
Documentation for marcel.sml

M. Randall Holmes

December 2, 2015

Contents

1 Version Notes 3

2 Introduction 3

3 The Language: Parsing, Display, Declarations 4
3.1 Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Set Theory and Defined Notions 10
4.1 The Stratification Algorithm . . . . . . . . . . . . . . . . . . . 12

5 Proof Trees and The Logic of Propositions 13
5.1 Sequents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Proof Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Sequent Rules in General . . . . . . . . . . . . . . . . . . . . . 16
5.4 Specific Sequent Rules: Connectives . . . . . . . . . . . . . . . 16
5.5 Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 Left rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 Right rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Variables and Substitution 18

7 More Sequent Rules 19
7.1 Rules for Quantifiers . . . . . . . . . . . . . . . . . . . . . . . 19

7.1.1 Left Rules . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.2 Right Rules . . . . . . . . . . . . . . . . . . . . . . . . 20

1



7.1.3 Comments on Quantifier Rules . . . . . . . . . . . . . 20
7.2 Rules for Membership . . . . . . . . . . . . . . . . . . . . . . 20

7.2.1 Left Rule . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2.2 Right Rule . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.3 Rules for Equality . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3.1 Left Rule . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3.2 Right Rule . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3.3 Comments on Equality Rules . . . . . . . . . . . . . . 21

7.4 Global Substitution, manual and automatic . . . . . . . . . . 21

8 Proving and Using Theorems 22

9 Cut and “Theorem Cut” 22

10 The Theorem List and Reading Saved Proofs 23

11 Alternative Logics 23

12 Future Developments 24

13 Examples of Use of Marcel 24

14 Command Reference 36
14.1 Commands Listed Alphabetically . . . . . . . . . . . . . . . . 36
14.2 Commands in Categories by Function . . . . . . . . . . . . . . 44

14.2.1 Prover Settings . . . . . . . . . . . . . . . . . . . . . . 44
14.2.2 Declaring Primitives and Syntax . . . . . . . . . . . . . 44
14.2.3 Axioms, Definitions, and Theorems . . . . . . . . . . . 46
14.2.4 Proof Manipulations . . . . . . . . . . . . . . . . . . . 47
14.2.5 Starting and Finishing Sequents . . . . . . . . . . . . . 48
14.2.6 Sequent Manipulations . . . . . . . . . . . . . . . . . . 49
14.2.7 Lists and Displays . . . . . . . . . . . . . . . . . . . . 51
14.2.8 History . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
14.2.9 Loading and Saving . . . . . . . . . . . . . . . . . . . . 53

2



1 Version Notes

Sept. 8, 2011: This is the manual of December 15 2010 with version notes
section added. The September 8th version of the Marcel source mod-
ifies the behavior of OneConclusion mode so that it actually has no
conclusion when proving a contradiction, but the display shows an il-
lusory ⊥ (the absurd) as the conclusion. In this version (for class use)
OneConclusion is the default mode.

2 Introduction

This file is the manual for the software implemented in the file marcel.sml

which is in turn a reimplementation of the older version of the same concept
found in marcelsequent.sml.

The program is a proof editor and checker implementing an extension
of a sequent calculus first brought to my attention by Marcel Crabbé (after
whom it was named) in his paper [?], in which he gives a semantic proof of
cut-elimination for it. The sequent calculus is an implementation of Quine’s
set theory New Foundations with no extensionality. The consistency of New
Foundations remains an open problem, but the consistency of New Founda-
tion without the axiom of extensionality was shown by Jensen in [?], in which
he actually showed the consistency of the stratified comprehension axiom of
NF with the weak form of extensionality which requires that two objects
with elements must be equal if they have the same elements. Marcel Crabbé
himself showed that NF with no extensionality axiom at all (which he calls
SF) interprets NFU, so SF and NFU have the same strength. This is the
same level of strength as Zermelo set theory with bounded quantification in
set definitions; this is more than adequate for all of mathematics except the
higher reaches of set theory (and can readily be made much stronger).

We found it easier to understand the point of the work of Crabbé on
sequent calculus with a concrete implementation of the sequent calculus in
question at hand. In the process of implementing it, we adjoined equality
(basically by defining x = y as (∀z.x ∈ z ≡ y ∈ z)) and adjoined the weak
extensionality of NFU. We do not know if the system augmented with the
weak extensionality rule enjoys cut elimination.

At the same time, we discovered the charm of the implementation of mere
logic found in sequent calculus. We have now used the logical component of

3



the theorem prover (touching very briefly if at all on the set theory) to teach
logic at the undergraduate level and beginning graduate level several times,
with noticeable success. We have directed a master’s thesis in which an el-
ementary result of real analysis was shown using the prover. We wrote an
unsuccessful grant proposal seeking support for a research project investi-
gating the application of this system to education, and will attempt this
again.

The original implementation marcelsequent was not designed to have
quite the scope that its latest version attempts to cover, and the structure
of the code was beginning to resemble patches on patches, so we decided to
reimplement it from the bottom up in an organized fashion, and, at the same
time as producing a better structured piece of software, produce adequate
documentation. While in general terms the new prover is quite similar to the
old one, it does not run its script files; however, it is possible to save theory
files (including detailed proofs) to the new prover which were made under
the latest version of the old prover.

3 The Language: Parsing, Display, Declara-

tions

The original version marcelsequent of this prover had a rather limited nota-
tion. It had natural notation for propositional connectives, quantifiers, and
set-builder notation {x | φ}. There was provision for user-declared and de-
fined predicates and functions (the latter including constants): to make the
parser simple, all predicates were strings of lower-case letters starting with #

and all functions (and constants) were strings of lower-case letters starting
with *. Predicates and functions were always prefix (as #predicate(arg1,arg2),
*function(arg1,arg2,arg3),*constant). During the fall of 2006, when I
was using the prover with graduate students in the logic and set theory
course, I updated the prover to support a notation similar to what is found
here, but this was done by installing a postprocessor on top of the original
notation, and the resulting parsing process was rather unstable.

Here we describe the language of the new version marcel.sml.

3.1 Tokens

A string to be parsed is broken into tokens.

4



These can be categorized as follows:

parentheses and brackets: (, ), [, ], { ,}. It is useful to note that paren-
theses are used to enclose terms denoting propositions and to enclose
argument lists, while brackets are used to enclose terms denoting ob-
jects for purposes of grouping. [a+b]+c is well formed and (a+b)+c is
not (if + is declared as an infix operator on objects (a binary function).
Braces are used only in set notation.

other special characters: ∼ (the sign of negation); . (separates the head
from the rest of the expression in expressions with variable binding);
|, same as . but only in set notation, , (the comma), separates items
in argument lists and pair notation. These characters have only the
indicated role and cannot appear as part of any identifier (except the
quoted strings, not yet implemented).

identifiers: These are of two shapes. An alphanumeric identifier consists of
0 or 1 capital letters, followed by any number of lower case letters (0
is possible), followed by any number of digits (0 is possible). Identi-
fiers consisting of a single letter (upper or lower case) followed by 1 or
more digits have reserved meaning (cannot be declared). An identifier
cannot consist of two letters (the first being either upper or lower case)
followed by 1 or more digits; the parser breaks this into the initial let-
ter followed by a term of the reserved form. Two letter identifiers not
followed by digits are all right. Identifiers can also be strings of special
characters other than the ones reserved above. The empty string is not
an identifier. A further kind of special identifier, not yet implemented,
will be the theorem name: this will be an arbitrary string beginning
and ending with " (and not containing any intermediate occurrences
of this character). This is the only kind of identifier which can (will)
contain the double quote.

note on whitespace: spaces and carriage returns are construed as whites-
pace, which has no role except to prevent adjacent identifiers from being
concatenated.

The meanings of the single-character special tokens of the first two classes
are fixed. The meanings of some identifiers are reserved. Some reserved
identifiers have overloaded uses; no user declared identifier can be overloaded
except as noted under the first heading.

5



p1, p2: The projection operators for the pair.

x1,x2,x3...: Bound object variables.

a1,a2,a3...: Free object variables.

U1,U2,U3...: Unknown object variables.

P1,P2,P3...: Predicate and propositional variables.

R1,R2,R3...: Predicate and propositional variables (binary infix form).

F1,F2,F3...: Function variables (not yet implemented).

I1,I2,I3...: Infix variables (binary infix form of function variables, not yet
implemented).

&, v, ->, ==, <-, =/=: Propositional connectives.

=, E: Binary predicates of equality and membership.

A, E: Universal and existential quantifiers (these are binders). Notice that
E is overloaded: users cannot similarly overload declared or defined
notations.

:: This is a special infix operator which enables restriction of complex binders
to sets. It can be used only in very restricted ways (it can only appear
as the top level infix of the head of a variable binding expression). It
is intended that this will eventually be freely usable inside expressions
built with variable binding operations.

There are two types of term: terms denoting propositions and terms
denoting objects. Identifiers whose meaning is not reserved can be declared
as operators or as binders. Operators and binders are further subdivided
semantically by the types of their inputs and outputs and syntactically in
that those of arity 0 are constants (and so show no argument lists) and
those of arity 2 are expressed using infix notation (with user-defined operator
precedence).

Operators are of three kinds, connectives, predicates and functions. No
overloading other than that already found among the reserved identifiers is
allowed.

6



Connectives take propositional input and give propositional output: there
is no provision for user definition or declaration of connectives, so the binary
propositional connectives shown above (and the special negation operator)
are the only connectives. Infix notation is the only notation supported.

Predicates take object input and give propositional output. There are
reserved predicates = and E of equality and membership as noted above. Any
predicate has fixed arity. Users can both declare and define new predicates.

Functions take object input and give object output. There are reserved
functions p1 and p2 declared above. The pair operation is in internal respects
a reserved function of arity 2 but has different syntax. Similar remarks apply
to the projected but not yet implemented operation of function application.
Numerals are reserved constants (functions of arity 0). Quoted strings (theo-
rem names) are reserved constants as well. Users can both declare and define
new functions.

Binders are of three kinds, quantifiers, set binders, and function binders.
It will be possible for users to define binders of all three kinds, but this is
not yet supported.

The quantifiers A (universal quantifier) and E (existential quantifier) are
primitives of the prover. Sentences are of the form (B term.prop) where B

is the binder, term stands for an object term (usually but not always simply
a bound variable) and prop stands for a proposition term.

Set binders take proposition input and give object output [B term.prop]

is an object term if B is a set binder). The set binder {term|term} is internally
a set binder, but has special syntax.

Function binders take proposition input and give object output [B term.term]

is an object term if B is a function binder; note the use of brackets). The
lambda binder [L term . term] is implemented in the latest version.

3.2 Syntax

Syntax of argument lists: A string obtained by concatenating a sequence
of one or more object terms, separating them with commas ,, prepend-
ing (, and postpending ), is an argument list.

Syntax of object terms: brackets: If term is a term then [term] is a
term (with the same denotation; this is used for grouping). If
term1,. . .,termn are terms, then [term1,...,termn] is a term

7



(ordered n-tuple). The n-tuple [term1,...,termn] for n > 2 is
actually the same as the pair [term1,[term2,...,termn]].

function binder term: If term1 is an object term (often just a single
bound variable) and term is an object term, and B is a function
binder token, then [B term1.term] is an object term.

set term: If term1 is an object term (often just a single bound vari-
able) and prop is a proposition term, then {term1 | term} is an
object term.

set binder term: If B is a set binder token, term1 is an object term
(often just a single bound variable) and prop is a proposition term,
then [B term1.term] is an object term.

function variable term: (not yet implemented) If n is a numeral and
(...) is an argument list, then Fn(...)) is an object term. It
is intended that Fn(t1,t2) will be displayed as t1 I1 t2 (which
last will also be a parsable form).

prefix term: If f is a function token of arity 0, then f is an object term
(a constant). If f is a function token of arity n and (t1,...,tn)

is an argument list of length n then f(t1,...,tn) is an object
term. If n = 2, the parser will accept the term, f(t1,t2), but it
will be displayed as t1 f t2.

pair: If the parentheses in an argument list are replaced by [ and ],
the result is a tuple term. Tuples of the form [x1,[x2,x3]] are
displayed as [x1,x2,x3] (as noted above under brackets).

infix term: If term1 is a term and term2 is a term, and i is a function
token of arity 2, then term1 f term2 is an object term.

variables: If n is a numeral, then xn, an and Un are variables of various
sorts (bound, free, and unknown, respectively).

operator precedence: Every infix operator (connective or function,
but they act in separate domains) is assigned an integer prece-
dence, which can be freely set by the user using commands ex-
plained below (and can be harmlessly reset during prover ses-
sions). The default precedence is 0, and precedences are always
non-negative. Higher precedences bind more tightly than lower
ones; even precedence group to the right and odd ones to the left.
The user commands are set up so that users do not need to be
aware of these numbers.

8



Syntax of proposition terms:

Parenthesis: If prop is a proposition term, then (prop) is a proposition
term with the same denotation. This is used for grouping.

Quantifier term: If term1 is an object term (often a single bound variable)
and prop is a proposition term, and B is a quantifier token, then (B

term1.prop) is a proposition term. At the moment A and E are the only
supported quantifiers, but user-defined binders will be implemented.

Negation: If prop is a proposition term, then ∼prop is a proposition term.

Connective: If o is a connective token, and prop1 and prop2 are proposition
terms, then prop1 o prop2 is a proposition term. No provision is made
for declaration or definition of additional connectives.

Note on operator precedence: Precedence for the connectives is preset,
and though it can be reset by the user this is not recommended.

Propositional and predicate variables: If n is a numeral, then Pn is a
propositional term (propositional variable). If (...) is an argument
list, then Pn(...) is a propositional term (with variable predicate).
Pn(t1,t2) is accepted by the parser but displayed as t1 Rn t2, which
is also a parsable form.

Prefix: If q is a predicate token of arity 0, then q is a propositional term
(defined constant proposition). If q is a predicate token of arity n and
(t1,...,tn) is an argument list of length n, then q(t1,...,tn) is a
propositional term. If n = 2, q(t1,t2) is accepted by the parser but
stored and displayed as the infix term t1 q t2.

Infix: If term1 is an object term, term2 is an object term, and q is a pred-
icate token of arity 2, it follows that term1 q term2 is a proposition
term.

Restriction term: If term2 is an object term and term3 is an object term,
it follows that term2 : term3 is an object term, but such a term
may only appear in the role term1 in the definitions of quantifiers, set
binder terms, sets, and function binder terms: in all other positions the
colon is treated as an undeclared identifier. It is intended to allow : to
appear in more general contexts but only in heads of binder terms.

9



It is important to notice that the parser relies in handling identifiers
on declarations of their type and arity, so there is no separate process of
declaration checking: what is not defined or declared is also not parsable.
This was not the case with the old prover, though it began to be true in the
latest versions.

4 Set Theory and Defined Notions

We next consider the declaration and definition of identifiers. This requires
some understanding of the set theory in which we work.

The default set theory for this prover (it will be possible to set it to
alternative theories, including something more like the standard ZFC) is
the version of Quine’s New Foundations with weak extensionality (we are
permitted to have many objects with no elements; objects with some elements
are equal if they have the same elements).

New Foundations is not actually a typed theory but it is best understood
initially via a typed theory. The types in the related type theory are indexed
by the natural numbers. Type 0 is inhabited by unanalyzed individuals.
Type 1 is inhabited by sets of type 0 objects. Type 2 is inhabited by sets of
type 1 objects. In general, type n+ 1 is inhabited by sets of type n objects.

Further, we stipulate that the two projections of an ordered pair are the
same type as the pair (which means that our pair is not the usual Kuratowski
pair, which does make sense in this type theory but is two types higher than
its projections).

Objects in NFU do not actually have types. In NFU, the requirement
is more subtle: any definition of an object (by set builder notation or by
the definition commands) should have the property that all variables in the
definition can be consistently assigned types (constants are allowed to be
assigned multiple types, because a constant is presumed to have analogues
in each type).

A predicate declaration is of the form
DeclarePredicate q [t1,...,tn] where [t1,...,tn] is a list of n in-

tegers: the predicate declared has the name q and has arity n, with its first
argument assigned type t1, its second argument type t2, and so forth. (In a
particular context, the arguments will be typed with a fixed offset i: the type
of the nth argument will be tn+i). For example, a declaration of membership
E (it is predeclared) is of the form

10



DeclarePredicate E [0,1]

which tells us that E is a binary predicate whose second argument is always
one type higher than its first argument (but the types of the arguments in a
specific context might be 16 and 17 rather than 0 and 1).

A function declaration is of the form
DeclareFunction f [t0,t1,...,tn]. Here t0 is the type to be assigned

to the whole term when the arguments are assigned types t1,...,tn, and
again all of these types may be offset by a fixed amount. If Sing(x1) is the
singleton operation, then the type list would be [1,0], because the singleton
is one type higher than its sole element (its argument in the syntax). But the
type of a particular singleton term might be 5 and the type of its argument
4.

Definition commands are of the following forms.
DefinePredicate n "q" "q(x1,...xn)" P

and
DefineFunction n "f" "f(x1,...xn)" T

The arguments are, in order, the arity of the token to be declared, the
token to be declared, the left side of the definition with bound variable pa-
rameters, and the right side of the definition. The prover will type check the
definition; if the term type checks the prover will automatically generate the
type information for this token (we do not have to supply it as we did for
declarations); if it does not type check the definition still succeeds and can
be used in certain contexts, but it cannot be used inside any set expression
or set binder or function binder expression (at least, not effectively). The
prover will say something like Stratification error in this case.

The best approach for the naive user is probably to take the position that
we are really reasoning in type theory and so that a definition that does not
type correctly (is not stratified) is a failed definition.

An example of a definition which does not type correctly is the definition
n ∪ {n} of the successor in the usual set theory, in which n appears with
two different types (as an element of the given set and as an element of an
element of the given set: so if the set were assigned type i, then n would be
assigned type i− 1 and type i− 2, which is a conflict).

When user defined binders are introduced, some commentary will be
added here. Binders do have a relationship to stratification: in the current
implementation, the only term binder construction is the set construction,
and it is sufficient to note that a set notation is one type higher than the
variable bound in it.

11



4.1 The Stratification Algorithm

In this section, we describe the stratification (typability) algorithm of the
prover. The stratification algorithm assigns a type to each object term which
contains a bound variable. If it is unable to assign types, it issues an error
message. We will discuss below the occasions on which it is invoked.

The types are represented internally by pairs of integers (m,n) which may
best be read as tm + n where tm is an unknown type. To add a contant i to
tm + n yields tm + (n+ i). If we discover that tm + n and tr + s are the same
type, where r < m, then we record the identification of tm with tr + (s− n),
and retype the term with type tm + n to have type tr + s. In the future, any
term with type tm + k is automatically retyped with type tr + (k + (s− n)).
These identifications may be chained: the type assigned to any term has the
minimum possible unknown type index. If m = r and n = s, nothing is done;
if m = r and n 6= s a type error is reported.

Each primitive predicate and most defined predicates have a prescribed
template of types for their arguments: these are relative, in the sense that a
fixed offset may be added to all of the types. If a sentence predicate(t1,...tn)
is typed, and the type of argument i of predicate is xi, and each argument
ti has been assigned type yi based on its internal structure, we choose a
fresh unknown type tj and unify the types yi with the corresponding types
tj +xi. A primitive predicate term is treated similarly, except that a type x0
is assigned to the whole term function(t1,...tn) as well as to the argu-
ments ti and the type tj + x0 needs to be unified with any type y0 assigned
to the whole term on the basis of its context, in addition to the unifications
of the types yi assigned to its arguments with the corresponding types tj +xi
for 1 ≤ i ≤ n.

Defined predicates and functions are assigned vectors of types (for their
arguments and for the term itself in the case of functions) if the definition of
the term is stratified. If a definition cannot be stratified, it follows that the
defined predicate or function cannot be used effectively in variable binding
contexts.

Binders are treated similarly: there are fixed displacements between the
types assigned to the head, body, and whole term of a binding expression in
case any of these are terms. As always, types are not assigned to propositions.

The stratification algorithm is invoked when a sentence t ∈ {x | ...x...}is
to be converted to ...t...: the prover only allows this substitution if the
term {x | ...x...} is stratified.

12



marcel.sml has a much better and more easily understood stratification
algorithm than marcelsequent.sml did: the implementation of the algo-
rithm loosely described above is fairly simple.

5 Proof Trees and The Logic of Propositions

In this section we start to introduce the basic mechanics of our logic.

5.1 Sequents

A sequent is a pair of finite lists of propositions. A sequent is valid if any
assignment of values to variables appearing in the sequent which makes all
the propositions on the left true also makes at least one of the sequents on
the right true. Another way of putting it is that any assignment of values to
variables in the sequent makes something on the left false or something on
the right true (or both).

A sequent is usually written

P1, P2, . . . ` Q1, Q2, . . .

. In the prover, this is displayed vertically:

13



1. P1

2. P1

...

|-

1. Q1

2. Q2

...

When operating the prover, one is usually viewing a sequent which one is
attempting to show to be valid. What one proves in the end is that a sequent
is valid. Notice that to say that P is a theorem is the same as to say that
` P (a sequent with the empty list on the left and the one element list with
just P on the right) is valid.

To begin a proof one can type
StartSequent L M

where L and M are lists of proposition terms, to prove the sequent with L

as left list and M as right list, or
Start P

where P is a proposition term, which is the same as the StartSequent
comand with L the empty list nil and M the list [P].

For concreteness we present two examples:
Start "a1=a1";

and
StartSequent ["P1","P1->P2"] ["P2"];.

5.2 Proof Trees

A (partial) proof of a sequent S is one of three things:

a theorem reference: The pair of S and (the name of) a theorem (already

14



proved valid sequent) of which S is an instance is a proof of S. This is
written in the form (S, ref(thm)).

a proof tree: The pair of S and a list of partial proofs of statements Ti
such that validity of all of the Ti’s entails validity of S immediately (by
some rule of our logic).

triviality: This is actually a special case of the previous: the pair (S, []) of
S and the empty list is a proof of S if the validity of S is obvious (by
some rule of our logic).

goal: (T, goal) is a partial proof of T ; this is just a hope that we can find a
proof.

Clearly a partial proof of S which contains no goals (in the natural sense)
is a proof of S.

A partial proof of S is a tree structure (a proof tree) in which the root is
S and the leaves are the theorem references, trivialities, and any remaining
goals. In any proof under marcel, the user is viewing the leftmost leaf of a
proof tree: the proof tree is always automatically reordered to put a goal in
leftmost position if there is a goal anywhere in the tree (and if there is no
goal we are done: we have a proof of the sequent originally entered).

The operations carried out on the proof tree are of the following kinds.
A goal (S, goal) may be replaced with (S, L) where L is a list of goal proofs
of statements from which S can be deduced by a rule of our logic. There will
be more discussion below of the forms of sequent rules. A goal (S, goal) may
be replaced with (S, nil) if S is “obviously” true or by (S, ref(thm)) if S is
an instance of the theorem “thm”: in either of these cases, the proof tree will
then be automatically reordered to present another goal in leftmost position.
The goal (S, goal) may be replaced with (S ′, goal) where S ′ is obtained
from S by reordering and/or omitting propositions in the left and right lists
of S. Finally, global substitutions can be made for the unknown variables Un.
The last command differs from the others in having an effect on the entire
proof, not a single goal. The NextGoal command allows the user to cycle
through all the goals in the proof: to decide what global substitution might
be best might require that more than one goal be examined; the SwapGoals

command cycles through subgoals near the current goal (it is used where the
default order in which a sequent rule presents subgoals is for some reason
undesirable).

15



5.3 Sequent Rules in General

What is missing from the abstract account above is a description of the
rules by which validity of sequents may be recognized or deduced from the
postulated validity of other sequents.

The issue of when a sequent is an instance of a theorem will be discussed
later.

Sequents are regarded as trivial under two circumstances: a sequent
A,P2, P3, . . . ` A,Q2, Q3 . . . is recognized as valid (when the user issues the
Done command) and a sequent P1, P2, . . . ` A = A,Q2, Q3 . . . is recognized
as valid when the omnibus r command (the general command for applying
a sequent rule on the right) is issued. Identity of terms up to renaming of
bound variables is recognized.

It is a general feature of sequents that if A ` B is a valid rule, so is
Γ ∪ A ` B ∪ ∆. Sequent rules inherit a similar feature: if the validity of
A ` B can be inferred from the validity of A1 ` B1, . . . , Ai ` Bi, then the
validity of A ∪ Γ ` B ∪ ∆ can be inferred from the validity of A1 ∪ Γ `
B1∪∆, . . . , Ai∪Γ ` Bi∪∆, and we regard this as an application of the same
rule. Most of the rules we use apply to a single proposition in the sequent,
either the first on the left side or the first on the right, and the rest of the
sequent is copied into the generated premise or into each of the generated
premises. The exceptions are the triviality rule which compares the first
terms on both sides and the rules for rewriting, which allow an equation in
the first position on the left to rewrite either the second proposition on the
left or the first proposition on the right.

So with each basic logical operation (connective or quantifier) two rules
are associated, a left rule and a right rule. Some alternatives and refine-
ments are provided, especially in connection with equality, and there are the
additional rewrite rules as well.

5.4 Specific Sequent Rules: Connectives

We give left rules and right rules for the commonly used connectives, exclud-
ing converse implication and xor. The notations Γ and ∆ represent arbitrary
finite sets of propositions. The sentence closest to the turnstile on the right
or left is the first sentence in the right or left list in the prover’s presentation.
The premise on the left is the one which is presented first by the prover when
the rule is applied.

16



In the old prover marcelsequent the biconditional was handled by defi-
nitional expansion; here a little more work is done by the prover so a proof
involving a biconditional has fewer steps.

In our experience the rule which it is somewhat difficult to get used to is
the left rule for implication, though with a little thought it can be seen to
express the rule of modus ponens .

5.5 Axiom

Γ, A`A,∆

5.6 Left rules
Γ`A,∆

Γ,¬A`∆

Γ, A,B `∆

Γ, A ∧B `∆

Γ, A`∆ Γ, B `∆

Γ, A ∨B `∆

Γ`A,∆ Γ, B `∆

Γ, A→ B `∆

Γ, A→ B,B → A`∆

Γ, A ≡ B `∆

5.7 Right rules

Γ, A`∆

Γ`¬A,∆
Γ`A,B,∆
Γ`A ∨B,∆

Γ`A,∆ Γ`B,∆
Γ`A ∧B,∆

Γ, A`B,∆
Γ`A→ B,∆

Γ, A`B,∆ Γ, B `A,∆
Γ`A ≡ B,∆

17



6 Variables and Substitution

There are four kinds of variables in the language of marcel, and a fifth (func-
tion variables) may be introduced in the future. The predicate/proposition
variables Pn and the unimplemented function variables Fn will not be men-
tioned in this section. The three sorts of variable that are mentioned in this
section have in common that they refer to objects rather than propositions,
predicates, or formal operations (whose ontological status is more vexed).

These three kinds of variable are the bound variables x1,x2,x3..., the
free variables a1,a2,a3..., and the unknown variables U1,U2,U3....

Our approach to bound and free variables in the old version marcelsequent

was influenced by our pleasure with the discovery that the usual notion of a
free occurrence of a bound variable in an expression could be entirely avoided
in the treatment of substitution by aggressively renaming bound variables.
However, marcel allows more complex variable binding expressions and it
turns out that the concept of free occurrence of a bound variable in a subex-
pression becomes very difficult to avoid in this more complex context (and
we broke down and used it).

In marcelsequent, where an occurrence of a bound variable was simply
a typographical occurrence, there was no requirement that terms entered to
the prover have all bound variables actually bound in the usual sense: in
marcel it is forbidden to enter a term at the top level which contains an
occurrence of a bound variable which is free in the usual sense.

We look at the details of the definition of substitution of a term T for
a variable v (free, bound or unknown) in a variable binding context (∀U.V )
(the head binder U is permitted to be a complex term; there is nothing spe-
cial about the universal quantifier here, which is just given as an example
of a binding construction). Other clauses of the definition of substitution
are uncomplicated and are not presented in detail here. The general no-
tation for simultaneous replacement of variables vi with terms Ti in W is
W [T1/v1, . . . , Tn/vn]. (∀U.V )[T/v] is defined as
(∀U [y1/x1, . . . , yn/xn].V [y1/x1, . . . , yn/xn][T/v]) where the xi’s are all the
bound variables distinct from v which occur free in U (similarly if there
are multiple Ti’s and vi’s the xi’s are the bound variables free in U which do
not occur among the vi’s) and the yi’s are new bound variables (not found
anywhere in the context). Notice that the notion of free occurrence of a
bound variable is only important here for occurrences of variables in binders,
as other problems with variable capture are avoided by aggressive renaming

18



of binding variables before substitutions are carried out.
The odd thing here is that in a binder (∀x.T ) all typographical occur-

rences of the variable x in T are bound by this binder, which will cause
certainly oddly written quantifier or other variable binding expressions to
have different meanings than expected. There is a reason for this: look at
the example (∀x.|{y + x | y ∈ A}| = |A|). Here we want the variable x to
be treated as a constant in the subexpression {y + x | y ∈ A} (we want it to
stand for all sums of elements of A and x, not all sums of two elements of
A). The convention we have adopted here seems to be the simplest one that
allows us to use the full expressive power of binding with complex terms as
binders.

7 More Sequent Rules

For conventions on how rules are to be read in general, see the section on
sequent rules for connectives above. It is also important to note that when
rules are applied to equations, definitional expansions are carried out on both
sides of the equation, and when rules are applied to membership statements,
definitional expansions are carried out on the right side, and any further op-
portunities to apply rules after definitional expansion are taken immediately
(including further definitional expansions!).

In the rules which follow, if φ is a formula, φ[t/x] is taken to represent
the result of substituting the term t for the variable x in φ.

7.1 Rules for Quantifiers

7.1.1 Left Rules

Γ, φ[t/x], (∀x.φ)`∆

Γ, (∀x.φ)`∆

where t is any term

Γ, φ[a/x]`∆

Γ, (∃x.φ)`∆

where a is a variable not appearing in the conclusion

19



7.1.2 Right Rules

Γ`φ[a/x],∆

Γ` (∀x.φ),∆

where a is a variable not appearing in the conclusion

Γ`φ[t/x], (∃x.φ),∆

Γ` (∃x.φ),∆

where t is any term

7.1.3 Comments on Quantifier Rules

In the quantifier rules, we have retained the quantified sentence from the
conclusion in the premise. This is so that we can avoid formalizing notions
of copying and reordering formulas in sequents: a quantified formula may
be reused several times in a proof, and if it were erased by the application
of the rule we would need to copy it explicitly. Another advantage is that
it preserves precise equivalence of the conclusion with the conjunction of all
the premises, which is a feature of all the sequent rules of Marcel.

The rules requiring input of a new variable a supply a computer-generated
variable. In the original version of this prover, the rules involving a new term
t were implemented by separate commands with the term t as a parameter.
In the current version, the computer supplies a new “unknown variable”
which can subsequently be replaced by a term: the advantage is that the
same command can then handle all basic sequent rules.

7.2 Rules for Membership

7.2.1 Left Rule

Γ, φ[t/x]`∆

Γ, t ∈ {x | φ} `∆

when φ is stratified

7.2.2 Right Rule

Γ`φ[t/x],∆

Γ` t ∈ {x | φ},∆
when φ is stratified

20



7.3 Rules for Equality

7.3.1 Left Rule

Γ, φ[u/x][t/y], t = u`ψ[u/x][t/y],∆

Γ, φ[t/x][u/y], t = u`ψ[t/x][u/y],∆

7.3.2 Right Rule

Γ` t = t,∆

This is an axiom: it requires no premises

Γ` (∃x.x ∈ t), t = u,∆ Γ` (Ax.x ∈ t↔ x ∈ u), t = u,∆

Γ` t = u,∆

7.3.3 Comments on Equality Rules

In the earliest versions of the prover, equality was handled by definitional
expansion: t = u was defined as (∀x.t ∈ x ↔ u ∈ x). This was used as the
left rule; the right rule looked like the second right rule here but with t = u
replaced in the premises by (∀x.t ∈ x↔ t ∈ y). This is sufficient to support
rewriting (as in the left rule given) but it is somewhat awkward.

The second rule implements the weak extensionality of NFU . This is an
extension of the logic of the prover not found in SF , and is the reason that
we do not know whether this logic has cut elimination.

t = u is retained in premises in all rules. In the left rule it is retained
because the equation may be used to rewrite again. In the right rule it is
retained because it may actually not be possible to prove t = u by the weak
extensionality rule.

The actual implementations of the equality rules do not necessarily ex-
actly resemble what is given here, but the implementations are justified by
these rules.

7.4 Global Substitution, manual and automatic

The left rule for the universal quantifier and the right rule for the existential
quantifier require input of a specific term t. What the prover actually supplies
is an unknown variable Un with a fresh index (belonging to the same series
of indices as those on the free variables an introduced by the left existential
and right universal rules).

21



The SetUnknown command allows the user to set the unknown variable
to a particular term. There is a restriction on what terms can replace an
unknown variable: the term must have been definable at the time that the
unknown variable Un was generated, so it cannot contain any free or unknown
variables with index higher than n.

The prover also automatically makes substitutions for Un’s under certain
circumstances. Under most circumstances in which two terms are to be
matched (as in checking whether a sequent is an axiom or whether a theorem
or a rewrite rule applies) if the prover can make the match work by assigning
specific terms to the Un’s (with the same restrictions indicated above) it will
do so.

An advantage of this approach are that it enables one to delay the choice
of a witness: the later progress of the proof may make it more evident what
witness will work.

8 Proving and Using Theorems

When a sequent has been proved, one can view all sequents in the proof
using the Showall command. Each sequent has a program-generated serial
number. Each sequent in the proof is valid: the sequent with serial number
n can be recorded as a theorem using the command NameSequent (Prove)

n <name>.
Whenever a match can be established between a theorem and a subse-

quent of the current sequent, this means that the current sequent is valid.
The command UseThm <name> L1 L2, where L1 and L2 are lists of numbers,
invites the prover to test that the sequent made of the left formulas of the
current sequent with indices listed in L1 and the right formulas of the current
sequent with indices listed in L2: if a match is found (which may be forced
by setting unknown variables to specific terms) the current sequent is proved
(and a reference to that theorem is placed in the proof tree).

9 Cut and “Theorem Cut”

The Cut Rule

Γ`A,∆ Γ, A`∆

Γ`∆

22



is clearly valid. It is different from the other rules: the other rules in-
volve simplification of the conclusion in some sense, while this one involves
introduction of a completely new formula A.

Pragmatically, the Cut Rule is indispensible. It represents the process
of introducing a lemma in order to prove a theorem. Theoretically, it is
interesting that the Cut Rule is redundant in something very like our full
logic (we do not know whether this remains true when the weak extensionality
axiom is implemented).

A powerful extension of Cut is implemented by the prover’s ThmCut com-
mand. This command takes the name of a theorem as a command and
generates a number of sequents, one a copy of the theorem with all free
variables replaced by unknown variables (so they can later be instantiated)
which is of course valid and is immediately proved, and the others, one for
each left formula of the modified theorem with that formula added to the
current sequent on the right, and one for each right formula of the modified
theorem with that formula added to the current sequent on the left.

10 The Theorem List and Reading Saved Proofs

The prover allows one to view proofs: it converts the internal representation
of proof trees into a theoretically human readable (though intensely boring)
format. The Showall command will show the proof of a theorem just proved
(or indeed an incomplete proof in progress).

Where a proof reference is involved, the prover in its default state will
present the proof of the referenced theorem (proofs are stored on the theorem
list), so that the Showall command will show the complete proof from first
principles. The nolemmas command will turn off the display of proofs of
theorems. An option to refrain from storing proofs of theorems might be
appropriate if membory were very limited, but is not currently provided.

11 Alternative Logics

Some alternative logics are provided and more are projected.
The Constructive command implements constructive (intuitionistic) logic.

We found it very interesting how easy it was to implement this. The imple-
mentation amounts to ensuring that whenever a rule is applied, all formulas

23



on the right after the first one are eliminated (if a sequent generates more
than one alternative conclusion, all are preserved so that the user can move
the desired one to the first position before applying the next rule, which will
eliminate the second and later alternatives). In addition, implications and
negations are preserved on the left when the left rules for these operators
are applied (so that they can be expanded multiple times). This precisely
implements a constructive logic.

A logic equivalent to the usual logic of the prover is turned on by the
OneConclusion command (and turned off by the ManyConclusions com-
mand. This option eliminates the alternative conclusions in a nondestructive
way: each alternative conclusion after the first is negated and moved to the
front, after each rule is applied. The difference between this and the usual
handling of sequents by the prover is purely one of style, but may be appre-
ciated by some users.

A planned alternative implementation is one which uses something more
like standard set theory (Zermelo or Zermelo-Frankel set theory).

Other set theories, such as positive set theory or the double extension set
theory of Kisielewicz could be implemented.

12 Future Developments

13 Examples of Use of Marcel

We give some sample proofs. The Start command takes as its parameter
notation for a theorem to be proved.

- Start "P1&P2->P3==P1->P2->P3";

Line number 1:

|-

1: P1 & P2 -> P3 == P1

-> P2 -> P3

24



> val it = () : unit

What is displayed at each step of a Marcel proof is a sequent. The display
is vertical rather than horizontal: the formulas “left” of the turnstile are listed
above and those “right” of it below.

r();

Line number 2:

1: P1 & P2 -> P3

|-

1: P1 -> P2 -> P3

The r command applies an appropriate rule to the first formula in the
list below the turnstile. The sequent displayed here is not the only sequent
generated: another sequent is also generated, and when the proof of this
sequent is complete Marcel will automatically present the other one.

- r();

Line number 4:

1: P1

2: P1 & P2 -> P3

|-

1: P2 -> P3

25



- r();

Line number 5:

1: P2

2: P1

3: P1 & P2 -> P3

|-

1: P3

The right rule is applied twice (in both cases the quite natural rule for
proving an implication). No complex proposition remains in first position in
either list. So we change the order.

- gl 3;

Line number 5:

1: P1 & P2 -> P3

2: P2

3: P1

|-

1: P3

Line number 6:

1: P2

2: P1

26



|-

1: P1 & P2

2: P3

The command gl 3 brings the third proposition in the left list to the
front. The l command applies an appropriate sequent rule determined by
the first formula in the left list. In this case as in the case of the first rule
application, two sequents are generated and the other is reserved by the
prover to be displayed for proof later.

- r();

Line number 8:

1: P2

2: P1

|-

1: P1

2: P3

The rule application here creates two sequents. We will very shortly see
the other one.

- gl 2;

Line number 8:

1: P1

2: P2

27



|-

1: P1

2: P3

- Done();

Line number 9:

1: P2

2: P1

|-

1: P2

2: P3

When the formula P1 is brought to the head of the left list by the gl 2

command, the sequent becomes trivially valid by the Axiom rule, since the
first formula on each list is now the same as the first formula on the other
list. The Done command causes Marcel to acknowledge this. The formula
which now appears is the other sequent produced by the recent application
of the conjunction rule, to which Done can immediately be applied:

- Done();

Line number 7:

1: P3

2: P2

3: P1

|-

1: P3

28



The sequent which appears now is deferred from the application of the
left rule of implication earlier. We can apply Done.

- Done();

Line number 3:

1: P1 -> P2 -> P3

|-

1: P1 & P2 -> P3

The converse implication which we still need to prove to complete the
proof of the biconditional theorem is now displayed.

- r(); l();

Line number 10:

1: P1 & P2

2: P1 -> P2 -> P3

|-

1: P3

Line number 11:

1: P1

2: P2

3: P1 -> P2 -> P3

|-

1: P3

29



If it is clear what to do we can as here issue several commands at once.
Again, we need to bring line 3 on the left to the front of the list.

- gl 3; l();

Line number 11:

1: P1 -> P2 -> P3

2: P1

3: P2

|-

1: P3

Line number 12:

1: P1

2: P2

|-

1: P1

2: P3

We apply Done and are served another sequent generated by the above
application of the left rule for implication.

- Done();

Line number 13:

1: P2 -> P3

2: P1

3: P2

|-

30



1: P3

We apply l to the only complex proposition we see.

- l();

Line number 14:

1: P1

2: P2

|-

1: P2

2: P3

The rest is proof of simple sequents using Done.

- gl 2; Done();

Line number 14:

1: P2

2: P1

|-

1: P2

2: P3

Line number 15:

1: P3

31



2: P1

3: P2

|-

1: P3

Done();

Q. E. D.

The final message Q. E. D. tells us that Marcel finds no unproved se-
quent goals in the current proof tree, so the proof of the original theorem is
complete.

Now we give an example from the logic of quantifiers.

- Start "(Ex1.(Ax2.P1(x1)->P1(x2)))";

Line number 1:

|-

1: (Ex1.(Ax2.P1(x1) -> P1(x2)))

- r();

Line number 2:

|-

1: (Ax3.P1(U1) -> P1(x3))

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

The right rule for the existential quantifier allows the substitution of any
term for the bound variable in the quantified sentence. Marcel introduces
a special “unknown variable” U1 here: the user may immediately or later

32



select a value for an unknown variable (which will replace all occurrences of
that variable throughout the proof, not just in the sequent currently being
proved). Oddly, U1 is never replaced by anything in this particular proof.

- r();

Line number 3:

|-

1: P1(U1) -> P1(a2)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

The right rule for the universal quantifier simply replaces the bound vari-
able by a fresh free variable.

- r();

Line number 4:

1: P1(U1)

|-

1: P1(a2)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

- su 1 "a2";

Circularity error

<hit enter>

Here an attempt is made to replace the unknown variable U1 with the
fresh variable a2. This is not logically valid (thus the error message). U1 can
only be replaced with a term which is meaningful in the context at which
the unknown variable was originally introduced: no free variable or unknown
variable with a higher index than n − 1 can appear in a term which is to
replace Un.

33



- Gr 2;

Line number 4:

1: P1(U1)

|-

1: (Ex1.(Ax2.P1(x1) -> P1(x2)))

2: P1(a2)

Line number 5:

1: P1(U1)

|-

1: (Ax3.P1(U3) -> P1(x3))

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

3: P1(a2)

The command Gr n is a macro, equivalent to gr n; r(); Note that we
use the existential conclusion again, giving an example of re-use of existential
conclusions justifying the fact that they are retained when the appropriate
rule is applied.

- r();

Line number 6:

1: P1(U1)

|-

1: P1(U3) -> P1(a4)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

3: P1(a2)

34



- r();

Line number 7:

1: P1(U3)

2: P1(U1)

|-

1: P1(a4)

2: (Ex1.(Ax2.P1(x1) -> P1(x2)))

3: P1(a2)

- su 3 "a2";

Line number 7:

1: P1(a2)

2: P1(U1)

|-

1: P1(a2)

2: P1(a4)

3: (Ex3.(Ax4.P1(x3) -> P1(x4)))

- Done();

Q. E. D.

It is possible to replace U3 with a2 as it was not possible to replace U1.
This makes it possible to convert the sequent to a form which is trivially
valid.

35



14 Command Reference

14.1 Commands Listed Alphabetically

AutoPrune: No arguments. Remove redundant propositions from the cur-
rent proof (propositions not used in the proofs of completed parts).

Axiom: A string argument followed by two string list arguments. The first
argument is the name of the axiom to be recorded. The sequent to be
declared an axiom has as its left side the list of terms represented by the
strings in the first list and as its right side the list of terms represented
by the strings on the right side.

b: No arguments. Abbreviation for Undo.

bookmark: One string argument. Assigns the string identifier which is the
argument as a name for the sequent being viewed in the current proof.
Bookmarks are not yet remembered by b/undo, saved by savetheory, or
recorded in proof logs. Eventually they will be so remembered, saved
and recorded.

Constructive: No arguments. Puts the prover in constructive logic mode
(by restricting the use of more than one conclusion).

Crwl (crwl): An integer list argument. Rewrite the second proposition on
the left side of the current sequent with the first proposition on the
left side of the current sequent (which needs to be an equation). If
the argument is the empty list, all occurrences of the right side of the
rewriting equation are to be replaced with occurrences of the left side.
If the argument is a nonempty list, the occurrences of the right side of
the equation indexed by the terms of that list are written.

Crwr (crwr): An integer list argument. Rewrite the first proposition on
the right side of the current sequent with the first proposition on the
left side of the current sequent (which needs to be an equation). If
the argument is the empty list, all occurrences of the right side of the
rewriting equation are to be replaced with occurrences of the left side.
If the argument is a nonempty list, the occurrences of the right side of
the equation indexed by the terms of that list are written.

36



Cut (Cutr): A single string argument. Applies the cut rule to the current
sequent. The argument is the cut proposition. The sequent with the
argument on the right is to be proved first.

Cut2 (Cutl): A single string argument. Applies the cut rule to the current
sequent. The argument is the cut proposition. The sequent with the
argument on the left is to be proved first.

CutLemma: One string argument. Applies the cut rule to the current se-
quent with modifications. The argument is a single proposition. The
two sequents produced are (presented first) a sequent with just the ar-
gument appearing on the right and (presented second) a sequent looking
like the original sequent but with the argument proposition added on
the right. The intention is to support proving a lemma while embedded
in a larger proof; if the lemma is to be put on the theorems list, we
suggest immediately using the bookmark command.

Declarefunction (DeclareFunction): a string argument followed by an
integer list argument. Declare a primitive function or constant. The
string is the name of the new function or constant. The integer list
consists of the relative type of the output of the function followed by
the relative types of its inputs (and so implicitly gives the number of
arguments, which is one less than the length of the list).

Declarepredicate (DeclarePredicate): a string argument followed by an
integer list argument. Declare a primitive predicate. The string is the
name of the new predicate and the list gives the relative types of its ar-
guments for stratification (implicitly giving the number of arguments).

Definefunction (DefineFunction): an integer argument followed by three
string arguments. Define a function or constant. The first argument is
the arity of the new operation (0 for a constant). The second argument
is the name of the new operation. The third argument is the left side of
the definition (the name followed by a list of distinct bound variables;
an infix expression will work if there are two arguments). The fourth
argument is the right side of the definition. Stratification information
is generated automatically (or failure is reported, in which case the
operation is still defined but its use is restricted).

37



Definepredicate (DefinePredicate): an integer argument followed by three
string arguments. Define a predicate or sentence. The first argument is
the arity of the new predicate (0 for a sentence). The second argument
is the name of the new predicate. The third argument is the left side of
the definition (the name followed by a list of distinct bound variables;
an infix expression will work if there are two arguments). The fourth
argument is the right side of the definition. Stratification information
is generated automatically (or failure is reported, in which case the
predicate is still defined but its use is restricted).

DefSent: Two string arguments: the first string is the name of the new
sentence and the second is its intended meaning.

Done (d): No arguments. If the first formulas on the left and right sides of
the current sequent are equivalent up to renaming of bound variables,
prove the current sequent (and automatically pass to another branch
of the proof if it is not complete). In marcel387, experimental version
of March 3, 2009, also works for reflexivity of equality: this upgrade
should be expected for the official version as well.

GetLeft (gl): One integer argument. Rotate the proposition on the left side
of the current sequent indexed by the argument to the first position.

GetLeft2 (gl2): One integer argument. Rotate the proposition on the left
side of the current sequent indexed by the argument to the second
position, leaving the first proposition in place.

GetProof: One string argument. Set the current proof to the recorded proof
of the theorem named by the argument. The application is to extract
sequents as new theorems (since the proof of a theorem is complete we
can’t change it).

GetRight (gr): One integer argument. Rotate the proposition on the right
side of the current sequent indexed by the argument to the first position.

GetRight2 (gr2): One integer argument. Rotate the proposition on the
right side of the current sequent indexed by the argument to the second
position, leaving the first proposition in place.

Gl: One numerical argument. Equivalent to GetLeft n followed by l().

38



Gr: One numerical argument. Equivalent to GetRight n followed by l().

L (l): No arguments. Apply the left rule appropriate to the form of the
leading proposition on the left to the current sequent.

loadtheory: One string argument name. Load the theory saved in name.thy1

and name.thy2.

LogProof: One string argument. Record the proof of the theorem named
by the argument to the current log file.

LogTheProof: No arguments. Record the current partial proof in the log
file.

Look: No arguments. Show the current sequent.

ManyConclusions: No arguments. Turns off the mode introduced by OneConclusion.

NameSequent (namesequent,Prove,prove): Integer argument followed
by string argument. The sequent in the current proof with the given
index is recorded as a theorem with the given string as its name.

NextGoal (ng, nextgoal): No arguments. Go to the next goal in the proof
tree in a rather complex order guaranteed to traverse the entire tree
but in which goals are sometimes repeated before traversal is complete.

nolemmas: No arguments. Turn off the display of proofs of theorems used
in displayed proofs.

NoRemember (noremember): No arguments. Turn off the history fea-
ture.

OneConclusion: No arguments. Turns on a mode where the logic remains
classical but multiple conclusions are not used (they are negated and
moved to the left).

Prove (prove): This is an alias for NameSequent.

ProveMarked: Two string arguments. The first argument is a bookmark
(see bookmark). The sequent referenced by the bookmark argument is
recorded as a theorem if it has in fact been proved, with name given
by the second argument.

39



PruneLeft (pl): One integer argument. Rotate the left proposition indexed
by the argument to the front then remove it.

PruneRight (pr): One integer argument. Rotate the right proposition in-
dexed by the argument to the front then remove it.

Remember (remember): No arguments. Turn on the history feature.

R (r): No arguments. Apply the right rule appropriate to the form of the
leading proposition on the left to the current sequent.

RewriteFree (rf): The leading proposition on the left should be an equa-
tion with a free variable on one or both sides. If the two sides of the
equation are the same free variable, drop the proposition. If they are
both free variables, rewrite the higher indexed one to the lower indexed
one through the entire sequent, then drop the proposition. If only one
side is a free variable, and the other side does not contain that vari-
able, rewrite all occurrences of the free variable to the other side of the
equation, then drop the equation. If the free variable is contained in
the other side of the equation, issue an error message.

runscript: One string argument. Adds the extension .mlg to the string
argument and runs this script file. Will look in a working directory set
by SetDir.

runtext: One string argument. Adds the extension .txt to the string ar-
gument and runs this script file. Will look in a working directory set
by SetDir.

Rwl (rwl): One integer list argument. As Crwl, but rewrite the left side of
the equation to the right side.

Rwr (rwr): One integer list argument. As Crwr, but rewrite the left side
of the equation to the right side.

savetheory: One string argument name. Store the current theory to files
name.thy1 and name.thy2.

SetDir: One string argument. Sets a working directory (in which runscript

and runtext will look for files).

40



SetMargin: One integer argument. Set the margin at which the display
breaks lines.

setprecleftabove (Spla): Two string arguments. Set the precedence of the
infix named by the first string to be just above the precedence of the
infix named by the second string and below all higher precedences, and
set it to group to the left.

setprecleftbelow (Splb): Two string arguments. Set the precedence of
the infix named by the first string to be just below the precedence of
the infix named by the second string and above all lower precedences,
and set it to group to the left.

setprecleftmax (Splx): One string argument. Set the precedence of the
infix named by the first string to be maximal, and set it to group to
the left.

setprecleftmin (Spln): One string argument. Set the precedence of the
infix named by the first string to be minimal and set it to group to the
left.

setprecrightabove (Spra): Two string arguments. Set the precedence of
the infix named by the first string to be just above the precedence of
the infix named by the second string and below all higher precedences,
and set it to group to the right.

setprecrightbelow (Sprb): Two string arguments. Set the precedence of
the infix named by the first string to be just below the precedence of
the infix named by the second string and above all lower precedences,
and set it to group to the right.

setprecrightmax (Sprx): One string argument. Set the precedence of the
infix named by the first string to be maximal, and set it to group to
the left.

setprecrightmin (Sprn): One string argument. Set the precedence of the
infix named by the first string to be minimal and set it to group to the
left.

41



setprecsame (Sps): Two string arguments. Set the precedence of the infix
named by the first string to be the same as the precedence of the infix
named by the second string.

SetPredVar (sp): Integer argument followed by string argument. Where n
is the integer argument and S is the string argument, globally replace
propositions of the form Pn(t1,...,tn) with propositions [t1,...,tn]
E S. In other words, globally interpret the predicate variable Pn as the
relation with extension S.

SetUnknown (su): Integer argument followed by string argument. Where
n is the numeral argument, globally replace Un with the term repre-
sented by the string argument as long as it refers to no Um or am with
m ≥ n. This affects the entire current proof, not just the sequent you
are looking at.

Showall (showall): No arguments. Show the current partial proof of the
current sequent. Hit return between sequents.

Showalltheorems: No arguments. Show all theorems; hit return between
theorems.

Showaxioms: No arguments. Show all axioms; hit return between theo-
rems.

Showcurrent: No arguments. Show the list of theorems in use in the current
proof; hit return between theorems.

showlemmas: No arguments. Turn on the feature which displays proofs of
theorems used in the current proof as part of the whole proof (on by
default).

ShowMarked: One string argument. The argument is a bookmark (see
bookmark). The command allows one to view the part of the proof at
and above the bookmarked sequent.

Showpropdefs: No arguments. Show all predicate and sentence definitions.

Showtermdefs: No arguments. Show all function and constant definitions.

42



Start (s, start): One string argument. Reset the current sequent to the
sequent with nothing on the left and the proposition represented by
the string on the right.

startdemo: No arguments. Start demo mode (displays commands in a file
and their effects with pauses).

startlogging: One string argument name. Start logging prover commands
and error messages to the file name.mlg.

StartSequent (ss): Two string list arguments. Set the current sequent to
the lists of propositions represented by the lists of string arguments: the
first argument is the left side of the sequent and the right argument is
the right side of the sequent.

stopdemo: No arguments. Stop demo mode.

stoplogging: Stop recording to the log file started by startlogging.

SwapGoals (swapgoals, sg): No arguments. Interchange the order of the
two or more goals just created by a rule application. This allows proof
using the conclusion of an implication before the proof of its hypothesis,
for example. If there are more than two goals, they are rotated. If the
command is used not in the immediate aftermath of a rule application,
it will cycle through a few goals in a local area of the proof.

ThmCut: One argument, the name of a theorem. Creates a new sequent
for each proposition in the theorem, replacing all free variables in the
theorem with unknowns. Each hypothesis needs to be proved and each
conclusion can then be used. The hypotheses are proved first. Swap-
Goals can be used to rotate through the list of goals created.

ThmCut2: One argument, the name of a theorem. Creates a new sequent
for each proposition in the theorem, replacing all free variables in the
theorem with unknowns. Each hypothesis needs to be proved and each
conclusion can then be used. The conclusions are used first. SwapGoals
can be used to rotate through the list of goals created.

ThmDisplay (td): One string argument. Display the theorem named by
the argument.

43



Triv: Two integer arguments. Triv m n has the effect of GetLeft m; GetRight

n; Done().

Undo (undo, b): No arguments. Back up one step in the current proof.
The steps are not always whole user commands: for example it steps
through individual substitutions for Ui’s when these have been made
automatically.

UseThm: A string argument followed by two integer list arguments. The
string argument names a theorem; the integer lists indicate the propo-
sitions on the left and right which match it: if the match is verified,
the current sequent is proved.

Witness (w): Integer argument followed by string argument. As SetUnknown
except that the index of the unknown variable replaced is the global
free/unknown variable counter, plus one, minus the integer argument.
r() or l() followed by w 1 term has roughly the effect of w term in
marcelsequent.

14.2 Commands in Categories by Function

14.2.1 Prover Settings

These are settings of the prover which change the logic. Currently these are
not handled carefully by the scripting functions.

Constructive: No arguments. Puts the prover in constructive logic mode
(by restricting the use of more than one conclusion).

ManyConclusions: No arguments. Turns off the mode introduced by OneConclusion.

OneConclusion: No arguments. Turns on a mode where the logic remains
classical but multiple conclusions are not used (they are negated and
moved to the left).

14.2.2 Declaring Primitives and Syntax

These commands declare primitive identifiers (without definitions) and set
operator precedences.

44



Declarefunction (DeclareFunction): a string argument followed by an
integer list argument. Declare a primitive function or constant. The
string is the name of the new function or constant. The integer list
consists of the relative type of the output of the function followed by
the relative types of its inputs (and so implicitly gives the number of
arguments, which is one less than the length of the list).

Declarepredicate (DeclarePredicate): a string argument followed by an
integer list argument. Declare a primitive predicate. The string is the
name of the new predicate and the list gives the relative types of its ar-
guments for stratification (implicitly giving the number of arguments).

setprecleftabove (Spla): Two string arguments. Set the precedence of the
infix named by the first string to be just above the precedence of the
infix named by the second string and below all higher precedences, and
set it to group to the left.

setprecleftbelow (Splb): Two string arguments. Set the precedence of
the infix named by the first string to be just below the precedence of
the infix named by the second string and above all lower precedences,
and set it to group to the left.

setprecleftmax (Splx): One string argument. Set the precedence of the
infix named by the first string to be maximal, and set it to group to
the left.

setprecleftmin (Spln): One string argument. Set the precedence of the
infix named by the first string to be minimal and set it to group to the
left.

setprecrightabove (Spra): Two string arguments. Set the precedence of
the infix named by the first string to be just above the precedence of
the infix named by the second string and below all higher precedences,
and set it to group to the right.

setprecrightbelow (Sprb): Two string arguments. Set the precedence of
the infix named by the first string to be just below the precedence of
the infix named by the second string and above all lower precedences,
and set it to group to the right.

45



setprecrightmax (Sprx): One string argument. Set the precedence of the
infix named by the first string to be maximal, and set it to group to
the left.

setprecrightmin (Sprn): One string argument. Set the precedence of the
infix named by the first string to be minimal and set it to group to the
left.

setprecsame (Sps): Two string arguments. Set the precedence of the infix
named by the first string to be the same as the precedence of the infix
named by the second string.

14.2.3 Axioms, Definitions, and Theorems

These commands define things, whether predicates, functions or theorems.
bookmark is a bit of a stretch but it was unclear where else to put it.

bookmark: One string argument. Assigns the string identifier which is the
argument as a name for the sequent being viewed in the current proof.
Bookmarks are not yet remembered by b/undo, saved by savetheory, or
recorded in proof logs. Eventually they will be so remembered, saved
and recorded.

Axiom: A string argument followed by two string list arguments. The first
argument is the name of the axiom to be recorded. The sequent to be
declared an axiom has as its left side the list of terms represented by the
strings in the first list and as its right side the list of terms represented
by the strings on the right side.

Definefunction (DefineFunction): an integer argument followed by three
string arguments. Define a function or constant. The first argument is
the arity of the new operation (0 for a constant). The second argument
is the name of the new operation. The third argument is the left side of
the definition (the name followed by a list of distinct bound variables;
an infix expression will work if there are two arguments). The fourth
argument is the right side of the definition. Stratification information
is generated automatically (or failure is reported, in which case the
operation is still defined but its use is restricted).

46



Definepredicate (DefinePredicate): an integer argument followed by three
string arguments. Define a predicate or sentence. The first argument is
the arity of the new predicate (0 for a sentence). The second argument
is the name of the new predicate. The third argument is the left side of
the definition (the name followed by a list of distinct bound variables;
an infix expression will work if there are two arguments). The fourth
argument is the right side of the definition. Stratification information
is generated automatically (or failure is reported, in which case the
predicate is still defined but its use is restricted).

DefSent: Two string arguments: the first string is the name of the new
sentence and the second is its intended meaning.

NameSequent (namesequent,Prove,prove): Integer argument followed
by string argument. The sequent in the current proof with the given
index is recorded as a theorem with the given string as its name.

Prove (prove): This is an alias for NameSequent.

ProveMarked: Two string arguments. The first argument is a bookmark
(see bookmark). The sequent referenced by the bookmark argument is
recorded as a theorem if it has in fact been proved, with name given
by the second argument.

14.2.4 Proof Manipulations

These commands perform manipulations of the proof structure rather than
of individual sequents.

AutoPrune: No arguments. Remove redundant propositions from the cur-
rent proof (propositions not used in the proofs of completed parts).

GetProof: One string argument. Set the current proof to the recorded proof
of the theorem named by the argument. The application is to extract
sequents as new theorems (since the proof of a theorem is complete we
can’t change it).

NextGoal (ng, nextgoal): No arguments. Go to the next goal in the proof
tree in a rather complex order guaranteed to traverse the entire tree
but in which goals are sometimes repeated before traversal is complete.

47



SetPredVar (sp): Integer argument followed by string argument. Where n
is the integer argument and S is the string argument, globally replace
propositions of the form Pn(t1,...,tn) with propositions [t1,...,tn]
E S. In other words, globally interpret the predicate variable Pn as the
relation with extension S.

SetUnknown (su): Integer argument followed by string argument. Where
n is the numeral argument, globally replace Un with the term repre-
sented by the string argument as long as it refers to no Um or am with
m ≥ n. This affects the entire current proof, not just the sequent you
are looking at.

SwapGoals (swapgoals, sg): No arguments. Interchange the order of the
two or more goals just created by a rule application. This allows proof
using the conclusion of an implication before the proof of its hypothesis,
for example. If there are more than two goals, they are rotated. If the
command is used not in the immediate aftermath of a rule application,
it will cycle through a few goals in a local area of the proof.

Witness (w): Integer argument followed by string argument. As SetUnknown
except that the index of the unknown variable replaced is the global
free/unknown variable counter, plus one, minus the integer argument.
r() or l() followed by w 1 term has roughly the effect of w term in
marcelsequent.

14.2.5 Starting and Finishing Sequents

These commands initiate or terminate the handling of a sequent.

Done (d): No arguments. If the first formulas on the left and right sides of
the current sequent are equivalent up to renaming of bound variables,
prove the current sequent (and automatically pass to another branch
of the proof if it is not complete). In marcel387, experimental version
of March 3, 2009, also applies to reflexivity of equality: expect this in
the official version as well.

Start (s, start): One string argument. Reset the current sequent to the
sequent with nothing on the left and the proposition represented by
the string on the right.

48



StartSequent (ss): Two string list arguments. Set the current sequent to
the lists of propositions represented by the lists of string arguments: the
first argument is the left side of the sequent and the right argument is
the right side of the sequent.

UseThm: A string argument followed by two integer list arguments. The
string argument names a theorem; the integer lists indicate the propo-
sitions on the left and right which match it: if the match is verified,
the current sequent is proved.

14.2.6 Sequent Manipulations

These commands handle sequents in various non-initial and non-terminal
ways, including reducing the sequent to one or more simpler sequents.

Crwl (crwl): An integer list argument. Rewrite the second proposition on
the left side of the current sequent with the first proposition on the
left side of the current sequent (which needs to be an equation). If
the argument is the empty list, all occurrences of the right side of the
rewriting equation are to be replaced with occurrences of the left side.
If the argument is a nonempty list, the occurrences of the right side of
the equation indexed by the terms of that list are written.

Crwr (crwr): An integer list argument. Rewrite the first proposition on
the right side of the current sequent with the first proposition on the
left side of the current sequent (which needs to be an equation). If
the argument is the empty list, all occurrences of the right side of the
rewriting equation are to be replaced with occurrences of the left side.
If the argument is a nonempty list, the occurrences of the right side of
the equation indexed by the terms of that list are written.

Cut (Cutr): A single string argument. Applies the cut rule to the current
sequent. The argument is the cut proposition. The sequent with the
argument on the right is to be proved first.

Cut2 (Cutl): A single string argument. Applies the cut rule to the current
sequent. The argument is the cut proposition. The sequent with the
argument on the left is to be proved first.

49



CutLemma: One string argument. Applies the cut rule to the current se-
quent with modifications. The argument is a single proposition. The
two sequents produced are (presented first) a sequent with just the ar-
gument appearing on the right and (presented second) a sequent looking
like the original sequent but with the argument proposition added on
the right. The intention is to support proving a lemma while embedded
in a larger proof; if the lemma is to be put on the theorems list, we
suggest immediately using the bookmark command.

GetLeft (gl): One integer argument. Rotate the proposition on the left side
of the current sequent indexed by the argument to the first position.

GetLeft2 (gl2): One integer argument. Rotate the proposition on the left
side of the current sequent indexed by the argument to the second
position, leaving the first proposition in place.

GetRight (gr): One integer argument. Rotate the proposition on the right
side of the current sequent indexed by the argument to the first position.

GetRight2 (gr2): One integer argument. Rotate the proposition on the
right side of the current sequent indexed by the argument to the second
position, leaving the first proposition in place.

Gl: One numerical argument. Equivalent to GetLeft n followed by l().

Gr: One numerical argument. Equivalent to GetRight n followed by l().

L (l): No arguments. Apply the left rule appropriate to the form of the
leading proposition on the left to the current sequent.

PruneLeft (pl): One integer argument. Rotate the left proposition indexed
by the argument to the front then remove it.

PruneRight (pr): One integer argument. Rotate the right proposition in-
dexed by the argument to the front then remove it.

R (r): No arguments. Apply the right rule appropriate to the form of the
leading proposition on the left to the current sequent.

RewriteFree (rf): The leading proposition on the left should be an equa-
tion with a free variable on one or both sides. If the two sides of the

50



equation are the same free variable, drop the proposition. If they are
both free variables, rewrite the higher indexed one to the lower indexed
one through the entire sequent, then drop the proposition. If only one
side is a free variable, and the other side does not contain that vari-
able, rewrite all occurrences of the free variable to the other side of the
equation, then drop the equation. If the free variable is contained in
the other side of the equation, issue an error message.

Rwl (rwl): One integer list argument. As Crwl, but rewrite the left side of
the equation to the right side.

Rwr (rwr): One integer list argument. As Crwr, but rewrite the left side
of the equation to the right side.

ThmCut: One argument, the name of a theorem. Creates a new sequent
for each proposition in the theorem, replacing all free variables in the
theorem with unknowns. Each hypothesis needs to be proved and each
conclusion can then be used. The hypotheses are proved first. Swap-
Goals can be used to rotate through the list of goals created.

ThmCut2: One argument, the name of a theorem. Creates a new sequent
for each proposition in the theorem, replacing all free variables in the
theorem with unknowns. Each hypothesis needs to be proved and each
conclusion can then be used. The conclusions are used first. SwapGoals
can be used to rotate through the list of goals created.

Triv: Two integer arguments. Triv m n has the effect of GetLeft m; GetRight

n; Done().

14.2.7 Lists and Displays

These commands manipulate prover displays. A large subcategory is displays
of theorem lists.

Look: No arguments. Show the current sequent.

nolemmas: No arguments. Turn off the display of proofs of theorems used
in displayed proofs.

SetMargin: One integer argument. Set the margin at which the display
breaks lines.

51



Showall (showall): No arguments. Show the current partial proof of the
current sequent. Hit return between sequents.

Showalltheorems: No arguments. Show all theorems; hit return between
theorems.

Showaxioms: No arguments. Show all axioms; hit return between theo-
rems.

Showcurrent: No arguments. Show the list of theorems in use in the current
proof; hit return between theorems.

showlemmas: No arguments. Turn on the feature which displays proofs of
theorems used in the current proof as part of the whole proof (on by
default).

ShowMarked: One string argument. The argument is a bookmark (see
bookmark). The command allows one to view the part of the proof at
and above the bookmarked sequent.

Showpropdefs: No arguments. Show all predicate and sentence definitions.

Showtermdefs: No arguments. Show all function and constant definitions.

startdemo: No arguments. Start demo mode (displays commands in a file
and their effects with pauses).

stopdemo: No arguments. Stop demo mode.

ThmDisplay (td): One string argument. Display the theorem named by
the argument.

14.2.8 History

Commands related to the undo feature. I should add a forward command
which allows undo to be undone if no other intervening command has been
performed.

b: No arguments. Abbreviation for Undo.

NoRemember (noremember): No arguments. Turn off the history fea-
ture.

52



Remember (remember): No arguments. Turn on the history feature.

Undo (undo, b): No arguments. Back up one step in the current proof.
The steps are not always whole user commands: for example it steps
through individual substitutions for Ui’s when these have been made
automatically.

14.2.9 Loading and Saving

These commands handle loading and saving. There are commands here which
manage scripting (generating scripts as you work and running them) and
commands handling a theory saving system.

loadtheory: One string argument name. Load the theory saved in name.thy1

and name.thy2.

LogProof: One string argument. Record the proof of the theorem named
by the argument to the current log file.

LogTheProof: No arguments. Record the current partial proof in the log
file.

runscript: One string argument. Adds the extension .mlg to the string
argument and runs this script file. Will look in a working directory set
by SetDir.

runtext: One string argument. Adds the extension .txt to the string ar-
gument and runs this script file. Will look in a working directory set
by SetDir.

savetheory: One string argument name. Store the current theory to files
name.thy1 and name.thy2.

SetDir: One string argument. Sets a working directory (in which runscript

and runtext will look for files).

startlogging: One string argument name. Start logging prover commands
and error messages to the file name.mlg.

stoplogging: Stop recording to the log file started by startlogging.

53


