concept that is more difficult to keep track of during a proof using Marcel is

the results of applying branching rules. Here pencil and paper proofs have the benefit

that when a branching rule is applied, each branch is always visible on paper, although

the branches are usually dealt with individually. When a branching rule is applied

using the prover, one branch is presented for the user to work on, while the other

branch is completely out of sight until the first has been proved. Especially within

larger proofs, students are likely to forget that the second branch is still “waiting in

the wings” and may not realize why it appears when they have completed the proof

of the first branch. Marcel does provide tools for switching between branches of a

proof, although they are a bit cumbersome to use.
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The prover has a few other drawbacks, as well. There is a learning curve associ-

ated with working with Marcel for the first time, and there is a real risk that students

will struggle with learning prover commands when the goal is really for them to learn

the logic that is implemented by the prover. Another drawback is the “working back-

wards” proof-style associated with the sequent calculus. Students are often taught

that in a proof we never start with what we are trying to prove. But using the

sequent calculus that is exactly what we do: the rules are set up so that this is a

well-founded style of proving that a sequent is valid. There is the risk that students

will not recognize when this form of proof is acceptable and when it is not. Ideally

one would like to introduce the use of a theorem prover in a basic analysis class to

help students learn the structure of proofs. However, analysis has a learning curve of

its own and asking students to learn to use a system like Marcel while learning the

math implemented by the system may be more detrimental than helpful. It seems a

theorem prover would be more suitable to use in a higher-level course in logic, indeed,

that is where Marcel has been used here at Boise State.

Using Marcel in higher level classes could help students to better understand the

underpinnings of analysis. While some may argue that the prover requires rigor that

is unreasonable when working through a proof by hand, the prover provides exposure

to this sort of rigor and we hope this will make the student realize just how much we

“slide under the rug” during a typical proof in a class such as analysis. This could be
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especially useful for anyone who will later teach analysis, as the more understanding

one has of a subject, the more tools they have to teach that subject.

We were initially exposed to Marcel during the Logic and Set Theory class, Math

502, in the fall of 2006. We personally found the prover helpful in reinforcing concepts

in logic, and were intrigued enough to want to investigate further uses of Marcel.

Indeed, most classmates with whom we talked felt it benefited their understanding

of the course material. The class as a whole seemed to enjoy using Marcel, and what

better way to motivate students than with an educational tool they find to be fun?
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Appendix A

THE REWRITE RULES

To see the validity of the rewrite rules, we note that rwr and crwr are direct imple-

mentations of the (= A) rule from our sequent calculus. The rwl and crwl rules are

implementations of both (= A) and the negation rules from our sequent calculus. To

see this, take the second proposition on the left side of our sequent (the proposition

we wish to rewrite using the first proposition on the left side) and use (¬S) in reverse

to put its negation in the first position on the right (the (¬S) rule is reversible, al-

though we don’t use it that way in Marcel). We then apply rwr or crwr, which are

implementations of (= A), to rewrite the negated proposition. We can then use the

(¬A) rule to move the rewritten original proposition to the left side of the sequent.

If we then move the rewritten proposition to the second position on the left side of

the sequent, we have executed the rwl or crwl command.
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Next we give some simple examples of how the rewrite rules can be used. The

first is rwr:

Line number 2:

1: a1 = a2

|-

1: a1 + a3 = a2 + a3

> val it = () : unit

- rwr [1];

Line number 3:

1: a1 = a2

|-

1: a2 + a3 = a2 + a3

> val it = () : unit

-

We see that the the first (and only) occurrence of a1 (the left side of the first

proposition on the left side of the sequent) in the first proposition on the right side

of the sequent was replaced by a2.

The crwr command works similarly, but occurrences of the right side of the first

equation are replaced by the left side:

Line number 2:

1: a1 = a2

|-

1: a1 + a3 = a2 + a3

> val it = () : unit

- crwr [1];
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Line number 3:

1: a1 = a2

|-

1: a1 + a3 = a1 + a3

> val it = () : unit

-

Here, the first (and only) occurrence of a2 (the right side of the first proposition

on the left side of the sequent) in the first proposition on the right side of the sequent

was replaced by a1. The rwl command works much like the rwr command, but uses

the first proposition on the left side of the sequent to rewrite the second proposition

on the left side of the sequent.

Line number 3:

1: a1 = a2

2: a1 + a3 < a2 + a4

|-

1: a3 < a4

> val it = () : unit

- rwl [1];

Line number 4:

1: a1 = a2

2: a2 + a3 < a2 + a4

|-

1: a3 < a4

> val it = () : unit

-
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Likewise, the command crwl replaces occurrences of the right side of the first

proposition on the left side of the sequent by the left side of the proposition.

Line number 3:

1: a1 = a2

2: a1 + a3 < a2 + a4

|-

1: a3 < a4

> val it = () : unit

- crwl [1];

Line number 4:

1: a1 = a2

2: a1 + a3 < a1 + a4

|-

1: a3 < a4

> val it = () : unit

-

To see how the integer list argument works, we consider a few ways to rewrite the

sequent below:

1: a1 = a2

|-

1: a1 + a1 + a3 = a1 + a2 + a3
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We could use the left side of the sequent to rewrite the first occurrence of a1 on

the right side.

Line number 2:

1: a1 = a2

|-

1: a1 + a1 + a3 = a1 + a2 + a3

> val it = () : unit

- rwr [1];

Line number 3:

1: a1 = a2

|-

1: a2 + a1 + a3 = a1 + a2 + a3

> val it = () : unit

-

Or we could rewrite the second occurrence of a1.

Line number 2:

1: a1 = a2

|-

1: a1 + a1 + a3 = a1 + a2 + a3

> val it = () : unit

- rwr [2];

Line number 3:

1: a1 = a2

|-

1: a1 + a2 + a3 = a1 + a2 + a3

> val it = () : unit

-
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Or we could rewrite all occurrences of a1 on the right side of the sequent.

Line number 2:

1: a1 = a2

|-

1: a1 + a1 + a3 = a1 + a2 + a3

> val it = () : unit

- rwr [];

Line number 3:

1: a1 = a2

|-

1: a2 + a2 + a3 = a2 + a2 + a3

> val it = () : unit

-

Or, of course, we could rewrite the one occurrence of a2 on the right side of the

sequent using crwr.

Line number 2:

1: a1 = a2

|-

1: a1 + a1 + a3 = a1 + a2 + a3

> val it = () : unit

- crwr [1];

Line number 3:

1: a1 = a2

|-

1: a1 + a1 + a3 = a1 + a1 + a3

> val it = () : unit

-
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Appendix B

DECLARATIONS AND LEMMAS FOR THE MAIN

PROOF

We first give the declarations and axioms for an ordered field, noting that most of

these were actually defined using the old prover and have been changed to use the

notation of the current prover.

Primitive Notions:

DeclarePredicate "Real" [0];

DeclareFunction "Zero" [0];

DeclareFunction "One" [0];

DeclareFunction "+" [0,0,0];

DeclareFunction "*" [0,0,0];

setprecrightabove "*" "+";

DeclarePredicate "<" [0,0];

DeclareFunction "Minus" [0,0];

DeclareFunction "Inv" [0,0];

DeclareFunction "Sup" [0,1];
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Axioms:

First we define the outputs of all operations to be real numbers.

Axiom "RPLUS" nil ["Real(a1+a2)"];

Axiom "RTIMES" nil ["Real(a1*a2)"];

Axiom "RMINUS" nil ["Real(Minus(a1))"];

Axiom "RINV" nil ["Real(Inv(a1))"];

Axiom "RSUP" nil ["Real(Sup(a1))"];

The Commutative Laws:

Axiom "CPLUS" nil ["a1+a2=a2+a1"];

Axiom "CTIMES" nil ["a1*a2=a2*a1"];

The Associative Laws:

Axiom "APLUS" nil ["[a1+a2]+a3=a1+a2+a3"];

Axiom "ATIMES" nil ["[a1*a2]*a3=a1*a2*a3"];

The Distributive Law:

Axiom "DIST" nil ["a1*[a2+a3]=a1*a2+a1*a3"];

The Identity Laws:

We recall that these do not take quite the expected form due to the coercion of
arbitrary arguments to real numbers.

Axiom "IPLUS" nil ["Real(a1)->a1+0=a1"];

Axiom "ITIMES" nil ["Real(a1)-> a1*1=a1"];
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We define the relation “coerced to the same real”:

DefinePredicate 2 "Equal" "x1 Equal x2" "x1+0=x2+0";

The Inverse Laws:

Axiom "MINUS" nil ["a1+Minus(a1)=0"];

Axiom "INV" nil ["a1 Equal 0 v a1*Inv(a1)=1"];

We ensure that our model has more than one inhabitant:

Axiom "NONTRIV" nil ["~0 Equal 1"];

We give the basic properties of a strict linear order:

Axiom "IRR" nil ["~a1 < a1"];

Axiom "TRI" nil ["a1 Equal a2 v a1 < a2 v a2<a1"];

Axiom "TRANS" nil ["a1 < a2 & a2 < a3 -> a1 < a3"];

The monotonicity properties of order:

Axiom "MPLUS0" nil ["a1<a2==a1+a3<a2+a3"];

Axiom "MTIMES" nil ["0<a3 & a1<a2 -> a1*a3<a2*a3"];

We define less than or equal to:

DefinePredicate 2 "<=" "x1<=x2" "x1 Equal x2 v x1 < x2";

We give the least upper bound property in two parts:

Axiom "SUP1" nil

["(Ex1.x1 E a1) & (Ax1.x1Ea1->x1 <= a2)-> Sup(a1) <= a2"];

Axiom "SUP2" nil

["(Ax1.x1Ea1->x1 <= a2) -> (Ax1.x1Ea1->x1 <= Sup(a1))"];
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Additional terms we defined:

DefineFunction 0 "Two" "Two" "One + One";

DefineFunction 0 "Half" "Half" "Inv(Two)";

DefineFunction 0 "Three" "Three" "One + One + One";

Additional theorems we proved:

We note that a few of the first theorems were proved by Holmes as a guide for
the theorems we proved.

MPLUS:
|-

1: a1 < a2 -> a1 + a3 < a2 + a3

NULLADD:
1: Real(a1)

2: Real(a2)

|-

1: a1 + a2 = a1 == a2 = Zero

IPLUSa:
1: Real(a1)

|-

1: a1 + Zero = a1

TRIV:
|-

1: a1 = a1
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MP:
1: P1 -> P2

2: P1

|-

1: P2

RZERO:
|-

1: Real(Zero)

MZERO:
|-

1: a1 * Zero = Zero

UNIQUEINV:
|-

1:

Real(a2) & a1 + a2 = Zero -> a2 = Minus(a1)

UINV:
1: Real(a2)

2: a1 + a2 = Zero

|-

1: a2 = Minus(a1)



67

IPLUSb:
1: Real(a1)

|-

1: Zero + a1 = a1

MINUS2:
|-

1: Minus(a1) + a1 = Zero

MINUSLESS:
|-

1: a1 < a2 == Minus(a2) < Minus(a1)

EQUALITY:
1: a1 Equal a2

2: Real(a1)

3: Real(a2)

|-

1: a1 = a2

NEGINEQ:
1: a1 < Zero

|-

1: Zero < Minus(a1)

NEGCOMM:
|-

1: a1 * Minus(a2) = Minus(a1 * a2)
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DOUBLENEG:
1: Real(a1)

|-

1: Minus(Minus(a1)) = a1

TIMESDOUBNEG:
|-

1: Minus(a1) * Minus(a2) = a1 * a2

MTIMESNEG:
1: a3 < Zero

2: a1 < a2

|-

1: a2 * a3 < a1 * a3

SQUARENONNEG:
1: Real(a1)

|-

1: Zero <= a1 * a1

MZERO2:
|-

1: Zero * a1 = Zero
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EqualSymm:
1: a1 Equal a2

|-

1: a2 Equal a1

REALONE:
|-

1: Real(One)

NOTBOTH:
1: a2 < a1

2: a1 < a2

|-

NOTBOTH2:
1: a1 Equal a2

2: a1 < a2

|-

NOTBOTH3:
1: a2 < a1

2: a1 Equal a2

|-

ZEROLESSONE:
|-

1: Zero < One
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SubLemma:
|-

1: a1 * a2 = [a1 + Zero] * a2

SquareOrder1:
1: a1 < a2

2: Zero < a1

3: Zero < a2

|-

1: a1 * a1 < a2 * a2

SquareOrder:
|-

1: Zero < a1 & Zero < a2

-> (a1 < a2 ==

a1 * a1 < a2 * a2)

LESSTYPE:
|-

1: a1 + Zero < a2 + Zero -> a1 < a2

LESSTYPEa:
1: a1 + Zero < a2 + Zero

|-

1: a1 < a2

RETRACT:
|-

1: [a1 + Zero] + Zero = a1 + Zero
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DIST2:
|-

1: [a1 + a2] * a3 = a1 * a3

+ a2 * a3

TYPECONVERT:
|-

1: a1 * One = a1 + Zero

MPLUSCONV:
1: a1 + a3 < a2 + a3

|-

1: a1 < a2

POSINV:
1: Zero < a1

|-

1: Zero < Inv(a1)

SomethingLess:
|-

1: a1 + Minus(One) < a1

SOMETHINGBIGGER:
|-

1: a1 < a1 + One
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RTWO:
|-

1: Real(Two)

RHALF:
|-

1: Real(Half)

TWOPOS:
|-

1: Zero < Two

HALFPOS:
|-

1: Zero < Half

TWOHALVES:
|-

1: Half + Half = One

MHALFPOS:
1: Zero < a1

|-

1: Zero < Half * a1
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HalfLess:
1: Zero < a1

2: Real(a1)

|-

1: Half * a1 < a1

SQPOS:
1: Zero < a1

|-

1: Zero < a1 * a1

SquareOrder2:
1: a1 * a1 < a2 * a2

2: Zero < a1

3: Zero < a2

|-

1: a1 < a2

SqLemma:
1: Zero < a1

2: Real(a1)

|-

1: a1 < [a1 + One] * [a1 + One]
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EPSLEMMA:
1: Zero <= a1

2: Real(a1)

3: Zero < a2

4: Real(a2)

5: (Ax1.

Real(x1) & Zero < x1 & x1 < a2 -> a1 <= x1)

|-

1: Zero = a1

FOIL:
|-

1: [a1 + a2] * [a1 + a2] = a1 * a1 +

Two * a1 * a2

+ a2 * a2

SupLemma:
1: Real(a1)

2: Zero < a1

|-

1: (Ex2.x2 E {x3|Zero < x3 & x3 * x3 < a1})

HALFTWO:
|-

1: Half * Two = One
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ORDERLEMMA1:
1: Zero < a1

2: a1 < a2

|-

1: a1 * a1 + Two * a1 * a2 + a2

* a2 < a1 * a2

+ Two * a1

* a2 + a2 * a2

THREEPOS:
|-

1: Zero < Three

TIMESPOS:
1: Zero < a1

2: Zero < a2

|-

1: Zero < a1 * a2

LIKETERMS1:
1: Real(a1)

|-

1: a1 + Two * a1 = Three * a1
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BDED:
1: Real(a1)

2: Zero < a1

|-

1: (Ax5.

x5 E {x7|Zero < x7 & x7 * x7 < a1}

-> x5 <= a1 + One)

SUPPOS:
1: Real(a1)

2: Zero < a1

|-

1: Zero < Sup({x77|Zero < x77 & x77 * x77 < a1})

ZPROD:
1: Real(a2)

2: a1 * a2 = Zero

3: Real(a1)

|-

1: a1 = Zero

2: a2 = Zero
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ZFRAC:
1: Zero < a1

2: Zero =

[a1 + Minus(

Sup({x77|Zero < x77 & x77 * x77 < a1})

* Sup({x78|

Zero < x78 & x78 * x78 < a1}))] * Inv(Three

* Sup({x79|

Zero < x79 & x79 * x79 < a1}))

3: Real(a1)

|-

1: Zero = a1 + Minus(

Sup({x77|Zero < x77 & x77 * x77 < a1})

* Sup({x78|

Zero < x78 & x78 * x78 < a1}))

EQSUPa1:
1: Real(a1)

2: Zero = a1 + Minus(

Sup({x78|Zero < x78 & x78 * x78 < a1})

* Sup({x79|

Zero < x79 & x79 * x79 < a1}))

|-

1: a1 =

Sup({x78|Zero < x78 & x78 * x78 < a1})

* Sup({x79|

Zero < x79 & x79 * x79 < a1})
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NEGINEQ2:
1: Zero < a181

|-

1: Minus(a181) < Zero

SUPMINUSPOS:
1: a181 < Sup({x81|Zero < x81 & x81 * x81 < a1})

|-

1: Zero <

Sup({x81|Zero < x81 & x81 * x81 < a1})

+ Minus(a181)

SUBLESS:
1: Zero < a181 * a181

|-

1: Two *

Sup({x106|Zero < x106 & x106 * x106 < a1})

* a181

+ Minus(a181 * a181) < Two *

Sup({x107|Zero < x107 & x107

* x107 < a1}) * a181

ADDEQ:
1: a1 = a2

|-

1: a1 + a3 = a2 + a3
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ZFRAC2:
1: Zero < a1

2: Zero = [

Sup({x151|Zero < x151 & x151 * x151 < a1})

* Sup({x152|

Zero < x152 & x152 * x152 < a1})

+ Minus(a1)] * Inv(Two

* Sup({x153|Zero < x153 &

x153 * x153 < a1}))

3: Real(a1)

|-

1: Zero =

Sup({x151|Zero < x151 & x151 * x151 < a1})

* Sup({x152|

Zero < x152 & x152 * x152 < a1})

+ Minus(a1)

EQSUPa12:
1: Real(a1)

2: Zero =

Sup({x151|Zero < x151 & x151 * x151 < a1})

* Sup({x152|

Zero < x152 & x152 * x152 < a1})

+ Minus(a1)

|-

1:

Sup({x151|Zero < x151 & x151 * x151 < a1})

* Sup({x152|

Zero < x152 & x152 * x152 < a1}) = a1




