
New Foundations is consistent

M. Randall Holmes and Sky Wilshaw

April 23, 2024

Contents

1 Introduction 2
1.1 Introductory note . 2
1.2 Acknowledgements . 2
1.3 Dated remarks on versions . 3

2 Development of relevant theories 7
2.1 The simple theory of types TST and TSTU 7

2.1.1 Typical ambiguity . 7
2.1.2 Historical remarks . 8

2.2 Some mathematics in TST; the theories TSTn and their natural
models . 9

2.3 New Foundations and NFU . 11
2.4 Tangled type theory TTT and TTTU 13

2.4.1 How internal type representations unfold in TTT 16
2.4.2 Tangled webs of cardinals: a suggestion of another ap-

proach not followed here 18
2.5 An axiomatization of TST with finitely many templates 20

3 The model description 24
3.1 The abstract supertype framework 24
3.2 Preliminaries of the construction 26
3.3 Machinery for enforcing extensionality in the model 27
3.4 Allowable permutations and supports 31

4 Verification that the structure defined is a model 35
4.1 The freedom of action theorem 35
4.2 Types are of size µ (so the construction actually succeeds) 39
4.3 The structure is a model of predicative TTT 45
4.4 Impredicativity: verifying the axiom of union 46

5 Conclusions, extended results, and questions 48

1

1 Introduction

1.1 Introductory note

We are presenting an argument for the consistency of Quine’s set theory New
Foundations (NF) (see [12]). The consistency of this theory relative to the
usual systems of set theory has been an open question since the theory was
proposed in 1937, with added urgency after Specker showed in 1954 that NF
disproves the Axiom of Choice (see [18]). Jensen showed in 1969 that NFU (New
Foundations with extensionality weakened to allow urelements) is consistent and
in fact consistent with Choice (and also with Infinity and with further strong
axioms of infinity) (see [10]).

The first author showed the equiconsistency of NF with the quite bizarre
system TTT (tangled type theory) in 1995 (see [6]; I really don’t recommend
this paper; the presentation of its results here is better), which gave a possible
approach to a consistency proof. Since 2010, the first author has been attempt-
ing to write out proofs, first of the existence of a tangled web of cardinals in
Mac Lane set theory [an indication of this approach is given below] and then
directly of the existence of a model of tangled type theory. These proofs are
difficult to read, insanely involved, and involve the sort of elaborate bookkeep-
ing which makes it easy to introduce errors every time a new draft is prepared.
The second author (with the assistance of others initially) has formally verified
the proof of the first author of the existence of a model of TTT (see [23]), and
so of the consistency of New Foundations, in the Lean proof verification system,
and in the process has suggested minor corrections and considerable formal im-
provements to the argument originally proposed by the first author. The second
author reports that the formalized proof is still difficult to read and insanely
involved with nasty bookkeeping. Both authors feel that there ought to be a
simpler approach, but the existing argument at least strongly resists attempts
at simplification.

All the theories mentioned here are discussed (and referenced) in the next
section.

Any remarks in the first person singular may be attributed to the first author.

1.2 Acknowledgements

The first author thanks Robert Solovay, who read a number of early versions
of a related argument for Con(NF) and offered just criticisms which I have
tried to take to heart. I also thank Thomas Forster and Asaf Karagila, who
have endured attempts of mine to present various relatives of this argument at
length. Further, I thank Peter Lumsdaine and the members of the group of
students at Cambridge who attempted formalization of an earlier version of this
proof in Spring 2022.

2

1.3 Dated remarks on versions

initial note for this series: The formal verification of the results in
section 3 and 4 is complete. Sky’s Lean formalization concludes with a proof
that there is a structure for the language of TTT which satisfies all typed ver-
sions of the statements in the Hailperin axiomatization of NF. Such a structure
is a model of TTT, and the existence of a model of TTT implies the consistency
of New Foundations. Thus we know that the construction in the paper is cor-
rect in general terms and we need to rewrite it for publication to parallel the
formalized proof as much as possible: we certainly know that the conclusion of
the paper expressed in the title is true.

initial note for the previous series: This document is probably my best
overall version so far. The immediate occasion for its preparation was to serve
students attempting to verify the proof in Lean. A formal verification should
avoid metamathematics, so it is the fact that the structure defined in section 3
is a model of TTT which should be verified, and further, a finite axiomatization
(mod type indexing) of TST and thus TTT should be verified in the model
in lieu of the usual statement of the axiom of comprehension of TTT. This
program has been completed, on the Lean side.

4/23/2024: 11 pm: deleted a redundant paragraph in the counting argument,
and improved some muddy phrasing, I hope.

3:37 pm completed bibliography entries. Added a statement about Sky’s
contribution to the definition of the structure in proposing use of sup-
ported model elements rather than simply model elements as domain ele-
ments of the f maps.

10:33 am: edited citations and added all bibliography entries except ones
to software.

9:35 am: noticed and fixed a really stupid mistake: the crucial inequality
in the inductive hypothesis in FoA had accidentally been edited out!

as of 9:09 Boise time, further tweaks to the Hailperin material and a more
explicit statement at the end of section 4.4 about how the axiom of type
lowering is proved in the formalization.

as of 8:39 am Boise time, cleaned up the material on the Hailperin axiom-
atization a bit.

4/22/2024: as of 12:55 am the next day, definition of quantification in the
Hailperin treatment was incorrect, is now incomplete. The proof doesn’t
hinge on this at all (the Hailperin axiomatization is known to work), but
I’d like to get it straight. 12:57 maybe I got it. Going to sleep, tomorrow
is another day.

as of 11:36 pm, corrected oversimplifications of the discussion of why the
Hailperin axioms work. They are quite horrible and there are probably
still indexing errors in my development.

3

as of 4:30 pm, added a final section to section 2 on the Hailperin axiom-
atization in the version actually used in the formalization and comments
on its use in the formal proof in the last subsection of section 4.

The new material on the Hailperin axioms is quite dense and needs read-
ing.

4/21/2024: as of 1147 am, posted revised text for the Freedom of Action
Theorem proof, emphasizing the point that a recursion on ι∗ drives the
order in which computations are made in every case.

as of 9 am Boise time, Minor repairs to the text. The definition of ι+∗ was
stated incorrectly, but easy to fix as the correct definition is everywhere
presumed. Other things more minor.

4/20/2024: 4 PM Boise time: removed comments from before the completion
of the formalization and reordered them so they can be added at the top
from now on.

4/20/24: FoA proof looks pretty clean. Added statement explaining the overall
structure of the recursion in terms of the position function.

2:37 Boise time: finished a reading pass through the rest of the paper with
minor revisions which made me reasonably happy. I’m sure there are still
bugs, and I’m waiting for Sky to read through it.

I still endorse the following statement but I reduced some of the mess:

The paper proof is still a mess. There are definitely conceptual slips (which
by courtesy may be called typos) in instances of complex notations in the
text as it stands, and further there are difficulties caused by multiple bouts
of revisions of different parts of the text, lately driven by the demands of
the formalization. Cleaning it up remains a daunting task. However, the
formalized proof, which was built by reading an earlier version of the paper
proof and coding it into Lean, proves the desired result. This means that
cleanup will converge, if pursued diligently, to a correct text.

4/19/2024: Eliminated redundant components from specifications of strong
supports.

As of 6:54 am, the part of the counting argument after the lemma cor-
relating specifications with orbits in the strong supports is NOT written
correctly, as it is not adjusted to reflect the return to use of strong sup-
ports in this version. There isn’t an essential difficulty (it is so nice to
know the formalization is there...) but some rewriting is needed, which
will probably be accomplished today.

As of 9:33 am, support definition restored to what it was and proof of
Freedom of Action substantially corrected. The change in the definition
of approximation required a substantial addition to the proof and there
were serious typos.

4

As of 12:42 pm I believe sanity is restored to the text of the counting
argument (fingers crossed).

As of 7:24 pm, reviewed section 3 which looks very clean. Fixed the
description of the recursion in the proof of the inflexible case in Freedom
of Action.

4/18/2024: 1240 am Boise time, finished pass through material already worked
on, up to the end of the lemma correlating specifications with orbits in
the strong supports.

An essential condition in the definition of approximations was left out in
editing: fixed

I observe that I seem to be using the condition that nearby litters in the
range of a support have all atoms in their symmetric difference also in the
range of the support in the proof of Freedom of Action, so I moved that
clause to the definition of support proper. I think this is harmless, but it
may occasion discussion.

12:58 Boise time: very few changes made in the entire rest of the paper
– I made some edits but nothing much is affected by the major changes
in definitions made earlier. I’ll be continuing to read your reconciliation
document to see if there is more I need to address in these sections, and
I don’t imagine that the editing process is finished at all!

.

4/17/2024: FoA proof looks reasonably clean. Added a note giving an overall
explanation of the structure of the recursion in terms of position function.
My old remarks on the structure of the recursion were so involved as to
be incomprehensible and I think actually incorrect.

1:03 PM Boise time, revisions to section 3 which I believe eliminate all
notes from the reconciliation process, and correction of some errors in the
text of the proof of Freedom of Action.

5 PM Boise time: revisions complete to the end of the Lemma correlating
specifications with orbits in strong supports.

4/16/2024: Added Sky as an author and added a statement about the history
of the paper and the roles of the authors.

4/15/2024: This note is attached to a non public version of this paper which
has been edited up to just after the definition of specification in section 4
to coordinate with the formalization. Things are looking good.

4/14/2024: Working systematically through a document Sky prepared for rec-
onciliation of the formalization and the paper. Fixed things up to the end
of the proof of uniqueness of distinguished extensions, while making sys-
tematic changes in the machinery driven by the Lean formalization.

5

4/11/2024: The formal verification is complete. I am working on editing this
paper to be more or less in line with the Lean formal proof (correcting
slips and vaguenesses in this document found during the verification).

specific notes for this edit: the result about the cardinality of the collection
of near-litters is correct but Sky says needs slightly more attention for
proof.

Sky reintroduced strong supports, and there is some finickiness about
exactly how they are defined.

There is a slip in the phrasing of the last part (axiom of union); standard
stuff about how inflexible litters are handled, I just skated over it.

All is well, because it all works in Lean.

6

2 Development of relevant theories

2.1 The simple theory of types TST and TSTU

We introduce a theory which we call the simple typed theory of sets or TST, a
name favored by the school of Belgian logicians who studied NF (théorie simple
des types). This is not the same as the simple type theory of Ramsey and it is
most certainly not Russell’s type theory (see historical remarks below).

TST is a first order multi-sorted theory with sorts (types) indexed by the
nonnegative integers. The primitive predicates of TST are equality and mem-
bership.

The type of a variable x is written type(‘x’): this will be a nonnegative
integer. A countably infinite supply of variables of each type is supposed. An
atomic equality sentence ‘x = y’ is well-formed iff type(‘x’) = type(‘y’). An
atomic membership sentence ‘x ∈ y’ is well-formed iff type‘(x’)+1 = type(‘y’).

The axioms of TST are extensionality axioms and comprehension axioms.
The extensionality axioms are all the well-formed assertions of the shape

(∀xy : x = y ↔ (∀z : z ∈ x↔ z ∈ y)). For this to be well typed, the variables x
and y must be of the same type, one type higher than the type of z.

The comprehension axioms are all the well-formed assertions of the shape
(∃A : (∀x : x ∈ A↔ ϕ)), where ϕ is any formula in which A does not occur free.

The witness to (∃A : (∀x : x ∈ A ↔ ϕ)) is unique by extensionality, and
we introduce the notation {x : ϕ} for this object. Of course, {x : ϕ} is to be
assigned type one higher than that of x; in general, term constructions will have
types as variables do.

The modification which gives TSTU (the simple type theory of sets with
urelements) replaces the extensionality axioms with the formulas of the shape

(∀xyw : w ∈ x→ (x = y ↔ (∀z : z ∈ x↔ z ∈ y))),

allowing many objects with no elements (called atoms or urelements) in each
positive type. A technically useful refinement adds a constant ∅i of each positive
type i with no elements: we can then address the problem that {xi : ϕ} is not
uniquely defined when ϕ is uniformly false by defining {xi : ϕ} as ∅i+1 in this
case.

2.1.1 Typical ambiguity

TST(U) exhibits a symmetry which is important in the sequel.
Provide a bijection (x 7→ x+) from variables to variables of positive type

satisfying type(x+) = type(x) + 1.
If ϕ is a formula, define ϕ+ as the result of replacing every variable x (free

and bound) in ϕ with x+ (and occurrences of ∅i with ∅i+1 if this is in use). It
should be evident that if ϕ is well-formed, so is ϕ+, and that if ϕ is a theorem,
so is ϕ+ (the converse is not the case). Further, if we define a mathematical
object as a set abstract {x : ϕ} we have an analogous object {x+ : ϕ+} of the
next higher type (this process can be iterated).

7

The axiom scheme asserting ϕ↔ ϕ+ for each closed formula ϕ is called the
Ambiguity Scheme. Notice that this is a stronger assertion than is warranted
by the symmetry of proofs described above.

2.1.2 Historical remarks

TST is not the type theory of the Principia Mathematica of Russell and White-
head ([15]), though a description of TST is a common careless description of
Russell’s theory of types.

Russell described something like TST informally in his 1904 Principles of
Mathematics ([14]). The obstruction to giving such an account in Principia
Mathematica was that Russell and Whitehead did not know how to describe
ordered pairs as sets. As a result, the system of Principia Mathematica has
an elaborate system of complex types inhabited by n-ary relations with argu-
ments of specified previously defined types, further complicated by predicativity
restrictions (which are in effect cancelled by an axiom of reducibility). The sim-
ple theory of types of Ramsey eliminates the predicativity restrictions and the
axiom of reducibility, but is still a theory with complex types inhabited by n-ary
relations.

Russell noticed a phenomenon like the typical ambiguity of TST in the more
complex system of Principia Mathematica, which he refers to as “systematic
ambiguity”.

In 1914 ([22]), Norbert Wiener gave a definition of the ordered pair as a set
(not the one now in use) and seems to have recognized that the type theory
of Principia Mathematica could be simplified to something like TST, but he
did not give a formal description. The theory we call TST was apparently first
described by Tarski in 1930 ([20]).

It is worth observing that the axioms of TST look exactly like those of “naive
set theory”, the restriction preventing paradox being embodied in the restriction
of the language by the type system. For example, the Russell paradox is averted
because one cannot have {x : x ̸∈ x} because x ∈ x (and so its negation ¬x ∈ x)
cannot be a well-formed formula.

It was shown around 1950 (in [9]) that Zermelo set theory proves the consis-
tency of TST with the axiom of infinity; TST + Infinity has the same consistency
strength as Zermelo set theory with separation restricted to bounded formulas.

8

2.2 Some mathematics in TST; the theories TSTn and
their natural models

We briefly discuss some mathematics in TST.
We indicate how to define the natural numbers. We use the definition of

Frege (n is the set of all sets with n elements). 0 is {∅} (notice that we get a
natural number 0 in each type i + 2; we will be deliberately ambiguous in this
discussion, but we are aware that anything we define is actually not unique, but
reduplicated in each type above the lowest one in which it can be defined). For
any set A at all we define σ(A) as {a∪{x} : a ∈ A∧x ̸∈ a}. This is definable for
any A of type i+2 (a being of type i+1 and x of type i). Define 1 as σ(0), 2 as
σ(1), 3 as σ(2), and so forth. Clearly we have successfully defined 3 as the set
of all sets with three elements, without circularity. But further, we can define N
as {n : (∀I : 0 ∈ I ∧ (∀x ∈ I : σ(x) ∈ I) → n ∈ I}, that is, as the intersection of
all inductive sets. N is again a typically ambiguous notation: there is an object
defined in this way in each type i+ 3.

The collection of all finite sets can be defined as
⋃

N. The axiom of infinity
can be stated as V ̸∈

⋃
N (where V = {x : x = x} is the typically ambiguous

symbol for the type i + 1 set of all type i objects). It is straightforward to
show that the natural numbers in each type of a model of TST with Infinity are
isomorphic in a way representable in the theory.

Ordered pairs can be defined following Kuratowski and a quite standard
theory of functions and relations can be developed. Cardinal and ordinal num-
bers can be defined as Frege or Russell would have defined them, as isomorphism
classes of sets under equinumerousness and isomorphism classes of well-orderings
under similarity.

The Kuratowski pair (x, y) = {{x}, {x, y}} is of course two types higher
than its projections, which must be of the same type. There is an alternative
definition (due to Quine in [11]) of an ordered pair ⟨x, y⟩ in TST + Infinity
which is of the same type as its projections x, y. This is a considerable technical
convenience but we will not need to define it here. Note for example that if
we use the Kuratowski pair the cartesian product A × B is two types higher
than A,B, so we cannot define |A| · |B| as |A × B| if we want multiplication
of cardinals to be a sensible operation. Let ι be the singleton operation and
define T (|A|) as |ι“A| (this is a very useful operation sending cardinals of a
given type to cardinals in the next higher type which seem intuitively to be
the same; also, it is clearly injective, so has a (partial) inverse operation T−1).
The definition of cardinal multiplication if we use the Kuratowski pair is then
|A| · |B| = T−2(|A × B|). If we use the Quine pair this becomes the usual
definition |A| · |B| = |A × B|. Use of the Quine pair simplifies matters in
this case, but it should be noted that the T operation remains quite important
(for example it provides the internally representable isomorphism between the
systems of natural numbers in each sufficiently high type).

Note that the form of Cantor’s Theorem in TST is not |A| < |P(A)|, which
would be ill-typed, but |ι“A| < |P(A)|: a set has fewer unit subsets than subsets.
The exponential map exp(|A|) = 2|A| is not defined as |P(A)|, which would

9

be one type too high, but as T−1(|P(A)), the cardinality of a set X such that
|ι“X| = |P(A)|; notice that this is partial. For example 2|V | is not defined (where
V = {x : x = x}, an entire type), because there is no X with |ι“X| = |P(V)|,
because |ι“V | < |P(V)| ≤ |V |, and of course there is no set larger than V in its
type.

For each natural number n, the theory TSTn is defined as the subtheory of
TST with vocabulary restricted to use variables only of types less than n (TST
with n types). In ordinary set theory TST and each theory TSTn have natural
models, in which type 0 is implemented as a set X and each type i in use is
implemented as Pi(X). It should be clear that each TSTn has natural models
in bounded Zermelo set theory, and TST has natural models in a modestly
stronger fragment of ZFC.

Further, each TSTn has natural models in TST itself, though some care must
be exercised in defining them. Let X be a set. Implement type i for each i < n
as ι(n−1)−i“Pi(X). If X is in type j, each of the types of this interpretation
of TSTn is a set in the same type j + n − 1. For any relation R, define Rι

as {({x}, {y}) : xRy}. The membership relation of type i − 1 in type i in the

interpretation described is the restriction of ⊆ι(n−1)−i

to the product of the sets
implementing type i− 1 and type i.

Notice then that, for each concrete natural number n, we can define truth
for formulas in these natural models of TSTn in TST, though not in a uniform
way which would allow us to define truth for formulas in TST in TST.

Further, both in ordinary set theory and in TST, observe that truth of
sentences in natural models of TSTn is completely determined by the cardinality
of the set used as type 0. since two natural models of TST or TSTn with base
types implemented by sets of the same cardinality are clearly isomorphic.

10

2.3 New Foundations and NFU

In [12], 1937, Willard van Orman Quine proposed a set theory motivated by
the typical ambiguity of TST described above. The paper in which he did
this was titled “New foundations for mathematical logic”, and the set theory it
introduces is called “New Foundations” or NF, after the title of the paper.

Quine’s observation is that since any theorem ϕ of TST is accompanied by
theorems ϕ+, ϕ++, ϕ+++, . . . and every defined object {x : ϕ} is accompanied by
{x+ : ϕ+}, {x++ : ϕ++}, {x+++ : ϕ+++}, so the picture of what we can prove
and construct in TST looks rather like a hall of mirrors, we might reasonably
(?) suppose that the types are all the same.

The concrete implementation follows. NF is the first order unsorted theory
with equality and membership as primitive with an axiom of extensionality
(∀xy : x = y ↔ (∀z : z ∈ x ↔ z ∈ y)) and an axiom of comprehension
(∃A : (∀x : x ∈ A↔ ϕ)) for each formula ϕ in which A is not free which can be
obtained from a formula of TST by dropping all distinctions of type. We give
a precise formalization of this idea: provide a bijective map (x 7→ x∗) from the
countable supply of variables (of all types) of TST onto the countable supply
of variables of the language of NF. Where ϕ is a formula of the language of
TST, let ϕ∗ be the formula obtained by replacing every veriable x, free and
bound, in ϕ with x∗. For each formula ϕ of the language of TST in which A is
not free in ϕ∗ and each variable x∗, an axiom of comprehension of NF asserts
(∃A : (∀x∗ : x∗ ∈ A↔ ϕ∗)).

In the original paper, this is expressed in a way which avoids explicit depen-
dence on the language of another theory. Let ϕ be a formula of the language of
NF. A function σ is a stratification of ϕ if it is a (possibly partial) map from
variables to non-negative integers such that for each atomic subformula ‘x = y’
of ϕ we have σ(‘x’) = σ(‘y’) and for each atomic subformula ‘x ∈ y’ of ϕ we have
σ(‘x’)+1 = σ(‘y’). A formula ϕ is said to be stratified iff there is a stratification
of ϕ. Then for each stratified formula ϕ of the language of NF and variable x
we have an axiom (∃A : (∀x : x ∈ A ↔ ϕ)). The stratified formulas are exactly
the formulas ϕ∗ up to renaming of variables.

NF has been dismissed as a “syntactical trick” because of the way it is de-
fined. It might go some way toward dispelling this impression to note that
the stratified comprehension scheme is equivalent to a finite collection of its
instances, so the theory can be presented in a way which makes no reference to
types at all. This is a result of Hailperin ([4]), refined by others, and discussed
in some detail in a subsequent subsection of this section, because it is relevant
to the Lean formalization. One obtains a finite axiomatization of NF by analogy
with the method of finitely axiomatizing von Neumann-Gödel-Bernays predica-
tive class theory. It should further be noted that the first thing one does with
any finite axiomatization is prove stratified comprehension as a meta-theorem,
in practice, but it remains significant that the theory can be axiomatized with
no reference to types at all. It is also worth noting that the collection of all
typed instances of the Hailperin axioms is an axiomatization of TST, not a
finite axiomatization, but an axiomatization with finitely many templates.

11

For each stratified formula ϕ, there is a unique witness to

(∃A : (∀x : x ∈ A↔ ϕ))

(uniqueness follows by extensionality) whch we denote by {x : ϕ}.
Jensen in [10], 1969 proposed the theory NFU which replaces the extension-

ality axiom of NF with

(∀xyw : w ∈ x→ (x = y ↔ (∀z : z ∈ x↔ z ∈ y))),

allowing many atoms or urelements. One can reasonably add an elementless
constant ∅, and define {x : ϕ} as ∅ when ϕ is false for all x.

Jensen showed that NFU is consistent and moreoever NFU + Infinity +
Choice is consistent. We will give an argument similar in spirit though not the
same in detail for the consistency of NFU in the next section.

An important theorem of Specker ([19], 1962) is that NF is consistent if and
only if TST + the Ambiguity Scheme is consistent. His method of proof adapts
to show that NFU is consistent if and only if TSTU + the Ambiguity Scheme
is consistent. Jensen used this fact in his proof of the consistency of NFU. We
indicate a proof of Specker’s result using concepts from this paper below.

In [18], 1954, Specker had shown that NF disproves Choice, and so proves
Infinity. At this point if not before it was clear that there is a serious issue
of showing that NF is consistent relative to some set theory in which we have
confidence. There is no evidence that NF is any stronger than TST + Infinity,
the lower bound established by Specker’s result.

Note that NF or NFU supports the implementation of mathematics in the
same style as TST, but with the representations of mathematical concepts losing
their ambiguous character. The number 3 really is realized as the unique set of
all sets with three elements, for example. The universe is a set and sets make up
a Boolean algebra. Cardinal and ordinal numbers can be defined in the manner
of Russell and Whitehead.

The apparent vulnerability to the paradox of Cantor is an illusion. Apply-
ing Cantor’s theorem to the cardinality of the universe in NFU gives |ι“V | <
|P(V)| ≤ |V | (the last inequality would be an equation in NF), from which we
conclude that there are fewer singletons of objects than objects in the universe.
The operation (x 7→ {x}) is not a set function, and there is every reason to
expect it not to be, as its definition is unstratified. The resolution of the Burali-
Forti paradox is also weird and wonderful in NF(U), but would take us too far
afield.

12

2.4 Tangled type theory TTT and TTTU

In [6], 1995, this author described a reduction of the NF consistency problem to
consistency of a typed theory, motivated by reverse engineering from Jensen’s
method of proving the consistency of NFU.

Let λ be a limit ordinal. It can be ω but it does not have to be.
In the theory TTT (tangled type theory) which we develop, each variable

x is supplied with a type type(‘x’) < λ; we are provided with countably many
distinct variables of each type.

For any formula ϕ of the language of TST and any strictly increasing se-
quence s in λ, let ϕs be the formula obtained by replacing each variable of type
i with a variable of type s(i). To make this work rigorously, we suppose that we
have a bijection from type i variables of the language of TST to type α variables
of the language of TTT for each natural number i and ordinal α < λ.

TTT is then the first order theory with types indexed by the ordinals below
λ whose well formed atomic sentences ‘x = y’ have type(‘x’) = type(‘y’) and
whose atomic sentences ‘x ∈ y’ satisfy type(‘x’) < type(‘y’), and whose ax-
ioms are the sentences ϕs for each axiom ϕ of TST and each strictly increasing
sequence s in λ. TTTU has the same relation to TSTU (with the addition of
constants ∅α,β for each α < β < λ such that (∀xα

0 : xα
0 ̸∈ ∅α,β) is an axiom).

It is important to notice how weird a theory TTT is. This is not cumulative
type theory. Each type β is being interpreted as a power set of each lower type
α. Cantor’s theorem in the metatheory makes it clear that most of these power
set interpretations cannot be honest.

There is now a striking

Theorem (Holmes): TTT(U) is consistent iff NF(U) is consistent.

Proof: Suppose NF(U) is consistent. Let (M,E) be a model of NF(U) (a set
M with a membership relation E). Implement type α as M × {α} for
each α < λ. Define Eα,β for α < β as {((x, α), (y, β)) : xEy}. This gives
a model of TTT(U). Empty sets in TTTU present no essential additional
difficulties.

Suppose TTT(U) is consistent, and so we can assume we are working with
a fixed model of TTT(U). Let Σ be a finite set of sentences in the language
of TST(U). Let n be the smallest type such that no type n variable oc-
curs in any sentence in Σ. We define a partition of the n-element subsets
of λ. Each A ∈ [λ]n is put in a compartment determined by the truth
values of the sentences ϕs in our model of TTT(U), where ϕ ∈ Σ and
rng(s⌈{0, . . . , n−1}) = A. By Ramsey’s theorem, there is a homogeneous
set H ⊆ λ for this partition, which includes the range of a strictly increas-
ing sequence h. There is a complete extension of TST(U) which includes
ϕ iff the theory of our model of TTT(U) includes ϕh. This extension sat-
isfies ϕ ↔ ϕ+ for each ϕ ∈ Σ. But this implies by compactness that the
full Ambiguity Scheme ϕ ↔ ϕ+ is consistent with TST(U), and so that
NF(U) is consistent by the 1962 result of Specker.

13

We note that we can give a treatment of the result of Specker (rather
different from Specker’s own) using TTT(U). Note that it is easy to see
that if we have a model of TST(U) augmented with a Hilbert symbol (a
primitive term construction (ϵx : ϕ) (same type as x) with axiom scheme
ϕ[(ϵx : ϕ)/x] ↔ (∃x : ϕ)) which cannot appear in instances of compre-
hension (the quantifiers are not defined in terms of the Hilbert symbol,
because they do need to appear in instances of comprehension) and Ambi-
guity (for all formulas, including those which mention the Hilbert symbol)
then we can readily get a model of NF, by constructing a term model
using the Hilbert symbol in the natural way, then identifying all terms
with their type-raised versions. All statements in the resulting type-free
theory can be decided by raising types far enough (the truth value of an
atomic sentence (ϵx : ϕ)R (ϵy : ψ) in the model of NF is determined by
raising the type of both sides (possibly by different amounts) until the for-
mula is well-typed in TST and reading the truth value of the type raised
version; R is either = or ∈). Now observe that a model of TTT(U) can
readily be equipped with a Hilbert symbol if this creates no obligation to
add instances of comprehension containing the Hilbert symbol (use a well-
ordering of the set implementing each type to interpret a Hilbert symbol
(ϵx : ϕ) in that type as the first x such that ϕ), and the argument above
for consistency of TST(U) plus Ambiguity with the Hilbert symbol goes
through.

Theorem (essentially due to Jensen): NFU is consistent.

Proof: It is enough to exhibit a model of TTTU. Suppose λ > ω. Represent
type α as Vω+α × {α} for each α < λ (Vω+α being a rank of the usual
cumulative hierarchy). Define ∈α,β for α < β < λ as

{((x, α), (y, β)) : x ∈ Vω+α ∧ y ∈ Vω+α+1 ∧ x ∈ y}.

This gives a model of TTTU in which the membership of type α in type
β interprets each (y, β) with y ∈ Vω+β \ Vω+α+1 as an urelement.

Our use of Vω+α enforces Infinity in the resulting models of NFU (note
that we did not have to do this: if we set λ = ω and interpret type α
using Vα we prove the consistency of NFU with the negation of Infinity).
It should be clear that Choice holds in the models of NFU eventually
obtained if it holds in the ambient set theory.

This shows in fact that mathematics in NFU is quite ordinary (with respect
to stratified sentences), because mathematics in the models of TSTU em-
bedded in the indicated model of TTTU is quite ordinary. The notorious
ways in which NF evades the paradoxes of Russell, Cantor and Burali-
Forti can be examined in actual models and we can see that they work
and how they work (since they work in NFU in the same way they work
in NF).

14

Of course Jensen did not phrase his argument in terms of tangled type theory.
Our contribution here was to reverse engineer from Jensen’s original argument
for the consistency of NFU an argument for the consistency of NF itself, which
requires additional input which we did not know how to supply (a proof of the
consistency of TTT itself). An intuitive way to say what is happening here is
that Jensen noticed that it is possible to skip types in a certain sense in TSTU
in a way which is not obviously possible in TST itself; to suppose that TTT
might be consistent is to suppose that such type skipping is also possible in
TST.

15

2.4.1 How internal type representations unfold in TTT

We have seen above that TST can internally represent TSTn. An attempt to
represent types of TTT internally to TTT has stranger results. The development
of the model does not depend on reading this section.

In TST the strategy for representing type i in type n ≥ i is to use the
n− i-iterated singleton of any type i object x to represent x; then membership
of representations of type i − 1 objects in type i objects is represented by the
relation on n − i-iterated singletons induced by the subset relation and with
domain restricted to n− (i+1)-fold singletons. This is described more formally
above.

In TTT the complication is that there are numerous ways to embed type α
into type β for α < β along the lines just suggested. We define a generalized
iterated singleton operation: where A is a finite subset of λ, ιA is an operation
defined on objects of type min(A). ι{α}(x) = x. If A has α < β as its two
smallest elements, ιA(x) is ιA1

(ια,β(x)), where A1 is defined as A \ {min(A)} (a
notation we will continue to use) and ια,β(x) is the unique type β object whose
only type α element is x.

Now for any nonempty finite A ⊆ λ with minimum α and maximum β. the
range of ιA is a set, and a representation of type α in type β. For simplicity we
carry out further analysis in types β, β + 1, β + 2 . . . though it could be done in
more general increasing sequences. Use the notation τA for the range of ιA, for
each set A with β as its maximum. Each such set has a cardinal |τA| in type
β + 2. It is a straightforward argument in the version of TST with types taken
from A and a small finite number of types β+i that 2|τA| = |τA1

| for each A with

at least two elements. The relevant theorem in TST is that 2|ι
n+1“X| = ιn“X,

relabelled with suitable types from λ. We use the notation exp(κ) for 2κ to
support iteration. Notice that for any τA we have exp|A|−1(|τA|) = |τ{β}|,
the cardinality of type β. Now if A and A′ have the same minimum α and
maximum β but are of different sizes, we see that |τA| ≠ |τA′ |, since one has its
|A|−1-iterated exponential equal to |τ{β}| and the other has its |A′|−1-iterated
exponential equal to |τ{β}|. This is odd because there is an obvious external
bijection between the sets τA and τA′ : we see that this external bijection cannot
be realized as a set. τA and τA′ are representations of the same type, but this is
not obvious from inside TTT. We recall that we denote A \ {min(A)} by A1; we
further denote (Ai)1 as Ai+1. Now suppose that A and B both have maximum
β and A \ Ai = B \ Bi, where i < |A| ≤ |B|. We observe that for any concrete
sentence ϕ in the language of TSTi, the truth value of ϕ in natural models with
base type of sizes |τA| and |τB | will be the same, because the truth values we
read off are the truth values in the model of TTT of versions of ϕ in exactly the
same types of the model (truth values of ϕs for any s having A \ Ai = B \ Bi

as the range of an initial segment). This much information telling us that τAj

and τBj for j < i are representations of the same type is visible to us internally,
though the external isomorphism is not. We can conclude that the full first-
order theories of natural models of TSTi with base types |τA| and |τB | are the
same as seen inside the model of TTT, if we assume that the natural numbers

16

of our model of TTT are standard.

17

2.4.2 Tangled webs of cardinals: a suggestion of another approach
not followed here

Nothing in the construction of a model of tangled type theory and verification
that it is a model which appears below depends on anything in this section.

It is straightforward to transform a model of TST into a model of bounded
Zermelo set theory (Mac Lane set theory) with atoms or without foundation
(this depends on how type 0 is handled). Specify an interpretation of type 0
either as a set of atoms or a set of self-singletons. Then interpret type i + 1
as inhabited by sets of type i objects in the obvious way, identifying type i+ 1
objects with objects of lower type which happen to have been assigned the same
extension.

In a model of TTT, do this along some increasing sequence of types of order
type ω whose range includes an infinite ordinal α. In the resulting model of
bounded Zermelo set theory, let τA represent the cardinality of the range of ιA
as in the previous discussion (for nonempty subsets of type A all with maximum
the same infinite α). Suppose further for the sake of argument that our model of
TTT is λ-complete, in the sense that any subset of a type of cardinality that of
λ or less is implemented as a set in each higher type. It will follow that A 7→ τA
is actually a function. [It is an incidentally interesting fact that the models we
construct (with no dependence on this section) actually have this completeness
property].

We describe the situation which holds for these cardinals.
We work in Mac Lane set theory. Choice is not assumed, and we use the

Scott definition of cardinals.

Definition: If A is a nonempty finite set of ordinals which is sufficiently large,
we define A1 as A \ min(A) and A0 as A, Ai+1 as (Ai)1.

Definition: A tangled web of cardinals of order α (an infinite ordinal) is a
function τ from the set of nonempty sets of ordinals with α as maximum
to cardinals such that

1. If |A| > 1, τ(A1) = 2τ(A).

2. If |A| ≥ n, the first order theory of a natural model of TSTn with
base type τ(A) is completely determined by A \ An, the n smallest
elements of A.

The bookkeeping in different versions of this definition in different at-
tempts at a tangled web version of the proof of the consistency of NF
have been different (an obvious point about the version given here is that
the top ordinal α could be omitted). Another remark is that it is clear
that asserting the existence of a tangled web is stronger than simple TTT:
it requires λ > ω, and the λ-completeness of course is a strong assumption
in the background. All variants that I have used support versions of the
following

18

Theorem: If there is a model of Mac Lane set theory in which there is a tangled
web of cardinals τ , then NF is consistent.

Proof: Let Σ be a finite set of sentences of the language of TST. Let n be
larger than any type mentioned in any formula in Σ. Partition [α]n into
compartments in such a way that the compartment that a set A is put
into depends on the truth values of the sentences in Σ in natural models
of TSTn with base type of size τ(B) where B \ Bn = A. This partition
of [α]n into no more than 2|Σ| compartments has a homogeneous set H
of size n + 1. The natural models of TSTn with base types of size τ(H)
and base types of size τ(H1) have the same truth values for sentences in
Σ, so the model of TST with base type τ(H) satisfies the restriction of
the Ambiguity Scheme to Σ, so the full Ambiguity Scheme is consistent
by compactness, so TST + Ambiguity is consistent so NF is consistent.

Our initial approach to proving our theorem was to attempt a Frankel-
Mostowski construction of a model of Mac Lane set theory with a tangled web
of cardinals. We do know how to do this, but we believe from recent experi-
ence that constructing a model of tangled type theory directly is easier, though
tangled type theory is a nastier theory to describe.

We think there is merit in giving a brief description of a situation in a more
familiar set theory equivalent to (a strengthening of) the very strange situation
in a model of tangled type theory. This section is also useful here because it
supports the discussion in the conclusion of one of the unsolved problems which
is settled by this paper.

19

2.5 An axiomatization of TST with finitely many tem-
plates

We discuss a finite axiomization of NF derived from that of Hailperin (it is taken
from an implementation of Hailperin’s axiom set of [4] in Metamath ([2]), and
there are minor changes from the original formulation), making the important
observation that it actually provides us with an axiomatization of TST with
finitely many axiom templates (in the sense that each axiom is a type shifted
version of one of a finite set of axioms). Notation introduced in this section is
not used in the rest of the paper, and nothing in subsequent sections except a
brief remark in the last paragraphs of section 4 depends on anything here. This
finite axiomatization is however used in the Lean formalization.

The finite axiomatization of NF takes this form (the definitions inserted are
ours, and we have modified the order of the axioms to make the definitions work
sensibly). We also present this as an axiomatization of TST with finitely many
templates, with the proviso that each typed form of each axiom is asserted:

extensionality axiom: (∀x : (∀y : (∀z : z ∈ x↔ z ∈ y) → x = y))

anti-intersection axiom: (∀xy : (∃z : (∀w : w ∈ z ↔ ¬(w ∈ x ∧ w ∈ y))))

singleton axiom: (∀x : (∃y : (∀z : z ∈ y ↔ z = x)))

definition: {x} denotes for each x the set whose only element is x, whose
existence is provided by the previous axiom. We define ι(x) as {x} and
define ι1(x) as ι(x) and ιn+1(x) as {ιn(x)}, for each concrete natural
number n.

cardinal one axiom: (∃x : (∀y : y ∈ x↔ (∃z : (∀w : w ∈ y ↔ w = z))))

definition: We define 1 as the set of all singletons, provided by the previous
axiom.

definition: x|y denotes the set z whose existence is provided by the anti-
intersection axiom: z ∈ x|y ↔ ¬(z ∈ x ∧ z ∈ y). We define xc as x|x.
We define x ∩ y as (x|y)c. We define x ∪ y as xc|yc. We define V as 1|1c
(noting that it is straightforward to prove x|xc = V for any x, since this
is the universal set). We define {x, y} as {x} ∪ {y}. We define (x, y) as
{{x}, {x, y}}. We define (x, y, z) as ({{x}}, (y, z)). More generally, we de-
fine (x1, . . . , xn) as (ι2n−4(x1), (x2, . . . , xn)) for n > 2 a concrete natural
number. [The treatment of n-tuples is what makes this axiomatization
singularly awful].

cross product axiom: (∀x : (∃y : (∀z : z ∈ y ↔ (∃wt : z = (w, t) ∧ t ∈ x))))

definition: We define V × x as the set introduced by the previous axiom:
z ∈ V × x ↔ (∃wt : z = (w, t) ∧ t ∈ x). Note that V × V is the set of all
ordered pairs.

converse axiom: (∀x : (∃y : (∀zw : (z, w) ∈ y ↔ (w, z) ∈ x)))

20

definition: For any set R, we define R−1 as the intersection of V × V with a
set introduced by the previous axiom:

(∀zw : (z, w) ∈ R−1 ↔ (w, z) ∈ R)))∧(∀u : u ∈ R−1 ↔ (∃zw : (z, w) = u)).

definition: We define x× V as (V × x)−1 and x× y as (x× V) ∩ (V × y).

singleton image axiom: (∀x : (∃y : (∀zw : ({z}, {w}) ∈ y ↔ (z, w) ∈ x))).

definition: We define Rι for any set R as the intersection of a set provided by
the previous axiom with 1 × 1. Rι is the set whose members are exactly
the ordered pairs ({z}, {w}) such that (z, w) ∈ R. Let Rι1 be defined as

Rι and Rιn+1

be defined as (Rιn)ι.

We define ι2“x as (x × x) ∩ V . This is the image of x under the double
singleton operation.

Note that ι2“V is the equality relation. Define ι2(n+1)“x as ι2“(ι2n“x).

We define x1 × x2 . . .× xn as ι2(n−2)“x× (x2 × . . .× xn).

insertion two axiom: (∀x : (∃y : (∀zwt : (z, w, t) ∈ y ↔ (z, t) ∈ x)))

We define I2(R) as the intersection of a set provided by the previous axiom
with V × V × V .

insertion three axiom: (∀x : (∃y : (∀zwt : (z, w, t) ∈ y ↔ (z, w) ∈ x)))

We define I3(R) as the intersection of a set provided by the previous axiom
with V × V × V .

definition: It seems natural to define I1(R) as ι2“(V) × R, but this requires
no new axiom.

definition: Define I1,n(R) as ι
2(n−2)“V ×R: this is correct for prepending all

possible initial projections to an n-tuple. Then define I11,n(R) as I1,n(R)

and define Im+1
1,n (R) as I1,n+m+1(I

m
1,n(R)): this takes into account the fact

that the tuples get longer.

Define I2,n(R) as I2(R) ∩ (V × ι2(n−3)(V) × V), and define Im+1
2,n (R) as

I1,n+m+1(I
m
2,n(R)): this takes into account the fact that the tuples get

longer.

type lowering axiom: (∀x : (∃y : (∀z : z ∈ y ↔ (∀w : (w, {z}) ∈ x))))

definition: We define TL(x) by (∀z : z ∈ TL(x) ↔ (∀w : (w, {z}) ∈ x)). This is
a very strange operation!

We define ι−1“x as TL(V ×x). This is the set of all elements of singletons
belonging to x. We can then define ι“x, the elementwise image of x under
the singleton operation, as ι−1“(ι2“(x)).

Further, we define ι−(n+1)“(x) as ι−1“(ι−n“(x) for each concrete natural
number n, and ιn+1“(x) as ι“(ιn“(x)

21

We develop an important operation step by step.

TL(R) = {z : (∀w : (w, {z}) ∈ R)}
Dually, (TL(Rc))c = {z : (∃w : (w, {z}) ∈ R)}
Now (TL((Rι)c))c = {z : (∃w : (w, {z}) ∈ Rι)},
which is the same as (TL((Rι)c))c = {z : (∃w : ({w}, {z}) ∈ Rι)} because
all elements of the domain of Rι are singletons,

which is the same as (TL((Rι)c))c = {z : (∃w : (w, z) ∈ R)}
so we define rng(R) as (TL((Rι)c))c, and define dom(R) as rng(R−1).

subset axiom: (∃x : (∀yz : (y, z) ∈ x↔ (∀w : w ∈ y → w ∈ z)))

We define [⊆] as the intersection of a set provided by the previous axiom
with V × V : [⊆] is the set of all ordered pairs (x, y) such that x ⊆ y.

We define [∈] as [⊆] ∩ 1× V .

This is not our favorite finite axiomatization of NF (or our favorite finite
template axiomatization of TST) but it is the one in the formalization and also
basically the oldest one, so we present a verification of it in outline at least.

What we need to do is verify that {x : ϕ} exists for each formula ϕ of the
language of TST, to ensure that comprehension holds. We do this by induction
on the structure of formulas.

{x : ¬ϕ} is {x : ϕ}c.
{x : ϕ ∧ ψ} is {x : ϕ} ∩ {x : ψ}.
Now we have the much more complex task of analyzing

{tn : (∀xi : ϕ(t1, . . . , tn)}.

Choose a type τ ′ higher than the type τi of each ti. Do this for bound
variables as well, and further, in each formula (∀ti : ψ) or (∃ti : ψ) we require
that all occurrences of ti be free in ψ and the index of ti be less than the index
of any other variable appearing free in ψ. It should be clear that we can do this
without loss of generality.

Where the type of ti is τi, we define xi as ι
τ ′−τi(ti): we construct

{tn : (∀xi : ϕ(t1, . . . , tn)}

by defining manipulations which allow us to build sets {(x1, . . . , xn) : ϕ∗(x1, . . . , xn)}
in which all the variables are of the same type. We write ϕ∗ to suggest that the
formula ϕ must be transformed to effect our change of variables: ti = tj is equiv-

alent to xi = xj , and ti ∈ tj is equivalent to (xi.xj) ∈ [ϵ]ι
τ′−τj

(the reader will
see that we use this representation below, though embedded in larger tuples).
A quantifier over ti is equivalent to a quantifier over xi restricted to ιτ

′−τi“V .
For any such representation, we have a type signature

ιτ
′−τ1“V × . . .× ιτ

′−τn“V.

22

We abbreviate this as τ∗.
The set {(x1, . . . , xn) : x1 = xn} is obtained as In−2

2,2 (ι“V) ∩ τ∗.
The set {x1, . . . , xn) : x1 = xi} (i < n) is obtained as Ii−3

2,3 (I3(ι“V)) ∩ τ∗.
We then can represent the set {(x1, . . . , xn) : xi = xj} (wlog i < j) as

Ii−1
1,n−i+1{(x1, . . . , xn−i+1) : x1 = xj−i+1}) ∩ τ∗.

The set {({x1}, x2) : x1 ∈ x2} has already been defined above as [∈].
The set {(x1, . . . , xn) : (∃uv : xi = ιk+1(u) ∧ xj = ιk(v) ∧ u ∈ v)} is

rng2(I3((R
ιk+2n

[∈])∩{(x1, . . . , xn+2 : x1 = xi+2}∩{(x1, . . . , xn+2) : x2 = xj+2}).

This handles all representations of membership statements between xi’s in the
framework we are using.

The set {(x1, . . . , xn) : (∃x1 : (x1, . . . , xn) ∈ R)) is representable as I1,n−1(dom(R
−1).

This only allows us to quantify over the lowest numbered variable. This is
actually sufficient. We have renamed bound variables so that all bound variables
with different binders are distinct and in any subformula (∃y : ψ) y will have
lower index than any variable free in ψ. Then the quantified variable might not
be x1, but if it is xk, we can use the representation Ik1,n−k(dom(rng

k−1(R))−1):
strip off the first k − 1 variables, which are dummies already quantified over,
quantify over xk and put k dummies back, as it were.

This gives sufficient machinery to handle representations of all sentences in
the language of TST (or stratified sentences in the language of NF) in the format
we are using. However, the final representation of {tn : ϕ(t1, . . . , tn)} obtained
in this way will be of the form R = {(ιτ ′−τ1(t1), . . . , ι

τ ′−τn(tn)) : ϕ(t1. . . . , tn)}
where some of the ti’s are bound variables (all values of which will appear), and
some are parameters. Let P be the set of i such that ti is a parameter.

The final computation of {tn : ϕ(t1, . . . , tn)} will be as

ι−(τ ′−τn)“(rngn−1(R ∩
⋂
i∈P

{(x1, . . . , xn) : xi = ιτi−τ (ti)}))

where a final bit of computation must be exhibited: {(x1, . . . , xn) : xi = t}
is realized as Ii−1

1,2 ({ι2(n−i−1)(ti)} × V)) ∩ τ∗.
We state for the record that we think this is a bad finite axiomatization

of NF, or finite template axiomatization of TST: we think the treatment of n-
tuples is terribly difficult to work with. But it does work, and the second author
chose to verify it, so it merits discussion here. It should be noted that any finite
template axiomatization of TST could be used; there is no advantage to this
one for the formalization, and there is an oddity, because the one impredicative
axiom (the axiom of type lowering) does a lot of extra work, since it is also
essential for constructing domains and ranges of functions. In the formalization,
the proof of type lowering was in effect divided into the proof of the existence
of ι3“TL(x), which is predicative, and the proof of the existence of set unions of
sets of singletons.

23

3 The model description

In this section we give a complete description of what we claim is a model of
tangled type theory. Our metatheory is some fragment of ZFC.

3.1 The abstract supertype framework

Abstract considerations about types; the system of supertypes defined:
Types are indexed by a well-ordering ≤τ (from which we define a strict
well-ordering <τ in the obvious way). We refer to elements of the domain
of ≤τ as “type indices”.

We first define a system of “supertypes” (using the same type labels).

For each element t of dom(≤τ) we will define a set τ∗t , called supertype t.

If m is the minimal element of the domain of ≤τ , we choose a set τ∗m as
supertype m.

≤τ and τ∗m are the only parameters of the system of supertypes (which is
not a model of TTT, but a sort of maximal structure for the language of
TTT).

We describe the construction of τ∗t , assuming that t ∈ dom(≤τ) and t ̸= m
and for all u <τ t, we have defined τ∗u .

We define τ∗t as

{X ∪ {{τ∗u : u <τ t}} : X ⊆
⋃

u<τ t

τ∗u}.

An element of supertype t >τ m is a subset of the union of all lower types,
with t+ = {τ∗u : u <τ t} added as an element.

Foundation in the metatheory ensures a clean construction here. An ele-
ment x of supertype t >τ m is always nonempty with t+ as an element.
The set t+ has supertype u as an element for each u <τ t, so t

+ and so x
cannot belong to any supertype u with u <τ t, by foundation: each other
element of x belongs to such a supertype. We have shown that all the
types are disjoint. The labelling element t+ cannot belong to supertype t
by foundation, because an element of supertype t must be nonempty and
have t+ as an element. Further, t+ cannot belong to any supertype v with
t <τ v, because any element of v contains v+ as an element which contains
supertype t as an element and any element of supertype t contains t+ as
an element, so t+ ∈ v would violate foundation in the metatheory.

The membership relations of this structure are transparent: x ∈t,u y (t <τ

u) is defined as x ∈ τ∗t ∧ y ∈ τ∗u ∧ x ∈ y. Considerations above show that
there are no unintended memberships caused by the labelling elements t+,
because the labelling elements cannot themselves belong to any supertype.
Note the presence of ∅t = {t+} in supertype t, which has no elements of
any type u <τ t (and is distinct from ∅v for v ̸= t).

24

The system of supertypes is certainly not a model of TTT, because it does
not satisfy extensionality. It is easy to construct many sets in a higher
type with the same extension over a given lower type, by modifying the
other extensions of the object of higher type.

The system of supertypes does satisfy the comprehension scheme of TTT.
One can use Jensen’s method to construct a model of stratified compre-
hension with no extensionality axiom from the system of supertypes, and
stratified comprehension with no extensionality axiom interprets NFU in
a manner described by Marcel Crabbé in [1].

the generality of the system of supertypes: We show that any model of
TTT (assuming there are any) will be in effect isomorphic to a substruc-
ture of a system of supertypes.

LetM be a model of TTT (more generally, any structure for the language
of TTT in which each object is determined given all of its extensions).
Let ≤M be the well-ordering on the types of M and let m be the minimal
type of M . We will assume as above that ≤τ is a well-ordering of type
labels t with corresponding actual types τt of M : of course, we could use
the actual types ofM as type indices, but we preserve generality this way.
We also assume that the sets implementing the types of M are disjoint (it
is straightforward to transform a model in which the sets implementing
the types are not disjoint to one in which they are, without disturbing its
theory, by replacing each x ∈ τt with (x, t)).

We consider the supertype structure generated by ≤τ :=≤M and τ∗m := τm.
We indicate how to define an embedding from M into this supertype
structure.

Define I(x) = x for x ∈ τm = τ∗m.

If we have defined I on each type u <τ t, we define I(x), for x ∈ τt, as⋃
u<τ t

{I(y) : y ∈M
u,t x} ∪ {{τ∗u : u <τ t}}.

It should be clear that as long asM satisfies the condition that an element
of any type other than the base type is uniquely determined given all of
its extensions in lower types, I is an isomorphism from M to a substruc-
ture of the stated system of supertypes. A model of TTT, in which any
one extension of an element of any higher type in a lower type exactly
determines the object of higher type, certainly satisfies this condition. So
the problem of constructing a model of TTT is equivalent to the problem
of constructing a model of TTT which is a substructure of a supertype
system.

Some advantages of this framework are that the membership relations in
TTT are interpreted as subrelations of the membership relation of the
metatheory, while the types are sensibly disjoint.

Note on general systems of types and extensions therein: Notice that if
α <τ β are supertypes, and x ∈ τα, x∩τ∗β is the extension of x over super-
type β. This will be inherited by a scheme of types τγ with each τγ ⊆ τ∗γ

25

if an additional condition holds: for α > β, we will have for x ∈ τα that
x∩ τ∗β is the extension of x over supertype β as already noted: for it to be
the extension over type β we need the general condition x ∩ τ∗γ ⊆ τγ for
all δ > γ and x ∈ τδ.

3.2 Preliminaries of the construction

preliminaries of our construction; cardinal parameters and type −1:
Now we introduce the notions of our particular construction in this frame-
work.

Let λ be a limit ordinal. Let ≤τ be the order on λ ∪ {−1} which has −1
as minimal and agrees otherwise with the usual order on λ.

Let κ > λ be a regular cardinal (that is, a regular initial ordinal). Note
that since κ > λ, κ is uncountable. Sets of cardinality < κ we call “small”.
Sets which are not small we may call “large”.

Let µ be a strong limit cardinal greater than κ with cofinality at least κ.

Let τ∗−1 = τ−1 be

{(ν, β, γ, α) : ν < µ ∧ β ∈ λ ∪ {−1} ∧ γ ∈ λ \ {β} ∧ α < κ}.

Note that this completes the definition of the supertype structure we are
working in: we now have a definite reference for τ∗α for α ∈ λ.

type shorthand, extended type indices: Notice that if α, β are type in-
dices, α ∈ β is a convenient short way to say −1 <τ α <τ β. A nonempty
finite subset of λ ∪ {−1} may be termed an extended type index. If A
is an extended type index with at least two elements, A1 is defined as
A \ {min(A)}.

atoms, litters and near-litters: We may refer to elements of τ−1 (or closely
related objects) as “atoms” from time to time, though they are certainly
not atomic in terms of the metatheory.

A litter is a subset of τ−1 of the form Lν,β,γ = {(ν, β, γ, α) : α < κ}. The
litters make up a partition of type −1 (which is of size µ) into size κ sets.

On each litter L = Lν,β,γ define a well-ordering ≤L: (ν, β, γ, α) ≤L

(ν, β, γ, α′) iff α ≤ α′. The strict well-ordering <L is defined in the obvi-
ous way. This well-ordering is used in only one place in the paper, and its
use could easily be avoided, but we find its concreteness appealing.

A near-litter is a subset of τ−1 with small symmetric difference from a
litter. We defineM ∼ N as |M∆N | < κ, forM,N near-litters: in English,
we say “M is near N” iff M ∼ N . Note that nearness is an equivalence
relation on near-litters.

We define N◦, for N a near-litter, as the litter L such that L ∼ N .

26

cardinality of the collection of near-litters :

We verify that there are µ near-litters.

A near-litter is determined as the symmetric difference of a litter L (there
are µ litters) and a small subset of τ−1.

So it is sufficient to show that a set of size µ has no more than µ small
subsets. We note that µ is a strong limit cardinal of cofinality ≥ κ. We
define a sequence of cardinals and a sequence of functions f indexed by
ordinals. µ0 = 0. f0 is the empty function. µα+1 = 2µα . fα+1 is a
bijection to 2µα from the smallest segment in µ of the correct cardinality
whose lower limit is the first ordinal not in the range of fα. For a limit
ordinal λ, µλ is the supremum of the set of µβ for β < λ and fλ is a
bijection to 2µλ from the smallest segment in µ of the correct cardinality
whose lower limit is the first ordinal not in the range of any fβ for β < λ.
Because µ is a strong limit cardinal of cofinality ≥ κ, the first undefined
fα must be at a limit and satisfy α ≥ κ and µα = µ. The union of the
maps fα is a function with domain µ whose range includes every small
subset of µ, because any small subset of µ must be included in some µα,
α < µ.

3.3 Machinery for enforcing extensionality in the model

We describe the mechanism which enforces extensionality in the substructure of
this supertype structure that we will build.

The levels of the structure we will define are denoted by τα for
α ∈ λ ∪ {−1}. As we have already noted, τ−1 = τ∗−1 as defined above.

In defining τα ⊆ τ∗α for each α, we assume that we have already defined τβ
for each β < α, and that the system of types {τβ : β <τ α} already defined
satisfies various hypotheses which we will discuss as we go. Elements x of τ∗α
which we consider for membership in τα will have x ∩ τ∗β ⊆ τβ for β < α. We
assume that for γ < β < α, if x ∈ τβ , x ∩ τ∗γ ⊆ τγ .

We suppose that each τβ already constructed is of cardinality µ. Note that
we already know that τ−1 is of cardinality µ.

We further intimate that for each x ∈ τγ , −1 < γ < α, we have defined
objects S for which we say that S is a support of x. The definition of supports
will be given later. For the moment, we define τ+γ as the set of all (x, S) for
which x ∈ τγ and S is a support of x. It is a hypothesis of the recursion that τγ
is of cardinality µ, from which it follows that τ+γ is of cardinality µ, since there

are µ supports (as we will see when supports are defined). We provide that τ+−1

is the set of all (x, ∅) for x ∈ τ−1.
We also provide a well-ordering ≤+

γ of order type µ of τ+γ (−1 ≤ γ < α), by
postulating an injection ι+γ from τ+γ into µ (it does not need to be onto) and
defining x ≤+

γ y as ι+γ (x) ≤ ι+γ (y). There are some hypotheses of the recursion
about maps ι+γ which are stated below. For any model element x and support
S of x, we define ι+∗ (x, S) as ι

+
γ (x, S), where x ∈ τγ .

27

We provide that for every near litter N and every β < α, there is a unique
element Nβ of τβ such that Nβ ∩ τ−1 = N (we will quite shortly give a precise
description of all extensions of this object).

Definition: If X is a subset of type γ and γ < β, we define Xβ as the unique
element Y of τβ such that Y ∩ τγ = X (if this exists). Of course, this
notation is only usable to the extent that we suppose that extensionality
holds. Notice that the notation Nβ is a case of this.

If x ∈ τ−1, we refer to any {x}β as a typed atom (of type β) and if N is a
near-litter we refer to Nβ as a typed near-litter (of type β).

We further stipulate that extensionality holds for each β ∈ α (for each γ ∈ β,
any x ∈ τβ is uniquely determined by x∩τγ ; x is uniquely determined by x∩τ−1

only on the additional assumption that x ∩ τ−1 is nonempty)

position function for atoms and near-litters: We posit a bijection ι∗ from
the set of all atoms and near-litters to µ with the following properties:

1. ι∗(L) < ι∗(a) if a ∈ L and L is a litter.

2. ι∗(N
◦) < ι∗(N) if N is a near-litter which is not a litter

3. ι∗(a) < ι∗(N) if a ∈ N∆N◦

The function may be constructed directly: first choose an ordering of type
µ on litters, then put atoms directly after the litter they are inside (and
before all later litters), then put near-litters after the corresponding litter
and all atoms in the symmetric difference, then map each atom or near-
litter to its position in the resulting order. We don’t run out of room
before finishing the construction because µ has cofinality at least κ.

An additional property involving ι∗ which is enforced by inductive hy-
potheses explained later about the maps ι+β is that ι∗(N) ≤ ι+∗ (Nδ, S) will
hold for any near litter N and support S of Nδ. It must be noted here
because it is shortly used.

the definition of the f maps (crucially important) 1:

We define for each type index β and each ordinal γ less than α and distinct
from β a function fβ,γ (whose definition does not actually depend on α:
it will be the same at every stage). fβ,γ is an injection from τ+β into the
set of litters, with range included in
{Lν,β,γ : ν < µ} to ensure that distinct f maps have disjoint ranges.

When we define fβ,γ(x), we presume that we have already defined it for
y <+

β x. We define fβ,γ(x) as L, where ι∗(L) is minimal such that

1The use of model elements with support rather than simply model elements as domain
elements of the f maps is a substantial contribution of the second author to the mathematics
of the paper, above simply verifying the work of the first author. The proof could be carried
out without this, but it is much easier to present with this refinement. There are other ways
in which the second author has contributed to the mathematics, but this one is especially
worthy of note.

28

1. L ∈ {Lν,β,γ : ν < µ},
2. ι+∗ (x) < ι∗(L) [and so for any N ∼ L, ι+∗ (x) < ι∗(N), and for any
z ∈ L, ι+∗ (x) < ι∗(z)],

3. and for any y <+
β x, fβ,γ(y) ̸= L.

Note that the ranges of distinct f maps are disjoint sets.

Definition (pre-extensional, distinguished extension): We define the no-
tion of pre-extensional element of τ∗β (−1 < β ≤ α). An element x of τ∗β
is pre-extensional iff there is a γ < β such that (1) x ∩ τ∗γ ⊆ τγ , and (2)
γ = −1 if x ∩ τ−1 is nonempty or if any x ∩ τδ (δ ∈ β) is empty, and (3)
for each δ ∈ β \ {γ},

x ∩ τδ = {Nδ : (∃a ∈ x ∩ τγ : ∃S : N ∼ fγ,δ(a, S))}.

We say for any x ∈ τ∗β and γ with this property that x∩τγ is a distinguished
extension of x.

We presume that all elements of τβ , β ∈ α, are pre-extensional.
Note that we now know how to compute all other extensions of typed near-

litters Nβ , because the −1-extension of Nβ is distinguished and this indicates
how to compute all the other extensions.

Verification that distinguished extensions are unique: We verify that the
order conditions in the definition of fβ,γ ensure that for any x ∈ τβ there
is only one set x∩ τγ which is a distinguished extension of x. If any x∩ τγ
(γ ∈ β) is empty or if x ∩ τ−1 is not empty, x ∩ τ−1 is the unique distin-
guished extension (if it is empty of course it coincides with all the other
extensions).

So, what remains is the case of x with x ∩ τ−1 empty and each x ∩ τγ
nonempty for γ < β.

If x ∩ τγ is an extension of x and a ∈ x ∩ τγ is not of the form Nδ for
a near-litter N , then x ∩ τγ must be the unique distinguished extension:
the reason for this is that for any distinguished extension, all elements of
other extensions must be of this form.

So we are down to the case where x ∩ τδ is nonempty for δ ̸= −1, x ∩
τ−1 is empty, and each element of any x ∩ τδ is of the form Nδ where
N is a near-litter. Let x ∩ τγ be a distinguished extension. For any
Mδ ∈ x with δ ̸= γ, we have M ∼ fγ,δ(Pγ , Q) for some near-litter P and
support Q of Pγ . Then we have ι∗(M) > ι+∗ (Pγ , Q) ≥ ι∗(P). Let Nγ ∈ x
be chosen so that ι∗(N) is minimal. It follows that for any δ ̸= γ and
Mδ ∈ x we have ι∗(M) > ι∗(N), from which it is evident that we cannot
have two distinct distinguished extensions: if δ were the index of another
distinguished extension, and ι∗(M) were chosen minimal so that Mδ ∈ x,
it would follow that ι(M) < ι(N) as above but also that ι(N) < ι(M),
which is absurd.

29

Definition (A maps and A−1): For any δ ∈ α and nonempty subset a of type
γ ̸= δ, we define Aδ(a) as

{Nδ : (∃x ∈ a : ∃S : N ∼ fγ,δ(x, S))}.

For any nonempty subset of type δ there is at most one subset y of any
type such that Aδ(y) = x. There cannot be more than one such y in any
given type because the f maps are injective. There cannot be more than
one such y in different types because the ranges of f maps with distinct
index pairs are disjoint. We use the notation A−1(y) for this set if it exists,
defining a very partial function A−1 on nonempty subsets of types.

Note that the distinguished extension of any type element x is the image
under A−1 of the other extensions.

No subset of a type has infinitely many iterated images under A−1: Let
a be a subset of type γ for which A−1(a) exists.

Since A−1(a) exists, every element of a is of the form Nγ where N is a
near-litter. Choose N such that ι∗(N) is minimal. Note that N is in fact
a litter.

Let b = A−1(a): we have a = Aγ(b), where b is a subset of some τδ with
δ ̸= γ. In particular, N = fδ,γ(u, U) for some u ∈ τδ and U a support
of u. If u = Mδ we can further state that ι∗(N) > ι+∗ (Mδ, U) ≥ ι∗(M):
if b is itself an image under A−1, the minimum value of ordinals ι∗(M)
for Mδ ∈ b will be less than the minimum value of ordinals ι∗(N) for
Nγ ∈ a, which establishes that there is an ordinal parameter determined
by a nonempty subset of a type which decreases strictly when A−1 is
applied (if it is applicable), and so no nonempty subset of a type can have
infinitely many iterated preimages under A−1. This is a rephrasing of
an argument which occurred above in the discussion of the uniqueness of
distinguished extensions.

Definition (extensional): We say that an element of a type is extensional iff
it is pre-extensional and its distinguished extension has an even number of
iterated images under A−1. This implies that each of its other extensions
has an odd number of iterated images under A−1.

Properties of extensional type elements: This is enough to ensure that
two extensional model elements with any common extension (over a type
other than τ−1) will be equal: if two extensional model elements have an
empty extension (over a type other than τ−1) in common, they both have
all extensions empty and are equal. If two extensional model elements
have a nonempty extension in common, it will be the distinguished exten-
sion of both, or a non-distinguished extension of both, since distinguished
and non-distinguished extensions are taken from disjoint classes of subsets
of types (when nonempty). In either case we deduce that both have the
same distinguished extension and thus have all extensions the same and

30

are equal. Note that this gives weak extensionality over τ−1 (many objects
have empty extension over type −1) but it gives full extensionality over
any other type.

A legacy notation from earlier versions which may be used: We intro-
duce the notation (β, δ,D) where δ < β and D ⊆ τδ. This stands for the
unique extensional element x of τ∗β such that x∩τδ = D. It should be clear
that there is only one such object. If D is empty, it is the unique element
of τ∗β with empty intersection with each τ∗γ for γ < β. If δ = −1 and D
is nonempty, or if δ > −1 and D has an even number of iterated images
under A−1, then it is the unique element x of of τ∗β which is extensional
and has distinguished extension x ∩ τδ. If D is nonempty and has an odd
number of iterated images under A−1, let A−1(D) ⊆ τγ , and it is the same
as (β, γ,A−1(D)). This notation is mainly for compatibility with previous
versions of the paper, but may have its uses.

We assume that all elements of τβ ’s already constructed are extensional. This
completes the mechanism for enforcement of extensionality in the structure we
are defining.

3.4 Allowable permutations and supports

brief note on our further needs: A crucial aspect of this is that we will need
to define τα so that it has cardinality µ for the process to continue. It
is certainly not a sufficient restriction to require elements of τα to be
extensional: we will require a further symmetry condition.

structural permutations defined: We define classes of permutations of our
structures.

A −1-structural permutation is a permutation of τ−1.

An α-structural permutation is a permutation π of τα such that for each
type β < α there is a β-structural permutation πβ such that π(x) ∩ τβ =
πβ“(x ∩ τβ) for any x ∈ τβ .

derivatives of structural permutations: The maps πβ are referred to as
derivatives of π.

More generally, for any finite subset A of λ ∪ {−1} with maximum α,
define πA as (πA\{min(A)})min(A). The maps πA may be referred to as
iterated derivatives of π. It should be clear that a structural permutation
is exactly determined by its iterated derivatives which are −1-structural.

We introduce the brief notation π+
A(x) = πA∪{−1}(x) where x ∈ τ−1 and

−1 ̸∈ A [in fact, π+
A = (πA)−1, but we find the short notation useful.]

allowable permutations defined: Structural permutations are defined on the
supertype structure generally. We need a subclass of structural permuta-
tions which respects our extensionality requirements.

31

A −1-allowable permutation is a permutation π of τ−1 such that for any
near-litter N , π“N is a near-litter.

An α-allowable permutation is an α-structural permutation, each of whose
derivatives πβ is a β-allowable permutation (and satisfies the condition
that πβ“τβ = τβ) and which satisfies a coherence condition relating the f
maps and derivatives of the permutation: for suitable β, γ < α,

fβ,γ(πβ(x), πβ [S]) ∼ π+
γ “fβ,γ(x, S).

(where the action of allowable permutations on supports will be defined
shortly).

Note that an α-allowable permutation is actually defined on the entire
supertype structure, though what interests us about it is its actions on
objects in our purported TTT model.

Of course, for each −1 < β < α we have already defined β-allowable
permutations in the same way earlier in the recursive construction.

Definition (support condition): A β-support condition is defined as a pair
(x,A), where

1. A is a finite subset of λ with maximum β (note that it will not contain
−1),

2. and x ⊆ τ−1 is either a singleton or a near-litter.

Definition (support): Where 0 ≤ β ≤ α, a β-support is defined as a function
S from a small ordinal to β-support conditions.

We may write Sδ intead of S(δ).

For any support condition (x,B) we define (x,B)↑A as (x,B ∪ A) if all
elements of the set A dominate all elements of the set B. Further, if S is a
support, we define S↑A so that (S↑A)ϵ = (Sϵ)

↑A. By an abuse of notation
we may write (x,B)↑β or S↑β where β is an ordinal for (x,B)↑{β}) or
S↑{β}.

For any supports S and T we denote by S+T a support which consists of
S, followed by T : what this means is that (S+T)ϵ = S(ϵ) [which we write
Sϵ] for ϵ in the domain of S, (S + T)dom(S)+ϵ = Tϵ for ϵ in the domain of
T .

By fiat, we state that there is one −1-support, the empty set. Supports of
atoms are never used in the argument, and it is most convenient to have a
single dummy object to fill the support slot in elements of τ+−1. The Lean
formalization uses a different approach but similarly gives each atom just
one support, which is never used for anything.

We define the action of a β-allowable permutation π on a β-support S:
if S(δ) = (x,A), π[S](δ) = (π+

A“x,A). In the case of −1-supports S,
π[∅] = ∅.

32

An element x of τ∗β (β ≥ 0) has β-support S iff for every β-allowable
permutation π, if π[S] = S then π(x) = x. We say that an element x of
τ∗β which has a β-support is β-symmetric. Every element of τ−1 has the
empty set as support (by fiat, as noted).

It is straightforward to observe that there are µ supports, since there are
µ atoms, µ near-litters, and < κ finite sets of elements of λ. Thus τ+β is
already known to be of size µ for β < α.

It is important to note that if S is a support of x ∈ τβ , π[S] is a support
of π(x) for any β-allowable permutation π.

motivation of the coherence condition: The motivation for this is that we
need α-allowable permutations to send extensional elements of supertypes
to extensional elements. Suppose x ∩ τβ = {b}. If x is extensional, this
has to be the distinguished extension of x. For any γ ∈ α \ {β}, it follows
that x ∩ τγ is the set of all Nγ such that N ∼ fβ,γ(b, S) for some support
S of b. This tells us that an α-allowable permutation π, for which we
must have that π(x) has β-extension {πβ(b)}, must have the γ-extension
of π(x) equal to πγ“{Nδ : ∃S : N ∼ fβ,γ(b, S)} but must also have its
γ-extension equal to {Nδ : ∃S : N ∼ fβ,γ(πβ(b), S)}. This tells us that
πγ(fβ,γ(b, S)δ) ∈ {Nδ : (∃T : N ∼ fβ,γ(πβ(b), T)} for each support S of b.
The coherence condition enforces this neatly, showing that it is motivated
by considerations required to get extensionality to work: the action of πβ
conveniently correlates supports of b with supports of πβ(b).

allowable permutations preserve extensionality :

We defined Aδ(a) as

{Nδ : (∃x ∈ a : (∃S : N ∼ fγ,δ(a)))}.

If π is allowable of suitable index, πδ“Aδ(a) = Aδ(πγ“a) follows from the
coherence condition. Verify this:

Suppose we have Nδ with x ∈ a such that N ∼ fγ,δ(x, S). Then

πδ(Nδ) ∩ τ−1 = (πδ)−1“N ∼ (πδ)−1“fγ,δ(x, S) ∼ fγ,δ(πγ(x), πγ [S]).

So any element of πδ“Aδ(a) is in Aδ(πγ“a).

Suppose we have Nδ with x ∈ a such that N ∼ fγ,δ(πγ(x), S). We then
have N ∼ (πδ)−1“fγ,δ(x, π

−1
γ [S]). We want to show that π−1

δ (Nδ) ∈
Aδ(a). π

−1
δ (Nδ) ∩ τ−1 = (πδ)

−1
−1“N ∼ (πδ)

−1
−1“((πδ)−1“fγ,δ(x, π

−1
γ [S])) =

fγ,δ(x, π
−1
γ [S]), establishing what we need.

Notice that this shows that the coherence condition implies that the im-
age under an allowable permutation of a pre-extensional element of our
structure is pre-extensional.

Now this implies that if a ⊆ τγ , then A−1(a) exists and is in τδ ex-
actly if A−1(πγ“a) exists and is in τδ, and moreover A−1(πγ“a) is equal

33

to πδ“A
−1(a) if it exists under these conditions. This verifies that the

coherence condition implies that allowable permutations preserve full ex-
tensionality, not just pre-extensionality: the number of iterated images
under A−1 of an extension that exist is not affected by application of an
allowable permutation in a suitable sense.

the definition of τα: We stipulate that all elements of τβ have β-supports,
and define τα as the set of elements x of τ∗α such that x∩ τ∗β ⊆ τβ for each
β < α, x is extensional, and x has an α-support.

We still have to prove that the cardinality of τα, and so of τ+α , is µ, to
show that the construction works.

Observation (κ-completeness of the structure): For any subset X with
cardinality < κ of a type γ and β > γ, it should be clear that Xβ has
a support, whose range is obtained from the union of the ranges of the
supports of the elements of X by replacing each element (u,B) of the
union of the ranges with (u,B∪{β}), and therefore belongs to the model.
Xβ is obviously extensional (the extension X is clearly the distinguished
extension and has no image under A−1).

conditions on choice of distinguished ordinal indexings of supported types:
ι+∗ (x, ∅) is defined as ι∗(x). The well-ordering ≤+

−1 is defined by

(x, ∅) ≤+
−1 (y, ∅) ↔ ι∗(x) < ι∗(y).

The conditions constraining choice of functions ι+β (−1 < β ≤ α) are

1. ι∗(t) < ι+∗ (x, S) if (t, A) is in the range of S and x is not a typed
atom or near-litter

2. ι∗(t) ≤ ι+∗ (tγ , S)

We then define x ≤+
β y as ι+β (x) ≤ ι+β (y).

There is no difficulty in satisfying these constraints as there are only a
small set of constraints on any particular value of ι+∗ and µ is of cofinality
at least κ.

Of course, if β < α this records a hypothesis of the recursion: one of these
is noted above already.

It should be noted that type 0 has a very simple description: the −1-
extensions of type 0 objects are exactly the sets with small symmetric
difference from small or co-small unions of litters, and that these are the
same extensions over type −1 which appear in any positive type.

At this point we have a complete description of the structure which we
claim is a model of TTT.

34

4 Verification that the structure defined is a
model

4.1 The freedom of action theorem

Definition (approximation): A β-approximation is a map π0 from finite sub-
sets of λ with maximum element β such that each π0(A) (which we write
π0
A) is a function with the following properties:

1. The domain and image of π0
A are the same and π0

A is injective.

2. Each domain element x of π0
A is such that (x,A) is a support condi-

tion.

3. x and π0
A(x) have the same cardinality, which is either 1 or κ, since

the previous condition tells us that x is a singleton of an atom or a
near-litter.

4. if the cardinality of x is κ, x and π0(x) are litters.

5. for any x in the domain of π0
A, the collection of y in the domain of

π0
A such that y ⊆ x is small.

We say that π0 approximates a β-allowable permutation π just in case
π+
A“x = π0

A(x) if x has cardinality 1, and π+
A“x ∼ π0

A(x) otherwise, for
each (x,A) in the domain of π0.

Notice that each such π0 has an inverse (π0)
−1 determined by (π0)−1

A =
(π0

A)
−1, which is also a β-approximation.

litter near a near-litter: Recall that any near-litter N , we define N◦ as the
unique litter L such that L ∼ N .

Definition (flexibility): A near-litter x is A-flexible if x◦ is not in the range
of any fγ,min(A) for γ < min(A1).

Definition (exception, exact approximation): A−1-allowable permutation
π has exception x if, L being the litter containing x, we have either
π(x) ̸∈ (π“L)◦ or π−1(x) ̸∈ (π−1“L)◦.

A β-approximation π0 exactly approximates a β-allowable permutation
π iff π0 approximates π and for every exception x of a πA∪{−1} (A not
containing −1) we have {x} in the domain of π0

A.

Theorem (freedom of action): A β-approximation π0 will exactly approxi-
mate some β-allowable permutation π if it satisfies the additional condition
that any domain element x of π0

A which is a litter is A-flexible.

Proof: For each pair of sets L,M which are co-small subsets of litters, we define
πL,M as the unique map ρ from L onto M such that for any x, y ∈ L,

x <L◦ y ↔ ρ(x) <M◦ ρ(y) :

35

πL,M is the unique map from L onto M which is strictly increasing in the
order determined by fourth projections of atoms. Notice that
πM,N ◦πL,M = πL,N will hold if L,M,N are subsets of the same litter, and
πL,M ◦ πM,L = πL,L which is the identity map on L, under the same con-
ditions. The relationship to composition is neatly handled by our concrete
definition.2

We also choose an extension of each π0
A to all A-flexible litters; we do

this without notational comment, simply assuming that π0
A is defined for

each A at each A-flexible litter M , which can be arranged harmlessly (for
example, one could have π0

A act as the identity on the new A-flexible
litters, but we do not require this).

We choose an approximation π0 satisfying the conditions of the theorem
and extend it as indicated in the previous paragraph. We compute the
allowable permutation π, and in parallel its inverse π−1, on all support
conditions (and therefore compute all its derivatives πA (and π−1

A) at all
atoms (−1 ∈ A), so completely defining it, using the assumption that
we already know how to carry out this construction to define γ-allowable
permutations exactly approximated by any given γ-approximation for γ <
β.

The basic order of the construction of π is that the value of (π+
A)

i“x
for i = ±1 is computed at each atom or near-litter x assuming that the
values have already been computed for (π+

B)
j“y for each i = ±1, y with

ι∗(y) < ι∗(x), and extended type index B [of course, this is equivalent to
computing πA(xmin(A)) and we may discuss it in that form]. All specific
discussions of inductive hypotheses below conform to this.

We use the notation π∗
A for the partially computed πA at any point in

the calculation before we are done. We use the notation π+∗
A (x) for

π∗
A∪{−1}(x). We use similar notation (π−1

A)∗ for the part of π−1 which
we have already computed.

We first indicate how to compute π∗
A(Lmin(A)), where L is a litter. We

compute (π−1
A)∗(Lmin(A)) in the same way.

We further extend this, once π∗(Lmin(A))
◦ is computed as Mmin(A), to

describe the action of π+∗
A on elements of L: for each x ∈ L, if {x} is in

the domain of π0
A, which maps it to {y}, π+∗

A maps x to y. Define L− as
the set of all x ∈ L such that {x} is not in the domain of π0

A and define
M− as the set of all x ∈M such that {x} is not in the domain of π0

A. For
x ∈ L− we define π+∗

A (x) as πL−,M−(x). Note that this approach ensures
that, where π is the permutation we eventually construct, there can be
no exceptions of π+

A other than sole elements of elements of the domain of
π0
A.

2the choice of these maps does not need to be so concrete, but the fact that it can be
indicates for example that there is no use of choice here. We like the concreteness of this
approach.

36

We can then exactly compute π∗
A(Lmin(A)) as (π

+∗
A “L)min(A)

Note that the general inductive hypothesis ensures that when we are com-
puting π+

A(x) and L is the litter containing x, we have already computed
π+
A“L, because ι∗(L) < ι∗({x}. The paragraph above indicates how this

computation is carried out for every atom and extended type index.

If L is A-flexible, we can compute π∗
A(Lmin(A))

◦ as (π0
A(L))min(A)

If L is A-inflexible, we have fγ,min(A)(x, S) = L for some γ < min(A1),
x ∈ τγ , and S a support of x.

We expect π∗
A(fγ,min(A)(x, S)min(A)) to have −1-extension near that of

fγ,min(A)(π
∗
A1∪{γ}(x), π

∗
A1∪{γ}[S]))min(A).

As a comment on the circumlocution above, we allow ourselves subse-
quently to say that Mδ is near Nδ when M ∼ N : nearness of typed
near-litters is defined in the obvious way in terms of nearness of near-
litters.

If γ > −1, we will show that the inductive hypotheses allow us to compute
values of π∗

A1∪{γ} and so images under this permutation of γ-supports.

The conditions on the construction of the indexings ι+β ensure that we

can compute π∗
A1∪{γ}[S] and (π−1

A1∪{γ})
∗[S], because ι∗(u) < ι+∗ ((x, S)) <

ι∗(L) for each (u, U) ∈ S so we have already computed each π+
∗ “u.

We intend to construct a γ-approximation ρ which must send S to π∗
A1∪{γ}[S].

Each atomic and flexible item in S is to be mapped by the γ-approximation
to the corresponding item in π∗

A1∪{γ}[S] (with the proviso that where near-

litter items correspond, they will be modified to litter items). We have to
fill in orbits, since each ρ0B must have domain the same as its range. We fill
in the orbits, adding at most a countable number of flexible litters (which
present no difficulties) and a countable number of atoms to domains of
ρ0B per atom or flexible near-litter already there, subject to the condition
that where we are choosing the image or preimage of the singleton of an
atom under ρ0B and we know its elementwise image or preimage under
π+∗
A1∪B we use that (and we will know this if we know the elementwise

image or preimage under π+∗
A1∪B of a litter which includes it, as in the case

of litters near the near-litters in the support). Where we do not have this
information, we can choose images and preimages freely as long as they
are not already known elementwise preimages or images under π+∗

A1∪B .

There is a further point to do with anomalous elements of near-litters N
with (N,B) ∈ S which are not litters: for any z ∈ N \N◦, with z belonging
to a litter M , ι∗(M) < ι∗({z}) < ι+∗ (x, S) < ι∗(L) so π

+
B“{z} and π+

B“M
have both been computed, and appropriate values can be assigned to ρ0

at ({z}, B) and (M,B), to ensure that ρ will act correctly on N .

We construct ρ exactly approximated by ρ0. We need to verify that ρ[S]
really can be relied upon to agree with π∗

A1∪{γ}[S]. The difficulty is that ρ0

37

agrees with π∗
A1∪{γ} for each support condition in S which has first com-

ponent the singleton of an atom or flexible, because this information was
packed into ρ0: how do we know that it agrees with π∗

A1∪{γ} at inflexible

items? Suppose it failed to agree: there would be an ι+∗ minimal item at
which disagreement occurred. If the support condition were (N,A1 ∪D),
we know that ρD and π∗

A1∪D agree up to nearness at Nϵ (ϵ = min(D))
because the actions of ρ and π∗

A1∪{γ} agree on the support appearing in
the inverse image under the appropriate f map of N◦. Further, we have
ensured by construction that any exceptional action of ρB in N will agree
with the expected action of πA1∪B : any exceptional action of ρB must
either agree with computed action of π∗

A1∪B or be in a litter for which we
have computed no value for πA1∪B . Thus we get not just nearness but
identity.

Now we compute π∗
A1∪{γ}(x) as ρ(x), and so we know π∗

A(fγ,min(A)(x, S)min(A))
up to nearness, because we know how to compute

fγ,min(A)(π
∗
A1∪{γ}(x), π

∗
A1∪{γ}[S]))min(A).

If γ = −1, we need to compute π∗
A1∪{−1}(x), for which it is sufficient

to compute π∗
A1

(Mmin(A1)), where M is the litter containing x. We have
ι∗(M) < ι+(x, ∅) < ι∗(L) so by inductive hypothesis stated above we have
already computed π∗

A1
(Mmin(A1)), so we can compute π∗

A1
(x), and so we

can compute π∗
A(L) up to nearness.

In this way we have computed π∗
A(Lmin(A))

◦ in every case and above we
indicate how to compute π∗

A(Lmin(A)) exactly given this.

The process given will compute πA(x) and π−1
A (x) for every atom x and

every A containing −1. Since every action on every atom is fixed, π is
fixed as a structural permutation.

The method by which the derivatives of π are evaluated at atoms ensures
that πA agrees with π0

A on typed singletons. It also ensures that (if π
and its derivatives defined as indicated satisfy the coherence conditions)
πA∪{−1} has an exception x only if {x} is in the domain of π0

A.

The method of computation verifies that the coherence conditions will
hold. The method of computation also verifies that π is a permutation,
as π−1 is computed in precisely the same way from (π0)−1.

38

4.2 Types are of size µ (so the construction actually suc-
ceeds)

Now we argue that (given that everything worked out correctly already at lower
types) each type α is of size µ, which ensures that the construction actually
succeeds at every type.

Definition (strong support): A β-strong support is a β-support S with the
additional properties that

1. if (x,A) and (y,A) are in the range of S and x∆y is small, then
({z}, A) ∈ S for all z ∈ x∆y,

2. and for each ϵ in the domain of S, if Sϵ = (x,A), and x◦ = fγ,δ(y, T),
then the range of T ↑A1 is a subset of the range of S⌈ϵ: supports
appearing in inverse images under f of litters which are near the
first projections of an element of the support have a type-raised copy
(mod reindexing) appearing in the support before that item.

Remark: It should be evident that if π is a β-allowable permutation and S is
a β-strong support, π[S] is also a β-strong support.

Remark: Each support S is the terminal segment of a strong support. Such a
strong support can be constructed by prefixing to S, for each T ↑A1 such
that for some ϵ in the domain of S, Sϵ = (x,A), and x◦ = fγ,δ(y, T), a
strong support with T ↑A1 as a terminal segment, which will be obtainable
as U↑A1 where U is a strong support with T as a terminal segment, which
exists by the inductive hypothesis that this is true for supports with lower
type index than S, followed by all atomic items which must be added to
satisfy the first condition in the definition of strong support. In fact, we
can define a canonical strong support of which S is a terminal segment
by stipulating that the U↑A1 ’s are added (each one in turn between the
preceding ones and S) in the order in which the correlated Sϵ’s appear
in S and that U is the canonical downward extension of T in each case,
and that the atomic items are added in the order of their images under
ι+∗ , with some fixed well-ordering of extended type indices used to resolve
order of items with the same value under ι+∗ .

Definition (coding functions): For any support S and object x, we can de-
fine a function χx,S which sends T = π[S] to π(x) for every T in the orbit
of S under the action of allowable permutations. We call such functions
coding functions. Note that if π[S] = π′[S] then (π−1 ◦ π′)[S] = S, so
(π−1 ◦ π′)(x) = x, so π(x) = π′(x), ensuring that the map χx,S for which
we gave an implicit definition is well defined.

designated supports: For each ordinal γ, and for each orbit in τγ under al-
lowable permutations, choose x in the orbit (the designated element of the
orbit), choose a strong support S of x, and for each γ-allowable permuta-
tion π define the designated support of π(x) as π[S].

39

Definition (specification): A χ-specification S∗ of a χ-support S is a func-
tion with the same domain as S. We use the notation S∗

ϵ for S∗(ϵ).

1. If Sϵ is ({x}, A), where β = min(A), then S∗
ϵ is (0, β,Σ, A) where Σ

is the set of all δ such that A = π2(Sδ) and x ∈ π1(Sδ) (this captures
identical atoms and near litters containing the given atom)

2. If Sϵ is (N,A) and N is a near-litter, where β = min(A), and either
|A| = 1 or N◦ is not in the range of any fγ,β for γ < min(A1), then
S∗
ϵ is (1, β,Σ, A), where Σ is the set of all δ such that π2(Sδ) = A

and π1(Sδ) ∼ π1(Sϵ).

3. If Sϵ is (N,A) and N is a near-litter, where β = min(A), and
N◦ = fγ,β(x, T) with −1 < γ < min(A1) and x ∈ τγ then S∗

ϵ is
(2, β, χx,T , F,A), where F is a function from the domain of T into ϵ
such that SF (δ) = (T ↑A1)δ for each δ in the domain of T , or 1 if there
is no such F (the usefulness of 1 as a dummy being that it is not a
function). There is a method of choose a canonical such F if there
is one: add the provision that for each δ, F (δ) is chosen as small as
possible.

4. If Sϵ is (N,A) and N is a near-litter, where β = min(A), and N◦ =
f−1,β(x, ∅) then S∗

ϵ is (3, β,Σ, A), where Σ is the set of all δ such that
Sδ is ({x}, A1).

Remark: It should be evident that every support has a specification, and that
a strong support will have a specification with no instances of F = 1, and
that for any β-allowable permutation π and strong β-support S, (π[S])∗ =
S∗. What is less evident and our first target result here is that if S is a
strong support then any T with T ∗ = S∗ is the image of S under the
action of an allowable permutation: the specifications precisely code the
orbits in the strong supports under the allowable permutations.

Observation: On the inductive hypothesis that there are < µ γ-coding func-
tions and < µ γ-specifications for each γ < β, we observe that there are
< µ specifications of β-supports for β ≤ α.

Lemma: The specification(s) of a strong β-support exactly determine the orbit
in the action of β-allowable permutations on supports to which it belongs:
if two β-supports have the same specification, they are in the same orbit.

Proof of Lemma: It is straightforward to see that if S is a β-support and if
π is a β-allowable permutation, and S∗ is the specification for S, that S∗

is also the specification for π[S]. The relationships between items in the
support recorded in the specification are invariant under application of
allowable permutations.

It remains to show that if S and T are supports, and S∗ = T ∗ is a
specification for both, there is an allowable permutation π such that π[S] =
T .

40

We construct π using the Freedom of Action Theorem.

If we have Sϵ = ({x}, A), we will have Tϵ = ({y}, A) for some y, and we
will set π0

A({x}) = {y} as part of the construction of the local bijection
to be used. Note that if Sδ = ({x}, A) for δ ̸= ϵ, the fact that S and
T have the same specification ensures that Tδ = ({y}, A), because the
specification contains the information that the specified supports have the
same values at ϵ and δ.

We suppose all these approximation values are computed at the outset.
Further, we fill in orbits, with the proviso that if an atom x to be sent by
π0
A to an atom y and (M,A) is in S with the same index as (N,A) in T ,

then x ∈ M if and only if y ∈ N , and if an atom x to be sent by (π0
A)

−1

to an atom y and (M,A) is in T with the same index as (N,A) in S, then
x ∈M if and only if y ∈ N . There is no obstruction to choosing values to
meet these conditions, sufficiently to fill orbits.

If we have Sϵ = (M,A) forM a near litter and either |A| = 1 orM◦ is not
in the range of any fγ,β for γ < min(A1), then Tϵ = (N,A) for N a near
litter, with analogous properties, and we set π0

A(M
◦) = N◦ as part of the

data for application of the Freedom of Action Theorem. Note again that
information in the specification ensures that if Sδ = (M ′, A) for M ′ ∼M
that Tδ = (N ′, A) will have N ′ ∼ N because the specification tells us that
T has first components of values being litters near one another at the same
pairs of ordinals that S does, and so no conflicting computation of values
for the approximation will occur.

We suppose orbits filled in in the flexible litters, which can be done quite
freely.

In the computation for the case of inflexible litters, we suppose that the
computation of all orbits under the approximation has been completed
for all atomic and flexible items in S, and for inflexible items appearing
earlier in the support.

If we have Sϵ = (M,A) for M a near litter with M◦ = fγ,β(x, U),
where −1 < γ < min(A1), then S∗

ϵ = T ∗
ϵ is (2, β, χx,U , F,A) and where

T+
ϵ = (N,A), we have N◦ = fγ,β(y, V) where χy,V = χx,U , so any al-

lowable permutation π such that πA1∪{γ}[S ◦ F] = T ◦ F will satisfy

πA1∪{γ}(x) = y and so π+
A“M ∼ N . We add additional information to our

approximation to make it so M will be sent precisely to N . Extend the
approximation so that π0

A sends each singleton of an element of M \M◦

to a singleton of an element of N◦ and (π0
A)

−1 sends each singleton of
an element of N \ N◦ to a singleton of an element of M◦. One needs to
further extend the approximation to fill in orbits. The constraint must be
observed in making extensions at atoms that if P is a litter with a value
for π0

A(P) already determined, to which x belongs [resp. does not belong]
then π0

A({x}) must be chosen as {y} such that y belongs to [does not be-
long to] π0

A(P) [and there is a precisely parallel condition for choosing new

41

values of (π0
A)

−1 to fill orbits]. This strategy avoids introduction of prob-
lematic exceptions. We then add π0

A(M
◦) = N◦ to the approximation for

bookkeeping purposes: we have arranged for the atomic and flexible items
in the approximation to force this valuation anyway [so the applicability
of Freedom of Action is not affected; inflexible items can be dropped from
the approximation before the theorem is applied], and we need this in-
formation to guide orbit filling. Note that there is enough computational
information in the specification to fill in orbits in the approximation for
inflexible litters too (which will require the same adjustment for exact fit
at each step).

If we have Sϵ = (M,A) forM a near litter withM◦ = f−1,β(x, ∅), then we
have Tϵ = (N,A) where N◦ = f−1,β(y, ∅), and we add to our approxima-
tion the information that {x} is mapped to {y} by π0

A1
(and fill in orbits),

and the fix to extend the approximation to get M to map precisely to
N elementwise under π+

A is exactly as in the previous case. The usual
observation can be made that if (M,A) appears at another location in S,
there is enough information in the specification to force the computation
to give the same result.

If we have Sϵ = (M,A) for M a near-litter and δ < ϵ such that Sδ =
(M ′, A) withM ∼M ′, then observe that for each z inM∆M ′, (z,A) ∈ S.
The computations already done to force Sϵ to map to Tϵ, along with the
easy calculations for atoms, show that there is no additional work needed
in this case, and so we do not do any, and no conflict arises.

In the indicated way, we construct an approximation such that the allow-
able permutation it exactly approximates must have action sending S to
T , completing the proof of the Lemma.

There are not too many orbits: Since the β-specifications [β ≤ α] precisely
determine the orbits in supports under β-allowable permutations, and
there are < µ β-specifications (on stated hypotheses) there are < µ such
orbits.

weak specifications: Notice that we can give a kind of specification for any
support S: give the specification for a strong support T of which S is an
end extension and the index at which S starts: this will determine the
orbit in which S lies in the allowable permutations. This establishes that
the collection of orbits in the β-supports is no larger than the collection of
orbits in the strong β-supports. These weak specifications are not unique.

The strategy of our argument for the size of the types is to show that that
there are < µ coding functions for each type , which implies that there are no
more than µ (and so exactly µ) elements of each type, since every element of a
type is obtainable by applying a coding function (of which there are < µ) to a
support (of which there are µ).

Analysis of coding functions for type 0: We describe all coding functions
for type 0. The orbit of a 0-support in the allowable permutations is

42

determined by the positions in the support occupied by near-litters, and
for each position in the support occupied by a singleton, the position, if
any, of the near-litter in the support which includes it. There are no more
than 2κ ways to specify an orbit. Now for each such equivalence class,
there is a natural partition of type −1 into near-litters, singletons, and a
large complement set. The partition has ν < κ elements, and there will
be 2ν ≤ 2κ coding functions for that orbit in the supports, determined
by specifying for each compartment in the partition whether it is to be
included or excluded from the set computed from a support in that orbit.
So there are no more than 2κ < µ coding functions over type 0.

Analysis of the general case:

Our inductive hypothesis is that for each β < α we have < µ β-coding func-
tions.

We specify an object X ∈ τα and a strong α-support S for X, and develop
a recipe for the coding function χX,S which can be used to see that there
are < µ α-coding functions (assuming of course that we know that things
worked out correctly for β < α).

X = Bα, where B is a subset of τβ .

We define Sb as the designated strong support for b, and Tb as the canonical
extension to a strong support of S↑α

b + S.

For each b ∈ B there is a support Sb chosen as above, from which the
support Tb can be computed as described above. If b′ ∈ B is in the
range of the same coding function χb,Sb

as b, Sb′ is π[Sb] for some β-
allowable π with π(b) = b′. If we have the further condition that Tb and Tb′

have the same specification, it follows that there is a permutation π2 such
that π2[Tb] = Tb′ . Note that (π2)β [Sb] = Sb′ , from which it follows that
π−1 ◦(π2)β fixes b, since it fixes all elements of Sb, so b

′ = π(b) = (π2)β(b),
from which it follows that π2({b}α) = {b′}α so {b}α and {b′}α are in the
range of the same coding function χ{b}α,Tb

. Now there are < µ possible
specifications of a coding function χb,Sb

[we know that there are < µ β-
coding functions] followed by a specification for Tb [we know that there
are < µ α-specifications], so by this procedure we describe a family of
< µ coding functions χ{b}α,Tb

whose range covers all type α singletons of
elements of B.

We claim that χX,S can be defined in terms of the orbit of S in the
allowable permutations and the set of coding functions χ{b}α,Tb

for b ∈ B.
There are < µ coding functions χ{b}α,Tb

for b ∈ τβ , and so there are
< µ sets of coding functions of this kind, because µ is strong limit, and
we have shown above that there are < µ orbits in the α-strong supports
under allowable permutations, so this will imply that there are < µ α-
coding functions, which will further imply that there are ≤ µ elements of
type α (it is obvious that there are ≥ µ elements of each type).

43

The definition that we claim works is that χX,S(U) = B′
α, where B

′ is
the set of all

⋃
(χ{b}α,Tb

(U ′) ∩ πβ) for b ∈ B and U a terminal segment of
U ′. Clearly this definition depends only on the orbit of S and the set of
coding functions χ{b}α,Tb

derived from B as described above. Before we
know that this is actually the coding function desired, we will write it as
χ∗
X,S .

The function we have defined is certainly a coding function, in the sense
that χ∗

X,S(π[S]) = π(χ∗
X,S(S)). What requires work is to show that

χ∗
X,S(S) = X, from which it follows that it is in fact the intended function.

Clearly each b ∈ B belongs to χ∗
X,S(S) as defined, because

b =
⋃
(χ{b}α,Tb

(Tb) ∩ τβ), and Tb has S as a terminal segment.

An arbitrary c ∈ χ∗
X,S(S) is of the form

⋃
(χ{b}α,Tb

(U) ∩ τβ), where U
has S as a terminal segment and of course must be in the orbit of Tb
under allowable permutations, so some π0[Tb] = U . Now observe that
π0[S] = S, so π0(X) = X, so (π0)β“B = B. Further (π0)β(b) = c, so
in fact c ∈ B which completes the argument. The assertion (π0)β(b) = c
might be thought to require verification: the thing to observe is that
c =

⋃
(χ{b}α,Tb

(U) ∩ τβ) =
⋃
(π0(χ{b}α,Tb

(S) ∩ τβ) =
⋃
(π0({b}α) ∩ τβ) =⋃

({(π0)β(b)}β ∩ τβ) = (π0)β(b)

This completes the proof: any element of a type is determined by a support
(of which there are µ) and a coding function (there are < µ of these, so a type
has no more than µ elements (and obviously has at least µ elements).

44

4.3 The structure is a model of predicative TTT

There is then a very direct proof that the structure presented is a model of
predicative TTT (in which the definition of a set at a particular type may not
mention any higher type). Use E for the membership relation ∈TTT of the
structure defined above (in which the membership of type β objects in type α
objects is actually a subrelation of the membership relation of the metatheory,
a fact inherited from the scheme of supertypes). It should be evident that
xEy ↔ πβ(x)Eπ(y), where x is of type β, y is of type α, and π is an α-allowable
permutation.

Suppose that we are considering the existence of {x : ϕs}, where ϕ is a
formula of the language of TST with ∈ translated as E, and s is a strictly
increasing sequence of types. The truth value of each subformula of ϕ will
be preserved if we replace each u of type s(i) with πAs,i

(u), where As,i is the
set of all sk for i ≤ k ≤ j + 1 [x being of type s(j), and there being no
variables of type higher than s(j + 1)]: πAs,i(x)EπAs,i+1(y) is equivalent to
(πAs,i+1)s(i)(x)EπAs,i+1(y), which is equivalent to xEy by the observation above.
The formula ϕ will contain various parameters ai of types s(ni) and it is then
evident that the set {x : ϕs} will be fixed by any s(j+1)-allowable permutation
π such that πAs,ni

fixes ai for each i. But this means that (s(j+1), s(j), {x : ϕs})
is symmetric and belongs to type s(j+1): we can merge the supports of the ai’s
(with suitable raising of indices) into a single s(j + 1)-support. Notice that we
assumed the predicativity condition that no variable more than one type higher
than x appears (in the sense of TST).

This procedure will certainly work if the set definition is predicative (all
bound variables are of type no higher than that of x, parameters at the type of
the set being defined are allowed), but it also works for some impredicative set
definitions.

There are easier proofs of the consistency of predicative tangled type theory;
there is a reason of course that we have pursued this one.

It should be noted that the construction given here is in a sense a Frankel-
Mostowski construction, though we have no real need to reference the usual
FM constructions in ZFA here. Constructions analogous to Frankel-Mostowski
constructions can be carried out in TST using permutations of type 0; here we
are doing something much more complicated involving many permutations of
type −1 which intermesh in precisely the right way. Our explanation of our
technique is self-contained, but we do acknowledge this intellectual debt.

45

4.4 Impredicativity: verifying the axiom of union

What remains to complete the proof is that typed versions of the axiom of set
union hold. That this is sufficient is a fact about predicative type theory. If
we have predicative comprehension and union, we note that for any formula
ϕ, {ιk(x) : ϕ(x)} will be predicative if k is taken to be large enough, then
application of union k times to this set will give {x : ϕ(x)}. ι(x) here denotes
{x}. It is evidently sufficient to prove that unions of sets of singletons exist.

So what we need to show is that if α > β > γ and G ⊆ τγ , and

{{g}β : g ∈ G}α

is symmetric (has an α-support, so belongs to τα), then Gβ is symmetric (has
a β-support, so belongs to τβ).

Suppose that {{g}β : g ∈ G}α is symmetric. It then has a support S. We
claim that S(β), defined as {(z, C) : max(C) = β∧(z, C∪{α}) ∈ S, is a β-support
for Gβ .

Any g ∈ G has a γ-support T which extends (S(β))(γ).
Suppose that the action of the β-allowable permutation π fixes S(β).
Our plan is to use freedom of action technology to construct a permutation

π∗ whose action on S is the identity and whose action on T {α,β} precisely
parallels the action of π on T {β}.

If this is accomplished, then the action of π∗ fixes S and so fixes

{{g}β : g ∈ G}α,

while at the same time (π∗
β)γ agrees with πγ on G. This implies that πγ(g) ∈ G

(and the same argument applies to π−1) so π fixes {{g}β : g ∈ G}.
Close up the γ-support T under the processes of action of π and inclusion

of atoms at which π acts exceptionally to obtain T ∗.
We construct the allowable permutation π∗ by Freedom of Action so that

the action of (π∗
β)γ on atomic and flexible items in T ∗ agrees with the action of

πγ on T ∗ and the action of π∗ fixes atomic and flexible items in S. On any non-
flexible litter L in S, π∗

β acts correctly because it acts correctly on a support of
the inverse image of L under the appropriate f map (fixing all of its elements),
and there will be no unexpected exceptional actions because the permutation
is constructed by Freedom of Action, so we get identity rather than nearness.
The tricky case seems to require a little extra attention to the action on T ∗:
if a non-flexible litter has inverse image u under f−1,γ , it is mapped by π to
something with inverse image v under f−1,γ , we arrange for the approximation
generating π∗ to induce π∗

β to map {u}β to {v}β . Thus (π∗
β)γ maps g to πγ(g)

as required for the argument above. That said, any non-flexible item is sent to
its image under the appropriate derivative of π because a support is acted on
correctly and there will be no exceptional actions of derivatives of π∗ disagreeing
with exceptional actions of π because T ∗ is closed under exceptional actions of
π in litters. This completes the argument.

Note that difficult interactions with S are avoided because an incompatibility
of π with fixing S would involve moving most elements of a litter in the range

46

of f−1,β , and while π may do this, nothing in the definition of π∗ can force this
to happen; there is no conflict between the conditions imposed by S and the
conditions imposed by T ∗.

This completes the proof. In the formal proof in Lean, what is actually done
is a proof that each of the assertions in the finite axiomatization of Hailperin
in the version discussed in the final subsection of section 2 holds in all typed
versions in our structure for the language of TTT, so it is in fact a model of TTT.
The axioms in Hailperin other than the axiom of type lowering are predicative
comprehension axioms and admit demonstration by the methods of the previous
subsection, done explicitly without metamathematics. In the formalization, the
axiom of type lowering, which contains rather more content than the axiom
of set union restricted to sets of singletons which is proved here, is proved by
first proving the existence of an iterated image under elementwise application of
the singleton operation of the desired set, whose definition is predicative, then
repeatedly applying the result of this section that sets of singletons have unions.

47

5 Conclusions, extended results, and questions

This is a rather boring resolution of the NF consistency problem.
NF has no locally interesting combinatorial consequences. Any stratified

fact about sets of a bounded standard size which holds in ZFC will continue to
hold in models constructed using this strategy with the parameter κ chosen large
enough. That the continuum can be well-ordered or that the axiom of dependent
choices can hold, for example, can readily be arranged. Any theorem about
familiar objects such as real numbers which holds in ZFC can be relied upon
to hold in our models (even if it requires Choice to prove), and any situation
which is possible for familiar objects is possible in models of NF : for example,
the Continuum Hypothesis can be true or false. It cannot be expected that NF
proves any strictly local stratified result about familiar mathematical objects
which is not also a theorem of ZFC.

Questions of consistency with NF of global choice-like statements such as
“the universe is linearly ordered” cannot be resolved by the method used here
(at least, not without major changes). One statement which seems to be about
big sets can be seen to hold in our models: the power set of any well-orderable
set is well-orderable, and more generally, beth numbers are alephs. We indicate
the proofs: a relation which one of our models of TTT thinks is a well-ordering
actually is a well-ordering, because the models are countably complete; so a
well-ordering with a certain support has all elements of its domain sets with
the same support (a permutation whose action fixes a well-ordering has action
fixing all elements of its domain), and all subsets of and relations on the domain
are sets with the same support (adjusted for type differential), and this applies
further to the well-ordering of the subsets of the domain which we find in the
metatheory. Applying the same result to sets with well-founded extensional
relations on them proves the more general result about beth numbers. This
form of choice seems to allow us to use choice freely on any structure one is
likely to talk about in the usual set theory. It also proves, for example, that the
power set of the set of ordinals (a big set!) is well-ordered.

NF with strong axioms such as the Axiom of Counting (introduced by Rosser
in [13], an admirable textbook based on NF), the Axiom of Cantorian Sets (in-
troduced in [5]) or my axioms of Small Ordinals and Large Ordinals (introduced
in my [7], which pretends to be a set theory textbook based on NFU) can be
obtained by choosing λ large enough to have strong partition properties, more
or less exactly as I report in my paper [8] on strong axioms of infinity in NFU:
the results in that paper are not all mine, and I owe a good deal to Robert
Solovay in that connection (unpublished conversations and [17]).

That NF has α-models for each standard ordinal α should follow by the
same methods Jensen used for NFU in his original paper [10]. No model of
NF can contain all countable subsets of its domain; all well-typed combinatorial
consequences of closure of a model of TST under taking subsets of size < κ will
hold in our models, but the application of compactness which gets us from TST
+ Ambiguity to NF forces the existence of externally countable proper classes,
a result which has long been known and which also holds in NFU.

48

We mention some esoteric problems which our approach solves. The Theory
of Negative Types of HaoWang (TST with all integers as types, proposed in [21])
has ω-models; an ω-model of NF gives an ω-model of the theory of negative types
immediately. The question of existence of ω models of the theory of negative
types was open.

In ordinary set theory, the Specker tree of a cardinal is the tree in which
the top is the given cardinal, the children of the top node are the preimages
of the top under the map (κ 7→ 2κ), and the part of the tree below each child
is the Specker tree of the child. Forster proved using a result of Sierpinski
that the Specker tree of a cardinal must be well-founded (a result which applies
in ordinary set theory or in NF(U), with some finesse in the definition of the
exponential map in NF(U)). Given Choice, there is a finite bound on the lengths
of the branches in any given Specker tree. Of course by the Sierpinski result a
Specker tree can be assigned an ordinal rank. The question which was open was
whether existence of a Specker tree of infinite rank is consistent. It is known
that in NF with the Axiom of Counting the Specker tree of the cardinality of
the universe is of infinite rank. Our results in this paper can be used to show
that Specker trees of infinite rank are consistent in bounded Zermelo set theory
with atoms or without foundation (this takes a little work, using the way that
internal type representations unfold in TTT and a natural interpretation of
bounded Zermelo set theory in TST; a tangled web as described above would
have range part of a Specker tree of infinite rank). A bit more work definitely
gets this result in ZFA, and we are reasonably confident that our permutation
methods can be adapted to ZFC using forcing in standard ways (in which we
are not expert) to show that Specker trees of infinite rank can exist in ZF.

We believe that NF is no stronger than TST + Infinity, which is of the same
strength as Zermelo set theory with separation restricted to bounded formulas
([9]). Our work here does not show this, as we need enough Replacement for
existence of ℶω1 at least. We leave it as an interesting further task, possibly
for others, to tighten things up and show the minimal strength that we expect
holds.

Another question of a very general and amorphous nature which remains is:
what do models of NF (or TTT) look like in general? Are all models of NF
in some way like the ones we describe, or are there models of quite a different
character? There are very special assumptions which we made by fiat in building
our model of TTT which do not seem at all inevitable in general models of this
theory.

49

References

[1] Crabbé, M. [1992a] On NFU. Notre Dame Journal of Formal Logic 33, pp
112-119.

[2] Scott Fenton. New Foundations set theory developed in metamath. 2015.
https://us.metamath.org/nfeuni/mmnf.html

[3] Forster, T.E. [1995] Set Theory with a Universal Set, exploring an untyped
Universe Second edition. Oxford Logic Guides, Oxford University Press,
Clarendon Press, Oxford.

[4] Hailperin, T. [1944] A set of axioms for logic. Journal of Symbolic Logic 9,
pp. 1-19.

[5] Henson, C.W. [1973a] Type-raising operations in NF. Journal of Symbolic
Logic 38 , pp. 59-68.

[6] Holmes, M.R. “The equivalence of NF-style set theories with ”tangled”
type theories; the construction of omega-models of predicative NF (and
more)”. Journal of Symbolic Logic 60 (1995), pp. 178-189.

[7] Holmes, M. R. [1998] Elementary set theory with a universal set. volume
10 of the Cahiers du Centre de logique, Academia, Louvain-la-Neuve (Bel-
gium), 241 pages, ISBN 2-87209-488-1. See here for an on-line errata slip.
By permission of the publishers, a corrected text is published online; an
official second edition will appear online eventually.

[8] Holmes, M. R. [2001] Strong Axioms of infinity in NFU. Journal of Sym-
bolic Logic, 66, no. 1, pp. 87-116.
(“Errata in ‘Strong Axioms of Infinity in NFU’ ”, JSL, vol. 66, no. 4 (De-
cember 2001), p. 1974, reports some errata and provides corrections).

[9] Kemeny, J.G. [1950] Type theory vs. set theory (abstract of Ph.D. thesis).
Journal of Symbolic Logic 15, p. 78.

[10] Jensen, R.B. “On the consistency of a slight(?) modification of Quine’s
NF”. Synthese 19 (1969), pp. 250-263.

[11] Quine, W.V. [1945] On ordered pairs. Journal of Symbolic Logic 10,
pp. 95-96.

[12] Quine, W.V., “New Foundations for Mathematical Logic”. American Math-
ematical Monthly 44 (1937), pp. 70-80.

[13] Rosser, J. B. [1978] Logic for mathematicians, second edition. Chelsea Pub-
lishing.

[14] Russell, Bertrand. Principles of Mathematics. Routledge Classics 2010
(originally published 1903).

50

[15] Russell, B.A.W. and Whitehead, A. N.[1910] Principia Mathematica. Cam-
bridge University Press.

[16] Scott, Dana, “Definitions by abstraction in axiomatic set theory”, Bull.
Amer. Math. Soc., vol. 61, p. 442, 1955.

[17] Solovay, R, “The consistency strength of NFUB”, preprint on arXiv.org,
arXiv:math/9707207 [math.LO]

[18] Specker, E.P. “The axiom of choice in Quine’s new foundations for mathe-
matical logic”. Proceedings of the National Academy of Sciences of the USA
39 (1953), pp. 972-975.

[19] Specker, E.P. [1962] “Typical ambiguity”. Logic, methodology and philoso-
phy of science, ed. E. Nagel, Stanford University Press, pp. 116-123.

[20] Tarski, first description of TST

[21] Wang, H. [1952] Negative types.

[22] Wiener, Norbert, paper on Wiener pair

[23] Sky Wilshaw and Yaël Dillies and Peter LeFanu Lumsdaine
and others. New Foundations is consistent. GitHub repository.
https://leanprover-community.github.io/con-nf/.

Initial work was done by a group, as indicated by the authorship; since
the beginning of 2023, the work, which now amounts to the majority of
what has been accomplished, has been done by Sky Wilshaw alone, and
the previous work has been very largely reorganized by her.

51

