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Abstract

In this paper we will present a proof of the consistency of Quine’s set
theory “New Foundations” (hereinafter NF), so-called after the title of the
1937 paper [11] of Quine in which it was introduced. The strategy is to
present a Fraenkel-Mostowski construction of a model of an extension of
Zermelo set theory without choice whose consistency was shown to entail
consistency of NF in our paper [5] of 1995. There is no need to refer to [5]:
this paper presents a full (we think a better) account of considerations drawn
from that paper.
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1 The simple theory of types

New Foundations is introduced as a modification of a simple typed theory
of sets which we will call “the simple theory of types” and abbreviate TST
(following the usage of Thomas Forster and others).

Definition (the theory TST): TST is a first-order many-sorted theory
with equality and membership as primitive relations and with sorts
(referred to traditionally as “types”) indexed by the natural numbers.
A variable may be written in the form xi to indicate that it has type
i but this is not required; in any event each variable x has a natural
number type type(‘x’). In each atomic formula x = y, the types of x
and y will be equal; in each atomic formula x ∈ y the type of y will be
the successor of the type of x.

The axioms of TST are axioms of extensionality

(∀xy.x = y ↔ (∀z.z ∈ x↔ z ∈ y))

for any variables x, y, z of appropriate types and axioms of comprehen-
sion, the universal closures of all formulas of the form

(∃A.(∀x.x ∈ A↔ φ))

for any variables x,A of appropriate types and formula φ in which the
variable A does not occur.

Definition (set abstract notation): We define {x : φ} as the witness
(unique by extensionality) to the truth of the comprehension axiom

(∃A.(∀x.x ∈ A↔ φ)).

For purposes of syntax, the type of {x : φ} is the successor of the type
of x (we allow {x : φ} to appear in contexts (other than binders) where
variables of the same type may appear).

This completes the definition of TST. The resemblance to naive set theory
is not an accident. This theory results by simplification of the type theory
of the famous [20] of Russell and Whitehead in two steps. The predicativist
scruples of [20] must first be abandoned, following Ramsey’s [12]. Then it
needs to be observed that the ordered pair can be defined as a set, a fact
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not known to Whitehead and Russell, first revealed by Wiener in 1914 ([21]).
Because Whitehead and Russell did not have a definition of the ordered
pair as a set, the system of [20] has a far more complicated type system
inhabited by arbitrarily heterogeneous types of n-ary relations. The explicit
presentation of this simple theory only happens rather late (about 1930):
Wang gives a nice discussion of the history in [19].

The semantics of TST are straightforward (at least, the natural semantics
are). Type 0 may be thought of as a collection of individuals. Type 1 is
inhabited by sets of individuals, type 2 by sets of sets of individuals, and in
general type n+ 1 is inhabited by sets of type n objects. We do not call the
type 0 individuals “atoms”: an atom is an object with no elements, and we
do not discuss what elements individuals may or may not have.

Definition (natural model of TST): A natural model of TST is deter-
mined by a sequence of sets Xi indexed by natural numbers i and
bijective maps fi : Xi+1 → P(Xi). Notice that the fi’s witness the fact
that |Xi| = |P i(X0)| for each natural number i. The interpretation
of a sentence in the language of TST in a natural model is obtained
by replacing each variable of type i with a variable restricted to Xi

(bounding quantifiers binding variables of type i appropriately), leav-
ing atomic formulas xi = yi unmodified and changing xi ∈ yi+1 to
xi ∈ fi(yi+1).

When we say the natural model of TST with base set X0, we will be
referring to the obvious natural model in which each fi is the identity
map on Xi+1 = P ı+1(X0). We may refer to these as default natural
models.

Observations about natural models: It is straightforward to establish
that

1. The axioms translate to true sentences in any natural model.

2. The first-order theory of any natural model is completely deter-
mined by the cardinality of X0. It is straightforward to construct
an isomorphism between natural models with base types of the
same size.

It is usual to adjoin axioms of Infinity and Choice to TST. We do not
do this here, and the precise form of such axioms does not concern us at the
moment.
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The theory TSTn is defined in the same way as TST, except that the
indices of the sorts are restricted to {0, . . . , n−1}. A natural model of TSTn

is defined in the obvious way as a substructure of a natural model of TST.
The interesting theory TNT (the “theory of negative types”) proposed

by Hao Wang is defined as TST except that the sorts are indexed by the
integers. TNT is readily shown to be consistent (any proof of a contradiction
in TNT could be transformed to a proof of a contradiction in TST by raising
types) and can be shown to have no natural models.

We define a variant TSTλ with types indexed by more general ordinals.

Parameter of the construction introduced: We fix a limit ordinal λ for
the rest of the paper.

Definition (type index): A type index is defined as an ordinal less than
λ. For purposes of the basic result Con(NF), λ = ω suffices, but for
more general conclusions having more type indices available is useful.

Definition (the theory TSTλ): TSTλ is a first-order many-sorted theory
with equality and membership as primitive relations and with sorts
(referred to traditionally as “types”) indexed by the type indices. A
variable may be written in the form xi to indicate that it has type i
but this is not required; in any event each variable x has an associated
type(‘x’) < λ. In each atomic formula x = y, the types of x and y
will be equal; in each atomic formula x ∈ y the type of y will be the
successor of the type of x.

The axioms of TSTλ are axioms of extensionality

(∀xy.x = y ↔ (∀z.z ∈ x↔ z ∈ y))

for any variables x, y, z of appropriate types and axioms of comprehen-
sion, the universal closures of all formulas of the form

(∃A.(∀x.x ∈ A↔ φ))

for any variables x,A of appropriate types and formula φ in which the
variable A does not occur.

In TSTλ, the objects of successor types may be thought of as sets, and
the objects of limit types as individuals of various types. Of course, there is
not really any interest in TSTλ as such without some relationship postulated
between types whose indices do not have finite difference.
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2 The definition of New Foundations

The definition of New Foundations is motivated by a symmetry of TST.

Definition (syntactical type-raising): Define a bijection x 7→ x+ from
variables in general to variables with positive type, with the type of x+

being the successor of the type of x in all cases. Let φ+ be the result
of replacing all variables in φ with their images under this operation:
φ+ is clearly well-formed if φ is.

Observations about syntactical type-raising: If φ is an axiom, so is φ+.
If φ is a theorem, so is φ+. If {x : φ} is a set abstract, so is {x+ : φ+}.

This symmetry suggests that the world of TST resembles a hall of mirrors.
Any theorem we can prove about any specific type we can also prove about
all higher types; any object we construct as a set abstract in any type has
precise analogues in all higher types.

Quine suggested that we should not multiply theorems and entities un-
necessarily: he proposed that the types should be identified and so all the
analogous theorems and objects at different types should be recognized as
being the same. This results in the following definition.

Definition (the theory NF): NF is a first-order unsorted theory with equal-
ity and membership as primitive relations. We suppose for formal con-
venience that the variables of the language of TST are also variables
of the language of NF (and are assigned the same natural number (or
integer) types – though in the context of NF the types assigned to vari-
ables do not indicate that they range over different sorts and do not
restrict the ways in which formulas can be constructed).

The axioms of TST are the axiom of extensionality

(∀xy.x = y ↔ (∀z.z ∈ x↔ z ∈ y))

and axioms of comprehension, the universal closures of all formulas of
the form

(∃A.(∀x.x ∈ A↔ φ))

for any formula φ which is a well-formed formula of the language of
TST (this is the only context in which the types of variables play a
role) and in which the variable A does not occur.
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Definition (set abstract notation): We define {x : φ} (for appropriate
formulas φ) as the witness (unique by extensionality) to the truth of
the comprehension axiom

(∃A.(∀x.x ∈ A↔ φ)).

This is not the way that the comprehension axiom of NF is usually pre-
sented. It could make one uncomfortable to define an axiom scheme for one
theory in terms of the language of another. So it is more usual to proceed
as follows (if this approach is taken there is no need to associate a natural
number or integer type with each variable).

Definition: A formula φ of the language of NF is stratified iff there is a bi-
jection σ from variables to natural numbers (or integers), referred to as
a stratification of φ, with the property that for each atomic subformula
‘x = y’ of φ we have σ(‘x’) = σ(‘y’) and for each atomic subformula
‘x ∈ y’ of φ we have σ(‘x’) + 1 = σ(‘y’).

If we were to make more use of stratifications, we would not always
be so careful about use and mention. Notice that a formula being
stratified is exactly equivalent to the condition that it can be made a
well-formed formula of the language of TST by an injective substitution
of variables (if we provide as above that all variables of the language
of TST are also variables of the language of NF). Of course, if we use
the stratification criterion we do not need to assume that we inherit
the variables of TST (and their types) in NF.

Axiom scheme of stratified comprehension: We adopt as axioms all uni-
versal closures of formulas

(∃A.(∀x.x ∈ A↔ φ))

for any stratified formula φ in which the variable A does not occur.

We discourage any philosophical weight being placed on the idea of strat-
ification, and we in fact make no use of it whatsoever in this paper. We note
that the axiom of stratified comprehension is equivalent to a finite conjunc-
tion of its instances, so in fact a finite axiomatization of NF can be given that
makes no mention of the concept of type at all. However, the very first thing
one would do in such a treatment of NF is prove stratified comprehension as
a meta-theorem. The standard reference for such a treatment is [3].
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3 Well-known results about New Foundations

We cite some known results about NF.
NF as a foundation of mathematics is as least as powerful as TST, since

all reasoning in TST can be mirrored in NF.
NF seems to have acquired a certain philosophical cachet, because it

appears to allow the formation of large objects excluded from the familiar
set theories (by which we mean Zermelo set theory and ZFC) by the “lim-
itation of size” doctrine which underlies them. The universal set exists in
NF. Cardinal numbers can be defined as equivalence classes of sets under
equinumerousness. Ordinal numbers can be defined as equivalence classes of
well-orderings under similarity. We think that this philosophical cachet is
largely illusory.

A consideration which one might take into account at this point is that
we have not assumed Infinity. TST without Infinity is weaker than Peano
arithmetic. TST with Infinity has the same strength as Zermelo set theory
with separation restricted to ∆0 formulas (Mac Lane set theory), which is a
quite respectable level of mathematical strength.

In [16], 1954, Specker proved that the Axiom of Choice is refutable in
NF, which has the corollary that Infinity is a theorem of NF, so NF is at
least as strong as Mac Lane set theory but with the substantial practical
inconvenience for mathematics as usually practiced of refuting Choice. It was
this result which cast in sharp relief the problem that a relative consistency
proof for NF had never been produced, though the proofs of the known
paradoxes do not go through.

A positive result of Specker in [17], 1962, served to give some justification
to Quine’s intuition in defining the theory, and indicated a path to take
toward a relative consistency proof.

Definition (ambiguity scheme): We define the Ambiguity Scheme for TST
(and some other similar theories) as the collection of sentences of the
form φ↔ φ+.

Theorem (Specker): The following assertions are equivalent:

1. NF is consistent.

2. TST + Ambiguity is consistent
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3. There is a model of TST with a “type shifting endomorphism”,
that is, a map which sends each type i bijectively to type i + 1
and commutes with the equality and membership relations of the
model (it is also equivalent to assert that there is a model of TNT
with a type shifting automorphism).

The equivalence also applies to any extension of TST which is closed
as a set of formulas under syntactical type-raising and the corresponding
extension of NF, and to other theories similar to NF (such as the theories
TSTU and NFU described in the next section).
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4 Consistency of NFU

In [10], 1969, Jensen produced a very substantial positive result which en-
tirely justified Quine’s proposal of NF as an approach to foundations of math-
ematics, with a slight adjustment of detail.

Define TSTU as a theory with almost the same language as TST (it is
convenient though not strictly necessary to add a primitive constant ∅i+1

in each positive type with the additional axioms (∀x.x 6∈ ∅i+1) for x of each
type i) with the same comprehension scheme as TST and with extensionality
weakened to allow atoms in each positive type:

Axiom (weak extensionality, for TSTU):

(∀xyz.z ∈ x→ (x = y ↔ (∀w.w ∈ x↔ w ∈ y)))

Definition (sethood, set abstracts for TSTU): Define set(x) (x is a
set) as holding iff x = ∅ ∨ (∃y.y ∈ x) [we are using polymorphism
here: the type index to be applied to ∅ is to be deduced from the type
of x]. Define {x : φ} as the witness to the appropriate comprehension
axiom as above, with the qualification that if it has no elements it is
to be taken to be ∅.

Definition (natural models of TSTU): It is convenient to reverse the
direction of the functions fi. A natural model of TSTU is determined
by a sequence of sets Xi indexed by natural numbers and a sequence
of injections fi : P(Xi)→ Xi+1. The interpretation of the language of
TSTU in a natural model is as the interpretation of the language of
TST in a natural model, except that xi ∈ yi+1 is interpreted as (∃z.xi ∈
z ∧ fi(z) = yi+1). We interpret ∅i+1 as fi(∅). It is straightforward to
establish that the interpretations of the axioms of TSTU are true in a
natural model of TSTU.

Define NFU as the untyped theory with equality, membership and the
empty set as primitive notions and with the axioms of weak extensionality,
the scheme of stratified comprehension, and the axiom (∀x.x 6∈ ∅).

Jensen’s proof rests on the curious feature that it is possible to skip types
in a natural model of TSTU in a way that we now describe. For generality it
is advantageous to first present natural models with types indexed by general
ordinals less than λ.
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Definition (natural models of TSTUλ): A natural model of TSTUλ is
determined by a sequence of sets Xi indexed by ordinals i < λ and
a system of injections fi,j : P(Xi) → Xj for each i < j < λ. Inter-
pretations of the language of TSTU in a natural model of TSTUλ are
provided with a strictly increasing sequence {si}i∈N of type indices as
a parameter: they are as the interpretation of the language of TST
in a natural model, except that each variable xi of type i is to be in-
terpreted as a variable xsi restricted to the set Xsi and a membership
formula xi ∈ yi+1 is interpreted as (∃z.xsi ∈ z ∧ fsi,si+1

(z) = ysj). It is
straightforward to establish that the axioms of TSTU have true inter-
pretations in each such scheme. The special constant ∅i+1 is interpreted
as fsi,si+1

(∅).

Theorem (Jensen): NFU is consistent.

Proof of theorem: Clearly there are natural models of TSTUλ for each λ:
such models are supported by any sequence Xi indexed by i < λ with
each Xi at least as large as P(Xj) for each j < i. Fix a natural model.
Let Σ be any finite set of sentences of the language of TSTU. Let n
be a strict upper bound on the type indices appearing in Σ. Define
a partition of [λ]n: the compartment into which an n-element subset
A of λ is placed is determined by the truth values of the sentences in
Σ in the interpretation of TSTU in the given natural model parame-
terized by any sequence s such that the range of sdn is A (the truth
values of interpretations of sentences in Σ are determined entirely by
this restriction of s). This partition of [λ]n into no more than 2|Σ| com-
partments has an infinite homogeneous set H, by the Ramsey theorem,
which includes the range of some strictly increasing sequence h of type
indices. The interpretation of TSTU determined by h in the natural
model satisfies φ↔ φ+ for each φ ∈ Σ. Thus every finite subset of the
Ambiguity Scheme is consistent with TSTU, whence the entire Ambi-
guity Scheme is consistent with TSTU, and by the results of Specker
(the methods of whose proof apply as well to TSTU and NFU as they
do to TST and NF), NFU is consistent.

Corollary: NFU is consistent with Infinity and Choice. It is also consistent
with the negation of Infinity.

Proof: If X0 is infinite, all interpretations in the natural model will satisfy
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Infinity. If Choice holds in the metatheory, all interpretations in the
natural model will satisfy Choice. If all Xi’s are finite (which is only
possible if λ = ω) the negation of Infinity will hold in the interpreted
theory.

Proof without appealing to Specker outlined: Suppose that≤ is a well-
ordering of the union of the Xi’s. Add the relation ≤ to the language
of TSTU. with the same type rules as identity, and interpret xi ≤ yi as
xsi ≤ ysi when interpreting TSTU using the sequence parameter s as
above. We obtain as above a consistency proof for TSTU + Ambiguity
+ existence of a primitive well-ordering ≤ of each type (which can be
mentioned in instances of ambiguity). The relation ≤ can be used to
define a Hilbert symbol: define (θx : φ) as the ≤-least x such that φ, or
∅ if there is no such x. Now construct a model of TSTU + Ambiguity
+ primitive well-ordering ≤ with the same theory consisting entirely of
referents of Hilbert symbols (a term model). The Ambiguity Scheme
justifies abandoning the distinction between a Hilbert symbol (θx : φ)
and its type-raised version (θx+ : φ+) in all cases and one obtains a
model of NFU with a primitive well-ordering ≤.

The consistency proof for NFU assures us that the usual paradoxes of
set theory are indeed successfully avoided by NF, because NFU avoids them
in exactly the same ways. This does not rule out NF falling prey to some
other unsuspected paradox. Further, though this is not our business here,
the consistency proof for NFU shows that NFU is a reasonable foundation for
mathematics: NFU + Infinity + Choice is a reasonably fluent mathematical
system with enough strength to handle almost all mathematics outside of
technical set theory, and extensions of NFU with greater consistency strength
are readily obtained from natural models of TSTλ for larger ordinals λ (see
[7]).
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5 Tangled type theories

In [5], 1995, we pointed out that the method of proof of Jensen can be adapted
to NF, establishing the equiconsistency of NF with a certain type theory. This
does not immediately give a relative consistency proof for NF, because the
type theory under consideration is very strange, and not obviously consistent.

Definition (the theory TTTλ): TTTλ (tangled type theory with λ types)
is a first-order many-sorted theory with equality and membership as
primitive relations and with sorts (referred to traditionally as “types”)
indexed by the type indices. A variable may be written in the form xi

to indicate that it has type i but this is not required; in any event each
variable x has an associated type(‘x’) < λ. In each atomic formula
x = y, the types of x and y will be equal; in each atomic formula x ∈ y
the type of y will be strictly greater than the type of x.

Let s be a strictly increasing sequence of type indices. Provide a map
(x 7→ xs) whose domain is the set of variables of the language of TST
and whose restriction to type i variables x is a bijection from the col-
lection of type i variables in the language of TST to the collection of
type si variables in the language of TTTλ. For each formula φ in the
language of TST, define φs as the result of replacing each variable x
in φ with xs. We oberve that φs will be a formula of the language of
TTTλ.

The axioms of TTTλ are exactly the formulas φs with s any strictly
increasing sequence of type indices and φ any axiom of TST.

Theorem: TTTλ is consistent iff NF is consistent.

Proof of theorem: If NF is consistent, one gets a model of TTTλ by using
the model of NF (or if one prefers, disjoint copies of the model of NF
indexed by λ) to implement each type, and defining the membership
relations of the model in the obvious way.

Suppose that TTTλ is consistent. Fix a model of TTTλ. Let Σ be a
finite set of sentences of the language of TST. Let n be a strict upper
bound on the (natural number) type indices appearing in Σ. We define
a partition of [λ]n: the compartment into which an n-element subset
A of λ is placed is determined by the truth values of the sentences φs

for φ ∈ Σ for strictly increasing sequences s of type indices such that
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the range of sdn is A. This partition of [λ]n into no more than 2|Σ|

compartments has an infinite homogeneous set H which includes the
range of a strictly increasing sequence h of type indices. The interpre-
tation of TST obtained by assigning to each formula φ of the language
of TST the truth value of φh in our model of tangled type theory will
satisfy each instance φ ↔ φ+ of Ambiguity for φ ∈ Σ. It follows by
compactness that the Ambiguity Scheme is consistent with TST, and
so by the results of Specker that NF is consistent.

Proof without appealing to Specker outlined: Suppose that≤ is a well-
ordering of the union of the types of our model of tangled type theory
(this is not an internal relation of the model in any sense). Add the
relation symbol ≤ to the language of TST. with the same type rules
as identity, and transform atomic formulas x ≤ y to xs ≤ ys in the
construction of formulas φs. We obtain as above, using this extended
language to define our partition, a consistency proof for TST + Ambi-
guity + existence of a primitive relation ≤ on each type (which can be
mentioned in instances of ambiguity, but which cannot be mentioned in
instances of comprehension) which is a linear order and a well-ordering
in a suitable external sense (any definable nonempty class has a ≤-
least element) and which can be used to define a Hilbert symbol: we
can define (θx : φ) as the ≤-least x such that φ, or ∅ if there is no such
x. Now construct a model of TST + Ambiguity + primitive “external
well-ordering” ≤ with the same theory consisting entirely of referents
of Hilbert symbols (a term model). The Ambiguity Scheme justifies
abandoning the distinction between a Hilbert symbol (θx : φ) and its
type-raised version (θx+ : φ+) in all cases and one obtains a model of
NF with a primitive external order ≤.

Examination of our presentation of Jensen’s consistency proof for NFU
should reveal that this is an adaptation of the same method to the case of
NF. In fact, our “natural model of TSTUλ” above can readily be understood
as a model of TTTUλ.

It should also be clear that TTTλ is an extremely strange theory. We
cannot possibly construct a “natural model” of this theory, as each type is
apparently intended to implement a “power set” of each lower type, and
Cantor’s theorem precludes these being honest power sets.
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5.1 ω- and α-models from tangled type theory

It is worth noting that the proof of the main result of this paper does not
depend on this section: this section is included to indicate why the main
result implies further that there is an ω-model of NF.

Jensen continued in his original paper [10] by showing that for any ordinal
α there is an α-model of NFU. We show that under suitable conditions on
the size of λ and the existence of sets in a model of TTTλ, this argument
can be reproduced for NF.

We quote the form of the Erdös-Rado theorem that Jensen uses: Let δ
be an uncountable cardinal number such that 2β < δ for β < δ (i.e., a strong
limit cardinal). Then for each pair of cardinals β, µ < δ and for each n > 1
there exists a γ < δ such that for any partition f : [γ]n → µ there is a set
X of size β such that f is constant on [X]n (X is a homogeneous set for the
partition of size β).

Let λ be a strong limit cardinal with cofinality greater than 2|α|. Our
types in TTT will be indexed by ordinals < λ as usual. We make this
stipulation about λ only for this subsection.

We assume the existence of a model of TTTλ in which each type contains
a well-ordering of type α (from the standpoint of the metatheory as well
as internally): our language will include names ≤β for the well-ordering on
objects of each type β < λ and names [≤β]γ for each γ < α for the object
of type β at position γ in the order ≤β. We adjoin similar symbols ≤i for
i ∈ N and [≤i]γ for γ < α to the language of TST. We stipulate that in
the construction of formulas φs, notations ≤i and [≤i]γ will be replaced by
notations ≤s(i) and [≤s(i)]γ. A model of NF can then be constructed following
the methods above in which a single relation ≤ with the objects [≤]γ in its
domain appears. However, the model of NF is obtained by an application of
compactness: the order ≤ obtained may not be an order of type α or a well
ordering at all from the standpoint of the metatheory, because it may have
many nonstandard elements. To avoid this, we need to be more careful.

Let Σn be the collection of all sentences of the language of TSTn extended
as indicated above which begin with an existential quantifier restricted to
the domain of an order ≤i. Let the partition determined by Σn make use
not of the truth values of the formulas in Σn, but of the indices γ < α
of the minimally indexed witnesses [≤]γ to the truth of each formula, or
α if they are false. The Erdös-Rado Theorem in the form cited tells us
that we can find homogeneous sets of any desired size less than λ for this
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partition, and moreover (because of the cofinality of λ) we can find, for some
fixed assignment of witnesses to each sentence of Σn which is witnessed,
homogeneous sets of any desired size which induce the fixed assignment of
witnesses in the obvious sense. Note that each Σn is of cardinality |α| and
there are 2|α| possible assignments of a witness ≤ α to each sentence in Σn

(recalling that α signals the absence of a witness). This allows us to see
that ambiguity of Σn is consistent, and moreover consistent with standard
values for witnesses to each of the formulas in Σ. We can then extend the
determination of truth values and witnesses as many times as desired, because
if we expand the set of formulas considered to Σn+1 and partition (n + 1)-
element sets of type indices instead of n-element sets, we can restrict our
attention to a large enough set of type indices homogeneous for the previously
given partition (and associated with fixed witnesses) to ensure that we can
restrict it to get homogeneity for the partition determined by the larger set of
formulas (and get an assignment of witnesses which occurs in arbitrarily large
homogeneous sets, as at the previous stage). After we carry out this process
for each n, we obtain a full description of a model of TST + Ambiguity
with standard witnesses for each existentially quantified statement over the
domain of a special well-ordering of type α. We can reproduce our Hilbert
symbol trick (add a predicate representing a well-ordering of our model of
TTT to the language as above) to pass to a model of NF with the same
characteristics.
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6 Tangled webs of cardinals

In this section, we replace consideration of the weird type theory TTTλ with
consideration of a (still weird) extension of ordinary set theory (Mac Lane
set theory, Zermelo set theory or ZFC) whose consistency is shown to imply
the consistency of NF. We are working in set theory without Choice. We
note without going into details that we will use Scott’s definition of cardinal
number, which works for cardinalities of non-well-orderable sets. There is
a chain of reasoning in tangled type theory which motivates the details of
this definition, but it is better not to present any reasoning in tangled type
theory if it can be avoided.

Definition (extended type index, operations on extended type indices):
We define an extended type index as a nonempty finite subset of λ. For
any extended type index A, we define A0 as A, A1 as A\{min(A)} and
An+1 as (An)1 when this is defined.

Definition (tangled web of cardinals): A tangled web of cardinals is a
function τ from extended type indices to cardinals with the following
properties:

naturality: For each A with |A| ≥ 2, 2τ(A) = τ(A1).

elementarity: For each A with |A| > n, the first-order theory of the
natural model of TSTn with base type τ(A) is completely deter-
mined by the set A \ An of the smallest n elements of A.1

Theorem: If there is a tangled web of cardinals, NF is consistent.

Proof of theorem: Suppose that we are given a tangled web of cardinals
τ . Let Σ be a finite set of sentences of the language of TST. Let n be
a strict upper bound on the natural number type indices appearing in
Σ. Define a partition of [λ]n: the compartment in which an n-element
set A is placed is determined by the truth values of the sentences in Σ
in the natural model of TSTn with base type of size

1We could equally well make the condition |A| ≥ n, which would simplify the proof
immediately below noticeably, but this would not reflect the situation in the actual con-
struction of a tangled web in the next section.



version of 9:30 pm 3/7/2017, simplified main construction. 18

τ(A ∪ {max(A) + 1}).2 This partition of [λ]n into no more than 2|Σ|

compartments has a homogeneous set H of size n + 2. The natural
model of TST with base type τ(H) satisfies all instances φ ↔ φ+ of
Ambiguity for φ ∈ Σ: type 1 of this model is of size 2τ(H) = τ(H1) and
the theory of the natural models of TST with base type τ(H1) decides
the sentences in Σ in the same way that the theory of the natural
models of τ(H) decides them by homogeneity of H for the indicated
partition and the fact that the first order theory of a model of TSTn

with base type of size any τ(B) with |B| > n is determined by the
smallest n elements of B. Thus any finite subset of the Ambiguity
Scheme is consistent with TST, so TST + Ambiguity is consistent by
compactness, so NF is consistent by the results of Specker.

There is no converse result: NF does not directly prove the existence of
tangled webs. An ω-model of NF will contain arbitrarily large concrete finite
fragments of tangled webs.

The existence of a tangled web is inconsistent with Choice. It should be
evident that if Choice held in the ambient set theory in which the tangled
web is constructed, Choice would hold in the model of NF constructed by
this procedure, which is impossible by the results of Specker.

2Having to add one element artificially to A here reflects our decision to require |A| >
n in the elementarity condition, which is dictated by the characteristics of the actual
construction of a tangled web in the next section.
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7 The main construction

The working set theory of the construction is ZFA (with choice). We will
carry out a Fraenkel-Mostowski construction to obtain a class model of ZFA
(without choice) in which there is a tangled web of cardinals.

cardinal parameters of the construction: We continue to use the pre-
viously fixed limit ordinal λ as a parameter. Define A1 as A\{min(A)}
where A is a nonempty finite subset of λ. Define A0 as A and An+1 as
(An)1 where this is defined. Define B � A as holding iff A and B are
distinct, A ⊆ B and all elements of B \ A are less than all elements of
A; B�A means B � A ∨ B = A. We refer to finite subsets of λ as
clan indices for reasons which will become evident.

Let κ be a regular uncountable ordinal, fixed for the rest of the paper.
We refer to all sets of cardinality < κ as small and all other sets as
large.

Let µ be a strong limit cardinal, fixed for the rest of the paper, such
that µ > |λ|, µ > κ, and the cofinality of µ is ≥ κ.

the extent of the atoms described: For each finite subset A of λ, pro-
vide a collection of atoms clan[A] of cardinality µ. If A 6= B, clan[A]
and clan[B] are disjoint. We call these sets clans . We provide for each
clan index A another set parents[A] of atoms of size µ (we call these
sets parent sets). If A is nonempty, clan[A1] ⊆ parents[A]; the sets
parents[∅], parents[A] \ clan[A1] for A nonempty and and clan[A]
are each of size µ and make up a partition of all the atoms. The ele-
ments of the clans will be called regular atoms and all other atoms will
be called irregular atoms .

our strategy for obtaining a tangled web indicated in advance: The
aim of the FM construction is to create the following situation. We use
the notation P∗(X) for the collection of symmetric subsets of a heredi-
tarily symmetric set X. [We haven’t said yet what the group and filter
are which define the FM construction – we will explain this in due
course.]

We consider the default natural models in the FM interpretation with
base types clan[A]. The cardinality of Pn+2

∗ (clan[A]) in terms of the
FM interpretation is intended to be determined by An where |A| > n:
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|Pn+2
∗ (clan[A])|∗ = |P2

∗ (clan[An])|∗, where |X|∗ denotes the cardinal-
ity of X in the FM interpretation (The clans will be seen directly to
be hereditarily symmetric).

The (default) natural models of TSTn in the FM interpretation with
bottom types P2

∗ (clan[A]) and P2
∗ (clan[B]) respectively are intended

to be isomorphic in the ground ZFA (not in the FM interpretation: the
maps witnessing this fact will not be symmetric) if A \ An = B \ Bn

(where |A|, |B| > n). This implies that they have the same first-order
theory as models of TSTn.

Note that if these conditions are achieved, the map τ sending nonempty
A to the FM interpretation’s cardinality of P2(clan[A]) is a tangled
web (in the FM interpretation) and the consistency of NF is established.

These effects are to be achieved by careful design of the permutation
group and filter generating the FM interpretation.

litter, near-litters, and local cardinals introduced: For each of the clans
clan[A] select a partition of clan[A] into sets of size κ. We call this
partition (a set of subsets of clan[A]) litters[A]. We call the elements
of these partitions litters . We call the sets litters[A] themselves lit-
ter partitions if we have occasion to allude to them: each litter is an
element of a litter partition of a clan.

For each clan index A and for each L ∈ litters[A], define [L], the
local cardinal3 of L, as the collection of subsets of clan[A] with small
symmetric difference from L.

We refer to elements of local cardinals as near-litters . The local cardinal
[N ] of a near-litter N is defined as the local cardinal to which N belongs
as an element. Define nearlitters[C] as the set of near-litters included
in clan[C]: such sets might be referred to as “near-litter sets”.

For any near-litter N , there is a unique litter N◦ such that N∆N◦ is
small: we refer to the elements of N∆N◦ as the anomalies of N .

the parent functions introduced: We fix a function Π whose domain is
the union of all sets litters[A] and whose restriction to each litters[A]

3It will be seen to be true in the FM interpretation that subsets of clans belong to the
same local cardinal iff they have the same cardinality.
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is a bijection from litters[A] to parents[A]. For each litter L, we re-
fer to Π(L) as the parent of the litter L. The parent of any near litter
N is Π(L) where L is the unique litter with small symmetric difference
from N . The parent of a local cardinal [L] is defined as Π(L).

For each nonempty A we will fix an injective map ΠA whose domain
is to be parents[A] \ clan[A1], and whose range we do not for the
moment specify, except to note that all elements of these ranges will
be sets. We call these functions indexed parent functions .

If L is a litter included in clan[A], A nonempty, and Π(L) is an irregular
atom (so in the domain of Π(A)), we say that L has set parent and
define the set parent of L as ΠA(Π(L)). Note that an atom with set
parent also has a parent which is an irregular atom, the latter being
mapped to the former by ΠA.

allowable permutations introduced: The action of any permutation ρ
on a set of atoms S is extended to all sets X whose transitive closure
does not contain any atom not in S by the rule ρ(X) = ρ“X for any
set X.

The permutations we use to define the FM interpretation, which we
call allowable permutations , are exactly those permutations ρ of atoms,
extended to sets as indicated above, which satisfy the following condi-
tions:

1. ρ fixes each clan.

2. For any litter L, ρ(L) is a near-litter with small symmetric differ-
ence from Π−1(ρ(Π(L))).

3. ρ fixes each map ΠA.

It is straightforward to show that allowable permutations fix parent
sets.

Note that an allowable permutation ρ sends any litter L with parent p
to a near-litter N with parent ρ(p) (not necessarily to the litter with
parent ρ(p): a small collection of atoms may be mapped into or out of
N from unexpected litters).

For each nonempty clan index A, we define an A-allowable permutation
as a permutation of the atoms, extended to sets as indicated, satisfying
the following conditions:
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1. ρ fixes each clan[B] with B�A.

2. For any litter L ⊆ clan[B] with B�A, ρ(L) is a near-litter with
small symmetric difference from Π−1(ρ(Π(L))).

3. ρ fixes each map ΠB where B � A.

support sets, supports of objects, symmetry: We define a support set
as a small set of atoms and near-litters in which distinct near-litter
elements are disjoint. We say that an object x has support S iff every
allowable permutation ρ such that (∀s ∈ S : ρ(s) = s) also satisfies
ρ(x) = x. We say that an object is symmetric iff it has a support.
We say that an object is hereditarily symmetric iff it is symmetric
and either it is an atom or all elements of its transitive closure are
symmetric. Note that it is obvious that any object with a support has
a support in which all near-litter elements are actually litters: if S is
a support, the set S◦ consisting of all atoms in S, all litters N◦ for
N ∈ S, and all elements of N∆N◦ for N ∈ S is a support set and is a
support for any object for which S is a support.

For any hereditarily symmetric set X, we define P∗(X) as the set of all
hereditarily symmetric subsets of X, which we may call the symmetric
power set of X.

Note that regular atoms are symmetric with support their own single-
ton, and irregular atoms are symmetric with support the singleton of
any litter of which they are parent.

By standard considerations, the hereditarily symmetric sets and the
atoms make up a class model of ZFA, which we will refer to as “the
FM interpretation”, while referring to the ambient ZFA in which we
started as “the ground interpretation”.

Let A be a nonempty clan index. We define an A-support set as a
small set of atoms and near-litters in which distinct near-litter ele-
ments are disjoint, and in which each atom belongs to a clan[B] with
B�A and each near-litter is included in such a clan. We say that an
object x has A-support S iff every A-allowable permutation ρ such that
(∀s ∈ S : ρ(s) = s) also satisfies ρ(x) = x. We say that an object
is A-symmetric iff it has an A-support. We say that an object is A-
hereditarily symmetric iff it is A-symmetric and either it is an atom or
all elements of its transitive closure are A-symmetric. Note that it is
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obvious that any object with an A-support has an A-support in which
all near-litter elements are actually litters, by the same argument for
the result for ordinary supports.

FM interpretations in general: We insert a summary of considerations
about FM interpretations in general, taken (and slightly adapted) from
[9]:

Let G be a group of permutations of the atoms. Let Γ be a nonempty
subset of the collection of subgroups of G with the following properties:

1. The subset Γ contains all subgroups J of G such that for some
H ∈ Γ, H ⊆ J .

2. The subset Γ includes all subgroups
⋂
C of G where C ⊆ Γ and

C is small [smallness being defined in terms of the parameter κ
already introduced above].

3. For each H ∈ Γ and each π ∈ G, it is also the case that πHπ−1 ∈
Γ.

4. For each atom a, fixG(a) ∈ Γ, where fixG(a) is the set of elements
of G which fix a.

A nonempty Γ satisfying the first three conditions is what is called a
κ-complete normal filter on G.

We call a set A Γ-symmetric iff the group of permutations in G fixing
A belongs to Γ. The major theorem which we use but do not prove
here is the assertion that the class of hereditarily Γ-symmetric objects
(including all the atoms) is a class model of ZFA (usually not satisfying
Choice). The assumption that the filter is κ-complete is not needed for
the theorem (“finite” usually appears instead of “small”), but it does
hold in our construction.

Details of our FM interpretation: We let G be the group of allowable
permutations.

For each support set S we define GS as the subgroup of G consisting
of permutations which fix each element of S.

We define the filter Γ as the set of subgroups H of G which extend
subgroups GS. The only point which requires special comment in the
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verification that Γ is a normal filter is the normality condition: it is
straightforward to establish that if π ∈ G and GS ⊆ H ∈ Γ, then
Gπ(S) ⊆ πHπ−1, establishing normality.

Note about the status of our parent functions: The function Π is not
symmetric, and so not a set in our FM interpretation. The functions
ΠA are coerced to be sets of the FM interpretation by the definition. A
parent function which would be symmetric and serve the same purpose
as Π and all the ΠA’s is the map Π∗ sending each local cardinal [L]
of a litter in clan[A] to (Π(L), A) if Π(L) is a regular atom or an
element of parents[∅] and otherwise to (ΠA(Π(L)), A). This function
is hereditarily symmetric, and so a set of the FM interpretation: I have
used this as the master parent function (incorporating all information
in Π and the ΠA’s in one function) in an earlier version of this argument.
In fact, the allowable permutations are exactly the permutations which
fix Π∗. This approach seems to us to be more baroque than the present
one, in spite of having only one master parent function. Note that the
set of local cardinals is invariant under allowable permutations, where
the set of litters is not even symmetric.

small subsets of the domain of the FM interpretation: It should be
evident that any set of cardinality < κ of hereditarily symmetric sets is
hereditarily symmetric: choose a support for each element of the small
set, and the union of the chosen supports of the elements of the set can
serve as a support for the set (mod a technical point: assume that all
near-litters in the supports chosen for the elements are litters, so that
the union can be relied on to be a support set).

the intended description of the indexed parent functions: As already
noted, the set parents[∅] is a set of irregular atoms of size µ.

For each nonempty A, recall that parents[A] is the union of clan[A1]
and the (size µ) domain of the map ΠA. The intended range of ΠA is⋃
B�AP

|B|−|A|+1
∗ (clan[B]).

As contemplation of this formula may suggest to the reader, it takes
work to show that the intention just expressed is possible to realize.

The superscript in the notation P |B|−|A|+1
∗ (clan[B]) indicates finite it-

eration of the symmetric power set operation.
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The description of the actual construction of the maps ΠA: The col-
lections of atoms that are needed for the construction are postulated at
the outset. The only detail that needs to be filled in is how the maps
ΠA are constructed.

external automorphism maps and parent set orders introduced:
We provide for each ordinal α a map σα whose domain is the union
of all sets clan[A] and parents[A] such that A is nonempty and
the ordinal α is strictly greater than all elements of A. The re-
striction of σα to each such clan[A] is a bijection from clan[A] to
clan[A∪{α}], with σα“L a litter for each litter L included in the
domain of σα, and with the property that Π(σα(x)) = σα(Π(x)).
The map σα is extended to sets in the same way that permuta-
tions are extended above, but applied only to sets whose transitive
closures contain no atoms not in the domain of σα. In particular,
σα can be applied to any element of an iterated power set of a
clan included in the domain of σα.

We stipulate that when α dominatesA, ΠA∪{α}(σα(x)) = σα(ΠA(x))
[and so of course we require that elements of the range of ΠA are
in the range of σα (as extended to sets)].

For each ordinal α < λ, select a strict well-ordering<α of parents[{α}]
of order type µ. For each clan index A with |A| > 1, define <A

recursively as σmax(A)(<A\{max(A)}).

It only remains to specify how Π{α} is constructed for each ordinal
α < λ: once these functions are constructed, we have enough
information to construct all ΠA’s.

Definition of strong support sets: A strong support set is defined
as a support set S on which there is a (strict) well-ordering <S

under which any regular atom x in S is preceded in<S by the near-
litter in S which contains x, if there is one (there is at most one
such near-litter because distinct near-litter elements of a support
set are disjoint), and which satisfies the condition that if the parent
p of any near-litter N in S has ΠA(p) ∈ Pn+1(clan[B]), then
ΠA(p) has the set

{x : x <S N ∧ (∃C�Bn : x ∈ clan(C) ∨ x ∈ nearlitters[C])}
as a (strong) support (note that as we expect n+1 = |B|−|A|+1,
we expect Bn = A), and if the parent of a near-litter N in S is an
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atom x not in the range of a ΠB, the atom x either precedes N in
<S or does not belong to S [the latter must of course be the case
if x is in parents[∅]].
We introduce the notation Sγ for the element s ∈ S such that the
restriction of <S to {u : u <S s} has order type γ.

An extended strong support set has the further properties that
every near-litter belonging to the support set is a litter and every
atom in the support belongs to a litter in the support, and every
regular atom which is the parent of a litter in the support belongs
to the support.

A A-strong support set is defined as an A-support set S on which
there is a (strict) well-ordering <S under which any regular atom
x in S is preceded in <S by the near-litter in S which contains
x, if there is one (there is at most one such near-litter because
distinct near-litter elements of a support set are disjoint), and
which satisfies the condition that if the parent p of any near-litter
N in S has ΠB(p) ∈ Pn+1(clan[C]), where B � A, then ΠB(p)
has the set

{x : x <S N ∧ (∃D�Cn : x ∈ clan(D) ∨ x ∈ nearlitters[D])}

as a (strong) support (note that we expect Cn = B), and if the
parent of a near-litter N in S is an atom x not in the range of a
ΠB, the atom x either precedes N in <S or does not belong to S
[the latter must of course be the case if x is in parents[A]].

An A-extended strong support set S with associated well-ordering
<S has the further properties that every near-litter belonging to
the support set is a litter and every atom in the support belongs
to a litter in the support, and every regular atom which is the
parent of a litter in the support belongs to the support, unless the
atom is in clan[A1].

AnA-overextended strong support set S with associated well-ordering
<S is an A-extended strong support set with the further property
that each set parent of a litter L in clan[A] belonging to the sup-
port has the collection {x ∈ S : x <S L} as an A-support. Note
that unlike the notions of A-support, A-strong support,and A-
extended strong support, this depends on some information about
ΠA.
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Definition of strongly symmetric set: A strongly symmetric ele-
ment of Pn+1(clan[A]) (n < |A|) is defined as an element X of
this set such that X has an An-extended strong support and all
elements of X are strongly symmetric (and so An−1-symmetric in
the same strong sense) if n > 0 and simply atoms in clan[A] if
n = 0. This is of course a definition by recursion on n.

Construction of indexed parent functions: We assume that Π{β}
has been constructed for each β < α (and so ΠB has been con-
structed for each B with min(B) = β).

We provide that the range of Π{α} is the collection of all strongly
symmetric elements of

⋃
B�{α}P |B|(clan[B]). Further, we require

that for any x ∈ parents({α}) \ clan[∅], Π{α}(x) has an {α}-
extended strong support S such that all elements L ∈ S which are
litters included in clan[{α}] satisfy Π(L) <α x. We demonstrate
that one can construct Π{α} in such a way that there is such an
order, as long as the range is of the correct size µ [which is one
of the things we need to prove]: choose a well-ordering <2 of
the union of clan[∅] and the collection of all strongly symmetric
elements of

⋃
B�{α}P |B|(clan[B]), of order type µ. Choose the

values of Π{α} using the orders <α and <2: let x ∈ parents[{α}]\
clan[∅] and assume that values of Π{α} have been determined at
all z <α x which belong to parents[{α}] \ clan[∅], and map x
to the <2-first object y 6∈ clan[∅] which has not already been
assigned a preimage under Π{α} and has an {α}-extended strong
support such that each element of the support which is a litter
included in clan[{α}] has parent <α x (some of these parents
may be in clan[∅]). This process will map the domain onto the
intended range because supports are small sets and the cofinality
of µ is at least κ.

The construction will fail if the intended range of any Π{α} fails to
be of cardinality µ: if this does not happen, we obtain the desired
structure. There are no issues of circularity in the construction,
as the definition of the range of ΠA involves only A-symmetry
(or B-symmetry for B � A), which in turn depends on having
constructed ΠB only for B � A, and ΠB is defined successfully
if we already have constructed Π{min(B)}, and min(B) < min(A) if
B � A.



version of 9:30 pm 3/7/2017, simplified main construction. 28

What remains to be shown: We need to show that the construction suc-
ceeds, for which it suffices to show that the cardinality of each Pn+1(clan[A])
for n < |A| is no greater than µ.

To establish that we have the originally intended range of each ΠA, we
need to show that the ranges of the maps ΠA are actually unions of
iterated power sets of clans in the sense of the FM interpretation: that
is, that a hereditarily symmetric element of a Pn+1(clan[A]) where
n < |A| will be strongly symmetric.

Existence of external isomorphisms: It is straightforward to see that if
A is nonempty and dominated by α, the image under σα of the collection
of strongly symmetric elements of Pn+1(clan[A]) (n < |A|) is the col-
lection of strongly symmetric sets in Pn+1(clan[A∪{α}]). The reason
for this is that x ∈ y ↔ σα(x) ∈ σα(y), x <B y ↔ σα(x) <B∪{α} σα(y),
Π(x) = y ↔ Π(σα(x)) = σα(y), and ΠB(x) = y iff ΠB∪{α}(σα(x)) =
σα(y) for all B�A and for x in clans or parent sets of relevant index, so
all relevant structure is preserved when σα is applied. Note that σα is
emphatically not a set in the FM interpretation, thus the isomorphism
is said to be external.

Note that for any set parents[A], any element x of parents[A] has Π(x)
a regular atom or has ΠA(Π(x)) a set with A-extended strong support
including no litter included in clan[A] except litters with parents <A x.
Again, this is because maps σα preserve all relevant structure.

Insertion of a strong support or supports into another strong support set:
Let α < κ. Let T be a strong support set and let Sβ be strong supports
to be inserted just before Tγβ in the order on T for each β < α, where
γ is a strictly increasing function from α to small ordinals less than or
equal to the order type of <T (if γβ is the order type of T , we are in-
serting Sβ at the end of <T ), all near-litters in all these supports being
litters. We indicated how to merge these strong supports into a strong
support U : the work involved is the construction of the order <U . We
define an auxiliary strict linear order <′U on pairs (x, T ) with x ∈ T
and (y, Sβ) for y ∈ Sβ: conditions (1) (x, V ) <′U (y, V ) iff x <V y, and
(2) (x, T ) <′U (y, Sβ) iff Tγβ exists and x <T Tγβ together completely
specify <′U ; for each x in any of the supports, define (x, U) as the <′U -
first (x, V ), and define x <U y as holding iff (x, U) <′U (y, U). (It is
straightforward to verify that U with this order is a strong support set,
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by verifying that each item in U must be preceded in <U by appropriate
items because it is preceded by such items in either <T or one of the
<Sβ ’s.) A precisely analogous construction works for A-strong support
sets.

We consider the more complicated situation where near-litters which
are not litters may appear in the supports (and so nontrivial inter-
sections between near-litters need to be handled), less formally. If L
is to be inserted and L has small intersection with a number of lit-
ters appearing earlier, insert the near-litter L′ obtained by dropping
the atoms shared with earlier near-litters, instead, and also insert the
atoms in L\L′, adjacent to it in the order (those of them which do not
appear already). If L is to be inserted and has small intersection with
a number of litters appearing earlier and large intersection with a litter
M appearing earlier, insert just the atoms which belong to the small
intersections and the atoms which belong to the symmetric difference
of L and M (again, those of them which do not appear already). In
this last case, atoms in L \M which belong to litters appearing later
in the order should be moved to appear just after the litters containing
them.

Existence of extended and overextended strong support sets: We ar-
gue that any support set can be extended to an extended strong support
set.

By construction, any element of the range of a ΠA has an A-extended
strong support. Further, every element of the range of ΠA has an A-
overextended strong support. Prove this by induction on the order
<A: if we suppose that A-overextended strong supports have been
constructed for all ΠA(y) with y <A x, then we can construct the
A-overextended strong support for ΠA(x) by taking the A-extended
strong support for ΠA(x) provided in the construction and adding to
it the A-overextended supports of all set parents ΠA(Π(L)) of litters
L included in clan[A] which belong to the support, which will satisfy
Π(L) <A x. The procedure for constructing the order on the new
support is described above (insert the overextended support for each
litter just before the litter).

Extend this to an A1-overextended strong support set by adding atoms
in clan[A1] which are parents of litters in the support, andA1-overextended
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strong supports for each such atom. Construct the order for the A1-
overextended support as above (inserting the A1-overextended sup-
port for each atom just before the atom). What results is an A1-
overextended strong support extending the original support. Iterate
this process finitely many times (because A is a finite set) to obtain an
extended strong support for the original element of the range of a ΠA.

Now any support set in which all near-litters are litters can be extended
to an extended strong support set by a similar process, closing under
the processes of adding litters containing each atom in the support and
regular atoms which are parents of litters in the support, then adding
extended strong supports of each set parent of a litter which requires
it, then reconciling the orders on merged supports as indicated above.

Locally small bijections and the extension property: A locally small
bijection is defined as a bijection whose domain and range are the
same set of atoms, each element of which is either a regular atom or an
element of parents[∅], and whose domain has small intersection with
each litter.

We say that a regular atom x belonging to a litter L is an exception of
an allowable permutation ρ iff ρ(x) 6∈ ρ(L)◦. (recall that for any near-
litter N , N◦ is defined as the litter with small symmetric difference
from N).

We stipulate as an inductive hypothesis that any locally small bijection
ρ0 extends to an allowable permutation ρ, with no exceptions other
than elements of the domain of the locally small bijection ρ0. We call
this condition the extension property . We say that such an allowable
permutation ρ is a substitution extension of the locally small bijection
ρ0.

If B is a clan index, a B-locally small bijection is restricted to regular
atoms in clans with index C�B and arbitrary elements of parents[B],
with the restriction that its domain has small intersection with each
litter included in a clan with index �B.

We define the B-extension property in the obvious way.

Proof that the extension property holds: Let ρ0 be a B-locally small
bijection (if B = ∅, a locally small bijection in the full sense). For each
pair of litters L,M which are included in the same clan with index�B,
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choose a map ρL,M which is a bijection from L\dom(ρ0) to M \dom(ρ0).
Our intention is that the allowable permutation ρ which we construct
will extend ρ0 and each ρL,ρ(L)◦ . We extend ρ0 to a permutation of all
of parents[B] for the sake of computing a unique value: this can be
done for example by letting ρ0 act as the identity on any element of
parents[B] at which it was not defined initially.

We argue that we can do this effectively by induction on all B-extended
strong supports (if B = ∅, we are in the case of full extended strong
supports). Assume that we have the C-extension property for each
C � B. Suppose that there is a B-extended strong support S on
some element of which we cannot uniquely determine what the value
of ρ must be based on the stated conditions: we consider the <S-first
such element (we further assume that this bad element has the smallest
possible value of min(C) among first bad elements in any B-extended
support, where clan[C] is the clan to which the bad element belongs
or of which it is a subset). If this element is an atom x, it belongs to
a litter L appearing earlier in <S. We can effectively compute ρ(L)
and so ρ(L)◦ by inductive hypothesis, and so we can compute ρ(x), by
applying ρ0 or ρL,ρ(L)◦ as appropriate. If this element is a litter L with
parent a regular atom x, we can compute ρ(x) by inductive hypothesis,
so ρ(L)◦ = Π−1(ρ(x)) is known: we can then compute ρ(L) by applying
ρ0 to all elements of L in its domain, and elsewhere apply ρL,ρ(L)◦ . If the
near-litter has parent p which is in parents[B], we define ρ(p) as either
ρ0(p) or p (more generally, we can extend ρ0 to act as a permutation on
parents[B] in any arbitrary way), and complete the definition of ρ(L)
just as above. If the near-litter has irregular parent p in the domain
of a ΠC with C � B, we have already computed the values of ρ by
inductive hypothesis at the elements of a C-support of ΠC(p). If a C-
allowable permutation implementing these values can be constructed,
it sends the parent under consideration to the only possible value for a
B-allowable permutation extending ρ0 at that parent (because ΠC(p) is
not merely B-symmetric, it is C-symmetric), and we can compute the
value at the litter as in the previous two cases. We have C � B so we
can apply the inductive hypothesis that any C-locally small bijection
with C � B can be extended to a C-allowable permutation to establish
that this extension exists. It is important to note that the B-extension
property implies the (B ∪ {β})-extension property (for β dominating
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B) by application of the external isomorphism σβ, so we are actually in
effect reasoning about the {α}-extension property by strong induction
on α (with the property for B = ∅ being verified at stage λ).

We note that it is required not only that we can compute a value for ρ at
each element of any single B-extended strong support, but also that the
computation along any B-extended strong support containing the same
element gives the same value. The only case in which this is in question
is the case of a near-litter which has irregular parent p in the domain of
a ΠC with C � B: each B-extended support containing p contains a
C-support of ΠC(p); now notice that for any two C-supports of ΠC(p)
we have by hypothesis computed values of ρ at each element, which by
inductive hypothesis we can extend to actual C-allowable permutations
which will of course both send p to the same value, which is the value
we choose for ρ(p). Our hypotheses ensure that if the bad element is
of this type, no element of any C-support of ΠC(p) will itself be a bad
element with respect to any B-extended support.

In the simplest case, B = {0}, any locally small bijection on clan[{0}]
can be extended as required: extend ρ0 to act as a permutation of
parents[{0}] in any arbitrary way, construct maps ρL,M as above, use
the map on parents[{0}] to compute ρ(L)◦ in each case, and we have all
information needed to compute the extension. The possible allowable
permutations on parents[{0}] = clan[∅] are not in fact arbitrary, but
this does not cause problems for us: {0}-permutations do act freely on
this set.

The process indicated gives a full calculation of the value of ρ at every
object, and clearly introduces no exceptions outside the domain of ρ0.

relevant supports: Each element of Pn+1(clan[B]) [for n ≤ |B|] in the
range of a map ΠA (and so strongly symmetric) has a strong support
all of whose elements belong to clans clan(C) such that C�Bn or
are near-litters included in clan(C) such that C�Bn, by construction.
We call such a strong support a relevant support (or relevant strong
support for emphasis). We further stipulate that a relevant support of
an element of Vω (a hereditarily finite pure set) is empty. The motive
for this last condition is that hereditarily finite pure sets are the only
sets which can belong to more than one set of the form Pn(clan[B]):
we do not want their relevant supports to contain information about
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them which is tied to a specific set of this form, and since they are
invariant there is no reason to allow this. Note that near-litter elements
of relevant supports are not required to be litters.

the ramified extension property: We develop a corollary of the exten-
sion property and the existence of extended strong supports. The
general intention of this subsection is to clarify the extent to which
allowable permutations act freely on general objects. The extension
property tells us that they act quite freely on atoms, but since objects
also have near-litters in their supports, which may have set parents, the
degree of freedom of action on general objects requires clarification.

Under this heading, recall that we say if Π(L) is irregular that L has
“set parent”, except when L is included in clan[∅], and we refer to
ΠA(Π(L)) as the set parent of L ∈ litters[A].

Let S and T be strong supports with orders <S and <T , respectively.
We give a set of conditions equivalent to existence of an allowable per-
mutation mapping <S to <T .

1. For each appropriate γ and clan index C, Sγ ∈ clan[C] ↔ Tγ ∈
clan[C] and Sγ ⊆ clan[C]↔ Tγ ⊆ clan[C]

2. For each appropriate γ, δ, Sγ ∈ Sδ iff Tγ ∈ Tδ.
3. For each appropriate γ, δ, the atom Sγ is the parent of the near-

litter Sδ iff the atom Tγ is the parent of the near-litter Tδ.

4. For each appropriate γ, Sγ has set parent iff Tγ has set parent, and
under this condition there is an allowable permutation mapping
the initial segment of <S with order type γ to the initial segment
of <T with order type γ, and any such map sends the parent of
Sγ to the parent of Tγ (if any such map does this, all such maps
do, because they agree on a support of the set parent of Sγ).

That these conditions hold if <T is the image of <S under an allowable
permutation is evident.

We establish the converse using the extension property.

Let χ be the common order type of <S and <T .

We indicate how to construct, for each γ ≤ χ, a locally small bijection
ργ0 with suitable properties, by recursion. For γ < δ ≤ χ we will have
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ργ0 ⊆ ρδ0. The inductive hypotheses of the recursion are that for any
substitution extension ργ of ργ0 and any δ < γ, we have ργ(Sδ) = Tδ.

1. For λ ≤ χ limit, ρλ0 is the union of all ργ0 for γ < λ.

2. For each γ such that Sγ is an atom or a near-litter without set par-
ent (i.e., with parent a regular atom or an element of parents[∅]),
we will have ργ+1

0 a locally small bijection extending ργ0∪{(S ′γ, T ′γ)},
where S ′γ is defined as Sγ if Sγ is an atom and otherwise as the
parent of Sγ, and Tγ is defined similarly [an at most countably
infinite set of additional values may be required to preserve the
fact that the map is a bijection with the same set as domain and
range: these should not be elements of S or T or parents of ele-
ments of S or T , and if such an additional element belongs to an
Sδ it must be mapped to an element of Tδ]. It is immediate that
ργ+1(Sγ) = Tγ for any substitution extension ργ+1 of ργ+1

0 .

3. For each γ such that Sγ is a near-litter with set parent, note that
a substitution extension ργ of ργ0 will map the parent of Sγ to
the parent of Tγ because it acts correctly on each element of a
support of the set parent of Sγ. We extend ργ0 to ργ+1

0 by the
following procedure: associate with each anomaly s of Sγ (not in
S or in the domain of ργ0) a sequence of atoms si with s0 = s and
each other si in S◦γ and with each anomaly t of Tγ (not in T or
in the domain of ργ0) associate a sequence of atoms ti with t0 = t
and each other ti in T ◦γ , and further for each anomaly s of Sγ not
in S provide a sequence s′i of atoms in T ◦γ and for each anomaly
t of Tγ not in T provide a sequence t′i of atoms in S◦γ , all of these
sequences being injective and the ranges of all these sequences
being disjoint from each other and from S and T and from the
domain of ργ0 : ργ+1

0 is a locally small bijection which extends ργ0
and contains all pairs (si, s

′
i) and all pairs (t′i, ti) [as noted above,

the additional values added to preserve the fact that the map is a
bijection with the same set as domain and range should not be in
S, T , or be parents of elements of S or T and if such an additional
element belongs to an Sδ it must be mapped to an element of Tδ;
only a small collection of such values are needed (no more than
countably many values per explicitly described value, to fill out
orbits in ργ+1

0 )]. This causes the desired condition ργ+1(Sγ) = Tγ
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to hold for any substitution extension ργ+1 of ργ+1
0 .

Each ργ0 is clearly a locally small bijection, and it should be evident
that a substitution extension of ρχ0 will map each Sγ to Tγ and so send
<S to <T as desired.

It is also worth noting that the argument here shows that if S and T are
strong supports with orders <S and <T of limit order type in which it is
possible for each pair of proper initial segments S ′, T ′ in the given order
on S, T respectively of the same length (with restricted orders <S′ , <T ′)
to find an allowable permutation ρ′ such that ρ′(<S′) = ρ(<T ′), we can
find an allowable permutation ρ such that ρ(<S) = ρ(<T ).

combinatorics of power sets of clans We show that the symmetric power
set of any clan is exactly the collection of sets which have small sym-
metric difference from a small or co-small union of litters.

Suppose X is a symmetric subset of clan[A]. Let S be an extended
strong support of X.

Let L be a litter. Suppose L ∩ X and L \ X are both large. Choose
a, b belonging to L ∩X and L \X which are not elements of S. There
is a locally small bijection which swaps a, b, and fixes each atom be-
longing to S and each irregular atom. A substitution extension of this
locally small bijection, that is, an allowable permutation extending the
locally small bijection and with no exceptions outside the domain of
the locally small bijection, will fix each element of S because if it did
not, there would be a first element in the order on S which was moved,
and it would be a litter, and its parent would not be moved, so the
litter would have to have an exception of the permutation or an image
of an exception among its elements, which would have to be a or b,
and a, b are not moved out of the litter to which they belong by this
permutation. So this map cannot move X because it fixes all elements
of its support, but also clearly moves X. This contradiction shows that
no symmetric set can cut a litter into two large parts.

Suppose X cuts each of a large collection of litters. Let S be an ex-
tended strong support for X. Choose a litter L which does not belong
to S and contains no element of S and is cut by X. Choose a ∈ L∩X
and b ∈ L \X. Consider the locally small bijection interchanging a, b
and fixing each atom in S and irregular atom. The argument that an
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allowable permutation extending this locally small bijection (with no
exceptions outside the domain of the locally small bijection) both fixes
and does not fix X goes exactly as in the previous paragraph. Thus
any symmetric subset X of a clan has small symmetric difference from
a union of litters.

Now suppose that X includes the union of a large collection of litters
and fails to meet the union of another large collection of litters. Choose
litters L included in X and M not meeting X, neither belonging to the
extended strong support S of X. Choose a ∈ L and b ∈ M , neither
belonging to S. Now extend the locally small bijection interchanging
a and b and fixing each atom in S and irregular atom to an allowable
permutation with no exceptions outside the domain of the locally small
bijection. Suppose this moves any element of S: the first element in the
sense of <S which is moved must be a litter, its parent must be fixed,
so the litter must include an exception or an image of an exception of
the map which is moved by the map. But the only exceptions of the
map which are moved (and the only images of such exceptions) are a, b,
which belong to litters which are not in S. Thus X is fixed. And yet of
course the map moves X. This contradiction completes the proof that
any symmetric subset of a clan has small symmetric difference from a
small or co-small union of litters.

Further, it is obvious that any subset of a clan with small symmetric
difference from a small or co-small union of litters is actually symmetric.

Clan subset support lemma: If S is a strong support of an element
Z of P(clan[B]) then Z is expressible as the symmetric difference
of a set X ⊆ S of atoms and the union or the complement of the
union of a set Y ⊆ S of near-litters.

Proof of lemma: Let S be a strong support of an element Z of P(clan[B]),
which is the symmetric difference of a small set X ′ of atoms and
either the union or the complement of the union of a small set Y ′

of litters by results shown above.

For an allowable permutation ρ to fix Z, it is sufficient for ρ to be
a substitution extension of a locally small bijection ρ0 fixing each
atomic element of S and atomic parent of an element of S, assign-
ing values to each anomaly of an element of S, and compatible
with fixing each near-litter N in S in the sense that for each x in
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the domain of ρ0, ρ0(x) ∈ N ↔ x ∈ N : suppose that such a map
moved Z; consider the <S-first element u which it moves, which
must be a near-litter in S: the parent of this near-litter is fixed
because it has a support consisting of things appearing earlier in
<S; so some element of u is mapped to a non-element of u or vice
versa: neither this element nor its image can be an anomaly of u,
so this element must be an exception of ρ, and ρ has no exceptions
which it moves in a way not compatible with fixing a near-litter
in S.

Suppose that x ∈ X ′ \ S. Let y 6= x belong to any near-litter
in S which contains x (there might not be such a near-litter, in
which case y is chosen not to belong to any near-litter in S) with
y 6∈ X ′ and y 6∈ S: a substitution extension of the map fixing
all atoms which belong to S or are parents of near-litters in S or
are anomalies of near-litters in S (other than x or y if either of
them happens to be such an anomaly) and in addition swapping
x and y fixes Z by considerations above, but at the same time
clearly moves Z (it is worth noting in this connection that x and
y either both belong to

⋃
Y ′ or both do not belong to

⋃
Y ′); this

contradiction shows that all elements of X ′ belong to S.

Suppose that
⋃
Y ′ is not included in the union of a collection

X1 ⊆ S of atoms and the set union of a collection Y1 ⊆ S of
near-litters. This implies that we can find z ∈

⋃
Y ′ which does

not belong to S (and so does not belong to X ′) and belongs to
a near-litter which does not belong to S. Find w 6∈

⋃
Y ′ which

does not belong to S (and so not to X ′) nor to any near-litter in
S; a substitution extension of the map which fixes each atom in
S, atomic parent of an element of S, anomaly of an element of S
(other than z or w if either happens to be such an anomaly), and
in addition swaps z and w will again both move and not move
Z, so the union of Y ′ is in fact included in a set X1 ∪

⋃
Y1 with

X1 ⊆ S a set of atoms and Y1 ⊆ S a set of near-litters. We
may obviously further stipulate that each element of Y1 has large
intersection with

⋃
Y ′: if an element of Y1 does not meet

⋃
Y ′,

we may omit it; if it has small intersection with
⋃
Y ′, we can omit

it and add the elements of the small intersection to X1: Y1 can
simply be taken to be the collection of near-litter elements of S
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with large intersection with
⋃
Y ′.

Now suppose that the set X1 ∪
⋃
Y1 which we just constructed

as covering
⋃
Y ′ contains an atom z not in S (and so not in X ′,

and not in X1, so belonging to some element of Y1) nor in
⋃
Y ′.

Choose an atom w in the same near-litter in Y1 ⊆ S to which z
belongs, belonging to

⋃
Y ′ (recalling that all elements of Y1 meet⋃

Y ′) but not belonging to S (and so not to X ′). A substitution
extension of the locally small bijection exchanging z and w, fixing
all other anomalies of elements of S, and fixing all atoms in S
and atomic parents of near-litters in S will both move and not
move Z by considerations now familiar. We have shown that all
anomalies of the near-litters belonging to Y1 which do not belong
to

⋃
Y ′ belong to S.

It follows that Z is the symmetric difference of a set X ⊆ S of
atoms and the union (or the complement of the union) of a set
Y ⊆ S of near-litters: Z clearly has small symmetric difference X
from either the union or the complement of the union of the set
Y = Y1 of all near-litters in S which have large intersection with⋃
Y ′, and all elements of the symmetric difference X are elements

of S.

the external size of strongly symmetric iterated power sets of clans (analysis of orbits):
We argue that Pn∗ (clan[B]) is of size µ for each B, n ≤ |B|+1. This is
certainly true for n = 0. The results above on the extent of symmetric
power sets of clans show that this is true for n = 1: any clan clearly
has exactly µ subsets with small symmetric difference from small or
co-small unions of litters.

We recall that we refer to strong supports of elements of a Pn+1
∗ (clan[B])

satisfying the restriction that their elements belong only to clan[C]’s
and nearlitters[C]’s with C�Bn, guaranteed to exist by the con-
struction, as “relevant supports”. We further recall that a relevant
support of an element of Vω (the only kind of object which can belong
to more than one iterated power set of a clan) is empty.

For any object x with relevant support S with order <S, notice that
ρ(x) will have relevant support ρ(S) with order ρ(<S). The conditions
on a relevant support are invariant under application of an allowable
permutation. We can then note that we can define a function χx,S such
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that χx,S(ρ(<S)) = ρ(x) for each allowable permutation ρ. To see that
this is true, note that if ρ(<S) = ρ′(<S), we must have ρ(x) = ρ′(x),
because ρ′ ◦ ρ−1 will fix every element of the support of x. We call the
functions χx,S “coding functions”: ranges of coding functions are orbits
under the allowable permutations.

We argue that there are < µ coding functions with range included in
each Pn+1(clan[B]), where n ≤ |B|.
We define the complexity of a power set Pn+1(clan[B]) as the minimum
element of Bn, or λ if Bn is empty. The complexity of a coding function
is defined as the smallest complexity of a Pn+1(clan[B]) which includes
its range (there is only one such iterated power set unless the coding
function is one whose sole value is a hereditarily finite pure set). Note
that the complexity of an iterated power set of a clan which includes
the parent of an element of nearlitters[A] [other than a parent which
happens to be a hereditarily finite pure set], that is, the complexity of
a P |B|−|A|+1(clan[B]), is the minimum element of B|B|−|A| = A. In
the odd case where the parent is a hereditarily finite pure set, the
complexity will be less than or equal to the minimum element of A.

Observe that the domain of a coding function is the orbit under the
allowable permutations of a relevant support order <S. We can char-
acterize all such orbits by a stereotyped set of information.

Definition (orbit specification): The orbit specification of <S is de-
fined as the function which takes each γ less than the order type
of <S to a tuple consisting of the following components:

1. The first component is 0 if Sγ is an atom, 1 if Sγ is a near-
litter.

2. The second component is the index of the clan of which Sγ is
an element or subset.

3. The third component is the index δ of the Sδ of which Sγ (an
atom) is an element, if there is one, and otherwise is κ.

4. The fourth component, in case Sγ is a near-litter with set
parent, is the coding function gγ such that the set parent of
Sγ is gγ([<S]γ), where [<S]γ is the restriction of the initial
segment of <S of order type γ to clans clan[C] and near-
litter sets nearlitters[C] for C�Bn, where the set parent
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of Sγ belongs to Pn+1(clan[B]) [empty if the set parent of Sγ
is a hereditarily finite pure set], and otherwise is 1.

5. The fifth component, in case Sγ is a near-litter and Sγ does
not have set parent, is the index δ of the atom Sδ which is the
parent of Sγ, if there is one, and otherwise is κ.

Note that a coding function appearing in the specification of the orbit
of an order <S which is a relevant strong support for an element of
a set Pn+1(clan[A]) where n ≤ |A| will either be of lower complexity
than Pn+1(clan[A]) or will be of the same complexity but with domain
elements of order type smaller than the order type of <S.

We need to establish that orbit specifications indeed specify orbits in
orders on support sets. It should be clear that if ρ is an allowable per-
mutation, ρ(<S) has the same orbit specification as <S. The ramified
extension property can be used to show that if <S and <T have the
same orbit specification, there is an allowable permutation ρ such that
ρ(<S) =<T . The only interesting case is the case in which Sγ and Tγ
are near-litters and have set parents: their respective set parents are
then of the form gγ([<S]γ) and gγ([<T ]γ), where gγ is a coding function
– so if we have already defined a locally small bijection with substitu-
tion extension sending each Sδ to Tδ for δ < γ and so sending [<S]γ
to [<T ]γ, its substitution extensions will send the parent of Sγ to the
parent of Tγ, and we can then arrange to send Sγ to Tγ as described
in the proof of the ramified extension property. We have indicated the
verification that orbit specifications indeed specify orbits.

We now present the argument for limited size of sets of coding func-
tions. The goal to be proved is that there are < µ coding functions
with range Pn+1(clan[B]) acting on relevant supports whose associated
orders have any fixed order type γ < κ on the hypothesis that there
are < µ coding functions with any range which either have smaller
complexity or have the same complexity but act on support orders of
length less than γ [once we have shown this we will have shown that
there are < µ coding functions with this range independently of the
order type of their domain elements] .

On the inductive hypotheses, there will be < µ specifications for or-
bits of support orders of length < γ which can be relevant supports
of elements of Pn+1(clan[B]), because all coding functions appearing
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in such specifications will either be of lower complexity than that of
Pn+1(clan[B]) or of the same complexity but having domain elements
of length < γ, and orbit specifications are otherwise rather small ob-
jects (lists of data of length < κ).

If n = 0, the value of any such coding function will be determined as
the symmetric difference of atoms in certain positions in the support
order input and either the union of near-litters at certain positions in
the support order input or the complement of the union of near-litters
at certain support order positions, by the Clan Subset Support Lemma.
For each of < µ possible specifications of the orbit in which the support
order input lies, we have no more than 2κ possible coding functions, for
a total of < µ coding functions in this case.

It remains to consider the case n > 0.

We demonstrate that a coding function χ is completely determined
by a specification of the orbit which is its domain and a set of cod-
ing functions of lower complexity: let x be an element of the range
Pn+1
∗ (clan[B]) of χ (where 0 < n ≤ |B|), with x = χ(<S) (so of course

S is a relevant support for x). For each y ∈ x, choose a relevant strong
support T so that T end extends the appropriate restriction of <S (re-
move from <S those items not taken from a clan[C] or nearlitters[C]
with C equal to or downward extending Bn−1; the order <T on the sup-
port T chosen for a y ∈ x will be an end extension of this restriction).
This yields a set of coding functions for elements y of x, all of com-
plexity the minimum of Bn−1, so less than the complexity of χ, the
minimum of Bn.

We claim that this set of coding functions along with <S determines
x and so χ exactly: we claim that x is exactly the set of all χy,T (<T ′)
where <T ′ end extends the appropriate restriction of <S. Every ele-
ment of x is of the form χy,T (<T ), of course: but further, χy,T (<T ′)
belongs to x, too, because we can construct (by the ramified extension
property) a locally small bijection which adjusts <T to <T ′ and in ad-
dition fixes all elements of the domain of <S (noting that <S ∪ <T

and <S ∪ <T ′ can be extended to orders on strong supports with the
correct relationship to one another), and an allowable permutation ex-
tending this will send y = χy,T (<T ) which is in x to χy,T (<T ′), and will
fix x by support considerations, so χy,T (<T ′) ∈ x as well. And further,
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this procedure will work to compute the value of χ at any <S′ in its
domain, since everything in sight commutes with uniform application
of an allowable permutation: so χ is exactly specified by the orbit of
<S and the collection of functions χy,T .

Now a coding function χx,S acting on support orders of length γ and
with range in Pn+1(clan[B]) (n > 0) is seen to be determined by one
of < µ possible specifications for the orbit in support orders which is its
domain, and a subset of the set of coding functions of lower complexity
(the set of coding functions of lower complexity is of cardinality < µ;
and this set has < µ subsets because µ is strong limit) so there are < µ
such coding functions, and further it follows immediately that there are
< µ coding functions with this range.

The application of < µ coding functions with range Pn+1(clan[B]) to
µ orders on strong supports will generate no more than µ elements in
the iterated symmetric power set Pn+1

∗ (clan[B]), and this is sufficient
to see that the range of ΠBn is of cardinality no more than µ (that it
is of cardinality at least µ is easy to establish).

the argument for coincidence of notions of symmetry: We show by in-
duction on n that Pn∗ (clan[B]) is the collection of strongly symmetric
elements of Pn(clan[B])

basis step: This result for n = 1 follows from the results on the extent
of symmetric power sets of clans: the strongly symmetric subsets
of clan[A] clearly include the sets with small symmetric difference
from small or co-small unions of litters, and these are exactly
the hereditarily symmetric subsets of the clan, and of course all
strongly symmetric subsets are hereditarily symmetric.

induction step: We now argue that if Pn∗ (clan[B]) is the collection of
strongly symmetric subsets of Pn∗ (clan[B]), then Pn+1

∗ (clan[B])
is the collection of strongly symmetric subsets of Pn+1(clan[B]).
One direction of this is easy, as all allowable permutations are also
Bn-allowable permutations, so any object c invariant under all Bn-
allowable permutations fixing all elements of a support set S is also
invariant under all allowable permutations fixing all elements of
the same support set. So what we actually need to show is that
a subset X of Pn∗ (clan[B]) with a support S relative to allowable
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permutations, which we may suppose without loss of generality
to be an extended strong support set, also has support S ′ relative
to Bn-allowable permutations, namely the set of all elements of
S which belong to sets clan[C] or nearlitters[C] with C�Bn

(those which are eligible to belong to Bn-support sets).

Let ρ be a Bn-allowable permutation fixing each element of S ′. We
may further suppose that ρ acts as the identity on all elements of
parents[C] or clan[C] not satisfying C�Bn, because modifying
ρ to have the action of the identity on these sets will neither affect
its status as Bn-allowable nor change its value at X. With this
additional move, ρ fixes all elements of S.

Let c belong to X. The element c has a Bn−1-extended strong
support by inductive hypothesis, and so has a Bn−1-overextended
strong support T , which is also a strong support for c (recall
that any element of T belongs to clan[C] or litters[C] with
C�Bn−1). Merge T and S into a strong support set U with order
<U . Notice that this is not an extended support: in particular,
we have avoided adding any atoms in clan[Bn] which are parents
of elements of T to the support T , because we do not want to
be forced to add any litters in clan[Bn] to the strong support U
which are not already in S.

Construct a locally small bijection ρ0 sending each atom which
either belongs to U or is the parent of a near-litter belonging to
U to its image under ρ, and further ensure that each anomaly of
an element of U or preimage under ρ of an anomaly of an element
of ρ(U) and each exception of ρ has the same image under ρ0

that it has under ρ, and that ρ0 respects each near-litter element
u of U in the sense that ρ0 maps elements of u to elements of
ρ(u) and non-elements of u to non-elements of ρ(u). Choose a
substitution extension ρ′ of ρ0: ρ′ agrees with ρ on U , at atoms by
construction and at near-litters for reasons which by now should
be familiar: if not, consider the first near-litter u ∈ U such that
ρ(u) 6= ρ′(u); the parents of these two near litters are equal because
ρ′ is Bn-allowable and has the same action on a C-support (for
some C�Bn) of the parent as ρ (or because we are in S where
everything is fixed by ρ and ρ′ fixes all elements of a support of
the parent); ρ′ must then map some element of u to a non-element
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of ρ(u) or vice versa, but we have arranged that this element is
forced to be an exception of ρ′ (by forcing ρ to agree with ρ′ at
anomalies of relevant near-litters), and ρ′ has no exceptions at
which it disagrees with ρ. Thus ρ′ sends each element of U to its
image under ρ, and thus fixes X because it fixes all elements of S,
and satisfies ρ′(c) = ρ(c) because ρ and ρ′ have the same values
on T , a Bn-support for c. Thus ρ′(c) = ρ(c) ∈ X: ρ−1(c) ∈ X by
an identical argument, so ρ fixes X, so S ′ is a Bn-support for X.

We now complete the main argument, having verified that the structure
we are working with has the intended properties.

cardinalities of subsets of clans: We argue that a symmetric bijection
between subsets of a clan has small symmetric difference from the iden-
tity map on its domain. Suppose that f is a bijection from X ⊆ clan[A]
to Y ⊆ clan[A] with extended strong support S and with large sym-
metric difference from the identity, so there is a large subset X ′ of
its domain on which it is not fixed. By earlier results, X ′ must have
large intersection with a litter L. Choose elements a, b of L such that
a, b, f(a), f(b) are all distinct and none of them belong to S (consider
the fact that orbits in f are small sets). A substitution extension of
the locally small bijection which exchanges a, b and fixes f(a), f(b) and
all atoms in S is seen both to fix X and to move it. The substitution
extension is seen to fix near-litter elements of S by considering the first
litter in <S which it moves as in arguments above, noticing that it
must contain an exception or an image of an exception of the substitu-
tion extension. . .which has no exceptions or images of exceptions which
belong to litters in S.

This tells us that the litters have distinct κ-amorphous cardinalities in
the FM interpretation (a κ-amorphous set being one which has only
small and co-small subsets, and a κ-amorphous cardinal being the car-
dinality of such a set).

an important injection: There is a symmetric injection from P∗(parents[A])
to P2

∗ (clan[A]), associating each symmetric subset X of parents[A]
with the set union of the collection of local cardinals with parents in
X. This witnesses the important inequality

|P2
∗ (clan[A])|∗ ≥ |P∗(parents[A])|∗
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(recall that |X|∗ denotes the Scott cardinal of X in the FM interpreta-
tion). We do not actually need the result about cardinality just above
to show this, as this map is obviously symmetric and an injection. The
preceding result is a nice result, though, and justifies the use of the
term “local cardinal”.

motivational remark: This situation is a major aim of the elabo-
rate machinery of our construction. The FM interpretation is designed
so that the power set of a clan is almost amorphous, and its structure
reveals nothing about the structure of the parent set that the FM inter-
pretation can see, but the double power set of a clan contains structure
which the FM interpretation can see as parallel to the structure of the
power set of the parent set (not just the parent set itself!). This is part
of what enables us to fit the cardinalities of iterated power sets of clans
together into the unlikely structure of a tangled web.

The main theorem: We can now prove that the map τ on nonempty clan
indices defined by the equation τ(A) = |P2

∗ (clan[A]|∗ is a tangled web
(in the FM interpretation), from which the main result of the paper
that NF is consistent follows at once.

definition and verification of the tangled web: Recall that |X|∗ denotes
the Scott cardinal of X in the FM interpretation.

Define exp(|X|∗) as |P∗(X)|∗.
We need to verify that exp(τ(A)) = τ(A1) if |A| ≥ 2 This is equiv-
alent to showing that |P3

∗ (clan[A])|∗ = |P2
∗ (clan[A1]) [whence it is

straightforward to show that |Pn+2
∗ (clan[A])|∗ = |P2(clan[An])|∗ when

|A| > n]. We have from the inequality witnessed by the injection de-
scribed just above and the formula for ranges of maps ΠA that

|P2
∗ (clan[A1])|∗ ≥ |P∗(parents[A1]|∗

≥ |P∗(P |A|−|A1|+1
∗ (clan[A]))|∗ = |P3

∗ (clan[A])|∗.

On the other hand

|P3
∗ (clan[A])|∗ ≥ |P2

∗ (parents[A])|∗ ≥ |P2
∗ (clan[A1])|∗.

This verifies the naturality property of tangled webs.
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The elementarity property of tangled webs falls directly out of the con-
struction. We need to show that the first order theory of a natural
model (all natural models discussed here being those of the FM inter-
pretation) of TSTn whose base type has cardinality τ(A) depends only
on A\An, the set of the smallest n elements of A, where |A| > n. This
reduces to consideration of default natural models of TSTn whose base
type is P2

∗ (clan[A]) and whose top type is Pn+1
∗ (clan[A]). This model

is the image under the action of a bijection on atoms [in the ground
model of ZFA] of the default natural model of type theory whose base
type is P2

∗ (clan[A\An]) and whose top type is Pn+1
∗ (clan[A\An]), by

the construction (the construction actually provides an external isomor-
phism between the default natural models of TSTn+2 with base types
clan[A] and clan[A \ An], a composition of maps σβ): these models
have the same first-order theory because they are isomorphic models
of the appropriate initial segment of type theory from the standpoint
of the ground model of ZFA, so the theory of the model considered
initially depends only on A \ An.

At this point the main result of the paper (the consistency of NF) is
proved.

a possible simplication of the formula for parent sets: If we define
B �1 A as B � A ∧ |B| − |A| = 1 (in other words, B = A ∪ {β}
for some β dominated by all elements of A), we could carry out the
proof using

⋃
B�1A

P2
∗ (clan[B]) as the range of ΠA or equivalently⋃

β<min(A)P2
∗ (clan[A ∪ {β}]).

One can see from the proof just above that this is sufficient to establish
the naturality property of the tangled web. We have decided not to
adopt this “simplified” form basically because nothing much is gained
in terms of complexity of the proof: it is still necessary to show coin-
cidence of notions of symmetry for all Pn∗ (clan[B]) with n ≤ |B| (this
n does not reduce to 2). It is also the case that this is only nominally
less evilly tangled than the original formula.

an outline of an interpretation of tangled type theory: It should be
noted that the external isomorphisms between iterated power sets in the
natural models based on the tangled web are such that various iterated
power sets can in fact be identified in such a way as to produce a model
of the tangled type theory TTTλ. This is important in connection with
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application of the results indicated in section 5.1, which allow us to
draw the further conclusion that there is an ω-model of NF. We briefly
indicate how to do this. Our aims here are restricted to a compact
description of the interpretation and a general description of the reasons
why it is an interpretation: we feel free to do this as our main result
does not depend on this; the reason that we discuss it is that it makes
it easier for us to give an indication of reasons why the existence of an
ω-model of NF follows from our construction, which is important for
corollaries mentioned in the conclusions section below.

Type α for each α < λ is conveniently implemented as P2
∗ (clan({α}).

A scheme of bijections EA,n : P2
∗ (clan([{α}]) → Pn+2

∗ (clan[A]) are
presented, for each A for which min(An) = α. These bijections im-
plement a scheme of identification of each Pn+2

∗ (clan[A]) for which
min(An) = α with type α of the interpreted tangled type theory.

The embedding E{α},0 is of course the identity map.

The embedding E{α,β},1 (where α > β) is in each case a hereditarily
symmetric bijection from P2

∗ (clan[{α}]) to P3
∗ (clan[{α, β}]): we have

just shown that such bijections exist.

If the embedding EA has been defined, and δ dominates all members
of A, we define E{δ}∪A,n(x) as σδ(EA,n(x)), noting that EA is already
known to map P2

∗ (clan({α}) to Pn+2
∗ (clan[A]), while σδ [defined in the

construction above] acts as an isomorphism between natural models of
initial segments of type theory with clans as base types which (among
other things) sends Pn+2

∗ (clan[A]) to Pn+2
∗ (clan[{δ} ∪ A]).

If EA,n is defined and each element of A dominates δ, EA∪{δ},n+1 is
intended to map P2(clan[{min(An)}]) to Pn+3(clan[A ∪ {δ}]). Let
α denote min(An) and let β denote min(An−1). We may suppose
that we have already defined the map E{α,β},1 from P2(clan({α}) to
P3(clan[{α, β}]) and the map EA∪{δ},n from P2(clan[{β}]) to
Pn+2(clan[A∪{δ}]). DefineEA∪{δ},n+1(x) asEA∪{δ},n“(σ−1

α (E{α,β},1(x))).
The application of σ−1

α converts elements of P3(clan[{α, β}] to ele-
ments of P3(clan[{β}]) by the application of an external isomorphism
(acting on atoms) of a relevant natural model of an initial segment of
type theory.

The crucial feature is that that for any x, y, if EA,n(x) and EA,n+1(y)
are defined and EA′,n′(x) and EA′,n′+1(y) are defined, then EA,n(x) ∈
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EA,n+1(y) ↔ EA′,n′(x) ∈ EA′,n′+1: types identified via the scheme of
bijections agree about membership facts.

For β < α < λ, the membership x ∈β,α y of the interpretation of
tangled type theory whose construction we outline here is defined as
holding, for x ∈ P2

∗ (clan[{β}]) and y ∈ P2
∗ (clan[{α}]), just in case

EA,n(x) ∈ EA,n+1(y) for some (and so for any) A such that min(An) =
α, min(An+1) = β: concretely, x ∈β,α y iff E{α,β},0(x) ∈ E{α,β},1(y),
that is, σα(x) ∈ E{α,β},1(y). The verification of extensionality and
comprehension follows in a straightforward manner by considering the
identifications of the types with suitable segments of natural models of
type theory (natural models in the sense of the FM interpretation, of
course).

It is important to note that the relations ∈β,α of the interpretation of
tangled type theory are not set relations in the FM interpretation, be-
cause of the role of the external maps σδ derived from the construction
of the FM interpretation in the definition of the bijections generating
the interpretation of tangled type theory.
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8 Conclusions and questions

The conclusions to be drawn about NF are rather unexciting ones.
By choosing the parameter λ to be larger (and so to have stronger parti-

tion properties) one can show the consistency of a hierarchy of extensions of
NF similar to extensions of NFU known to be consistent: one can replicate
Jensen’s construction of ω- and α-models of NFU to get ω- and α-models of
NF (details given above). One can show the consistency of NF + Rosser’s
Axiom of Counting (see [13]), Henson’s Axiom of Cantorian Sets (see [4]), or
the author’s axioms of Small and Large Ordinals (see [6], [7], [15]) in basically
the same way as in NFU.

We believe that a refinement of this argument would show that the con-
sistency strength of NF is exactly the minimum possible on previous infor-
mation, that of TST + Infinity, or Mac Lane set theory (Zermelo set theory
with comprehension restricted to bounded formulas). We have not been con-
cerned to do this here. It is clear from what is done here that NF is much
weaker than ZFC. The existing version with λ = ω and κ = ω1 requires µ
to be a limit cardinal of cofinality at least ω1, which is of course too high to
establish the minimum possible consistency strength.

By choosing the parameter κ to be large enough, one can get local ver-
sions of Choice for sets as large as desired, using the fact that any small
subset of a type of the structure is symmetric. The minimum value ω1 for κ
already enforces Denumerable Choice (Rosser’s assumption in his book) or
Dependent Choices. It is unclear whether one can get a linear order on the
universe or the Prime Ideal Theorem: that would require major changes in
this construction. But certainly the question of whether NF has interesting
consequences for familiar mathematical structures such as the continuum is
answered in the negative: set κ large enough and what our model of NF
will say about such a structure will be entirely in accordance with what our
original model of ZFC said. It is worth noting that the models of NF that
we obtain are not κ-complete in the sense of containing every subset of their
domains of size κ; it is well-known that a model of NF cannot contain all
countable subsets of its domain. But the models of TST from which its
theory is constructed will be κ-complete, so combinatorial consequences of
κ-completeness expressible in stratified terms will hold in the model of NF
(which could further be made a κ-model by making λ large enough).

The question of Maurice Boffa as to whether there is an ω-model of TNT
(the theory of negative types, that is TST with all integers as types, proposed
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by Hao Wang ([18])) is settled: an ω-model of NF yields an ω-model of TNT
instantly. This work does not answer the question, very interesting to the
author, of whether there is a model of TNT in which every set is symmetric
under permutations of some lower type.

The question of the possibility of cardinals of infinite Specker rank (at
least in ZFA) is answered, and we see that the existence of such cardinals
doesn’t require much consistency strength. For those not familiar with this
question, the Specker tree of a cardinal is the tree with that cardinal at the
top and the children of each node (a cardinal) being its preimages under
α 7→ 2α. It is a theorem of Forster (a corollary of a well known theorem of
Sierpinski) that the Specker tree of a cardinal is well-founded (see [2], p. 48),
so has an ordinal rank, which we call the Specker rank of the cardinal. NF +
Rosser’s Axiom of Counting proves that the Specker rank of the cardinality of
the universe is infinite; it was unknown until this point whether the existence
of a cardinal of infinite Specker rank was consistent with any set theory in
which we had confidence. The possibility of a cardinal of infinite Specker
rank in ZFA is established by the construction here; we are confident that
standard methods of transfer of results obtained from FM constructions in
ZFA to ZF will apply to show that cardinals of infinite Specker rank are
possible in ZF.

This work does not answer the question as to whether NF proves the
existence of infinitely many infinite cardinals (discussed in [2], p. 52). A
model with only finitely many infinite cardinals would have to be constructed
in a totally different way. We conjecture on the basis of our work here that
NF probably does prove the existence of infinitely many infinite cardinals,
though without knowing what a proof will look like.

A natural general question which arises is, to what extent are all models
of NF like the ones indirectly shown to exist here? Do any of the features of
this construction reflect facts about the universe of NF which we have not
yet proved as theorems, or are there quite different models of NF as well?
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