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March 28, 2019: generalizing and debugging pass; fixes to some
proofs; added intro material on type theories and NF(U) and

section divisions; fix to one of the local approximation
constructions. Mar 27: subtle point about images under σ

maps of atoms noted and fixed, this time correctly, though this
involved massive debugging of indexing of litters in supports,

which may have introduced new bugs.

1 Introduction to type theories and NF(U)

We review a familiar theory. TST is a many-sorted theory with sorts indexed
by the natural numbers with primitive relations of logic and membership.
Each variable x (considered as a typographical object) has a natural number
type type(x); there is a countable supply of variables of each type. An atomic
formula u = v (again, considered as a typographical object with u and v as
constituent typographical objects) is well-formed iff type(u) = type(v) and
an atomic formula u ∈ v is well-formed iff type(u) + 1 = type(v).

The first axiom scheme of TST is extensionality, the collection of formulas
of the shape

(∀xy : (∀z : z ∈ x↔ z ∈ y)→ x = y).

Note that the common type of x and y will be positive and one greater than
the type of z, The second axiom scheme is comprehension, the collection of
formulas of the shape

(∃A : (∀x : x ∈ A↔ φ)),

where φ is a formula in which A does not appear free. This completes the
basic definition of the theory, though axioms of Infinity and Choice are often
adjoined.
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The intuitive picture of course is that type 0 is inhabited by individuals of
an unspecified character, while each type n+ 1 is inhabited by sets of type n
objects. The axiom of extensionality expresses the natural criterion for iden-
tification of objects of each positive type, and the axiom of comprehension
tries to assert that any condition whatsoever on type n objects determines a
type n+ 1 object, and of course does not succeed in doing this.

We now describe some variations. TSTU differs from TST only in weak-
ening the axiom of extensionality to apply only to nonempty objects:

(∀xyw : w ∈ x ∧ (∀z : z ∈ x↔ z ∈ y)→ x = y).

Intuitively this theory differs from TST in allowing an arbitrary collection
of atoms with no elements in each positive type, in addition to the sets
provided by comprehension. It is convenient in formalizing TSTU to provide
a constant ∅n in each type n + 1 with no elements; this allows us to talk
about sets as opposed to atoms, the objects with no elements in positive
types which are not equal to the appropriate ∅n.

We describe the theories NF and NFU.
NF is the single sorted theory with equality and membership whose ax-

ioms are extensionality

(∀xy : (∀z : z ∈ x↔ z ∈ y)→ x = y).

and the scheme of stratified comprehension,

(∃A : (∀x : x ∈ A↔ φ)),

where A is not free in φ and φ admits a stratification, a function σ from
variables appearing (free or bound) in φ to natural numbers such that in
each atomic subformula u = v we have σ(u) = σ(v) and in each atomic
subformula u ∈ v we have σ(u) + 1 = σ(v). A formula with a stratification is
said to be a stratified formula. In effect, the comprehension axioms of NF are
those which could be made formulas of TST by a suitable assignment of types
to constituent variables. We note against the criticism that this is merely
a syntactical trick that the stratified comprehension scheme is equivalent to
a finite conjunction of its instances. It is possible to present the axioms of
NF in a way which makes no reference to types at all. We note in support
of those who see an essential connection to the typed theory that the very
first thing one would want to do with such a presentation of NF would be to
prove the stratified comprehension scheme as a metatheorem.
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The theory NFU differs from NF only in having the weak extensionality
axiom instead of the strong one. It would be usual to specify a particular
empty object ∅ as the empty set and refer to any others as the atoms.

Now we discuss typical ambiguity in TST and TSTU. Suppose that we
have a bijection x 7→ x+ from variables to variables of positive type, with
the property that type(x+) = type(x) + 1 for every x. If φ is a formula,
the result φ+ of replacing each variable (free or bound) with its image under
(x 7→ x+) is also a formula. Moreover, if φ is an axiom, so is φ+, and if φ
is a theorem, so is φ+ (because the type-raising operation commutes nicely
with proof rules).

We define the Ambiguity Scheme (briefly, Amb) as the collection of all
closed formulas φ ↔ φ+. It is a theorem of Specker that TST + Amb is
equiconsistent with NF, and the proof adapts to prove that TSTU + Amb
is equiconsistent with NFU.

We now describe a version of Jensen’s proof of the consistency of TSTU
+ Amb, and so of NFU, carried out by constructing a suite of models of
TSTU in ZF.

Let λ be a limit ordinal. Construct a function V with domain λ such
that for each α < β < λ, we are given an injection fα,β from P(V (α)) into
V (β). With each s : ω → λ which is strictly increasing, we associate a model
Ms of TSTU in which type i is implemented as V (s(i)) and the membership
of type i objects in type i + 1 objects is defined as x ∈i y ≡def (∃z : x ∈
z ∧ fs(i),s(i+1)(z) = y).

Let Σ be an arbitrary finite set of closed formulas of TSTU. Let n be
greater than the type of any variable which appears in a formula in Σ. We
define a partition of [λ]n in which the partition to which a set A belongs is
determined by the truth values of the formulas in Σ in models Ms of TSTU
where A is the range of sdn. This partition of [λ]n into ≤ 2|Σ| partitions
has an infinite homogeneous set H by Ramsey’s theorem, which contains the
range of a strictly increasing h : ω → λ. The model Mh satisfies TSTU and
the restriction of the Ambiguity Scheme to formulas in Σ. By compactness,
TSTU + Amb is consistent, and by Specker’s result NFU is consistent.

Jensen’s consistency proof is the starting point of my 1995 development of
“tangled type theory”. It is not at all clear how to adapt Jensen’s argument to
the theory with strong extensionality: if it were straightforward, the problem
would not be open!

My initial observation was that Jensen’s proof could be presented in terms
of a different type theory with urelements in each type. TTTUλ is a first
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order sorted theory with sorts belonging to λ. u = v is well-formed iff
type(u) = type(v). u ∈ v is well-formed iff type(u) < type(v) (but this
theory is not a cumulative type theory: we are not saying that type α is
included in type β when α < β). For any formula φ of the language of
TSTU and strictly increasing s : ω → λ, the formula φs is the formula of the
language of TTTUλ obtained by injectively replacing each variable of type
i in φ with a variable of type s(i). Note that this does yield a formula of
TTTUλ. We then declare that the axioms of TTTUλ are the formulas φs for
each sequence s and each axiom φ of TSTU.

We note that the structure described above is a model of TTTUλ, with
type α implemented as V (α) and x ∈α,β y for each α < β < λ implemented
as (∃z : x ∈ z ∧ fα,β(z) = y). Jensen’s proof of the consistency of NFU can
be recast as a two step argument: first, there is a model of TTTUλ, and
then, the existence of a model of TTTUλ implies the consistency of TSTU
+ Amb and so of NFU. We won’t write this out here, but we do write out
the analogous result for NF immediately.

Define TTTλ (tangled type theory with λ types) exactly as above, except
that its axioms are of the form φs where φ is an axiom of TST.

We will argue that TTTλ is consistent if and only if NF is consistent,
but first we pause to point out that this is an extremely weird theory. Each
element of a type β has an extension relative to each lower type α, and each of
these extensions, considered by itself, determines the object of type β exactly.
So type β is understood as the “power set” of each lower type. These cannot
be true power sets. If α < β < γ, and we had type β implementing each
subset of type α, and type γ implementing each subset of type β, then type
γ would by Cantor’s theorem be larger than the collection of all subsets of
type α, and we could not define an extensional membership relation of type
α objects in type γ objects. It should also be noticed that the well-formed
formulas determining instances of comprehension are quite restricted, being
determined in each case by a fixed subsequence of types in λ playing the role
of the sequence of types of TST.

If NF is consistent, then TTTλ is consistent: given a model of NF, let
each type of the model of TTTλ be the domain of the model of NF, and
let the membership relation of the model of NF serve as the membership
relation ∈α,β for each α < β < λ. (One could also use D × {α} as type α,
where D is the domain of the model of NF, and then define (x, α) ∈TTT (y, β)
as α < β < λ ∧ x ∈NF y; this is a matter of style. We think of a model of
type theory as determined by a sequence of types and membership relations
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between each appropriate pair of types, which means that we do not need to
assume that the types are disjoint. If the types are taken to be disjoint, then
of course we can use a single relation to implement membership).

If TTTλ is consistent, then NF is consistent. Let Σ be an arbitrary finite
set of closed formulas of TST. Let n be greater than the type of any variable
which appears in a formula in Σ. We define a partition of [λ]n in which
the partition to which a set A belongs is determined by the truth values of
the formulas in Σ in models Ms of TST where A is the range of sdn, the
model Ms having type s(i) of the model of TTTλ as type i for each i, and
∈s(i),s(i+1), the restriction of the membership of TTTλ to membership of type
s(i) objects in type s(i + 1) objects, as the implementation of membership
of type i objects in type i + 1 objects. Ms is a model of TST because the
translation of each axiom of TST into its language is an axiom of TTTλ.
This partition of [λ]n into ≤ 2|Σ| partitions has an infinite homogeneous set
H by Ramsey’s theorem, which contains the range of a strictly increasing
h : ω → λ. The model Mh satisfies TST and the restriction of the Ambiguity
Scheme to formulas in Σ. By compactness, TST + Amb is consistent, and
by Specker’s result NF is consistent.

Of course this is not a proof of the consistency of NF, because the exis-
tence of a model of TTTλ is a far from obviously true hypothesis.

Further, it is very difficult to get one’s mind around how TTT works.
In the version of my NF proof which I will present, I do not attempt to
construct a model of TTTλ (though I do in fact succeed in doing so, and
may discuss this after the main result is shown), but instead construct a
model of ZFA in which there is a peculiar system of cardinals called a tangled
web. The relationship of this to TTTλ is that TTTλ in fact sees tangled
webs internally (or something approximating them) when considering the
relationships between systems of cardinals related to its own type structure
[I believe that an ω-model of TTTλ actually sees tangled webs]. I’m willing
to talk about this, though the details are maddening, but it is not relevant
to verifying my proof of Con(NF), which only requires that we understand
the definition of a tangled web and the proof that existence of a tangled web
implies the consistency of NF.
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2 The model construction

What follows is in intention a description of a model of tangled type theory
with λ types and a proof that it really is that. This is extremely nasty and
I am still debugging, but I think it ought to straighten out with effort.

working set theory: We work in ZFAC.

parameters of the construction: This construction has three important
parameters:

1. A regular uncountable cardinal κ. which may be taken initially
to be ω1. Sets of size < κ are called small . All other sets are
called large. Types in the structure we define will not contain
all subsets of lower types but will contain all (nonempty) small
subsets of lower types as elements.

2. A limit ordinal λ < κ. Ordinals less than λ are indices of types
and may be called type indices on occasion. One may initially
take λ to be ω. Taking λ < κ helps us keep supports small. λ ≤ κ
might be fine.

3. A strong limit cardinal µ > κ with cofinality ≥ λ. This will be the
common cardinality of all types of the structure we build, from
the standpoint of the ambient ZFAC. One may initially take µ to
be iω.

preliminary description of the types: The structure we build will have
types indexed by the ordinals below λ. Each type will be of size µ.
The types are pairwise disjoint sets. We will note in advance that type
α < λ in our interpretation of TTT with λ types will be represented
by type α + 2 in this structure.

Type 0 consists of µ atoms. So does any type indexed by a limit ordinal
< λ.

Type α + 1 consists of µ subsets of type α (the exact way these are
chosen to be specified later), an atom ∅α+1 (the empty set for that type)
and µ further atoms; we will refer to the atoms other than ∅α+1 in type
α+ 1 and all the atoms in type 0 or any type with limit ordinal index
as “nonsets”.
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partition of the nonsets into litters; local cardinals: The nonsets of each
type are partitioned into µ sets of size κ called litters . Each litter which
is a subset of type α belongs to type α + 1. For any litter L of type
α+1, the collection of subsets of type α+1 which contain only nonsets
and have small symmetric difference from L is called the local cardinal
of L, briefly written [L]. If L belongs to type α+ 1, [L] belongs to type
α+ 2 (and so all of its elements belong to type α+ 1). We refer to the
set of local cardinals of type α + 1 sets as Kα+2.

discussion of near-litters: Elements of any
⋃
Kα+2 are called near-litters .

For any near-litter N , we let N◦ represent the unique litter with small
symmetric difference from N . We let [N ] denote the local cardinal [N◦]
to which N belongs.

subcollections of the local cardinals: Each set Kα+2 is partitioned into
κ sets Kε

α+2 (ε < κ) of size µ called echelons. An element of any Kε
α+2 is

said to have echelon ε. A litter has the same echelon as its local cardinal,
An element of a litter has the same echelon as the litter to which it
belongs. The echelon of a near-litter is defined as the supremum of
the echelons of its elements. We provide notation echelon(x) for the
echelon of a nonset, near-litter or local cardinal x. Echelons Kε

α+2

should certainly not be expected to be elements of a type.

Each set Kα+2 has designated subsets rng0(σβ+2,α+2) for each β with
β + 1 < α, and a designated subset rng0(βα+2), and each set Kβ+3 has
designated subsets rng0(τβ+2,α+2), when β+1 < α. The designated sets
are all disjoint from one another and each of them meets each echelon
in the appropriate Kγ+2 in a set of cardinality µ.

the recursive construction of the type structure: We give a descrip-
tion of the recursive construction of the types.

base types already described: Type 0 and any types present with
limit ordinal index have already been described: they are collec-
tions of µ atoms.

types just above base types: Type ν+1. where ν is non-successor,
consists of the unions of small and co-small collections of litters
of type ν + 1. the empty set of type ν + 1, and the atoms of type
ν + 1.
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description of double successor types commences: From this point
on the type we are constructing is type α+ 2, and all lower types
are supposed already constructed. We are given certain informa-
tion about types β < α + 2 to start with.

reprise of general facts about types: The types are pairwise dis-
joint. Each type is of size µ. Each type whose index is not a
successor is a collection of µ atoms (termed nonsets). Each type
whose index is a successor β+1 < α+2 contains µ nonempty sub-
sets of type β, the special atom ∅β+1, and µ other atoms, termed
nonsets. As noted above, the nonsets in each type (including types
with index higher than α+2) are equipped with the partition into
litters, and the litters and local cardinals belong to the appropriate
types.

Definition (potential elements): We define the potential elements
of type β + 2 as the subsets of type β + 1 and the atoms of type
β + 2. Notice that there are more potential elements than actual
elements by Cantor’s theorem combined with our stated intention
that each type has µ elements.

special maps already constructed: Some special maps have been
provided for coding purposes.

σ maps: A map σβ+2,γ+2 injectively mapping type β + 2 into
rng0(σβ+2,γ+2) ⊆ Kγ+2 has been defined whenever β < α,
for all γ > β + 1.

τ maps: An injective map τβ+2,γ+2 from type γ+1 into rng0(τβ+2,γ+2) ⊆
Kβ+3 has been defined for each γ ≤ α and each β with
β + 1 < γ.

β maps: For each type β + 2 with β < λ, an injective map ββ+2

from the nonsets of type β + 2 into rng0(ββ+2) ⊆ Kβ+2 has
been defined.

We provide the map β′β+2 sending each atom x to ββ+2(x) ∪ 0
and each subset ββ+2(x)∪ k of type β+ 1 to ββ+2(x)∪ (k+ 1)
and fixing all other subsets of type β + 1 (where a natural
number 0, k, k + 1 here represents the set of all elements of
type β + 1 (other than nonsets) of that cardinality; i.e., these
are the Frege natural numbers over a type) has been defined
for each β < α. What we need to notice about β′β+2 is that
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it is a bijection from potential elements of type β + 2 to the
subsets of type β + 1. We note also that we can understand
what set is intended by β′α+2(X) for x any atom of type α+ 2
or subset of type α + 1, though we cannot yet tell whether
this will belong to type α + 2. We observe, though it is not
needed for the induction, that for β < α it is actually the case
that β′β+2 sends elements of type β + 2 to elements of type
β+ 2, serving as a bijection from objects of type β+ 2 to sets
of type β + 2.

note about notation: For each of the special functions g, there
is no particular reason to believe that rng(g) is exactly rng0(g);
there is a technical condition on how the functions are con-
structed which makes it inconvenient to try to enforce exact
equality of the ranges with the sets set aside originally to
provide space for them.

motivation of σ maps; preliminary codes: We have been told above
that the map σβ+2,α+2 maps type β + 2 injectively to a subset of
Kα+2. The idea is that a subset B of type β + 2 can be coded
into type α+ 2 in a preliminary way as

⋃
σβ+2,α+2“B, a potential

element of type α+ 2: we call this the preliminary code of B and
refer to all unions of elements of the range of σβ+2,α+2 as “prelim-
inary codes for subsets of type β + 2 (of potential type α + 2)”.
We expect that all sets in type β+3 and some other collections of
type β + 2 objects will have preliminary codes which are actually
sets of type α + 2.

every potential element of type α + 2 codes a subset of type β + 2:
We now exhibit our scheme for ensuring that every potential ele-
ment of type α + 2 can be taken to code a subset of type β + 2.
The map τβ+2,α+2 is an injection from type α + 1 into Kβ+3 (as
we have already been told). The idea is that this allows us to
take any subcollection B of type α+ 1 (or atom B in type α+ 2)
and map it deviously into the collection of preliminary codes of
subcollections of type β+2, thus eventually allowing construction
of a bijection between potential elements of type α + 2 and the
preliminary codes by the Schroder-Bernstein method. To trans-
form a particular potential element of type α+ 2, first apply β′α+2

to be sure we get a set (and we do describe above how to apply
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this to any potential element of type α + 2), then take the union
of the images of the elements of this set under τβ+2,α+2, which is
a subset of type β + 2, then code this to a potential element of
type α + 2 as above. Note that there is no reason to believe that
the subsets of type β+ 2 coded in this process are actually sets of
type β + 3. For x a subset of type α + 1 or atom of type α + 2,
we define f 0

β+2,α+2(x) as
⋃
σβ+2,α+2“(

⋃
τβ+2,α+2“(β′α+2(x))). The

map f 0
β+2,α+2 sends the subsets of type α + 1 and atoms of type

α + 2 injectively into the collection of preliminary codes for sub-
collections of type β + 2 (and we will provide that images under
f 0
β+2,α+2 of objects of type α + 2 are sets of type α + 2). The

map fβ+2,α+2 maps each subset of type α + 1 (and atom of type
α+ 2) which is not a preliminary code for a subset of type β + 2,
and each iterated image under f 0

β+2,α+2 of such an object, to its
image under f 0

β+2,α+2 and fixes all other potential elements of type
α+2. This map is a bijection from potential elements of type α+2
to preliminary codes for subcollections of type β + 2 of potential
type α+ 2, and allows every potential element of type α+ 2 to be
interpreted as a subset of type β + 2.

definition of type-skipping membership: The membership relation
x ∈β+2,α+2 y is defined as holding if σβ+2,α+2(x) ⊆ fβ+2,α+2(y), if
α + 2 > β + 3. x ∈β+2,β+3 y is defined as x ∈ ββ+3(y). In both
cases y should be an actual not a merely potential element of type
α + 2. With care, these will turn out to be the membership rela-
tions of the desired model of tangled type theory (which will have
type α + 2 of our structure as its type α).

definition of allowable permutations: We now define groups of per-
mutations on parts of this structure, where we allow permutations
π of the atoms which move only nonsets (of course we do not want
them to move the “empty sets” in each type) to act on sets by the
rule π(A) = π“A.

An α+2-allowable permutation π is a permutation of atoms mov-
ing only nonsets (we do want to fix the empty sets in each type!)
satisfying the following conditions:

domain: The permutation π is defined on the atoms in types
≤ α + 2, with induced action on sets with no other atoms in
their transitive closures.
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respects local cardinals: The action of π fixes each Kβ+2 for
β ≤ α + 2 (e.g., it fixes Kα+4).

respects f and β maps: The action of π fixes each fβ+2,α′+2 for
α′ ≤ α; and fixes each ββ+2 for β ≤ α + 2.

weird conjugation condition with σ maps: For any β + 1 <
γ ≤ α, the composition σ−1

β+2,γ+2 ◦ π ◦ σβ+2,γ+2, which we de-
note by πβ+2,γ+2, has the precise action of a β + 2-allowable
permutation (note that it is defined on suitable atoms and it-
erated singletons of atoms, so there is enough information to
determine uniquely what β + 2-allowable permutation if any
it would agree with). There is no presumption whatever that
πβ+2,γ+2 agrees with π. We define πα+1,α+2 as the permuta-
tion obtained by restricting π to act only on atoms of type
≤ α + 1 (which will be α + 1-allowable if α is successor, or
invariably if we adopt the following point).

ν- and ν + 1- allowable permutations? It does look as if the
definition works for nonsuccessor ordinals and their succes-
sors, with some fine tuning. There may be some use for it.
A ν-allowable permutation is a permutation of the atoms in
types ≤ ν whose action fixes Kν+2 and whose restriction to
atoms of types ≤ γ for any fixed γ < ν is a γ-allowable permu-
tation. A ν + 1-allowable permutation of the atoms in types
≤ ν+ 1 is a permutation of the atoms in types ≤ ν+ 1 whose
action fixes Kν+3 and whose restriction to atoms of types ≤ γ
for any fixed γ < ν + 1 is a γ-allowable permutation.

Definition (extended type index): An extended type index is de-
fined as a nonempty finite subset A of λ with the property that
any maximal open interval included in [min(A), max(A)] \ A is of
the form (γ+ 2, δ+ 2), an interval between double successors. For
any extended type index A with more than one element, we de-
fine A1 as A\{min(A)}. Note that this allows one or two smallest
elements, but no others, of the extended type index to be other
than double successors.

Definition (derivatives of an allowable permutation): The col-
lection of derivatives of an α-allowable permutation π is the small-
est collection of permutations which contains π and contains each
π′γ+2,δ+2 if it contains π′ (including the ones with successive indices
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obtained by restriction). We reiterate that there is no presump-
tion of agreement between any derivatives of π, including ones of
the same index.

We define a compact notation for derivatives. For any nonempty
set A of double successor ordinals < λ and max(A)-allowable per-
mutation π, we define a derivative πA. Define π{α} as π. Define
πA where |A| ≥ 2 as (πA1)min(A),min(A1). If the minimum of A is not
a double successor, πA is an appropriate restriction of πA1 .

It is important to note that σA ◦ πA = (σ ◦ π)A for any max(A)-
allowable permutations σ and π.

Definition (support): A α+ 2-support is a well-ordering on a small
set of pairs (x,A) where each x is a nonset or near-litter and each
A is an extended type index with maximum α+ 2, and min(A) is
the type of x if x is a nonset and the type of the nonset elements
of x if x is a near-litter, and moreover if (x,A) and (y, A) are in
S, x and y have no common elements. An object X has α + 2-
support S iff S is an α + 2-support and for each α + 2-allowable
permutation π, if πA(x) = x for every (x,A) ∈ S, it follows that
π(X) = X.

definition of support; specification of the sets in type α + 2: The
sets in type α+ 2 are exactly those nonempty sets X which have
an α + 2-support ≤S. The empty set in each type is of course
already implemented.

condition for this construction to succeed: To show that this works,
we need to show that this collection of sets is of size ≤ µ for each
n.

choosing more special maps, with attention to echelon: Note that
once the sets in type α+ 2 are specified, we can specify each map
σα+2,γ+2 for γ > α+1, and once each set in type α+1 is specified,
we can specify each map τβ+2,α+2 (we need this information for
subsequent stages). The echelon of the image of an object of type
β + 2 under a σ, τ , or β map must dominate the echelons of the
first projections of elements of some β + 2-support of the object
(this condition is why we make no requirement that the ranges
of the special functions coincide exactly with the sets set aside to
accommodate their ranges). It is also useful to note that the set
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β′α+2(x) for any x has the same support as x whenever x has one,
so is in type α + 2 iff x is in type α + 2.

We have now actually given a complete description of a model of tangled
type theory. But it will take considerable effort to show that this works.
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3 The proof that the model works

Nothing above is to be construed as proving that any of this works. I am
merely describing a construction. The construction will succeed as long as
the described collection of sets to be taken as the sets of type α + 2 is not
of size greater than µ. We certainly do not claim that it is obvious that it
will not be too large. There is further work after showing the construction
succeeds to show that it satisfies appropriate axioms.

relation of τ maps to allowable permutations: We begin by comput-
ing the required relationship between α+2-allowable permutations and
the maps τβ+2,α+2. If x is an element of type α + 1, then {x} is fixed
by β′α+2; the union of τβ+2,α+2“{x} is simply τβ+2,α+2; the union of the
elementwise image of this set under σβ+2,α+2,

⋃
σβ+2,α+2“τβ+2,α+2(x) is

then immediately seen to be f 0
β+2,α+2({x}) and in fact is fβ+2,α+2({x}),

this last because {x} is certainly not a preliminary code. Let π be an
α + 2 allowable permutation. We know that fβ+2,α+2 is fixed by π, so
π(fβ+2,α+2({x})) must be fβ+2,α+2({π(x)}), that is,⋃

σβ+2,α+2“τβ+2,α+2(π(x)).

We also know that π(
⋃
σβ+2,α+2“τβ+2,α+2(x)) must be⋃

σβ+2,α+2“πβ+2,α+2(τβ+2,α+2(x)),

whence it follows that τβ+2,α+2(π(x)) = πβ+2,α+2(τβ+2,α+2(x)).

Definition (special modifications of type indices): DefineA2 as (A1)1.

Definition (strong support): We now describe a notion of strong support,
which we will need for careful analysis of the behavior of allowable
permutations. A strong support ≤S is one in which

1. any element (x,A) of the domain of ≤S in which x is a near-litter
has x actually a litter.

2. for any element (x,A) of the domain of ≤S which has x an atom,
we have (L,A) ≤S (x,A), where L is the litter containing x.
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3. if (x,A) is in the domain of ≤S and x is a litter and min(A) + 1 =
min(A1) and [x] = σβ+2,min(A2)(y), then

{(y,B\A2) : (y,B) ≤S (x,A)∧max(B\A2) = β+2∧echelon(y) < echelon(x)}

is a β + 2-support of y.

4. if (x,A) is in the domain of ≤S and x is a litter and min(A) + 1 =
min(A1) and [x] = τmin(A)+1,α+2(y), and min(A2) = α + 2, then

{(y,B\A2) : (y,B) ≤S (x,A)∧max(B\A2) = α+1∧echelon(y) < echelon(x)}

is an α + 1-support of y.

5. if (x,A) is in the domain of ≤S and x is a litter and min(A) + 1 =
min(A1) and [x] = βmin(A)+2(y) and min(A2) = min(A1) + 1, then
(y, A2) ≤ (x,A).

It is straightforward to establish the existence of a strong support whose
domain extends the domain of a given support, using the properties of
our assignment of echelons.

We now establish a result on freedom of action of allowable permutations.

Definition (locally small approximation): A α+2-locally small approx-
imation is a map π0 taking pairs (x,A) where A is an extended type
index with maximum α+ 2 and x is a nonset of type min(A) or a local
cardinal of type min(A) + 2 to an object of the same kind as x. For
convenient statement of further conditions, we define πA0 (x) = π0(x,A)
The further conditions are

1. Each map πA0 is an injective map with domain equal to its range.

2. The intersection of the domain of each πA0 with any litter is small
(empty being a frequent implemention of “small” here).

3. The domain of each πA0 for which minA1 = mn(A) + 1 includes
every local cardinal of litters of the appropriate type which is not
either in the range of a β, σ or τ map; it fails to contain the local
cardinal of an image under τβ+2,τ+2 iff β + 2, τ + 2 are the two
smallest elements of A1; it fails to contain any image under a β
or σ map. The domain of each πA0 for which minA1 6= min(A) + 1
includes every local cardinal of the appropriate type.
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A locally small approximation π0 is realized by an α + 2-allowable
permutation π iff πA(x) = π0(x,A) for every x and A such that (x,A)
is defined.

Definition (exception of a permutation): An exception of an n-allowable
permutation π is a nonset x which belongs to a litter L for which either
π(x) 6∈ π(L)◦ or π−1(x) 6∈ π−1(L)◦.

Theorem (freedom of action): Every α + 2-locally small approximation
π0 is actually realized by an α + 2-allowable permutation π with no
exceptions of any πA not found in the domain of πA0 .

Proof of freedom of action theorem: We prove this by proving a more
precise stronger result. Let π0 be our locally small approximation. For
each pair of litters L,M of the same type and each extended type index
A with minimum the common type of elements of L and M , provide a
map πAL,M , a bijection from the collection of elements of L not in the
domain of πA0 to the collection of elements of M not in the domain of
πA0 . The stronger result is that there is a uniquely determined α + 2-
allowable permutation realizing the local approximation and agreeing
with each πAL,M .

We prove the stronger result for α+2 by induction, assuming the result
true for β + 2 < α + 2, and by induction on strong supports, showing
that we can proceed to define values by recursion on the structure of a
strong support, thus eventually assigning values at every relevant atom.

The character of the recursion is that we assume when considering
(x,A) in a strong support ≤T along which we are computing that we
have already computed πB(y) for each (y,B) ≤T (x,A).

If we consider an atom x with (x,A) appearing in a strong support,
we have by inductive hypothesis already computed πA(L) where L is
the litter containing x, because (L,A) appears earlier in the support.
We can then compute πA(x), either as πA0 (x) or as πAL,πA(L)◦(x). Notice
that in this case x is not an exception of πA.

When we consider a litter L with (L,A) appearing in a strong support
and either min(A) + 1 6= min(A1), or it is not an image under a β, σ,
or suitable τ map we are given a value πA0 ([L]) which we can adopt as
πA([L]) at its local cardinal. We can then determine πA(L)◦, and we
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can compute the value of πA at each element of L, either by applying
the local approximation or by applying πAL,πA(L)◦ , and the set of all these

images will be πA(L).

If [L] = σγ+2,β+2(x), and (L,A) is in the domain of the support and
min(A)+1 = min(A1), then we have already values of each appropriate
derivative πB∪A2 at each first projection of an element of an γ + 2-
support of x. We extend this assignment of values to a γ + 2-local
approximation π′0 to πA2∪{γ+2}, using the same πBL,M ’s where relevant
and the same values at local cardinals not values of relevant β, σ, τ maps
where stipulated or computed and otherwise choosing such values ar-
bitrarily, which realizes a γ + 2-allowable π′. We succeed in computing
a value for π′(x) which must be the same as πA2∪{γ+2}(x) for the per-
mutation π we are trying to construct, and this gives us a computed
value σγ+2,β+2(π′(x)) for πA([L]), and so allows computation of a value
for πA(L): we can compute the value of πA at each element of L, either
by applying the local approximation or by applying πAL,π′(L)◦ .

If [L] = τγ+2,β+2(x), and (L,A) is in the support and min(A) + 1 =
min(A1), we further note that we supply values in the local approxi-
mation if it is not the case that γ + 2 and β + 2 are the two smallest
elements of A1: this is the only case we have to deal with. We are
given by inductive hypothesis computed values for all relevant deriva-
tives πA2∪B at an β + 1-support of x. We extend these values to a
β+ 1-local approximation π′0 to πA2 , which we extend to a β+ 1 allow-
able π′, allowing us to compute π′(x) which must agree with πA2(x),
and compute τγ+2,β+2(π′(x)) as the value of πA(τγ+2,β+2(x)) = πA([L]),
and this allows computation of a value for πA(L): we can compute the
value of πA at each element of L, either by applying the local approxi-
mation or by applying πAL,π′(L)◦ .

If [L] = βn+2(x) and (L,A) appears in the strong support and min(A)+
1 = min(A1), with min(A1) + 1 = min(A2), we can compute πA2(x) and
from this determine πA([L]) and πA(L) as above.

One needs to argue further that it is not possible for a different value
to be computed for the value of a derivative of π along two different
supports for the same atom or litter. If this happens, it must happen
at a first point in some particular support: there must be a first item
in the support for which more than one value can be computed along
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different supports. This cannot be an atom labelled with a type index,
because the value computed at an atom is precisely determined by
the value computed at the litter containing it, which precedes it. So
one would have to have a litter labelled with a type index which had
different values computed along two supports, one of which, moreover,
has the property that values computed at all of its elements are uniquely
determined independent of support used. But then we can construct a
single support whose domain is the union of these two supports, along
which a single value can be computed which must agree with the values
computed along the other two.

We have two further things to show. We need to show that the collection
of subsets of type α+1 with support relative to α+2-allowable permutations
is of size ≤ µ (it is obviously of size ≥ µ), and we need to verify that the
axioms of TTTλ hold in the resulting structure.

Definition: action of permutations on supports: For any support ≤S
and allowable permutation π of suitable index, we define π∗(≤S) as
{((πA(x), A), (πB(y), B)) : (x,A) ≤S (y,B)}. It is straightforward to
verify that if ≤S is a support of X, π∗(≤S) is a support of π(X).

Definition (coding function): For each element x of type α+2 and α+2-
support ≤S for x, let the coding function χx,≤S

be defined by

χx,≤S
(π∗(≤S)) = π(x)

for each α + 2-allowable permutation π. Note that if

π∗(≤S) = (π′)∗(≤S),

we have (π′◦π−1)∗(≤S) =≤S and therefore (π−1◦π′)(x) = x, so π(x) =
π′(x): the definition is effective. Note that the domain of the coding
function is an orbit in the collection of all supports under the starred
action of the α + 2-allowable permutations.

Proof that there are not more than µ objects in any type: We argue
that there are < µ coding functions for type α+ 2 sets for each α, from
which it follows that there are ≤ µ objects of type α + 2, since each
object is a value of a coding function at a support and there are µ
supports.
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For type 1 sets, the only support elements are atoms in type 0 and near-
litters in type 1, and the coding functions simply determine which in-
tersections of domain elements and their complements (treating atomic
elements for the nonce as if they were singletons) are to be included in
the set constructed. The orbits in the supports are exactly determined
by the mix of near-litters and atoms and the information about the po-
sitions of near-litters in given positions in the order containing atoms
in different positions in the order, for κ orbits in the supports, and no
more than 2κ coding functions with each orbit as domain.

We claim as an inductive hypothesis that type α has ≤ expα(κ) cod-
ing functions with strong supports in their domains [where exp(|x|)
is defined as 2|x|, and iteration is defined as usual, taking suprema at
limits].

For type α + 1 sets, we describe a representation of coding functions.
We choose an α+1- support ≤S of a set X (without loss of generality a
strong support). Let ≤S′ be the restriction of ≤S to items appropriate
in an α-support. For each element x ∈ X, choose a strong support
≤T which is an end extension of ≤S′ to which we apply the coding
function χx,≤T

. By inductive hypothesis, the coding function χx,≤T
is

taken from a collection of ≤ expα(κ) coding functions. We claim that
the coding function ≤X,≤S

is exactly determined by the orbit of ≤S
and the collection of χx,≤T

’s just chosen. Our claim is that X is the
set of images of supports ≤U which are end extensions of ≤S′ under
functions in the collection of χx,≤T

’s just chosen. Every x ∈ X is of
this form because of the way the collection of coding functions was
chosen. The question is whether any additional elements are found in
this set. Suppose that x′ = χx,≤T

(≤U): ≤T and ≤U have a common
orbit specification and a common initial segment ≤S′ . There is an
allowable permutation of suitable index sending ≤T to ≤U and so x
to x′ because ≤U is in the domain of the coding function. Define a
local approximation sending each (x,A) where (x,A) is in the domain
of ≤T and x is a nonset or x is an exception of πA either appearing as
the first projection of a domain element of ≤T or mapped to the first
projection of a domain element of ≤U , or π(x) is an element of M∆M◦

where (M,A1) appears in the domain of ≤U [near-litters appearing in
the domain of ≤T are litters but this may not be true of ≤U ] to π(x) ,
and also sending each (x,A) in the domain of ≤S \ ≤S′ to x. This can
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be extended to an allowable permutation π′ with no exceptions other
than those indicated. Now observe that π′A must send each near-litter L
with (L,A) in the domain of ≤T to πA(L) [which we call M ]: certainly
π′A sends [L] to πA([L]) = [M ], because it acts correctly on a support
of [L]; πA and π′A agree on preimages of elements in M∆M◦, so any
object not in L mapped into M or any object in L mapped out of M
by π′A must be an exception of π′, and π′ agrees with π at all exceptions
of π which are in L or mapped into M and has no exceptions π does
not have. Similarly, π′A fixes each litter L with (L,A) in the domain of
≤S \ ≤S′ : suppose (L,A) were the first bad item. We would have [L]
fixed by π′, so it could only fail to be fixed if there were an exception
of π′A in L or mapped into L, and there can be no object with this
behavior in the domain of the local approximation. Since π′(≤T ) =<U ,
π′(x) = x′. Since π∗(≤S) =≤S, we have π′(X) = X. It follows that
x′ ∈ X.

Thus there are ≤ expα+1(κ) coding functions for type α + 1 sets for
each orbit in the α + 1-supports.

The orbit of a strong support under allowable permutations is entirely
determined by a formal computation which we now describe. We com-
pute an orbit specification of a strong support ≤S, which is also the
specification of any π∗(≤S). The orbit specification is a well-ordering
of the same length as ≤S. We use the notation Sγ for the γ’th item in
≤S, and we use π1 and π2 for the first and second projection operators.
We use S ′α for the corresponding item in the specification.

1. If Sα = (x,A) with x an atom, we define S ′α as (1, γ, A), where
π1(Sγ) is the litter containing x.

2. If Sα = (L,A) with [L] not an image under a σ or β map or under
a τγ+2,β+2 with γ + 2 and β + 2 the two smallest elements of A1,
we define S ′α as (2, A).

3. If Sα = (L,A) with [L] = σγ+2,δ+2(x), we define S ′α as (3, g, L,A),
where g is a coding function sending the γ+ 2-strong support of x
to x, and L is the set of ordinal positions of elements of this γ+ 2
support in ≤S, a subset of α.

4. If Sα = (L,A) with [L] = τγ+2,δ+2(x), we define S ′α as (4, g, L,A),
where g is a coding function sending a β + 1-strong support of x
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to x, and L is the set of ordinal positions of elements of this β+ 1
support in ≤S, a subset of α.

5. If Sα = (L,A) with [L] = ββ+2(x) and min(A1) + 1 = min(A2), we
define S ′α as (5, γ, A), where Sγ = x.

A strong support has an orbit specification: by definition of strong
support we can find suitable supports.

Nothing seems to prevent a support having more than one orbit specifi-
cation. It should be clear (perhaps after a little computation) that if ≤S
has an orbit specification, π∗(≤ (S)) has the same orbit specification.

The interesting fact is that if ≤S and ≤T are α+ 2-supports and have
the same orbit specification, there is an α + 2-allowable permutation
such that π∗(≤S) =≤T . This π is constructed using the freedom of
action theorem as realizing a certain local approximation. The local
approximation sends (x,A) in the domain of ≤S to (y, A) in the cor-
responding position in ≤T if x, y are nonsets. Suppose that one has
successfully set up the local approximation for all items in ≤S which
appear before (L,A), L a near-litter. Let (M,A) be the corresponding
item in ≤T . We already have enough information to be sure that a
permutation extending the local approximation constructed so far will
have π([L]) = [M ]: the trick is to choose a small set of further val-
ues to ensure that L is sent exactly to M . For each a ∈ L◦ \ L, we
map (a,A−) to some (a′, A−) with a′ ∈ M . For each b ∈ M◦ \ M ,
we map (b′, A−) to (b, A−) for some b′ ∈ L. We then need to choose
iterated images and preimages of the a’s and b′’s added to our domain,
the only constraints being that elements of near-litters appearing in ≤S
should have images in corresponding near-litters in ≤T and elements
of near-litters appearing in ≤T should have preimages in corresponding
near-litters in ≤S. The fact that L is mapped exactly to M is enforced
by the fact that the permutation realizing a local approximation by
freedom of action has no exceptions not explicitly given in the local
approximation. We choose countably many new values for each of a
small collection of aberrant elements of near-litters, so we have added
only a small collection of new values of the local approximation.

Thus there are exactly as many orbits in the α+2-supports (containing
a strong support, but this does not limit our result, as every object has
a strong support) as there are orbit specifications, and there are clearly
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no more than expα+2(κ) orbit specifications, since an orbit specification
is a small list of objects taken from not very large sets, the largest being
sets of coding functions which by inductive hypothesis have size less
than expα+1(κ).

Types ν and ν + 1 have µ elements for ν non-successor.

Coding functions for type α + 2, by considerations above, are each
determined by an orbit specification for a support taken from a set of
supports which has cardinality no more than expα+2(κ) and a set of
coding functions taken from a set of size no more than expα+2(κ), so
there are no more than expα+2(κ) coding functions, so no more than µ
elements of type α + 2, and our construction succeeds.

This completes the argument that each type is actually successfully
constructed.

We verify that the axioms of TTT will hold in this structure if the
construction succeeds. It is evident that extensionality will hold if one
examines the construction: in each case. every element of type n+ 2 is
associated with a uniquely determined subcollection of type m + 2 as
its preimage under the defined membership relation.

Now we need to verify comprehension.

First, we note the effect of permutations on the defiined membership
relations:

x ∈β+2,α+2 y ≡ σβ+2,α+2(x) ⊆ fβ+2,α+2(y) ≡ π(σβ+2,α+2(x)) ⊆ π(fβ+2,α+2(y)

≡ σβ+2,α+2(πβ+2,α+2(x)) ⊆ fβ+2,α+2(π(y)) ≡ πβ+2,α+2(x) ∈β+2,α+2 π(y).

In an interpretation of an instance of the comprehension axion of TTT,
we have a finite sequence s of types, and each atomic subformula is of
the form x = y, where x, y are of the same type, or x ∈s(i)+2,s(i+1)+2 y,
where x is of type s(i) + 2 and y is of type s(i+ 1) + 2 (recall that we
interpret type α of TTT using type α+2 in our structure). Performing
the transformation above for a fixed allowable permutation π of suitable
index will cause each variable to be decorated with a fixed derivative of
π determined by its type, and such decorations on bound variables can
then be removed, because the maps are permutations of the domains
to which the quantifiers are restricted. If x in an instance {x : φ}
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of comprehension is of type α + 2 (interpreting type n of TTT, this
establishes something, but not quite what we want. Action of an γ+2-
allowable permutation, where γ + 2 is the highest type appearing in
φ, will cause action of various derivatives of the permutation on the
parameters (none of which are of type higher than γ + 2). Of course
each parameter has a strong γ + 2-support (in which all near-litters
are litters), so if we require that all applicable derivatives of our γ + 2-
allowable permutation fix all first projections of elements of the union
of the supports of the parameters, they will fix the set defined by the
instance of comprehension (this is excessive, I just don’t want to fine
tune the description). What this shows is that the extension defined
by an instance of comprehension is fixed by the action of a certain
derivative of any γ + 2-allowable permutation all of whose derivatives
fix all relevant elements of a certain support. Here γ + 2 is the highest
type mentioned in the instance of comprehension and the derivative
takes it down to an s(i+ 1) + 2-allowable permutation, where s(i) + 2
is the type of x.

We use the freedom of action theorem. Let π be an s(i) + 3-allowable
permutation fixing appropriate support elements from the support de-
scribed above along with its derivatives. Let x be an element of the
extension in question, with s(i) + 2-strong support ≤T . Let π′ be an
γ + 2 allowable permutation fixing all nonset elements of the relevant
support (including ones π cannot see) and sending all atoms in ≤T ’s
domain and all exceptions of π which lie in or map into elements of
≤T ’s domain to their images under appropriate derivatives of π: this
exists and has no exceptions other than indicated values by the freedom
of action theorem. It is then straightforward to see that litters in ≤T
are also sent to the correct values and litters in the original support are
fixed (their local cardinals are mapped correctly because a support is:
if the litters were not, there would be exceptions which construction of
π′ using the freedom of action theorem averts), so π′(x) = π(x), but
also π′ fixes the extension because it fixes all elements of the support,
so π maps the extension into itself. Consideration of π−1 as well shows
that π fixes the extension. Thus the extension has an s(i) + 3-support
and is a set in type s(i) + 3 of our structure, and there is also a set
with the same extension in type s(i+ 1) + 2 ≥ s(i) + 3.

This completes the verification that we have a model of tangled type
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theory, whence NF is consistent.
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