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0.1 Version notes

5/28/2020: commented out the digression on coding, which breaks the nar-
rative. A complete development along this lines might eventually have
use.

5/7/2020: Further notes about how the proof might be carried out using
the scheme of infinitary notation.

5/6/2020: proofreading pass. Did discover some misstatements and editing
errors. 10:30 pm added a little more to the digression on infinitary
notation.

5/5/2020: I do not think the “material difficulty” was real. I believe the
paper is correct as it stands (at least in the respect I was worried about).
I was making a fencepost error. I think it might be interesting to add
as an appendix the material on coding of elements of parent sets which
I was working on to fix the supposed problem.

I added a section describing a scheme for coding the parent sets, which I
thought I needed to fix the supposed error, but which might have some
intrinsic interest. It is clearly marked as not part of the development;
I may eventually extend it to a complete approach.

5/1/2020: I am working on a substantial correction to the argument. There
is a difficulty with the construction of parent sets described in this
version (and possibly in other recent versions) though I was aware of
this problem in earlier versions. I believe I have it in hand, but things
are provisional just now.

5/1/2020: Editing pass. Do I want to add an appendix describing the FM
properties of a single clan?

I added some explicit language about how parent maps are chosen,
spelling out in detail something already said in the text, but in mind-
numbing detail.

4/30/2020 11:30 am: 8 am Corrected πL,M to πL,π(L)◦ in a number of
places in the discussion of the Freedom of Action theorem.

11 am parenthetical remark added in proof of Freedom of Action. 11:30
minor tweaks.
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Adding some language about FM models.

4/29/2020 2 pm: I added technical appendices expanding certain defini-
tions and certain paragraphs in the argument in various sections. This
required actual debugging of the argument for cardinalities: the high-
level description in one paragraph was wrong, and it (it is to be hoped)
corrected in the text and expanded on in section 10.3. I also improved
the statement of results about elementarity.

This is now eligible to be a flagship proof document: it has everything
in it. I am morally certain that more debugging is needed, though.

4/28/2020 1:30 pm: Fixed misstatement of the definition of local cardinal.
Proofreading is needed.

More proofreading. Added references (the same bibliography as previ-
ous versions, citations inserted as needed).

At 2:30, slight edit to the conclusion.

4/28/2020 8:40: Fixed up misstatements in the section on elementary equiv-
alence between natural models of TSTn+2. Mod silliness which cer-
tainly must be present (it is quite hard to port this proof to a new
version without dropping the ball on some detail) the argument is com-
plete here. Some of it should be documented in more detail with bullet
points, and I will be doing that.

There are things that readers of previous versions should notice. I have
omitted any clan[∅], allowing parent sets to be undefined for clans with
singleton index. This causes the definition of parent sets to be uniform
without weird exceptions. It also causes the tangled web to be localized
to clans with index with a common maximum element, which means
that λ has to be a limit ordinal greater than ω: ω · 2 would work. I
avoided problems with the set of near-litters being possibly larger than
µ by making the cofinality of µ strictly greater than κ, so the minimum
possible value of µ is iω2 rather than iω1 as in previous versions.
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1 Introductory remarks

This argument has a vexed history. I had the initial idea in 2010, though
early versions were certainly formally incorrect. Later versions I believe are
correct, but the evidence suggests that they are unreadable. The underlying
ideas are not really that monstrous; after a time away from this I am going
to try to lay it out again here.

1.1 The issue of preliminaries

There are two prerequisites, some understanding of the model theory of NF
and NFU (we suggest [1] for general introduction to NF, and Jensen’s NFU
paper [7] and Specker’s ambiguity paper [13] for crucial background results)
and a basic understanding of Frankel-Mostowski permutation models (a tool
originally developed for proofs of independence of the Axiom of Choice from
theories with atoms: see [6] for an account we used for reference).

NF disproves the Axiom of Choice: this is an old result of Specker ([12]),
and the reason that I was thinking of FM models. The details of this proof,
and indeed of any mathematics conducted internally to NF, are irrelevant
here: all of our business is conducted in ordinary set theory.
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2 Preliminaries on type theory with urele-

ments and NFU

The theory TSTU is a many-sorted first order theory with sorts indexed by
the natural numbers and primitive predicates of equality and membership.
The empty set ∅ can be provided as a primitive constant (actually, a suite of
constants ∅i+1, one of each positive type).

We write type(”x”) for the sort of the variable x. x = y is well-formed iff
type(”x”) = type(”y”). x ∈ y is well-formed iff type(”x”) + 1 = type(”y”).

TSTU has three axiom schemes (the one involving ∅ is merely a con-
venience). All sentences of the given shapes are axioms, for each possible
assignment of types to the variables.

the empty set is empty: (∀x : x 6∈ ∅type(”x”)+1).

weak extensionality: (∀xyz : z ∈ x → (x = y ↔ (∀u : u ∈ x ↔ u ∈ y))):
nonempty objects with the same elements are equal.

comprehension: For each formula φ in which the variable A is not free,
the universal closure of (∃A : (∀x : x ∈ A ↔ φ)) is an axiom: any
condition on objects of sort type(”x”) defines a set of sort type(”A”) =
type(”x”) + 1.

The theory NFU is a single-sorted theory with equality, membership and
∅ as primitive notions (the theory was originally described by Jensen in [7]
without distinguishing ∅ from other nonempty objects). For convenience,
we provide a partial function type from variables to natural numbers, with
the preimage of each natural number and the complement of the domain of
type all countably infinite sets of variables. We say that an atomic formula
x = y is well-typed iff type(”x”) = type(”y”). x ∈ y is well-typed iff
type(”x”) + 1 = type(”y”).

We can then describe the axioms of NFU neatly:

the empty set is empty: (∀x : x 6∈ ∅)

weak extensionality: (∀xyz : z ∈ x → (x = y ↔ (∀u : u ∈ x ↔ u ∈ y))):
nonempty objects with the same elements are equal.
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comprehension: For each formula φ in which the variable A is not free,
and in which each atomic formula is well-typed (this can be weakened
to apply only to atomic formulas in which both variables are bound),
the universal closure of (∃A : (∀x : x ∈ A↔ φ)) is an axiom. Do recall
that NFU is in fact unsorted, so versions of the comprehension axioms
with atomic formulas not well-typed are readily proved (as for example
by renaming bound variables).

Supplement the language of TSTU with a bijection x 7→ x+ from vari-
ables to variables of positive type, with the property that type(”x+”) =
type(”x”) + 1. For any formula φ, define φ+ as the result of replacing each
variable in φ with its image under this map. It should be evident that if φ is
a theorem, so is φ+.

Define the Ambiguity Scheme as the scheme asserting each φ↔ φ+ for φ
without free variables.

Specker proved in [13], 1962, that NFU is consistent iff TSTU + Ambi-
guity is consistent. Well, in fact it is anachronistic to say this. Specker was
talking about the specific version NF of NFU which Quine proposed in [8],
1937. Jensen proposed NFU in [7], 1969, and observed that Specker’s proof
applies to NFU as well. We will have no occasion to look under the hood
of Specker’s proof here: it allows us to confine our attention to TSTU +
Ambiguity, and not to reason in or about NFU directly at all. It is further
worth noting that the model of NFU obtained will satsify the same sentences
as the model of TSTU with distinctions of type dropped.

TST is obtained by strengthening TSTU to assert strong extensionality
(∀xy : x = y ↔ (∀u : u ∈ x ↔ u ∈ y)). NF is obtained from NFU in the
same way. The original form of Specker’s 1962 theorem was the assertion
that NF is consistent iff TST + Ambiguity is consistent.

We present a version of Jensen’s 1969 proof from [7] that TSTU + Am-
biguity (and so NFU) is consistent.

Let λ be a limit ordinal (ω would do for our immediate purposes, but
larger values of λ can be technically useful). Suppose we have a sequence of
sets Xα for each α < λ and injective maps fα,β for each α < β < λ from
P(Xα) into Xβ. This is clearly a possible situation: for example Xα = Vα
and fα,β the identity on Vα+1 would work.

Such a sequence gives us many models of TSTU. We work in ordinary set
theory (our working theory is actually ZFA with a set of atoms, but there is
no need for that much detail here). For each strictly increasing sequence s
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taken from λ (by which we mean a strictly increasing function from ω into
λ), we point out the model of TSTU in which type i is implemented as Xsi ,
equality on type i is implemented by equality on Xsi , and membership of
type i objects in type i+ 1 objects is represented thus: x ∈s,i y is defined as

x ∈ Xsi ∧ y ∈ Xsi+1
∧ y ∈ rng(fsi,si+1

) ∧ x ∈ f−1
si,si+1

(y).

The symbol ∅i+1 can be interpreted as fsi,si+1
(∅). It is easy to see that this

gives a model of TSTU for each s; notice that in most cases there are many
urelements, as Xsi+1

is almost always larger than P(Xsi).
For any formula φ of the language of TSTU, let φs be its translation into

the model of TSTU determined by s.
Let Σ be a finite set of formulas of the language of TSTU. Let n be

greater than the sort of any variable appearing in any formula of Σ. The set
of formulas Σ determines a partition of [λ]n (the set of n element subsets of
λ) into no more than 2|Σ| compartments, by considering for each A ∈ [λ]n

the truth values of formulas φs for φ ∈ Σ and the range of the restriction of
s to n being A.

Now by Ramsey’s theorem there is an infinite homogeneous set H for this
partition, which includes the range of a strictly increasing sequence h. The
theory of the model determined by the sequence h will satisfy φ ↔ φ+ for
each φ ∈ Σ. It then follows that the Ambiguity Scheme is consistent with
TSTU by compactness, so NFU is consistent. It follows readily that NFU
is consistent with Infinity and with Choice (and does not prove Infinity):
if Choice holds in the metatheory, it will hold in the model of TSTU with
Ambiguity obtained, and Infinity holds iff X0 is infinite.

It is quite unclear how to adapt the argument just given to avoid produc-
ing many atoms, and it is ominous that NF disproves the Axiom of Choice
(Specker, [12], 1953). In any event, while NFU was shown to be consistent,
and there have been further investigations of what is consistent with and
independent of NFU backed by consideration of actual models, the ques-
tion of the consistency of NF (which was by unfortunate historical accident
described first) has remained open for a long time.

We note that TST is easily modelled. We define a natural model of TST
as a model in which each type i is implemented by a set Xi, equality and
membership are implemented by subsets of the equality and membership
relations of the metatheory, and Xi+1 = P(Xi) in the metatheory. It is
important to observe that the first order theory of a natural model of TST
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is determined by the cardinality of the set X0 representing type 0, as two
such models with type 0 represented by sets of the same size are clearly
isomorphic. This result does not depend on choice. The natural model of
TSTn with a given base set X0 consists of the Xi’s for i < n. TSTn itself
is the restriction of TST to the language with all variables having type less
than n.
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3 Oh what a tangled web we weave. . .

Without an undue burden of motivation, we present an approach to con-
structing a model of TST + Ambiguity and so proving the consistency of NF
which we developed in our paper [3], 1995, by a perhaps strained analogy
with Jensen’s 1969 argument. There is no need to consult that paper: in
fact, the results needed are presented much more clearly here.

We work in ZFA with a set of atoms. This is our metatheory for the
entire paper. The atoms play no particular role here, but they are essential
to the actual construction of the situation described.

Let λ be a limit cardinal. An extended type index is defined as a nonempty
finite subset of λ. IfA is an extended type index, we defineA1 asA\{min(A)}.
We define A0 as A and An+1 as (An)1 where this is defined.

We define a tangled web as a function from extended type indices to
cardinals with the following properties:

power types: for each extended type index A with |A| > 1, τ(A1) = 2τ(A)

elementarity: The first order theory of the natural model of TSTn with
base type A is determined by A \An (the n smallest elements of A), if
|A| ≥ n.

We demonstrate that the existence of a tangled web of cardinals implies
the consistency of TST + Ambiguity and so of NF. The proof should be
reminiscent of (our version of) Jensen’s proof of the consistency of NFU
above.

Let τ be a tangled web of cardinals.
Let Σ be a finite set of formulas of the language of TST. Let n be greater

than the sort of any variable appearing in any formula of Σ. The set of
formulas Σ determines a partition of [λ]n (the set of n element subsets of λ)
into no more than 2|Σ| compartments, by considering for each A ∈ [λ]n the
truth values of formulas φ for φ ∈ Σ in natural models of TST wth type 0
implemented as a set of size τ(B) with B \Bn = A.

Now by Ramsey’s theorem there is an homogeneous set H of size n + 1
for this partition. Notice that type 1 of a natural model with base type
of size τ(H) is of size τ(H1). Thus the two natural models of TSTn with
base types the sets implementing type 0 and type 1 of a natural model of
TST with base type τ(H) have the same truth values for formulas in Σ, by
homogenity of H. The natural models of TST with base type of sizes τ(H)
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satisfy φ↔ φ+ for φ ∈ Σ, so the entire Ambiguity Scheme is consistent with
TST by compactness, so NF is consistent by Specker’s 1962 result.

I obtained this result in 1995 and sat on it for fifteen years, as the possi-
bility of existence of such a pattern of cardinals (clearly not consistent with
choice) is not obvious at all.

Fix a limit cardinal λ for the rest of the paper. It could be ω for our
exact purposes here, but the greater generality is important to understand
the scope of our results. For technical reasons we actually want λ > ω, but
not by much: ω · 2 will suffice. We will work with extended type indices
relative to the fixed λ in our construction, but we will actually define tangled
webs relative to limit cardinals δ < λ, as will be seen, thus λ cannot be the
smallest limit cardinal.
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4 We set out to construct a tangled web

We now proceed with a quite complicated construction of a Fraenkel-Mostowski
model of ZFA with a set of atoms in which it will be seen that there is a
tangled web of cardinals.

We are working initially in ZFCA.
This argument has some parameters. We have fixed a limit ordinal λ > ω

already, which could be ω · 2.
We fix an uncountable regular cardinal κ. Sets of size< κ we term “small”

and other sets we term “large”. It can be noted that all small subsets of our
FM model will be elements of the FM model (as will be readily seen from
the definitions). For our immediate purposes, κ = ω1 would work, but the
additional abstraction is useful for further purposes.

The cardinality µ of the set of atoms is strong limit with cofinality greater
than the maximum of κ and λ. With the minimum choices of λ and κ,
µ = iω2 will work.1

We describe some truly mysterious structure on the atoms whose purpose
really only becomes evident by seeing how the argument works.

The atoms are partitioned into clans , each of size µ. There is a clan
clan[A] for each extended type index A.2

A linear order on the extended type indices will be important to us. The
order � is the unique order on finite subsets of λ (including the empty
set) under which ∅ is last, if max(A) < max(B) we have A � B, and if
max(A) = max(B) we have A � B iff A \ {max(A)} � B \ {max(B)}. This
is a well-ordering. Its crucial feature is that all downward extensions of an
index appear before it does.

Each of the clans clan[A] is partitioned into litters of size κ. Let the
partition be denoted by Λ[A].

We define a near-litter as a subset of a clan with a small symmetric
difference from a litter. If N is a near-litter, define N◦ as the litter with
small symmetric difference from N , and define the set of anomalies of N as
N∆N◦.

1In earlier versions I said that the cofinality of µ could be κ, and so the minimal value
could be iω1

, but I did not properly appreciate problems with counting “near-litters”.
2In earlier versions of the argument there was a clan[∅] or many copies of such an

additional clan. We think it is not needed; it resulted from extending the “formula for
parent sets” introduced below one step farther than necessary.
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That the cofinality of µ is strictly greater than κ ensures that there are
no more than µ near-litters.

We define the local cardinal [N ] of any near-litter as the set of all near-
litters M with M◦ = N◦. Notice that N◦ ∈ [N ] = [N◦]. For each extended
type index A, define K[A] as the set of all local cardinals of near-litters
included in clan[A].
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5 A glimpse of impossible things

I am trying to attack the problem of the opacity of this construction. It
seems to me that the best approach is to flatly describe the unbelievable thing
which happens in the end of the construction. Nothing in this section may
be used in subsequent sections, except the final subsection on the verification
of the power type property of the purported tangled web: this is entirely a
premonition, and the implementation of everything described here will be
given independently in following sections. The reasons that it is difficult
should be made clear, and it should also be clearer in the course of the later
construction why I want to do certain unlikely things.

We define P∗(X) as the power set of X in the FM construction which we
are describing in this section (and we will continue to use this notation for
power sets in FM interpretations).

For each extended type index A with |A| > 1, we provide a bijection ΠA

whose domain is K[A], the set of local cardinals over clan[A], and whose
range is

clan[A1] ∪
⋃

A∪{α}�A

P2
∗ (clan[A ∪ {α}]).

We call this map the parent map of clan[A].34 ΠA([N ]) might be called
the parent of [N ], of N , or of any element of N◦ in various connections. Its
bizarre range we call the parent set of clan[A]. Note that A∪{α} � A holds
iff all elements of A dominate α.

Now we describe the permutation group which defines the FM interpre-
tation (and yes, we know that it is a prerequisite to describing the ranges of
the parent maps!)

A permutation of the set of atoms determines a permutation of the entire
universe by the rule π(A) = π“A. We systematically confuse permutations
of sets of atoms and the associated class permutations of the universe.

3The form of this description of parent sets was originally the truly appalling

clan[A1] ∪
⋃

B s.d.e. A

P |B|−|A|+1
∗ (clan[B]),

where s.d.e. abbreviates “strictly downward extending”. The simplification is due to an
observation of Nathan Bowler.

4By not providing parent maps for clans with singleton index, we avoid the need for
clan[∅] or variations.
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An allowable permutation is a permutation of the atoms whose action
on sets fixes each ΠA and each K[{α}]. Let G be the group of allowable
permutations. Notice that if L is a litter with parent ΠA([L]) = p and
π is an allowable permutation then π(L) is a near-litter with parent π(p):
there may be a small collection of elements of L mapped outside π(L)◦, or
non-elements of L mapped into π(L)◦. Also notice that the condition given
ensures that an allowable permutation fixes clans and parent sets.

We define a support order as a small well-ordering on atoms and near-
litters with the property that distinct near-litters in the range of the support
order are disjoint. 5

For each support order S, we define GS as the set of allowable permuta-
tions which fix S (and so fix each element of the domain of S).

We say that a set or atom has support S iff it is fixed by all elements of
GS. We say that a set is symmetric if it has a support.

It should not be hard to see that any symmetric set has a support whose
domain consists entirely of atoms and litters and we will often want to con-
sider such supports. The reason that we allow near-litters in domains of sup-
port orders is that in general it is good for support orders to be mapped to
support orders by allowable permutations, and more particularly this makes
it easier to see that this actually is an FM construction.

Our FM model then consists of all hereditarily symmetric sets and atoms.
Entirely standard considerations ([6] is a reference for these methods, and the
basic results are reviewed in a subsection below) show that this is a model
of ZFA (in which choice is clearly false). Atoms, near-litters, local cardinals,
and parent maps are elements of the FM model for straightforward reasons.

We give only highlights of results about this situation: the details will be
found in the explicit construction below illustrating that this is possible.

A crucial result is that the allowable permutations act quite freely. This
seems intuitively plausible, but as will be seen below it requires a lot of care
in the construction to get it to work correctly. A local bijection is an injective
partial function on atoms with the same domain and range, and whose do-
main has small intersection with each litter. The Freedom of Action Theorem
asserts that each local bijection can be extended to an allowable permutation
(actually, the theorem is stronger than that, allowing freer action on some
parent sets, but we leave that for the detailed development).

5If I say “support set”, I mean support order; “in a support set” means “in the domain
of a support order”.
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This implies satisfying results about litters and clans. Litters are κ-
amorphous in the FM model (they have exactly their small and co-small
subsets). The subsets of a clan in the FM interpretation are exactly the
sets with small symmetric difference from small or co-small unions of litters
included in the clan.
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5.1 Verification of the power type property of a pur-
ported tangled web, on the “impossible” hypothe-
ses

Define |X|∗ as the cardinality of X in the FM interpretation. Since we work
in the absence of choice, we define cardinals following Scott in [10].

The result of crucial interest (the aim of our quest) is that if δ, a limit
ordinal, belongs to λ, τ(A) = |P2

∗ (clan[A ∪ {δ}])|∗ with δ dominating A,
defines a tangled web (on subsets of δ rather than λ).6

There are two things to verify to see this. We will be able to give the
justification for the power type property of a tanged web here: this may give
some hint as to how we came up with the bizarre configuration of parent
sets. The elementarity condition holds because the structure consisting of
the first n+ 2 iterated power sets of clan[A] is externally isomorphic to the
structure consisting of the first n+2 power sets of clan[B] if A\An = B \Bn

and An and Bn are nonempty (“externally” because the isomorphism is a
function in the ambient ZFCA which does not belong to the universe of the
FM interpretation); this should not seem any more preposterous than what
has already been stated but verifying it requires careful attention to how the
system of clans and parent maps is actually constructed.

We want to show that |P3
∗ (clan[A])|∗ = |P2

∗ (clan[A1])|∗, when |A| > 2
and max(A) = δ: this is the translation of the power type condition for the
purported tangled web into our context.

Observe that ΠA is a set of the FM interpretation, a bijection from K[A]
to

ΠA“K[A] = clan[A1] ∪
⋃

A∪{α}�A

P2
∗ (clan[A ∪ {α}]).

K[A] is a subset of P2
∗ (clan[A]).

So we have |ΠA“K[A]|∗ ≤ |P2
∗ (clan[A])|∗, but in fact we have the stronger

condition |P(ΠA“K[A])|∗ ≤ |P2
∗ (clan[A])|∗, because K[A] is a family of dis-

joint sets, so unions of subsets of K[A], belonging to the double power set of
the clan, correspond one-to-one to subsets of K[A].

Now by examination of subsets of K[A]. we have P∗(clan[A1]) smaller
than P2

∗ (clan[A]) [there is a subset of the parent set K[A] the same size as the

6The introduction of δ here is a complication of removing clan[∅] or many indexed
versions of such a clan; it still seems to be a gain.

17



clan clan[A1], and the power set of any subset of the parent set is smaller than
the double power set P2

∗ (clan[A])], so |P3
∗ (clan[A])|∗ ≥ |P2

∗ (clan[A1])|∗, one
direction of our desired conclusion.

Observe further that P2
∗ (clan[A]) = P2

∗ (clan[A1 ∪ {min(A)}]) is smaller
than ΠA1“K[A1] (note that the role of δ here is to ensure that A1 has at least
two elements and so ΠA1 exists), whence P(P2

∗ (clan[A])) is smaller than
P2
∗ (clan[A1]), which establishes |P3

∗ (clan[A])|∗ ≤ |P2
∗ (clan[A1])|∗, the other

direction of the desired conclusion.
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6 The actual construction

Now we need to disentangle impossible things.
We need to be able to describe the parent maps, which are essential to

defining the allowable permutations, without a prior definition of the FM
interpretation and thus of allowable permutations.

We need to be able to show that the double power sets of clans are
(externally) of cardinality no greater than µ, to avert cardinality obstructions
to the description of parent sets.

We need to arrange the external isomorphisms needed for the elementarity
condition for the purported tangled web.

Here we exploit the order we described above. For each extended type in-
dex A, we define an A-allowable permutation as a permutation of the atoms
which fixes each ΠB for B � A, while also fixing every K[C] (for any ex-
tended type index C). We can then define support sets and an indexed FM
interpretation just as above, (we recapitulate this below to stick with our
resolution that nothing in the previous section is to be used).

For each extended type index A we provide a bijection ΠA whose domain
is K[A], the set of local cardinals over clan[A], and whose range is

clan[A1] ∪
⋃

A∪{α}�A

P2
∗A(clan[A ∪ {α}]).

The notation P2
∗A(clan[A∪{α}]) refers to the double power set of clan[A∪

{α}] in the sense of the FM interpretation determined by the A-allowable
permutations. Its definition depends on ΠB’s only for B � A.

We call this map the parent map of clan[A]. ΠA([N ]) might be called
the parent of [N ], of N , or of any element of N◦ in various connections. Its
bizarre range we call the parent set of clan[A].

Now we describe the permutation group which defines the FM interpre-
tation indexed by A.

A permutation of the set of atoms determines a permutation of the entire
universe by the rule π(A) = π“A. We systematically confuse permutations
of sets of atoms and the associated class permutations of the universe.

An A-allowable permutation is a permutation of the atoms whose action
on sets fixes each ΠB with B � A and each K[C]. Let GA be the group of A-
allowable permutations. Notice that if L is a litter with parent ΠC([L]) = p
and π is an A-allowable permutation then π(L) is a near-litter with parent

19



π(p): there may be a small collection of elements of L mapped outside π(L)◦,
or non-elements of L mapped into π(L)◦. Also notice that the condition given
ensures that an A-allowable permutation fixes clans and parent sets.

We define an A-support order as a small well-ordering on atoms belong-
ing to clan[A] or clans with index downward extending A and near-litters
included in clan[A] or clans with index downward extending A with the
property that distinct near-litters in the range of the support order are dis-
joint. Note that the condition on clan indices here is much stronger than the
condition of appearing before A in the order.

For each A-support set S, we define GA
S as the set of A-allowable permu-

tations which fix S (and so fix each element of S).
We say that a set or atom has A-support S iff it is fixed by all elements

of GS. We say that a set is A-symmetric if it has an A-support.
It should not be hard to see that any A-symmetric set has a A-support

consisting entirely of atoms and litters and we will often want to consider
such supports. The reason that we allow near-litters in support sets is that in
general it is good for support sets to be mapped to support sets by allowable
permutations, and more particularly this makes it easier to see that this
actually is an FM construction.

Our FM model indexed by A then consists of all hereditarily A-symmetric
sets with transitive closure containing no atoms in clans distinct from clan[A]
with index not downward extending A. Entirely standard considerations (see
[6]) show that this is a model of ZFA (in which choice is clearly false). An
appendix to this section details why the construction satisfies the conditions
to determine a model of ZFA in this way.

It is useful to observe immediately that atoms and near-litters in suitable
clans are elements of any of these FM models, and so are local cardinals and
parent maps. The order on the singleton of an atom or near-litter is a support
for it; the singleton of an element of a local cardinal is a support for it. It
is also useful to observe that any small subset of the domain of one of these
FM models is an element of the model (by concatenating support orders,
first arranging for all near-litters in the domains of the support orders to be
litters, by replacing each near-litter N with N◦ and the anomalies for N , the
atoms in N∆N◦). A parent map is invariant under allowable permutations
and hereditarily symmetric by previous considerations.

Further, we can define an allowable permutation as one which is A-
allowable for every A, and define the final model as before. There are more
details to be added of exactly how ΠA is constructed, but these have no
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bearing on the applicability of FM methods. We can conveniently view an
allowable permutation in the strict sense as an ∅-allowable permutation, since
∅ follows all the extended type indices in the order we use on them.
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6.1 Applicability of FM methods

We follow [6] in our account of FM methods. We briefly recapitulate what is
said there.

Start in ZFA (this could be ZFCA).
Any permutation π of the atoms extends to a class permutation of the

entire universe via the rule π(A) = π“A.
Choose a group G of permutations of the atoms and a set Γ of subgroups

of G with the following properties:

1. For each atom a, Γ contains the subgroup Ga consisting of the permu-
tations in G which fix a.

2. For any H ∈ Γ and any subgroup K of G, H ⊆ K → K ∈ Γ.

3. For any H,K ∈ Γ, H ∩K ∈ Γ.

4. For any π ∈ G and H ∈ Γ, πHπ−1 ∈ Γ.

Γ is a normal filter on the subgroups of G including the stabilizers of the
atoms.

An object (set or atom) is Γ-symmetric if for some H ∈ Γ, every function
in H fixes the object.

The master theorem, which we are citing not proving here, is that the
collection of atoms and hereditarily Γ-symmetric sets is a model of ZFA.

In our case, the group G is the collection of (A-)allowable permutations
and the set Γ consists of all groups GS, the set of (A-)allowable permutations
fixing the (A-)support S, and all subgroups of G which include a GS as a
subset.

The first condition obviously holds (the order on the singleton of an atom
is a support).

The second condition holds because of the way Γ is defined.
The third condition requires slight finesse: if S and T are support orders,

first produce orders S ′ and T ′ by replacing each near-litter N in the domain
with N◦ and the atoms in N∆N◦. Then define an order S ′+T ′ produced by
appending T ′ to S ′ and removing all but the earliest occurrence of duplicated
items from the order. GS′+T ′ is included in both GS and GT ; this is enough
to verify that intersections of elements of Γ are in Γ.

The fourth condition holds because πGSπ
−1 is Gπ(S): this is why we allow

near-litters in supports.
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7 Fine control of the choice of parent maps

In order to get the crucial Freedom of Action Theorem, it seems to be nec-
essary to impose some fine control on the choice of parent maps.7

A strong support order is defined as an order on atoms and near-litters in
which each atom is preceded by any near-litter in the strong support which
contains it (there might not be a near-litter containing the atom) and the
segment preceding any near-litter includes a support for the parent of the
near-litter (the parent of a near-litter N included in clan[A] being ΠA([N ]))
(if the near-litter has a parent, which it does not in case the index of the clan
is a singleton). An A-strong support order is restricted to suitable clans as in
the case of an A-support order, and does not need to include a support of the
parent of a near-litter whose parent is in clan[A]. An expanded definition
appears at the end of the section.

An extended strong support order is a strong support order with the fur-
ther property that every near-litter in it is a litter and every atom in it
belongs to a near-litter in it. An expanded definition appears at the end of
the section.

Now we describe the method of construction of ΠA which gives us the
desired fine control.

We assume as an inductive hypothesis that each element of a P2
∗ (clan[B])

for B � A has a B-extended strong support. We well-order K[A] in some
arbitary way with order type µ and similarly well-order the intended range
of ΠA. When assigning values of ΠA at [N ] ∈ K[A] which belong to a set
P2
∗A(clan[A ∪ {α}]), we ensure that ΠA([N ]) has in each case a A-support

with the property that any [M ] ∈ K[A] which contains an element of the
strong support precedes [N ] in the well-ordering given for K[A]. We do
note that this also requires the inductive hypothesis that the size of the
predetermined set ΠA“K[A] is µ (it is clearly at least µ, but we need to
exclude the possibility that it is greater). We can arrange that A-supports
chosen are in fact A-extended strong supports, by ensuring that atoms in
the support are preceded by litters containing them and inserting missing
B-extended strong supports for parents of litters where B � A as required.

This will work. Notice that we have µ elements of clan[A1] on which we
do not have to impose special conditions. The order on K[A] should be of

7Even finer control will be exerted in a subsequent section, but without compromising
the conditions added here.
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order type exactly µ. At each even stage, choose the first set in ΠA“K[A] (on
which we have supposed an order chosen too) which satisfies the condition
or choose an atom if there is no such set; at odd stages always choose an
atom. Every set in ΠA“K[A] is eventually chosen because it has a small
strong support. Every atom is clearly chosen. The only possible obstruction
is the existence of too many elements of some double power set of a clan in
the FM interpretation.

We recapitulate the statement of the previous paragraph in more detail.
Provide a strict well-ordering <A

1 of K[A] of order type µ. Then provide
a strict well-ordering <A

2 of the set already defined which is intended to be
ΠA“K[A] which is of order type µ and has the property that if X is the
item at position δ in the order <A

2 and [N ] is the item at position δ in the
order <A

1 , then X has an A-support whose domain contains only atoms and
litters, in which each litter included in clan[A] is M◦ for an [M ] <A

1 [N ] and
each atom belonging to clan[A] belongs to M◦ for an [M ] <A

1 [N ]. We may
for some purpose want to record the choice of such a designated support for
each parent. This can be done: <A

1 can be chosen arbitrarily along with an
arbitrary order <A

3 of type µ on ΠA“K[A], then <A
2 chosen stage by stage,

at each odd stage choosing an atom and at each even stage choosing the
<A

3 -first set satisfying the required condition, or an atom if there is no such
set. Every set will eventually be chosen because it has a small support and
the cofinality of µ is greater than κ. Then define ΠA so that it maps the
item at position δ in <A

1 to the item at position δ in <A
2 for each δ < µ. This

paragraph makes no mention of strong support orders, but notice that any
litter in K[A] (and so any atom in clan[A]) is assigned an extended strong
support order in this way: this is constructed by prepending to [N ] ∈ K[A]
the A-support respecting the orders <A

1 and <A
2 as described above, then

repeating this process for each element of clan[A] or Λ[A] appearing in this
support, inserting the new A-support immediately before the item of which
it is the support, then resolving duplications by preserving the earliest item.
We could assume without loss of generality that all designated supports are
A-extended strong supports.

We have now forced the condition that every atom in clan[A] has an
A-extended strong support.

We then need to verify that any A-support in which all near-litters are
litters can be extended to an A-extended strong support, in order to get ex-
tended strong supports for double power sets. We have to correct order so
that atoms appear before litters they lie in. Each atom or near-litter has an
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extended support of appropriate index. Inserting extended supports for each
item in the given support which does not have such a support included in the
given support gives a support in which all failures are of the same kind: they
are all down to litters in some fixed clan with index B downward extending
A wth parent in clan[B1]. Each time we make an insertion, we insert an
extended support of appropriate index immediately before the item requir-
ing it, then repeated items are eliminated, with the earliest one remaining.
We can then proceed through ω steps of making these additional insertions,
with the process terminating after finitely many steps at each particular fail-
ure. The danger of ending up with a non-well-ordering is avoided because
the number of future insertions to be made at any given point is finite and
predicted.
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7.1 Definition of strong support order

A support order is a small well-ordering <S of a set S of atoms and near-
litters in which distinct near-litters are disjoint. It is said to be an A-support
order if each clan[B] which contains or includes an element of the order
has B equal to or downward extending A. In the body of the text we will
typically use the letter S for a support order rather than its domain, but in
appendices of this kind we will use this convention.

For any support order <S we define Sα as the element of S such that the
restriction of <S to {x ∈ S : x <S Sα} is of order type α.

An A-support order is said to be strong if the following conditions hold:

1. If Sα is an atom, either there is Sβ with β < α such that Sα ∈ Sβ (this
β has to be unique) or Sα belongs to no element of S.

2. If Sβ is a near-litter belonging to clan[B] with B strictly downward
extending A, then either the parent of Sβ is an atom and either equal
to Sγ for some γ < β or not an element of S at all, or there is a subset
T of β such that the restriction of <S to T is a B-strong support for
the parent of Sβ.

7.2 Definition of extended strong support order

An A-extended strong support order is a strong support order with <S with
three additional properties:

1. Every atom in S is an element of a near-litter in S.

2. Every near-litter in S is a litter.

3. For every near-litter in S with atomic parent, the parent belongs to S
as well, unless |A| > 1 and the parent is in clan[A1].
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8 The Freedom of Action Theorem

If π is an A-allowable permutation, an exception of π is an atom x in a
clan[B] with B = A or B � A such that x ∈ L ∈ Λ[B] but either π(x) 6∈
π(L)◦ or π−1(x) 6∈ π−1(L)◦. We know that a permutation has only a small
collection of exceptions in each litter.

We define an A-local bijection as an injective map with the same domain
and range whose domain contains all of K[A] and has small intersection
(empty is a species of small) with each litter in each clan at or before clan[A]
in the order, and whose domain contains no other sort of item.

Let π0 be an A-local bijection. For each pair of litters L,M in a relevant
clan, let πL,M be a bijection from L \ dom(π0) to M \ dom(π0). We prove that
there is an A-allowable permutation π which extends π0 and each πL,π(L)◦ .

Note that the map constructed by the Freedom of Action theorem has no
exceptional action on atoms other than that imposed by π0: if an element of
a litter L is mapped out of π(L)◦ by π or out of π−1(L)◦ by π−1 then it is in
the domain of π0.

We show how to compute π at any relevant atom by a recursion on an
extended strong support of the atom.

If we know how to compute π at a local cardinal in K[B] for B = A or
B � A then we know how to compute π at each atom in the litter L belonging
to the local cardinal, by applying either π0 or πL,π(L)◦ : we compute π(L)◦ not
by computing π(L) but by identifying it as the litter belonging to π([L]).

This means that we can compute π at any atom in a strong support and
at any litter whose parent is an atom, and at any litter belonging to an
element of K[A].

There remains the case of computation of π at a litter whose parent is a
set X. If we can compute π at this set parent, we can then compute π at
each element of the litter and so at the litter.

We observe that the set X belongs to a K[B] for B � A and we have
a B-extended strong support for X as part of our given support, on which
we have already computed values for π. We use the inductive hypothesis
that our theorem works for B � A to choose a B-allowable permutation π1

which extends the restriction of π as computed so far to atoms and elements
of K[B] appearing in the given support (an element of K[B] “appears in the
support” via the litter belonging to it) and extends each relevant πL,π′(L)◦

and the restriction of π0 to relevant litters. We extend π to agree with π′ at
this litter, which it must, as it agrees with the values already computed for
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π at a B-support, which is also an A-support. There is something to check:
how do we know that π′ agrees with π on litters in the support? Consider the
first litter at which it fails to agree: since π and π′ agree at all elements of a
support of this first litter, they agree at the parent of the litter, and can only
disagree by mapping some small number of atoms in the litter differently.
But in fact once the value at the parent of the litter is determined, both π
and π′ compute values in the litter in the same way, by consulting the maps
π0 and πL,π(L)◦ , so they agree at the litter as well.

This gives a method of computing π along an extended strong support
for any atom; one has to argue that this is well-defined in the sense that
computation along any extended strong support will give the same value.

Suppose that two different extended strong support orders S and T for an
atom x gave different computed values of π by the procedure above. Merge
them by putting T after S then eliminating items in T which appear in S.
This will be an extended support order, and any computation along it agrees
with the computation along S and the computation along T of necessity.

All of this works for allowable permutations in general, with the remark
that a local bijection in this case will include all sets K[{α}] in its domain
(since the clans with singleton indices have no parent sets).

It is important to notice that the proof of the Freedom of Action The-
orem for A-allowable permutations does not depend on the construction of
ΠA succeeding: this proof goes through if each map ΠB for B downward ex-
tending A is constructed successfully, without any reference to the existence
of ΠA itself.
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9 Agreement of iterated power sets of clans

across indexed FM models

In this section we argue that P2
∗A(clan[A∪{α}]) is the same as P2

∗ (clan[A∪
{α}]). This confirms the validity of the formula for parent sets in the impos-
sible things section.

We argue first that P∗A(clan[A∪{α}]) is the same as P∗(clan[A∪{α}]).
We show this by arguing from the Freedom of Action Theorem that every
subset of any clan[A ∪ {α}] in the FM interpretation has small symmetric
difference from a small or co-small union of litters, and any such set has an
A∪{α}-support (which is certainly an A-support) and so is in P∗A(clan[A∪
{α}]).

Suppose that X is a subset of a litter L included in clan[B] with both
X and L \X large, and that parent maps are defined for all indices before B
in the order. Let C be the first item in the order on extended type indices
B = C or B downward extends C such that ΠC is not defined (or ∅ if there
is no such C). Choose a C-extended strong support of X and a C-extended
strong support of L. Let a ∈ X and b ∈ L \X be chosen to be in the range
of neither support. Define a local bijection sending a to b, b to a and fixing
each atom in either support, and extend this to an allowable permutation
with no exceptional actions except at these values, as the Freedom of Action
Theorem allows. The permutation will fix each litter in either of the supports
as well: the first litter moved will have its parent or local cardinal fixed by
the allowable permutaton, so if it fails to be fixed it must have an exception
which is moved by the permutation from inside the litter to its outside or
vice versa, and in fact each exception other than a or b is fixed, and a, b lie in
the same litter. Now the permutation fixes X because it fixes all elements of
its support, but moves X because it exchanges a and b. This contradiction
shows that each litter has no subsets in the FM interpretation other than its
small and co-small subsets, which are clearly sets in the FM interpretation.

We say that a set X cuts a litter L if L\X and L∩X are both inhabited.
Suppose that a set X wth a C-extended strong support S cuts each of a large
collection of litters included in clan[B]. Choose a litter cut by X which is
not in the support of X, and choose an element a of this litter not in X and
an element b of this litter which is in X. Neither of these atoms can be in the
extended support. Now extend the local bijection swapping a and b and fixing
each atom in the strong support of X to a C-allowable permutation with no
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other exceptional actions (litters in the support are also fixed by essentially
the same argument given above, with the different point about a and b that
they do not belong to any litter in the support). This permutation will fix
X because it fixes all elements of a support of X, and not fix X because it
exchanges a and b. Thus we see that a set of the FM interpretation can only
cut a small number of litters, and so has small symmetric difference from a
union of litters.

Suppose that a set X is a union of a large collection of litters in clan[B]
and there is also a large collection of litters in clan[B] which are disjoint from
X. Choose a C-extended strong support of X. Choose a litter L included in
clan[B] and in X and a litter M included in clan[B] and disjoint from X,
neither being in the extended strong support. Choose a ∈ L and b ∈M and
as in each earlier step define a C-allowable permutation extending the local
bijection swapping a and b and fixing all atoms in the support (and all litters
in the support by a kind of argument already given), and so all elements of
the support, with no other exceptional actions. As before, this permutation
both fixes and does not fix the set X. This shows that any union of litters
in clan[B] is either the union of a small collection of litters or the relative
complement with respect to the clan of such a union.

Thus every subset of clan[B] in the FM interpretation has small symmet-
ric difference from the union of a small or co-small collection of litters, and
so has a support consisting of atoms and litters taken from clan[B]: since
this is an B-support this set is also in the FM support indexed by B: the
identity of this power set is stable in all the FM interpretations we consider.

Note that this argument does not depend on existence of ΠB, and extends
to all models we consider up to the first one where the construction of parent
maps fails.

Suppose that all clans with index appearing before A in our order have
parent maps defined and that ΠA is defined. Let C be the first index which
has A as a downward extension such that ΠC does not exist, or ∅ if there is
no such C.

Let X be a subset of P∗(clan[A∪ {α}]) with C-extended strong support
S. Let S0 be the restriction of S to items eligible to be in an A-support
(which will be an A-extended strong support). We argue that S0 is also an
A-support for X, so X already belonged to P2

∗A1
(clan[A ∪ {α}]). We need

to show that any A-allowable permutation π which fixes each element of S0

fixes X.
Choose any element Y of X, and choose for it a strong A-support by
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starting with a support consisting of atoms and litters in clan[A ∪ {α}] (we
know this exists because Y is a subset of a clan): these can be supplied with
strong A ∪ {α} supports by inductive hypothesis except in the case where
we need to supply the atomic parent in clan[A] of a litter. We define a
local bijection agreeing with π on each atom in the support for Y , at each
exception of π, and at each atomic element of S0 and fixing each atom in
S \ S0.

Let π′ extend this local bijection without additional exceptions. The
map π′ ◦ π fixes each litter in S0: at a first near-litter moved, it would fix
the parent, and so it would have to have an exception mapped into or out of
the litter. But π and π′ agree at all their exceptions in relevant clans so this
cannot happen. Thus π′ agrees with π at Y . The map π′ fixes all litters in
S: at a first litter in S that it moved, there would have to be an exception
of π′ mapped into or out of the litter, and no element of the domain of the
local bijection defining π′ is mapped into a litter in S from outside, or vice
versa. So π′ fixes X.

The C-allowable permutation π′ agrees with π at Y and must fix X, from
which it follows that π maps Y into X; the same argument shows that π−1

must map Y into X as well, so π fixes X as desired.
This establishes that the unlikely description of the parent sets of clans

is correct – subject of course to the cardinality issue, which is handled in the
next section.

We can prove a more general stability result. For any A with |A| > n, the
definition of Pn+1

∗ (clan[An]) in the interpretation indexed by An is the same
as in the final interpretation. The strategy is very similar to the previous
argument. What we need to show is that if we have X ∈ Pn+1

∗ (clan[An])
with extended strong support S, then the restriction S0 of S to clans with
index at or downward extending An is an An-support for X, so X exists in
the FM interpretation indexed by An. We need to show that any A-allowable
permutation π which fixes each element of S0 fixes X.

Choose any element Y of X, and choose for it an extended strong An−1-
support (we know it has such a support by inductive hypothesis or at the
basis by the argument just above). We define a local bijection agreeing with
π on each atom in the support for Y and at each element of S0 and fixing
each atom in S \S0. This local bijection extends to an allowable permutation
which agrees with π at Y and must fix X, from which it follows that π maps
Y into X; the same argument shows that π−1 maps Y into X, so π fixes X
as desired. The allowable permutation extending the local bijection behaves
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correctly at litters in the supports by the same kind of argument given above,
because it fails to have any exceptions which might break this.

This argument assumes the existence of ΠAn .
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10 Cardinality of iterated power sets of clans

in the FM models

We need to show that each set P2
∗ (clan[A]) is of size no more than µ in the

sense of the ambient ZFCA (these sets are obviously of size at least µ, as
they contain double singletons of all atoms in a clan).

We prove this by an analysis of orbits under allowable permutations.
Let x be an object with strong support (not extended strong support)

S. Note that strong supports are sent to strong supports by allowable per-
mutations (this is not true of extended strong supports). For any allowable
permutation π, x has strong support π(S). We define a map on the orbit
of S by ξx,S(π(S)) = π(x). This is a definition of a function because S is a
support for x. We call the maps ξx,S coding maps .

Every object is in P2
∗ (clan[A ∪ {α}]) is an image of a A-support under

an A-coding map. There are µ supports in the entire structure (here it is
important that the cofinality of µ is greater than κ), so certainly µ supports
relevant to the set P2

∗ (clan[A ∪ {α}]) we are trying to count. Our aim is to
show that there is a collection of coding maps for elements of P2

∗ (clan[A ∪
{α}]) of size < µ whose range covers P2

∗ (clan[A]), from which it follows that
P2
∗ (clan[A]) is of size µ, which is the final piece in the argument that our

construction of parent maps succeeds for each clan index.
We indicate a formal description of orbits in A-support sets. An orbit

specification for a strong support order S is a well-ordering of the same
length as S which contains codes for formal information about each element
of S: whether each item is an atom or near-litter; the index of the clan
containing or including the item; if the item is an atom, the ordinal position
of the earlier near-litter containing it, or an indication that there is no such
item; if the item is a near-litter not included in clan[A], an indication of the
ordinal position of its atomic parent, if it has one, or an indication of the
ordinal positions of the B1-support for the parent of the item, an element of
P2
∗ (clan[B]) with B strictly downward extending A and a coding function

sending the B1-support to the parent, taken from a covering set of coding
functions of size < µ, assumed to exist as an inductive hypothesis. If we have
such covering families, we can ensure that all supports we use in our strong
support order are in the domain of the covering family. A more detailed
formal description of this appears as an appendix to this section.

We argue that A-supports with the same orbit specification belong to
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the same orbit under the A-allowable permutations: given two supports with
the same orbit specification, recursively construct a A-local bijection sending
the one support to the other, which can then be extended by the Freedom
of Action Theorem to map the one support to the other. Thus the orbit
specifications determine the orbits. The only difficult case in this recursion
is the case in which a near-litter in one support is to be mapped to the
near-litter in the corresponding position in the other support. It might be
necessary to introduce a countable set of new atoms into the domain of the
local bijection as images or preimages of anomalous elements of these near-
litters, and iterated images and preimages of these new atoms. The only
restriction on choosing such atoms is if they belong to a near-litter whose
image is known (under the local bijection or its inverse) that their image
should belong to the correct image near-litter, or that if they belong to no
litter in either support, their assigned images and preimages should not: no
new exceptional actions are to be introduced. A more detailed description
of this process is given in an appendix to this section.

There are < µ orbit specifications for A-support sets if there are covering
sets of coding functions of cardinality < µ for each P2

∗ (clan[B]) strictly
downward extending A. This is because an orbit specification (however we
formulate it precisely) is a small wellordering of items built from ordinals less
than λ, extended type indices, ordinals < κ, subsets of ordinals < κ, and the
aforesaid covering functions.

Let X be an element of P2
∗ (clan[A ∪ {α}]), with strong A-support S.

The idea of the next part of the argument is that we can formally describe a
coding function with X as a value using the orbit specification for the support
order S and a set of A∪{α}-coding functions for elements of X. We do this
by choosing a support for each element Y of X which is in the domain of a
coding function generating Y and belonging to the covering family we have
already constructed, then appending the whole to S, resolving duplications,
and eliminating elements not appropriate in A∪{α}-supports, then providing
the coding function for each Y relative to this support. Details are in an
appendix to this section.

Now we can suppose the A∪{α}-coding functions taken from a set of size
less than µ by inductive hypothesis, and there are < µ sets of such coding
functions because µ is strong limit, and of course there are < µ possible
orbit specifications for supports S. So fewer than µ coding functions are
needed to cover P2

∗ (clan[A]), which, applied to µ supports, give µ elements
of P2

∗ (clan[A]).
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This completes the argument that there are µ elements of P2
∗ (clan[A]),

obtained as values of < µ covering functions at µ supports, completng the
argument that our construction of the system of clans and parent sets suc-
ceeds.
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10.1 Formal definition of orbit specification:

Let <S be an A-strong support order. Conventions from the definition of
strong support above will be used in this subsection.

The orbit specification of <S is a well-ordering <s, and we define sα in
the domain of <s so that the order type of the restriction of <s to {x ∈
dom(<s) : x <s sα} is α.

The orbit specification is uniquely specified by the following conditions:

1. If Sα is an atom in clan[B], sα is (1, B, β), where either Sβ contains
Sα or β = κ and Sβ does not belong to any element of S.

2. If Sα is a near-litter in clan[A] then sα = (2, A).

3. If Sα is a near-litter in clan[B] with B downward extending A, and
parent a set then sα = (3, B, T, χ), where T is a subset of α, the re-
striction of <S to T is a B-strong support for the parent of Sα, and
χ = χΠB([Sα]),<SdT , the coding function for the parent of Sα using the
given strong support. If we are using a covering family of coding func-
tions, we require the support <S dT to be in the covering family (and
we assume that we are using covering families for all B downward ex-
tending A).

4. If Sα is a near-litter in clan[B] with B strictly downward extending A,
and the parent of Sα is an atom, sα is (4, B, δ) where either Sδ is the
parent of Sα or δ = κ and the parent does not belong to S.
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10.2 Construction of a local bijection from strong sup-
ports with the same orbit specification

Let <S and <T be A-strong support orders with the same orbit specification.
We indicate how to construct an A-local bijection the extension of which
under the Freedom of Action theorem will take <S to <T . The construction
is recursive: when we carry out the action determined by Sα and Tα, we
presuppose knowledge of the actions indexed by β < α.

1. If Sα and Tα are atoms, the local bijection maps Sα to Tα.

2. If Sα and Tα are near-litters in clan[A], the local bijection maps [Sα]
to [Tα].

3. If Sα and Tα are near-litters in clan[B] with B strictly downward ex-
tending A with parents which are atoms not in S or T respectively
(the fact that the order specifications are the same ensures that these
conditions coordinate) then the local bijection maps the parent of S to
the parent of T .

4. If Sα and Tα are near-litters in clan[B] with parents sets (which will be
in the range of the same coding function because the orbit specifications
are the same) we need to ensure that anomalous elements of Sα and Tα
are treated correctly. To do this, we map each element of Sα∆S◦α to an
element of T ◦α not in S or T or otherwise already put in the domain or
range of the local bijection under the local bijection and each element
of Tα∆T ◦α in the domain of the local bijection to an element of element
of S◦α not in S or T or otherwise already put in the domain or range of
the local bijection under the inverse of the local bijection.

5. Further, we need to extend the local bijection so that its domain is
the same as its range. We do this by assigning a value under the local
bijection to each x so far put into its domain without an assigned value
under the local bijection with the constraint that the new value be
strictly new (not in the domain already) and that if x belongs to a litter
in S that the new value be taken from the appropriate litter in T , and
that if x belongs to no litter in S the new value belongs to no litter in
T , and then for each x put into the range of the local bijection without
a preimage assigned, choose a new preimage under the same conditions
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with the roles of litters in S and T reversed. The point here is that
we complete all orbits under the local bijection without introducing
any exceptional actions involving litters in S or T . We should also
avoid choosing new items from litters which have atomic parents which
belong to S or T except where we have to because such litters belong
to the supports themselves. This is where it is important that κ be
uncountable. A local bijection will be obtained, and the application of
the Freedom of Action theorem will give an A-allowable permutation
taking <S to <T for standard reasons. We also need to extend it to be
a bijection from K[A] to K[A], which presents no difficulties.
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10.3 Construction of a coding function for a set

Let X be an element of P2
∗ (clan[A ∪ {α}]), with strong A-support S.

For each element Y of X choose an A∪{α}-strong support S0
Y for which

we can express Y as χY,S0
Y

(S0
Y ), χY,S0

Y
being an element of the covering family

of coding functions which we posit as an inductive hypothesis.
For each Y , we augment S0

Y to SY by prepending S, dropping duplicated
items from SY , then dropping items not appropriate for an A∪{α}-support.

We then claim that we can determine a coding function from the orbit
specification of the support S and the set Σ of coding functions {χY,SY :
Y ∈ X}. The function χ we define will send T = π(S) in the orbit of S
under A-allowable permutations to the set of all χY,SY (TY ), where TY is in
the domain of χY,SY and agrees with T where S agrees with SY . That is,
χ(T ) is the set of all ξ(T ′) where ξ ∈ Σ and T ′ is in the domain of ξ and has
as an initial segment the result of dropping all items from T which are not
appropriate in an A ∪ {α}-support (we need to be clear that the definition
does not depend on reference to S or to elements of X).

To verify that χ is a coding function (in fact, χ = χX,S) we need to verify
that π(X) = χ(T ).

Each element Y of X has π(Y ) ∈ χ(T ), because π(Y ) = χY,SY (π(SY )),
and π(SY ) has the correct properties as a support.

Suppose Z ∈ χ(T ). We have Z = χY, SY (T ′) for some Y and T ′ extending
the truncated version of T . π−1(Z) = χY,SY (π−1(T ′)). The support π−1(T ′)
has an initial segment agreeing with the appropriate truncation of S and the
same orbit specification as SY , so a permutation fixing S and so fixing X will
send π−1(T ′) to SY , and so send π−1(Z) to Y ∈ X, so in fact χ(T ) = π(X)
as desired.

Each coding function for an element of P2
∗ (clan[A ∪ {α}]) with given

strong A-support S is thus determined by the orbit specification of S and a
set of coding functions which are not literally taken from a covering family
of size < µ provided by inductive hypothesis, but from a family of coding
functions obtained by a uniform transformation of the coding functions in the
covering family induced by changing the supports which are their domains
by prepending S, and eliminating duplicates and inappropriate items. This
family of coding functions is of size < µ just as the covering family is.

This establishes that there is a covering family of < µ coding functions
for elements of P2

∗ (clan[A ∪ {α}]), determined by the orbit specification of
the support S and a subset of a set of < µ covering functions determined by
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a covering family previously discussed and the orbit specification of S.
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11 External isomorphisms between iterated

power sets in the FM models (via even

finer control of parent maps)

The existence of external isomorphisms between the natural models of TSTn+2

with base types clan[A] and clan[B] with A \ An = B \ Bn and An, Bn

nonempty is arranged by further fine tuning of the way the parent maps
ΠA are constructed, causng such isomorphisms to exist between the natural
models of TSTn+2 with base types clan[A] and clan[A∪{α}] where |A| ≥ n
and α dominates all elements of A.

We do this by defining maps χα acting on clan[A]’s with α dominating
A, and on all sets whose transitive closures contain only appropriate atoms
by the rule χα(X) = χα“X. These maps belong to the ambient ZFCA: they
are certainly not present in any of the FM interpretations.

Define χα on each clan[A] with α greater than each element of A as
a bijection onto clan[A ∪ {α}] which sends litters to litters. Define ΠA

using the procedure above only when |A| = 2; define ΠA when |A| > 2 as
χA(ΠA), with the same results but with finer control. In terms of the very

fine description of this process using specific well-orderings, choose <
A∪{α}
1 =

χα(<A
1 ) and <

A∪{α}
3 = χα(<A

3 ): then everything proceeds exactly in parallel
in corresponding clans.

The resulting map χα commutes with equality, membership and parent-
hood.

It follows that the natural model of TSTn+2 with base type clan[A] and
top type Pn+1

∗ (clan[A]), all elements of all types in which have support in
clans downward extending An, is isomorphic to the natural models of TSTn+2

with base type clan[A ∪ {α}] and top type Pn+1
∗ (clan[A ∪ {α}]) with α

dominating A via χα. Repeated application of this result gives isomorphism
between the models of TSTn+2 with base types clan[A] and clan[B] with
A \ An = B \ Bn. This is sufficient to give the elementary equivalence of
these models, which gives the elementary equivalences needed to verify the
elementarity conditions for the purported tangled web.

This completes the proof that New Foundations is consistent.
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12 Conclusions, extended results, and ques-

tions

This is a rather boring resolution of the NF consistency problem.
NF has no locally interesting combinatorial consequences. Any fact about

sets of a bounded standard size which holds in ZFCA will continue to hold
in models constructed using this strategy with the parameter κ chosen large
enough. That the continuum can be well-ordered or that the axiom of depen-
dent choices can hold, for example, can readily be arranged. Any theorem
about familiar objects such as real numbers which holds in ZFCA can be re-
lied upon to hold in our models (even if it requires Choice to prove), and any
situation which is possible for familiar objects is possible in models of NF :
for example, the Continuum Hypothesis can be true or false. It cannot be ex-
pected that NF proves any strictly local result about familiar mathematical
objects which is not also a theorem of ZFCA (or even of ZFC).

Questions of consistency with NF of global choice-like statements such
as “the universe is linearly ordered” cannot be resolved by the method used
here (at least, not without major changes).

NF with strong axioms such as the Axiom of Counting (introduced by
Rosser in [9], an admirable textbook based on NF ), the Axiom of Cantorian
Sets (introduced in [2]) or my axioms of Small Ordinals and Large Ordinals
(introduced in my [4] which pretends to be a set theory textbook based on
NFU ) can be obtained by choosing λ large enough to have strong partition
properties, more or less exactly as I report in my paper [5] on strong axioms
of infinity in NFU: the results in that paper are not all mine, and I owe a
good deal to Solovay (unpublished conversations and [11]).

That NF has α-models for each standard ordinal α should follow by the
same methods Jensen used for NFU in his original paper [7]. No model of NF
can contain all countable subsets of its domain; all well-typed combinatorial
consequences of closure of a model of TST under taking subsets of size < κ
will hold in our models, but the application of compactness which gets us
from TST + Ambiguity to NF forces the existence of externally countable
proper classes, a result which has long been known and which also holds in
NFU.

We mention some esoteric problems which our approach solves. The
Theory of Negative Types of Hao Wang (TST with all integers as types,
proposed in [14]) has ω-models; an ω-model of NF gives an ω-model of TST
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immediately. This question was open.
In ordinary set theory, the Specker tree of a cardinal is the tree in which

the top is the given cardinal, the children of the top node are the preimages of
the top under the map (κ 7→ 2κ), and the part of the tree below each child is
the Specker tree of the child. Forster proved using a result of Sierpinski that
the Specker tree of a cardinal must be well-founded (a result which applies
in ordinary set theory or in NF(U), with some finesse in the definition of
the exponential map in NF(U)). Given Choice, there is a finite bound on the
lengths of the branches in any given Specker tree. Of course by the Sierpinski
result a Specker tree can be assigned an ordinal rank. The question which was
open was whether existence of a Specker tree of infinite rank is consistent.
It is known that in NF with the Axiom of Counting the Specker tree of
the cardinality of the universe is of infinite rank. Our results show that
Specker trees of infinite rank are consistent in ZFA. We are confident that
our permutation methods can be adapted to ZFC using forcing in standard
ways to show that Specker trees of infinite rank can exist in ZF.

We believe that NF is no stronger than TST + Infinity, which is of the
same strength as Zermelo set theory with separation restricted to bounded
formulas. Our work here does not show this, as we need enough Replacement
for existence of iω2 at least. We leave it to others to tighten things up and
show the minimal strength that we expect holds.

Another question of a very general and amorphous nature which remains
is: what do models of NF look like in general? Are all models of NF in
some way like the ones we describe, or are there models of quite a different
character?
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