
A self contained account of a class of models of
tangled type theory

Randall Holmes

starting, 7/13/2023
typos and mental failures fixed, 7/18/2023
revised during 7/24/2023 Zoom meeting

definition of substitutions and their action rewritten,
7/25/2023

freedom of action is needed for type counting
8/2/2023: some editing and debugging, progress in setting up

last case of the freedom of action proof.
first pass 8/4/2023, a lot of proofreading. 8/9/23 more

proofreading, more work on Freedom of Action
8/10/2023 first draft of entire proof of Freedom of Action
8/27/2023: another editing pass, simplified indexing (and

possibly removed errors) in FoA proof, other fixes in earlier
parts

8/29/2023 changed the definition of support element and made
induced corrections (I hope). Some remarks added after the

Zoom meeting.
9/7/2023 starting to tackle counting of types

1

In this document, we give a self contained account of a structure which
will turn out to be a model of tangled type theory, and therefore a witness
to the consistency of Quine’s New Foundations. We will not discuss these
theories until later in the narrative. All of our business will be conducted in
the usual set theory ZFC, and in fact in not very much of it, because New
Foundations is not a very strong theory.

We are trying out the numbered paragraph format which Zermelo uses in
his 1908 papers, just for fun.

1. The construction has parameters which we introduce.

λ is a limit ordinal. Elements of λ and a special object −1 will be our
type indices (it simply doesn’t matter what −1 is: any set that isn’t an
ordinal will do). The order on type indices is suggested by the choice of
symbol for the additional type index: −1 is the minimum in the order
on type indices and the order on type indices extends the usual order
on λ (the natural order on ordinals < λ).

κ is an uncountable regular cardinal greater than λ. Sets of cardinality
< κ will be termed small and sets which are not small are called large.

µ is a strong limit cardinal > κ of cofinality ≥ κ.

These notations are fixed for the rest of the paper.

2. Motivational notes: we are letting parameters vary in size to support
extensions of NF which are strong in various ways. If one were aiming
to put a cap on the consistency strength of NF (doing this precisely is
not among the aims of this paper) note that λ = ω;κ = ω1;µ = iω1

works here. We believe that NF is even weaker than these values of the
parameters suggest, but we are not at pains here to show this.

3. We first build a system of supertypes indexed by the type indices, which
will seen to be a model of nonextensional tangled type theory (we will
explain what this means presently).

We write the supertype indexed by a type index ι as τ ∗ι .

Supertype −1 (τ ∗−1) is unspecified at this point, except that it is a set
of cardinality µ. We will describe it with complete precision later, but
its exact nature is unimportant at this stage. Any choice of µ and a
set of cardinality µ to serve as τ ∗−1 can be taken to determine a system
of supertypes at this point.

2

For α ∈ λ (a type index other than −1), we define τ ∗α as

(P(
⋃

−1≤ι<α

τ ∗ι ∪ {{τ ∗η : −1 ≤ η < α}})) \ P(
⋃

−1≤ι<α

τ ∗ι) :

an element of τ ∗α is a union of subsets of the τ ∗ι ’s for −1 ≤ ι < α with
the additional element {τη : −1 ≤ η < λ} added.

We denote {τ ∗η : −1 ≤ η < α} by τ+α .

4. The axiom of foundation in the underlying set theory ZFC ensures that
the supertypes are disjoint. Notice that τ+α has higher rank than any
τ ∗ι for −1 ≤ ι < α and so τ+α cannot be an element of any element of τ ∗ι
for −1 ≤ ι < α, and so τ ∗α (all of whose elements contain τ+α) is disjoint
from every such τ ∗ι (every type of smaller index).

None of the sets τ+α are elements of any τ ∗ι : no τ+α can be an element
of τ ∗−1 because τ ∗−1 ∈ τ+α for every α. For τ+α to belong to τβ (β 6= −1)
we would need τ+β to belong to each element of τ+α , including τ ∗−1, to
which we have just seen that no τ+α can belong.

5. For each α, β with −1 ≤ α < β < λ, we define x ∈α,β y as holding
iff x ∈ τ ∗α ∧ y ∈ τ ∗β ∧ x ∈ y. It is a nice feature of this scheme of
representation that membership between any two types is represented
by a subset of the membership relation of the metatheory, while at the
same time the “empty set” in each supertype, ∅α = {τ+α }, is distinct
from the empty set in each other supertype (and more generally, the
supertypes are disjoint, but the empty sets are the obvious obstruction
to this).

This structure is a model for nonextensional tangled type theory (TTT−)
which we now describe briefly for motivation.

TTT− is a theory with membership and equality as primitive relations
and types indexed by the elements of λ (type indices other than −1).

A formula xα = yβ is meaningful iff α = β. A formula xα ∈ yβ is
meaningful iff α < β.

The sole axiom scheme asserts that for any formula φ(xα) in the lan-
guage and β > α there is {xα : φ(xα)}β such that

(∀zα : zα ∈ {xα : φ(xα)}β ↔ φ(zα)).

3

This theory is satisfied by the system of supertypes if we interpret
xα ∈ yβ as xα ∈α,β yβ.

The theory is nonextensional: there isn’t a unique witness to serve
as {xα : φ(xα)}β, though we can choose a canonical one, namely, the
one whose intersection with any τι with ι 6= α is empty (this canon-
ical object which a given α-extension is easily described in terms of
the metatheory, and can be described in terms of the language of tan-
gled type theory, but the axioms of nonextensional tangled type theory
establish neither existence nor uniqueness of such an object).

6. We further describe the theory TTT (tangled type theory), in order to
motivate the exertions we will go through in the rest of this paper.

TTT extends TTT− with the additional axiom scheme of extensional-
ity, the collection of all well formed sentences of the form

(∀xβyβ : (∀zα : zα ∈ xβ ↔ zα ∈ yβ)→ xβ = yβ).

It is known that the consistency of TTT implies (in fact is equivalent
to) the consistency of New Foundations. We will discuss this (and the
definition of the theory New Foundations) later.

7. In the system of supertypes, each element with positive type α has an
extension over each type β ∈ α, namely, its intersection with type β.
These extensions can be mixed and matched freely: there are many
type α objects with any given extension over type β (even in the case
β = 0, α = 1, as we can vary the intersection of the type α object with
type −1).

In a model of TTT, each object of positive type is uniquely determined
by each of its extensions individually. This means that one extension
of any particular object determines the others. Our construction con-
tinues by exhibiting how this is done in our construction, starting with
a presentation of more detail about type −1.

8. We will refer to the elements of type −1 as atoms . They are not atoms
in the sense of the metatheory (in fact, we will say something about
their extensions as sets in a moment) but it is convenient to have a
generic term for them (and in earlier constructions carried out in ZFA,
analogous objects were atoms).

4

9. We now specify exactly what τ ∗−1 is (in terms of the parameters κ and
µ).

τ ∗−1 = {(ν, β, γ, α) : ν < µ ∧ β ∈ λ ∪ {−1} ∧ γ ∈ λ \ {β} ∧ α < κ}

10. For any suitable ν, β, γ we define Λν,β,γ as {(ν, β, γ, α) ∈ τ ∗−1 : α < κ}.
We regard this notation as defined only if the resulting set is nonempty.
Such sets are called litters and the set of litters is a partition of τ ∗−1 into
sets of cardinality κ. I am not sure that I ever use the explicit notation
Λν,β,γ for a litter in the sequel.

We define Xβ,γ as {Λν,β,γ : ν < µ}. The use of the partition of the
litters {Xβ,γ : β ∈ λ ∪ {−1} ∧ γ ∈ λ \ {β}} will be seen below. The
notation Xβ,γ is used in the sequel: what is important to know about
the collection of such sets is that it is a partition of the set of all litters
into sets of size µ.

11. A subset of τ ∗−1 with small symmetric difference from a litter we call a
near-litter . For any near-litter N we define N◦ as the uniquely deter-
mined litter L such that |N∆L| < κ. If M and N are litters, we write
M ∼ N [read “M is near N”] for |M∆N | < κ. This is an equivalence
relation on near-litters.

12. Our intention is to construct τι for each type index ι in such a way
that τ−1 = τ ∗−1 (and we will henceforth abandon the latter notation,
always writing τ−1) and for each α ∈ λ, τα ⊆ τ ∗α and |τα| = µ, and for
each −1 ≤ α < β < λ and x ∈ τβ, x ∩ τ ∗α ⊆ τα. Further, for each
−1 < γ < β < λ we have for x, y ∈ τβ that x∩ τγ = y∩ τγ → x = y: we
have extensionality (in the strong form required to interpret TTT) for
the types indexed by ordinals. There are of course further conditions
to be unfolded as we proceed.

The intention is that for each β ∈ λ, τβ will interpret type β of TTT
and that the intersection of the membership relation of the metatheory
with τγ × τβ will interpret the membership of type γ objects in type β
objects when 0 ≤ γ < β.

13. Our strategy will be to fix an α ∈ λ and hypothesize that the sets τβ
have already been constructed for each β < α (satisfying these condi-
tions [and others yet to be stated]), and then describe how τα is to be
constructed [supposing at all points that earlier τβ’s were constructed

5

in the same way]. We suppose that we have already specified a well-
ordering ≤β with order type µ of each type τβ with −1 ≤ β < α (special
conditions on the choice of these well-orderings will be given later).

14. For any near-litter N and γ 6= −1, we define Nγ as the unique element
x of τγ with x ∩ τ−1 = N . We stipulate that there is one (for any N
and for γ < α). More generally, if X ⊆ τ−1, Xγ is the unique element
x of τγ with x∩ τ−1 = X, if there is one. We provide that ∅γ and {x}γ
will exist for x ∈ τ−1, γ < α.

15. We define for each element x of any τβ the index ι∗(x) as the order type
of the restriction of ≤β to {y ∈ τβ : y <β x}. Note that the domain of
ι∗ is the union of all the types!

16. We first indicate how extensionality is to be enforced.

17. We construct, for each pair of ordinals β, γ < α with β 6= γ 6= −1 (note
that β can be −1), an injection fβ,γ from τβ into Xβ,γ = {Λν,β,γ : ν < µ}
(whose definition does not actually depend on α: it will be the same
at every stage whose index dominates β and γ).

fβ,γ is an injection from τβ into Xβ,γ: note that the ranges of distinct
fβ,γ’s are disjoint. When we define fβ,γ(x), we presume that we have
already defined it for y <β x. We define fβ,γ(x) as L ∩ τ−1, where
L is ≤γ-first such that L ∩ τ−1 ∈ Xβ,γ and for every N ∼ L ∩ τ−1,
ι∗(Nγ) > ι∗(x), and for any y <β x, fβ,γ(y) 6= L ∩ τ−1. That this
can be done relies on the fact that the order type of each ≤β is µ.
It is important to note that the definition of fβ,γ does not depend on
α; speaking informally, as α increases, more such functions become
definable, but they remain the same functions.

18. Let −1 < β ≤ α.

Let τ 1β be the set of elements of τ ∗β satisfying x∩τ ∗γ ⊆ τγ for each γ < β.

Let τ 2β be the set of elements of τ 1β which are “weakly extensional” in a
sense we now define.

An extension of an element x of τ 1β is a set x ∩ τγ for −1 ≤ γ < β [we
call this extension for a particular value of γ the γ-extension]. We say
that an element x of τ 1β is weakly extensional iff it has an extension
x ∩ τγ, called a distinguished extension, which has the property that

6

if any extension of x is empty, all extensions (and so of course the
distinguished extension), are empty, and if x∩τ−1 is nonempty, γ = −1,
and that for any δ ∈ β \ {−1, γ} we have

x ∩ τδ = {Nδ : N◦ ∈ fγ,δ“(x ∩ τγ)}.

We pause to define a function implementing this. For any nonempty
subset X of τγ, we define

Aδ(X) = {Nδ : N◦ ∈ fγ,δ“(X)}.

Note that this function Aδ can be taken to have the quite large domain⋃
γ∈β\{δ,−1}

P(τγ) \ {∅},

since we can determine given a set in the domain what the appropriate
value of γ is. Strictly speaking, this should be written Aβδ .

We can then state that a distinguished extension x∩ τγ of x is charac-
terized by the condition that for each δ not equal to γ or −1, x ∩ τδ =
Aδ(x ∩ τγ), and if γ 6= −1, x ∩ τ−1 is empty.

Note that this allows us immediately to determine all extensions of
objects Nγ for N a near-litter or {x}γ for x an atom, because their
nonempty −1-extension is seen to be their distinguished extension.

It is part of the hypotheses of the construction that τβ ⊆ τ 2β for each
ordinal β less than α: elements of types already constructed are weakly
extensional.

19. We show that no x has more than one distinguished extension. If the
distinguished extension of x is empty, all extensions of x are empty, so
x in fact has only one extension. Note further that if the distinguished
extension of x is nonempty, and c is the element of this extension with
minimal image under ι∗, then every element of every other extension
will have image under ι∗ exceeding ι∗(c), because of the way the f
maps are constructed, establishing that there is only one distinguished
extension.

7

20. That every element of a type in our system of types is weakly ex-
tensional will not enforce the extensionality condition we want. Let
−1 ≤ γ < β ≤ α, and let x, y ∈ τ 2β with x ∩ τγ = y ∩ τγ.
If x∩ τγ = y∩ τγ is the empty set, then x = y is immediate, because all
the extensions of both sets are empty. Note that if any extension of x
or y is empty, all are, so we can suppose hereinafter that all extensions
of x and y are nonempty.

If the distinguished extensions of x and y are both the δ-extension for
some δ (which might or might not be γ), then again x = y because we
have a method of computation of all other extensions of x and y which
will give x ∩ τε = y ∩ τε for each appropriate ε.

If the distinguished extensions of x and y (supposed nonempty) are the
δ-extension of x and the ε-extension of y, with δ 6= ε, then any z in
the γ-extension of x must be of the form Nγ where N◦ is in the range
of fδ,γ and in the range of fε,γ, and this is impossible, as the ranges of
these maps are disjoint.

The possibility which cannot be excluded is that x ∩ τγ = y ∩ τγ is the
distinguished extension of one of x, y and not of the other.

21. Let −1 < β ≤ α. We are working on defining the collection τ 3β of
extensional elements of τ 2β (so to begin with, an extensional element of
τ 1β is weakly extensional).

The maps Aδ defined above are injective. The ranges of distinct maps
Aδ are disjoint.

Thus, we can define A−1(x) for x ∈
⋃
γ∈β\{−1}P(τγ)\{∅} as the unique

y such that Aδ(y) = x for some δ (δ of course being determined by x),
if such a y exists. The map A−1 is of course partial: but for any x, if
there is any such y there is only one.

Strictly, we should define A−1[β] (x) for x ∈
⋃
γ∈β\{−1}P(τγ) \ {∅} as the

unique y such that Aβδ (y) = x for some δ (δ of course being determined
by x), if such a y exists: the explicit dependence on β is not needed for
the discussion here but might be relevant elsewhere. The brackets are
to avoid parsing it as (Aβ)−1.

If c is the element of x with minimal image under ι∗, the element d with
minimal image under ι∗ in any Aδ(x) will have ι∗(d) > ι∗(c) because

8

of the way the f maps are defined. This implies that for any x, if c
is the element of x with minimal image under ι∗, and A−1(x) exists,
then if d is the element of A−1(x) with minimal image under ι∗, we
have ι∗(d) < ι∗(c). This in turn implies that no set has infinitely many
iterated images under A−1.

We then define τ 3β as the collection of all elements x of τ 2β with the
property that either the distinguished extension of x is empty or the
collection of iterated images of the distinguished extension of x under
A−1 (not including x) is of even cardinality. Note that since every other
extension of x is an image of the distinguished extension under an Aδ,
they all have odd numbers of iterated images under A−1.

Now observe that in the case where two distinct elements x, y of τ 2β have
the same γ-extension for a suitable γ, described above, the common
extension of x and y is the distinguished extension of one of them
(wlog x) and not the distinguished extension of the other, and so the
image under Aγ of the distinguished extension of y. This means that
one of x and y is extensional, and the other is not, by considering
the parities of the cardinalities of the sets of iterated images of the
respective distinguished extensions under A−1. Thus,if two distinct
elements x, y of τ 3β have the same γ-extension for a suitable γ, it follows
that x = y.

We further state that τβ ⊆ τ 3β for −1 < β < α as a hypothesis of the
construction: all sets in types already constructed are extensional.

22. We commence the description of the symmetry condition which tells
us when an element of τ 3β is to be taken to be an element of τβ.

23. A typed near-litter is an element Nγ of τγ where N is a near-litter. A
typed atom is an element {x}γ of τγ where x ∈ τ−1.
A support element is a pair (x,A) where A is a nonempty finite set of
type indices other than −1 and x is either a near-litter or the singleton
of an atom.

For any support element (x,A) we define c((x,A)) as xmin(A): c converts
support elements to typed near-litters or typed singletons of atoms.

We refer to support elements ({x}, A) as atomic support elements and
to support elements (N,A) where N is a (near-)litter as (near-)litter
support elements.

9

A β-support (for β ∈ λ) is a small set of support elements (x,A) each of
which has max(A) = β, with the technical property that if it contains
distinct (x,A) and (y, A) [with the same second component; not all
elements of a support need have the same second component], and x
and y are both near-litters, they are disjoint.

NOTE: I changed the definition of support element 8/29/2023
so that first components of support elements are in every case
sets of atoms. Under the previous definition, the atomic sup-
port element ({x}, A) would have been (x,A ∪ {−1}) and the
near-litter support element (N,A) would have been (Nγ, A), so
that first components were atoms or typed near-litters. The
new definition seems to lead to less annoying subscripting.
We describe the change here in case some text has not been
revised correctly.

For any β-support S and γ < β, we define Sγ as

{(x,A) : max(A) = γ ∧ (x,A ∪ {β}) ∈ S}.

24. We now set out to define the symmetry condition which allows us to
determine which elements of τ 3β belong to τβ for β ≤ α.

25. We define a −1-substitution as a permutation σ of τ−1 such that for
any near-litter N , σ“N is a near-litter.

We define a β-presubstitution (β ∈ λ) as a permutation σ of the atomic
support elements (x,A) with max(A) = β, with the following properties:

(a) π1(σ((x,A))) = A for all (x,A) in the domain of σ. This shows
that σ independently permutes, for each appropriate A, the set
{({x}, A) : x ∈ τ−1}.

(b) For each appropriate A, the permutation σA∪{−1} implicitly de-
fined by σ(({x}, A)) = ({σA∪{−1}(x)}, A) is a −1-substitution.

For each β-presubstitution σ and ordinal γ < β we define σγ as the γ-
presubstitution such that σγ((x,A)) = (y, A) (for (x,A) in the known
domain of a γ-presubstitution) iff σ((x,A ∪ {β})) = (y, A ∪ {β}). We
define σ−1(x) so that σ(({x}, {β})) = ({σ−1(x)}, {β}).

10

We extend the notation of the previous paragraph. For B a finite
set of type indices with maximum β, σB is a min(B)-presubstitution,
with σ{β} = σ and σB for B with more than one element equal to
(σB\{min(B)})min(B). Notice that this has different definitions (though
closely related) depending on whether min(B) = −1.

26. We define the action of a presubstitution on elements of our structure
and on supports. For any x in τβ and β-presubstitution σ (β > −1),
σ[x] is the element of τ ∗β whose γ-extension is {σγ[y] : y ∈ x ∩ τγ} for
each type index γ < β. In the case γ = −1, σ−1[y] = σ−1(y).

We define the action of a β-presubstitution σ on support elements:
σ[(x,A)] = (σA∪{−1}“x,A). Note that this agrees with simple applica-
tion of σ as a function at elements of its domain.

We define σ[S], where σ is a β-presubstitution and S is a β-support,
as {σ[s] : s ∈ S}.

27. We now motivate and define the notion of β-substitution.

We would like to restrict to β-presubstitutions under which τβ is closed.
Consider the action of a β-presubstitution on an element X of τβ whose
γ-extension (γ 6= −1) is a singleton {x}. We certainly want there to
be such an element of τβ for each x ∈ τγ, since this would be true if
our structure satisfied TTT, though we have not assumed this to be
true [and we are not formally assuming this here, merely discussing this
case for motivation]. The δ-extension of X for δ ∈ β \ {γ,−1} would
be {Nδ : N◦ = fγ,δ(x)}. The γ-extension of σ[X] is {σγ[x]} and the
δ-extension of σ[X] is {σδ[Nδ] : N◦ = fγ,δ(x)}.
For σ[X] to be extensional, we need the δ-extension of σ[X] to be
{Nδ : N◦ = fγ,δ(σγ[x])}.
This motivates our definition of a β-substitution (β > −1) as a β-
presubstitution such that

{σδ[Nδ] : N◦ = fγ,δ(x)} = {Nδ : N◦ = fγ,δ(σγ[x])},

for each appropriate γ, δ, x, which can readily be seen to be equivalent
to the assertion that σδ[fγ,δ(x)δ]∩τ−1 ∼ fγ,δ(σγ[x]), for any appropriate
γ, δ and x ∈ τγ, or equivalently (σδ)−1“fγ,δ(x) ∼ fγ,δ(σγ[x]) for such
γ, δ, x.

11

We provide as a hypothesis of the construction that τβ is closed under
β-substitutions for each β < α: we claim that the additional condition
which we have shown to be necessary for our purposes will also turn
out to be sufficient when all details of the construction are seen.

28. We define the notion of a code for an element of our structure. We use
the notation χ for the function sending a code to what it codes.

A −1-code is simply an atom, and an atom is a code for itself and only
for itself: for any x, χ(x) = x if either x or χ(x) is an atom.

A β-code for β an ordinal is a pair (S,Σ) where S is a β-support and,
for some γ < β, Σ is a set of γ-codes such that χ“Σ has an even number
of iterated images (other than itself) under A−1[β] , and any β-substitution

σ such that (∀s ∈ S : π[s] = s) also satisfies {σγ[y] : y ∈ χ“Σ} = χ“Σ,
and for each code c in Σ, π1(c) is a superset of Sγ. In this case χ((S,Σ))
is defined as the unique x ∈ τβ, if there is one, such that x∩ τγ = χ“Σ.

It is a hypothesis of the construction that for β < α, the function χ is
defined at every β-code, and that the range of χ is all of τβ: i.e., the
elements of τβ are exactly the codable elements of τ 3β .

We define τα as the collection of elements x of τ 3α for which there is an
α-code (S,Σ) and γ < α such that x ∩ τγ = χ“Σ.

For any β-code (S,Σ) and β-substitution σ, we define σ[(S,Σ)] as
(σ[S], {σγ[c] : c ∈ Σ}). It is straightforward to show that σ[(S,Σ)]
is a code for σ[χ((S,Σ))], so the action of a β-substitution on τβ is a
permutation.

We define σ+(x) as σ[x] for each β-substitution σ and x ∈ τβ. Note
that σ+ determines and is determined by σ. The collection of permu-
tations σ+ is the collection of β-allowable permutations discussed in
other treatments; we may have some use for this below.

29. We describe the selection of designated supports for each element of
our structure (a support S of an element x of the structure is an S for
which there is a Σ such that (S,Σ) codes x). This supports a recursive
construction of designated codes. The designated code for an atom is
itself. Otherwise the designated code for x is the pair (S,Σ) where S
is the designated support of S and Σ is the set of designated codes for
elements of the distinguished extension of x.

12

We choose a preliminary designated support for each element of the
structure (this is necessary because objects other than atoms which
have codes clearly have more than one): we are actually choosing des-
ignated codes for elements of τα and continuing to use codes already
chosen for the earlier constructed types.

A refinement of this construction is to choose a preliminary designated
support S initially for just one element x of each orbit in the action
of substitutions, and then for each y in the orbit of x to choose a
substitution σx,y such that σx,y[x] = y and let the designated support
for y be σx,y[S]. Something like this is done in the current Lean proof
and I am thinking about whether there is a use for it here. It would
ensure a similarity in structure between designated supports of related
objects.

We impose the technical condition that for each β ≤ α and x ∈ τβ, if x
has the same −1-extension as an element x′ of τ0, and the designated
support of x′ is S, the designated support of x has as its members
exactly the (u, {β}) such that (u, {0}) ∈ S. It is straightforward to see
that elements of τ0 are exactly the X0 such that X ⊆ τ−1 has small
symmetric difference from a small or co-small union of litters, that any
element of τ0 has support elements of exactly the kinds described, and
that an x ∈ τβ with the same −1-extension as an element of τ0 does
have the described set as a support.

A support S is said to be strong iff

(a) for every (N,A) ∈ S, N is a litter if it is a near-litter, and

(b) for every atomic support element ({x}, A) in S there is (N,A) ∈ S
with x ∈ N and N a near-litter, and

(c) for every support element of the form (fδ,ε(x), A) ∈ S for which δ
is dominated by every element of A except ε we also have for each
(y, C) in the preliminary designated support of x that

(y, (B \ {ε}) ∪ C) ∈ S.

It should be evident that any support can be modified to one satisfying
the first condition by replacing each near-litter support element (N,A)
with the nearby litter support element (N◦, A) and the atomic support
elements ({x}, A) such that x ∈ N∆N◦: modifying the first component

13

of a code in this way will preserve acceptability of the code, because any
substitution whose action preserves the modified code also preserves the
original code.

A code thus modified can be extended to a strong support satisfying
the other two conditions simply by enforcing these closure conditions
through ω steps. The designated support of each object is obtained
as the smallest strong support including the version of the designated
support whose typed near-litter elements are typed litters as a subset.

We refer to support elements of the form (fδ,ε(x), A) for which δ is
dominated by every element of A except ε as inflexible support elements
[because the coherence conditions restrict how substitutions can act on
them], and refer to all other near-litter support elements as flexible
support elements.

30. Specific elements of τα’s whose existence was postulated above need
to be shown to be codable. ∅γ is coded by (∅, ∅). If x is an atom,
{x}γ is coded by ({(x, {γ})}, {x}). If N is a near-litter, Nγ is coded by
({(N, {γ}), N}.

31. We describe the construction of the well-orderings ≤ι in detail.

We first construct an order ≤0 on τ0. We choose an arbitrary order on
elements of τ0 and proceed in alternating stages indexed by µ: at an
even stage, we place the first so far unplaced litter, then place all atoms
in it in an arbitrarily chosen order, then place all near-litters with small
symmetric difference from a litter placed earlier and with all elements of
the symmetric difference already placed. At an odd stage, we place the
first element of τ0 which is not a typed atom or near-litter and whose
designated support contains no support item whose image under the
conversion function has not already been placed, if there is one. It
should be evident that all elements of τ0 are eventually placed. Of
course this is constructed at stage 0, and the same order is used again
in each subsequent stage.

The order ≤−1 is induced by the order on typed atoms in τ0 which is a
suborder of ≤0.

We describe how to construct all ≤β for 0 < β ≤ α. We collect the
extensional type β sets which are codable and designate a code for each
one (axiom of choice) and convert the included support to a strong

14

support as described above. We place the typed atoms and near-litters
in ≤β in the same positions at which the typed atoms and near-litters
with the same−1-extensions are placed in≤0 (we described this above).
We provide ourselves with an arbitrary well-ordering of the other sets
in type β of order type µ [the same arbitrary order being used at every
stage for a given β, so we get the same ≤β at each stage with index
≥ β]. At each step, we go to the first unfilled position η and place
in it the first item in the arbitrary order on τβ which has no element
s of its designated support such that ι∗(c(s)) ≥ η and which also has
the property that if it has the same −1-extension as an element u of
τ0 we have ι∗(u) ≤ η. This last condition ensures that every position
can actually be filled, because the item at the same position in <0 will
always be a candidate [this is also supported by the special condition
on designated supports of items with −1-extensions agreeing with the
−1-extension of an element of τ0]. Every item will eventually be placed
because the cofinality of µ is at least κ and supports are small.

32. All that is needed to ensure that this works is the assurance that there
are no more than µ codes, which ensures that there are exactly µ ele-
ments of each type.

33. There are exactly µ near-litters (this depends on the fact that µ is of
cardinality at least κ) and there are exactly µ supports.

Note that it is evident that there are at least µ elements in any τβ
(consider typed atoms).

We will need to prove a theorem about the freedom of action of sub-
stitutions first.

34. Our criterion for acceptability of codes enforces a high degree of sym-
metry, assuming that substitutions act fairly freely on our structure.
We state a theorem about this.

A β-partial substitution is an injective map σ from β-support items to
β-support items with domain and range the same, satisfying π2(σ(x,A)) =
A, mapping atomic support elements to atomic support elements, sat-
isfying for each litter L and each appropriate A that the set

{x : x ∈ L ∧ ({x}, A) ∈ dom(σ)}

15

is small, and satisfying that each near-litter support element (N,A) in
the domain of σ has N a litter and is flexible. Recall that this means
that N = N◦ is not in the range of fγ,δ for any γ dominated by all
elements of A \ {δ}.
We define (Nδ)

◦ as (N◦)δ for any near-litter N to facilitate the following
definition.

We say that an atomic support element ({x}, A) is an exception of
a substitution σ iff it satisfies the following condition: let L be the
litter containing x; either σA∪{−1}[x] 6∈ σA[Lmin(A)]

◦ or σ−1A∪{−1}[x] 6∈
σ−1A [Lmin(A)]

◦

The Freedom of Action theorem asserts that for each partial substi-
tution σ0 there is a substitution σ which extends it in the qualified
sense that σ((x,A)) = σ0((x,A)) where the latter is defined and x is a
singleton, and π1(σ[(N,A)])◦ = π1(σ0((N,A)) where N is a near-litter
and the latter is defined, and further σ has no exceptions other than
elements of its domain.

35. Let σ0 be a β-partial substitution. We describe a method of computing
a β-substitution σ whose action extends σ0.

We first extend σ0 so that its domain includes all (L,A) which are
flexible with L a litter. This can be done by extending σ0 to act as the
identity on all such items originally not in its domain, but all that is
really necessary is that the extended map be one-to-one and onto on
such items, fixing second components. We use σ0 hereinafter to refer
to this extended partial substitution.

For any co-small subsets of litters L,M we define σL,M as the unique
bijection from L to M which is strictly increasing in the order deter-
mined by fourth projections of the elements of each set. The details of
definition of σL,M play no role in the proof: all that matters is that it
is a bijection from L to M .

We define DA as {x : x ∈ τ−1 ∧ ({x}, A) ∈ dom(σ0)}.
We extend the definition of ι∗ to support elements by defining ι∗((x,A))
as ι∗(c((x,A))).

We show how to compute the action of σ at each support item, assuming
that we have computed its action for all support items with smaller
image under ι∗ as just extended.

16

For any ({x}, A) atomic with γ = min(A), we know that where L is
the litter containing x, ι∗(Lγ) < ι∗({x}γ), so

ι∗((x,A)) < ι∗((L,A)),

so σ[(L,A)] has already been computed. We compute σ({(x}, A)) as
either σ0(({x}, A)) or (σL\DA,π1(σ[(L,A)])◦\DA

(x), A).

For any (N,A) where N is a near-litter which is not a litter, we have
ι∗(N

◦, A) = ι∗(N
◦
γ) < ι∗(Nγ)) and ι∗(({x}, A)) = ι∗({x}γ) < ι∗(Nγ)

for each x ∈ N∆N◦, which obviously gives us enough information to
compute the action of σ on (N,A), since we know the actions on (N◦, A)
and each ({x}, A) with x ∈ N∆N◦.

It remains to indicate how to compute the action of σ on (L,A) where
L is a litter.

We indicate how to compute π1(σ(({x}, A)) for each x ∈ L if we know
how to compute π1(σ[(L,A)])◦. If x ∈ DA ∩ L, we compute

π1(σ(({x}, A)) = π1(σ0(({x}, A)).

We define SA,L as

{x ∈ π1(σ[(L,A)]))◦ : (∃y ∈ DA \ L : π1(σ0(({y}, A)) = {x})}.

SA,L is (speaking a bit informally) the set of things in the target litter
which are images (according to the partial substitution) of things not
in the source litter, relative to the index A.

For each x ∈ L \DA, we compute σ(({x}, A) as

({σL\DA,π1(σ[(L,A)])◦\SA,L
(x)}, A).

We have thus indicated how to compute

σ[(L,A)] = (
⋃
{π1(σ(({x}, A)) : x ∈ L}, A).

This handles the case where (L,A) is flexible immediately, because we
can compute π1(σ[(L,A)])◦ as π1(σ0(L,A)).

17

36. The remaining case (which is sufficiently elaborate to get its own para-
graph) is to compute σ[(L,A)] in the case where L = fδ,γ(x) for some
δ dominated by all members of A \ {γ}.
We do some calculations.

σ[(fδ,γ(x), A)] = (σA∪{−1}“fδ,γ(x), A) follows from the definition of set-
subscripted substitutions.

That σA∪{−1}“fδ,γ(x) ∼ fδ,γ(σA\{γ}∪{δ}[x]) follows from the coherence
condition on substitutions.

From this it follows that we can compute the value of π1(σ[Lγ, A)])◦ =
π1(σ((fδ,γ(x), A)))◦ = (σA∪{−1}“(fδ,γ(x)))◦ if we can compute fδ,γ(σA\{γ}∪{δ}[x]),
for which it is sufficient to compute σA\{γ}∪{δ}[x].

Let T be the designated δ-support of x.

For any η-support S and finite subset D of λ whose smallest element
is η, define SD as {(u,B ∪D) : (u,B) ∈ S}. Notice that this will be a
max(D)-support.

Our strategy is to use the Freedom of Action theorem (on the inductive
hypothesis that it works for lower type indices than β) to construct a
δ-substitution σ′ which must send x to σ(x) if σ exists (completing the
proof that σ actually does exist).

We do this by specifying the action of σ′ on T , then justifying the exis-
tence of σ′ using the Freedom of Action theorem for δ-partial substitu-
tions. By inductive hypothesis, we have already computed the action
of σ on every support item in TA\{γ}∪{δ}. We define a δ-partial substi-
tution σ′0 which is to map (u,B) ∈ T to (π1(σ[(u,B ∪ (A \ {γ})]), B)
when (u,B) is either atomic or flexible. This does not give a complete
definition because we must fill in orbits as the domain of σ′0 should be
the same as its range. Each atom has its orbit filled in in such a way
that the intended action of σ′ or of the inverse of σ′ on any atom will
not create any exceptions of σ′: if ({v}, C) is added to the domain,
and L is the litter to which v belongs, if (L,C ∪ (A \ {γ}))) is sent
to (M,C ∪ (A \ {γ})) by the action of σ (resp. σ−1) defined so far
then ({v}, C) will be sent by σ′0 (resp.(σ′0)

−1) to some ({w}, C) with
w ∈ M◦. The fact that we have only countably many choices to make
for each of a small collection of atomic support elements in T ensures
that we can do this. Each flexible item has its orbit filled in a way

18

which is compatible with the known action of σ on items with smaller
image under ι∗ (which clearly presents no difficulties).

By the Freedom of Action theorem for the lower index δ, there is a
δ-substitution σ′ which extends σ′0 in the proper sense and has no ex-
ceptions not in the domain of σ′0. We claim that σ′[x] is the value we
should compute for σA\{γ}∪{δ}[x]. The basis for this claim is the further
claim that the action of σ′ on T is the same as the action of σA\{γ}∪{δ}
on T . We have constructed σ′ to make the actions agree on all atomic
and flexible elements of T : we need to argue that the action of σ′ on
T must agree with the action of σA\{γ}∪{δ} at any inflexible near-litter
support element in T . If the two actions disagree on any such support
element, there must be a first one on which they disagree in our well
ordering of support elements. It must be a near-litter support element,
and inflexible, and so a litter support element of the form (fη,χ(u)), C).

Let U be the designated η-support of u. The action of σ′ on UC\{χ}∪{η}

is the same as the action of σA\{γ}∪{δ} on UC\{χ}∪{η} because all ele-
ments of this support appear in T before (fη,χ(u)), C). It follows that
π1(σ

′[(fη,χ(u)), C)]) has small symmetric difference from

π1(σA\{γ}∪{δ}[(fη,χ(u)), C)]).

If v belonged to this symmetric difference, ({v}, C) must be an ex-
ception of one of the two maps. But any exception of either map is
an element of the domain of the partial substitution from which that
map is computed, and the two partial substitutions must agree at such
elements at least to the extent that they are mapped to and from el-
ements whose first projections are included in the same litter. So the
symmetric difference must in fact be empty, and we are able to exactly
determine the value which must be assigned.

This completes the proof of the Freedom of Action Theorem: all com-
putations can be carried out, and if they can be carried out, they must
terminate with a σ with the desired properties.

The history of the Lean proof suggests that I should be very careful in
pointing out why the function σ obtained actually is a β-substitution.
It is important to notice that as soon as a litter support element (L,A)
has its image computed up to nearness, any ({x}, A) with x ∈ L can
be handled, and moreover every such item then has a unique image

19

and preimage computable. The method by which the calculation of
the action at inflexible litters is performed ensures that the coherence
condition is satisfied. If there were a failure of injectivity (two atomic
support conditions mapped to the same atomic support condition) one
would have to have two distinct litters mapped to near-litters close to
each other (there will clearly not be a failure of injectivity involving
atoms in the same litter). This clearly cannot happen for two flexible
litters, or for a flexible litter and an inflexible litter. If it happened
for two inflexible litters, this would imply a failure of injectivity at a
lower type, contrary to induction hypotheses. If there is a failure of
surjectivity for an atom, the entire litter in which it resided would have
to be missed. This cannot happen for a flexible litter, and it can only
happen for an inflexible litter if there is a failure of surjectivity at a
lower type, contrary to induction hypotheses.

37. We now argue that the size of each type is µ, which completes the
demonstration that the construction is possible (the construction of
the f maps requires this).

38. There are µ near-litters (this depends on the fact that the cofinality of
µ is at least κ). It follows from this that there are µ supports.

39. Each type contains at least µ elements: type −1 is explicitly described
with µ elements, and each type with ordinal index < α, if successfully
constructed, contains µ typed singletons (as many as there are elements
of type −1). So what we need to show is that the cardinality of each
type is ≤ µ.

We can show this if we can show that there are < µ codes.

40. For each object x we can define a designated code (S,Σ) where S is the
designated strong support for x and Σ contains all codes for elements
of the distinguished extension of x which satisfy the requirement on
support components for elements of Σ in the definition of codes.

We can then say that a designated code for x in τβ with distinguished
extension a subset of τγ is determined by the choice of a support S
(there are µ of these) and a collection of orbits in τγ under the group of
γ-substitutions σγ for σ a β-substitution fixing S, because the set χ“Σ
must be a union of such orbits.

20

From this it follows that to prove our result, it is sufficient to show that
for any β-support S, the collection of orbits in the action of substitu-
tions σγ on τγ for σ whose action fixes S is of cardinality < µ. It would
folllow that there are < µ collections of such orbits, because µ is strong
limit, and it would then follow that the cardinality of τβ is ≤ µ.

41. The definition of the class of substitutions to be counted seems too
baroque. Substitutions which fix Sγ would be easier to work with. Is
it in fact the case that any γ-substitution which fixes Sγ is σγ for some
β-substitution σ whose action fixes S? Or, are the associated orbits
the same? If ρ is a γ-substitution fixing Sγ, and ρ[x] = y, can we find
a β-substitution σ whose action fixes S such that σγ[x] = y? I believe
this does follow by Freedom of Action, and would imply that the orbits
under the elaborately defined class of permutations described above are
simply the orbits under substitutions whose action fixes Sγ,

The proof goes as follows. Let T be a γ-support of x extending Sγ.
Define a partial substitution using the values of ρ at atomc and flexible
elements of T , then lift types to β and extend the partial substitution to
fix the atomic and flexible elements of S which are not already handled.
A substitution σ extending this partial substitution will act correctly
at inflexible elements of the type lifted suppport for the usual reasons
involving exceptions. That σ[S] = S is evident and that σγ[x] = ρ[x],
from the construction.

This needs to be written out in full.

42. Thus the lemma to be proved is simplified: it suffices to prove that
the collection of orbits in τγ under substitutions whose actions fix a
given γ-support is of cardinality < µ. This is clearly true for γ = 0.
In general, it is true that there are < µ objects whose distinguished
extension is their −1-extension in any type.

Let S be a γ-support.

To choose an orbit in τγ under substitutions whose action fixes S can
be effected by

(a) first choosing δ < γ,

(b) then choosing an orbit in the δ-supports under the action of per-
mutations σδ where σ fixes S,

21

(c) then choosing any element T of this orbit an ε < δ (it doesnt
matter which one) and a collection of orbits in τδ under the action
of σε’s for which the action of σ fixes T .

There are obviously < µ choices at stage 1.

There are less than µ choices at stage 3 by the inductive hypothesis
that the result to be proved holds at stages < γ.

It remains to examine stage 2. We are going to choose not merely an
orbit in supports, but an orbit in well-ordered supports which respect
dependency in a suitable sense (to be elaborated, familiar from earlier
treatments). If there are few orbits in these more elaborate structures,
there are few orbits in the supports themselves. We go through < κ
stages: as we commence stage η we have chosen all elements of an
element of the desired orbit with index < η. We then need to choose
an orbit in possible next items in the support under permutations whose
actions fix all previous items. The item will be of the form (x,A) where
A is a suitable subset of λ and x is either an atom or a near-litter.
Choose A and choose whether the item is an atom or near-litter (this
represents far less than µ choices). We then need to select an orbit in
atoms or near-litters under permutations σA where the action of σ fixes
all support elements chosen so far.

22

