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Abstract: I will explain the nature of the long-

standing problem of the consistency of the set

theory New Foundations proposed by the philoso-

pher W. v. O. Quine in 1937 both in the prior

context of the development of set theory, its

usefulness in mathematics, and the problem of

the ”paradoxes” of set theory, and in the pos-

terior context of partial solutions to the consis-

tency problem and related results. I do claim to

have solved this problem (this is not generally

agreed yet) but I am not going to talk about

that on this occasion. The talk should be ac-

cessible to a general audience of mathemati-

cians; I hope that a graduate student or mature

undergraduate would get something out of it

too.



Plan of the talk

I’m going to talk about the problem of the

consistency of Quine’s set theory “New Foun-

dations”, which is the central issue of my tiny

area of set theory.

I currently believe that I have solved this prob-

lem, but this has nothing to do with the present

talk, or very little.

What I propose to do is explain what the prob-

lem is and put it in some kind of context.

Why does one need a set theory? Why is there

a problem of consistency of set theories? What

is New Foundations anyway and why is there

a problem with it in particular? What are the

relevant related results and partial solutions to

the problem?
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What is a set?

When I tell a layman with no maths that I work

in set theory, they ask “What is a set?”. This

is not a bad question. Of course, officially it

has no answer, as set is a primitive notion in

our foundations of mathematics. But thinking

about the question is worthwhile. It is a good

question to think about when teaching Math

187, for example.

Very likely the original appearance of sets in

mathematics is in the form of geometrical fig-

ures. But the Greeks, who at least officially

started the game of pure mathematics with

Euclidean geometry, strongly resisted the idea

that a line (for example) is a set of points,

because such a set would clearly have to be

infinite. For us, the difficulty is to figure out

what the ancient Greeks thought a line was, if

they didn’t think it was a set.
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Parts and wholes

One thing that a set is pretty clearly not is a

whole with its parts as elements.

In geometry one could take this view. Every

geometric figure could be viewed as the set

of points included in it. But then it would

be the case that every point P (being itself a

geometric figure) would be identical with the

set {P}. Also, this picture only really works

as long as only points are capable of being

elements.
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If a set is a whole with its elements as parts,
then {x} should be the same thing as x (as
in the geometric view above). Now consider
{{1,2}}: this set has one element, while its sole
element {1,2} has two elements, so they are
distinct. I give this counterexample in Math
187: it makes a serious philosophical point
about sets based just on our intuition of sets
as finite unordered lists, with no issues about
the infinite.

The relation of part to whole is transitive. But
1 ∈ {1,2} ∈ {{1,2}} does not imply that 1 be-
longs to {{1,2}} (even if we had the strange
view that 1 = {1,2}, we would then have 2 ∈
{1,2} ∈ {{1,2}} and we would have 2 6= {1,2}).
Whatever the relation of member to set it, it
does not coincide with the relation of part to
whole.

The parts of a set are its subsets, not its ele-
ments (this is the subject of an entire book by
the philosopher David Lewis).
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Sets as universals (properties)

Something a set could be is a universal, the

reification of a property.

There are two ways we specify sets in practice,

by listing for finite sets, and by giving a defining

property, for sets which are either infinite or

inconveniently large. {1,2} is a set. {n | n is

prime and n < 1000000} is a set specification

for a finite collection which might be viewed

as inconveniently large. {n | n is prime and

n > 1000000} is a specification of a set. Even

the humble {1,2} can be expressed as {n | n =

1 ∨ n = 2}.

If we are willing to say that properties which

hold of exactly the same objects are the same

(taking an extensional view of identity criteria

for properties) then properties look remarkably

like sets.
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What are sets good for?

Sets are a very general kind of abstract struc-
ture. They make it possible to precisely specify
objects which we can then conveniently iden-
tify with traditional mathematical structures
such as the natural numbers or the real num-
bers or the points and lines of Euclidean space.

For example, we can declare that by 0 we mean
{x | x 6= x} (the empty set, more usually writ-
ten ∅) and by x + 1 we mean {y | y = x} (the
singleton set {x}), so then we have defined 0,
1 = 0+1, 2=1+1, 3=2+1. . ..

Oh yes. We say that a set I is inductive just in
case 0 ∈ I and for all z, if z ∈ I then z + 1 ∈ I,
and we say that the set N of natural numbers
is the set of all n with the property that n

belongs to every inductive set. (This fills a
hole in the Math 187 exposition: a definition
of N as {0,1,2, . . .} is cheating. . .).
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Implementation not revelation

There are various reasons to be suspicious of
this procedure (Zermelo’s original definition of
the natural numbers). It does work in the
sense that on very natural assumptions about
sets one can proceed to translate the usual
language of arithmetic and more generally the
language of counting the elements of finite sets
into set theory using Zermelo’s natural num-
bers, and all the axioms of Peano arithmetic
(and other natural assertions one would expect
to be true) hold.

One suspicion is brought out by the fact that
if we define the natural numbers in the same
way but using x+1 = x∪{x} we get a different
definition of the natural numbers which works
just as well (the now usual definition due to
von Neumann).

The point is that we are implementing the nat-
ural numbers, not revealing their true nature,
when we “construct them in set theory”.
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Implementing the reals, the killer
app

The implementation that really impressed in its

day was the implementation of the real num-

bers as “Dedekind cuts”. I’ll give a brief ac-

count with no details.

We can implement ordered pairs (x, y) as {{x}, {x, y}}
(or in other ways, one could expand this line

into a whole talk).

Implement positive rational numbers as pairs

(m,n) of natural numbers (intended to repre-

sent m
n ) which are relatively prime (thus finess-

ing issues about equivalence classes). Define

arithmetic and order relations on positive ra-

tional numbers as usual.
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Define a positive real number as a set r of pos-

itive rational numbers with the following prop-

erties:

nontrivial: There is a positive rational which

belongs to r and a positive rational which

does not belong to r.

downward closed: If x ∈ r and y < x then

y ∈ r.

the set has no largest element: For any x ∈
r, there is y such that x < y ∈ r.
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The collection of such sets r has the correct

properties to serve as an implementation of

the positive reals. One can implement general

reals as pairs (r, s) of positive reals, intended

to represent r − s, with the restriction that at

least one of r and s must be equal to 1 (again

avoiding a resort to equivalence classes).

There is even a natural way to understand this

implementation geometrically: the real num-

ber r is being represented by an open interval

in the rationals, and open intervals in the ra-

tionals can be defined strictly by reference to

the rationals and have all real lengths.
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The scandal

This was an understanding of set theory which

Bertrand Russell had around 1900. It was then

rocked by a scandal, the episode of the “para-

doxes of set theory”. Paradoxes had been pre-

sented earlier by Burali-Forti and Cantor, but

Russell’s paradox was very simple and seemed

to seriously endanger the foundation of the

view of sets that I outlined above.

If we suppose explicitly that x ∈ y denotes the

relation “x is an element of y”, and for every

property P we can define the set {x | x has

property P}, we have laid the formal founda-

tions of the view expressed above.

The property we should not think about is non-

self-membership, defined by x 6∈ x.

12



Russell’s Paradox

Consider the Russell class R = {x | x 6∈ x}.

For any x, x ∈ R↔ x 6∈ x.

so in particular,

R ∈ R↔ R 6∈ R.

Oops.
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The paradoxes in intellectual his-
tory

The paradoxes of set theory still attract atten-

tion from philosophers, and from enthusiastic

amateurs who have derived the curious idea

that the paradoxes of set theory are a continu-

ing problem for the foundations of mathemat-

ics, or perhaps of reason.

I think the paradoxes (the more technical ones

of Cantor and Burali-Forti as well as the pithy

and so more accessible one of Russell) are sim-

ply . . . a mistake. They did not create even a

hiccup in the progress of mathematics, or even

the progress of set theoretical foundations of

mathematics.
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One solution

Zermelo in 1908 proposed one complete so-

lution. His axiom of separation asserts that

for any set A and property P there is a set

{x ∈ A | x has property P}. His other ax-

ioms provide some specific sets and allow some

other constructions of sets.

This corresponds to a practical fact about math-

ematics (and perhaps about reason!): we do

not talk about subcollections of absolutely

everything defined by properties, but subcol-

lections of collections of objects already given

(natural kinds of objects, as a rule) carved out

by properties.

With some enhancements, Zermelo’s set the-

ory became the modern set theory ZFC found

in chapter 0 of many advanced mathematics

books.
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Another solution

Another solution is the simple theory of types.

This very simple theory actually has a remark-

ably complex history, and really only took its

modern form around 1930. But it has a similar

motivation to the much more complicated the-

ory of types presented by Russell and White-

head in Principia Mathematica in the early years

of the last century. The story of New Founda-

tions starts with the simple theory of types.

The language of the simple theory of types in-

cludes the operations of first order logic and

the primitive relations of equality and mem-

bership.
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Objects in the simple theory of types are of dif-

ferent sorts, indexed traditionally by the nat-

ural numbers, though the use of the natural

numbers as type indices does not imply a prior

understanding of the natural numbers in the

theory (a common confusion among philoso-

phers and others philosophizing about this the-

ory). The idea is that type 0 objects are indi-

viduals of an unspecified nature, type 1 objects

are sets of individuals, type 2 objects are sets

of type 1 objects, and so forth.

The way this is managed is through the gram-

mar of the language used. x = y is only gram-

matical if x and y have the same type. x ∈ y is

grammatical iff the type of y is the successor

of the type of x. A common (but not essen-

tial) way to keep track of this is to use indices

on variables to indicate their type: xi = yi;

uj ∈ vj+1.
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The axioms of simple type the-
ory

The axioms are then very simple.

extensionality: Objects of the same positive

type are equal iff they have the same ele-

ments.

comprehension: For any sentence P (xi) in the

language of the theory of types in which

the variable Ai+1 does not occur,

(∃Ai+1.(∀xi.xi ∈ Ai+1 ↔ P (xi))

is an axiom. The object represented by

Ai+1 is quite naturally called {xi | P (xi)}i+1.
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A demonstration

We demonstrate some reasoning in the simple

theory of types.

Define 0 as {x | (∀y.y 6∈ x)}, the set of all sets

with no elements.

Define x + 1 as {u ∪ {v} | u ∈ x ∧ v 6∈ u}, the

collection of all sets obtained by adding one

more element to an element of x.

Notice that 0+1 is the set of all sets with one

element, 1+1 is the set of all sets with two

elements, 2+1 is the set of all sets with 3 el-

ements, and so forth.

The set of all natural numbers can be defined

as the set of all inductive sets, just as above,

with the different definitions of zero and suc-

cessor given here.
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This is Frege’s definition of the natural num-

bers, under which three is the set of all sets

with three elements – with a qualification.

It is useful to note that the Zermelo definition

of the natural numbers does not work in type

theory because its successor operation takes x

to {x}, which is one type higher. The situation

for the von Neumann definition is even worse:

the definition of x+1 as x∪{x} does not make

sense in type theory at all. Once the naturals

are defined, the reals can be defined just as we

did above.



Where did all the type indices
go?! – systematic ambiguity

Where did all the type labels go in my demon-

stration? What makes it valid reasoning in

simple type theory is that types can be de-

duced for all the variables. . .once one assigns

a type to the set to be constructed. Each of

the sets definition of 0,1,2. . . works to give a

set of type 2 or higher. The type 2 number 3

is the set of all (type 1) sets of three type 0

objects; the type 17 number 3 is the set of all

(type 16) sets of three type 15 objects.
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This reflects a fact about type theory: if we

take any definition of a mathematical concept

or proof of a theorem in simple type theory and

raise all of the types of the variables appearing

in it by a constant amount, we get a valid defi-

nition or proof at the higher type. In Principia,

Russell called the analogous phenomenon for

his much more complex type theory “system-

atic ambiguity”.

The style of reasoning which is sensible for

exposition in type theory is deliberately am-

biguous about what type one is in, unless per-

haps in a statement or definition so compli-

cated that one needs to make sure that every

variable can be assigned a type in accordance

with our grammatical rules.

You can see an extensive development of math-

ematics in simple type theory in my Math 502

notes.
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There is no consistency problem
for simple type theory

It is easy to see that if we trust Zermelo set
theory, we trust simple type theory. We show
this by constructing a model of simple type
theory in Zermelo set theory.

Let type 0 be represented by a set X. Then
type 1 is represented by the power set of X
(the set of all subsets of X), type 2 is repre-
sented by the power set of the power set of X,
and so forth. The translation of the language
of type theory into the language of set the-
ory is straightforward: each variable of a given
type is regarded as restricted to the appropri-
ate iterated power set of X.

A technically more difficult but interesting ex-
ercise is to interpret a version of Zermelo set
theory in the simple theory of types. It can
be done, though in a limited way because Zer-
melo’s theory is a bit stronger (and ZFC is
much stronger).
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New Foundations: the idea

Enter W. v. O. Quine. This eminent American
philosopher and logician suggested a modest
simplification of simple type theory in 1937.

He suggested that all the types are actually
the same. The simple theory of types does
not deny that the natural number 3 of type 15
is the same object as the natural number three
of type 2; it does not allow one to either as-
sert or deny this, as one cannot grammatically
say it. Similarly, Quine suggested, looking at
the fact that any theorem we can prove about
objects of a certain type is reflected by theo-
rems proved in the same way about each higher
type, that all of these statements are in fact
the same statement about the same objects.
He compared the world of the simple theory of
types to a hall of mirrors, and suggested that
all the reflections at different types should be
identified...

This idea requires a formal implementation.
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New Foundations, the formal spec-
ification

New Foundations is a theory in the language of

first-order logic with equality and membership.

All objects are of the same sort (there are no

types).

The axioms are the following:

extensionality: Objects of the same positive

type are equal iff they have the same ele-

ments.

comprehension: For any sentence P (x) in the

language of set theory which supports an

assignment of types to its variables which

would make it a grammatical sentence of

simple type theory, the set {x | P (x)} ex-

ists.
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Stratification

It is traditional to state the comprehension ax-
iom in a way which does not depend on the
language of another theory.

Definition: A formula φ in the language of set
theory is said to be stratified iff there is a
map σ from variables to natural numbers
with the property that for any subformula
x = y of φ we have σ(x) = σ(y) and for any
subformula x ∈ y of φ we have σ(x) + 1 =
σ(y).

Axiom of Stratified Comprehension: For any
stratified formula P (x), the set {x | P (x)}
exists.

Note that this is actually exactly equivalent to
saying that P (x) can be recast as a grammat-
ical formula of type theory.
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It is worth noting that the axiom of stratified

comprehension is equivalent to a finite collec-

tion of axioms making no mention of types

even indirectly as via the notion of stratifica-

tion.

New Foundations is immediately and obviously

as mathematically capable as the theory of

types, and syntatically much more convenient.

It also has some superficially appealing features

which might make a mathematician familiar

with ordinary set theory and its usual moti-

vation a bit queasy.

The universal set is a set in New Foundations.

The sets make up a Boolean algebra. The

Frege natural numbers afford a convenient im-

plementation of the natural numbers: 3 can

be defined as the set of all sets with three el-

ements.
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Cardinal numbers can be defined as equiva-

lence classes of sets under the usual set theo-

retical relation of being the same size (sets A

and B are the same size if there is a one-to-

one correspondence between their elements).

Ordinal numbers can be defined as equivalence

classes of well-orderings under similarity. These

definitions seem to court the classic paradoxes

of Cantor and Burali-Forti, but these are evaded

– in interesting ways which I will not discuss

here.
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A smaller scandal

It is usual to add axioms of Infinity and Choice

to the simple theory of types. It would seem

appealing to add the same axioms to New Foun-

dations.

In 1953, E. Specker showed that the Axiom

of Choice is false in New Foundations. His

methods are beyond the scope of this talk. It

follows immediately that Infinty is a theorem –

if the universe were finite, then any partition

of any set would be finite, and one can always

make choices from a finite partition.
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The problem of the consistency
of New Foundations

Up until this point, all mathematical develop-
ments in New Foundations had followed devel-
opments in the theory of types. The existence
of a universal set and complements raised eye-
brows but it was generally thought that this
was a “safe” system. With Specker’s result,
the system suddenly looked much less safe, and
the suspicion developed that it might actually
be inconsistent, like the naive set theory used
before the paradoxes were discovered.

The aim of research into the problem of the
consistency of New Foundations was either to
construct a model of the theory (or show that
it was consistent in some more indirect way)
using trusted methods (those derived from the
usual set theories), or to discover an actual
inconsistency. No generally accepted solution
to the problem along either line exists.
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A nice result of Specker

In 1962, E. Specker proved a theorem which
verified Quine’s informal intuition for this the-
ory.

If φ is a sentence in the language of our set
theory, let φ+ denote the formally similar sen-
tence in which every type index is raised by
1.

Let the Ambiguity Scheme be the collection
of sentences φ ↔ φ+ in the language of type
theory.

Specker showed that simple type theory plus
the ambiguity scheme is consistent if and only
if New Foundations is consistent. The philo-
sophical relationship between the two theories
should be evident: the theory with ambiguity
embodies the intuition that statements of the
same form at different types should have the
same truth value – but without actually iden-
tifying the types.
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The best positive result

In 1969, R. B. Jensen showed that New Foun-

dations with extensionality weakened to allow

many atoms is consistent, and in fact con-

sistent with Infinity and Choice. His general

method of proof is worth describing: we give

it in a special case (the construction given here

will not support the most general results pos-

sible).

Let X0 be any infinite set. Define Xi+1 as the

power set of Xi for each natural number i.

For any formula P (x) of the language of the

theory of types, there is an entirely natural way

to translate it into a sentence of the usual set

theory in which type i is interpreted as Xi.

One modifies this interpretation to get many

interpretations of “the simple theory of types
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with urelements”, in which each type i+1 con-

tains subsets of type i plus many atoms with

no elements. For any strictly increasing se-

quence s of natural numbers, the idea is to

interpret not Xi but Xsi as type i, and to inter-

pret xi ∈ yi+1 as x ∈ Xs(i) ∧ y ∈ Xs(i)+1: each

element of Xs(i+1) − Xs(i)+1 is interpreted as

an urelement of type i+ 1 (with no elements).

Fix a finite set Σ of sentences of the language

of type theory mentioning types 0−n. It deter-

mines a partition of the (n + 1)-element sub-

sets A of natural numbers determined by the

truth values of the sentences in Σ in the in-

terpretation of type theory with urelements in

which the values s(0), . . . , s(n) are exactly the

elements of A.

By Ramsey’s theorem, this partition of the n+

1 element sets of natural numbers into a finite

number (no more than 2|Σ|) of compartments



has an infinite homogeneous set H, which will

be the range of a strictly increasing sequence

of natural numbers h. In the interpretation of

simple type theory with urelements based on

h, any sentence φ ∈ Σ is true iff the sentence

φ+ obtained by raising the types in φ by one is

true.

By compactness, the simple theory of types

with urelements is consistent with the ambi-

guity scheme. Specker’s method of proof gen-

eralizes to this theory, so we have shown that

the version of New Foundations with weak ex-

tensionality, called NFU, is consistent. That

Infinity and Choice are consistent follows if one

allows X0 to be infinite and notes that choice

holds in the usual set theory, so the interpre-

tation of choice will hold in the version of type

theory interpreted here.



Consequences of the consistency
of NFU

Whatever the badness of NF itself is, Jensen’s

result shows that it is not caused by the abil-

ity to construct large sets encoded in the ax-

iom of stratified comprehension, which holds

in NFU and is seen to be consistent with Infin-

ity and Choice. The existence of the univer-

sal set, Frege naturals, and Russell-Whitehead

cardinals and ordinals (for example) is seen to

be possible in a consistent and mathematically

capable theory, and the apparently odd ways

that NF avoids the usual paradoxes can all be

seen to work perfectly by looking at a model

of NFU.

NFU + Infinity + Choice is a mathematically

capable theory (just as handy as the simple

theory of types with infinity and choice, which
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is adequate for all classical mathematics out-

side of set theory) and lacks the inconvenience

of explicit types. One does need to worry

about stratification or otherwise of set defi-

nitions; I have exhibited an extensive develop-

ment of standard mathematical concepts from

set theory in my book using NFU, and it is

manageable. Stratification can sometimes be

inconvenient: as Sol Feferman has also noted,

the treatment of indexed families of sets and

operations on indexed families of sets can be

rather baroque.



Tangled systems of cardinals

In the final slides, I describe work of my own

from 1995 (not in the same notation I used

then).

We work in standard set theory without choice.

A tangled system of cardinals is a system of

cardinals κA indexed by nonempty finite sub-

sets A of the natural numbers with the follow-

ing properties.

Define A− for a finite set of natural numbers

as A−{min(A)}. We stipulate that 2κA = κA−,

(where A has at least two elements) that is,

the size of the power set of a set of size κA is

κA−.

The theory of the natural model of the theory

of types with a set X as type 0 is completely
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determined by the cardinality of X: if we have
two models with type 0 of the same size, the
bijection between the types 0 of the two mod-
els can be extended in a natural way to a bi-
jection between the elements of higher types
which will respect the equality and membership
relations of the two models at all types.

We further stipulate that the theory of the
model of the first n types of the theory of types
with base type κA depends only on the first n
elements of the set A.

The existence of a tangled system of cardinals
implies the consistency of New Foundations. In
fact, I engineered this concept precisely in or-
der to allow the emulation of Jensen’s proof of
NFU in a version of standard set theory yield-
ing NF rather than NFU.

The idea is to allow a set of sentences Σ men-
tioning types 0− n to determine a partition of



the finite sets A of size n+1 based on the truth

values of the sentences in Σ in a natural model

of type theory with base type of cardinality κA.

This partition determines a homogeneous set

H. A model of as many types as you like based

on a large enough finite subset of H will ex-

hibit ambiguity for sentences in Σ. Compact-

ness allows one to conclude consistency of the

simple theory of types with ambiguity for all

sentences, which Specker showed is equicon-

sistent with New Foundations.

There are results in the reverse direction: New

Foundations and extensions of New Founda-

tions prove partial results about the existence

of systems of tangled cardinals. The consis-

tency of NF is exactly equivalent to the exis-

tence of finite fragments of all standard sizes

of a system of tangled cardinals, in a sense

which can be made precise.



The weirdness of NF can thus be reduced to

the possibility of certain weird situations in car-

dinal arithmetic in ordinary set theory, without

any involvement of the existence of universal

sets or other large structures.

I will remark that my immediate reaction in

1995 was to thenceforth maintain that I had

no opinion as to whether NF was consistent

or not: the situation in cardinal arithmetic just

described is simply strange, and there is no

philosophical reason to believe that it must be

possible or impossible; it is entirely a techni-

cal issue. This is the starting point of my

claimed consistency proof – which I am not

talking about at this time.


