
The problem of the consistency

of Quine’s New Foundations

M. Randall Holmes

Boise State University

December 8, 2015

1

The Backstory

New Foundations is a variation of a simple the-

ory of types.

I would like to say a variation of the simple the-

ory of types, but at least three different theo-

ries are called “the simple theory of types”.

The simple theory of types that is relevant is

the simple typed theory of sets (rather than the

simple typed theory of relations due to Ramsey

or the simple typed theory of functions due to

Church).

2

The simple typed theory of sets
(TST)

This is a first-order theory with equality and

membership with sorts of object indexed by

the natural numbers.

The rules of formation of atomic sentences are

neatly summed up by the templates xn = yn;

xn ∈ yn+1.

A question as to whether members of differ-

ent types are equal or whether a member of a

type is an element of a non-successor type is

not answered in the negative but dismissed as

ungrammatical.

3

Axioms...

The axioms of TST come in two sets.

Extensionality axioms say that objects of type

i + 1 are equal iff they have the same type i

elements. This expresses the identity criterion

we expect for sets.

Comprehension axioms assert that for any for-

mula φ(xi) of our language, the set {xi : φ(xi)}i+1

exists: any property of a type i object that we

can express defines the extension of some type

i+ 1 object.

One often adds axioms of Infinity and Choice.

4

A little more history

I often encounter misattributions of this to

Russell. This is not the type theory of White-

head and Russell, Principia Mathematica. Rus-

sell described something like TST informally

in his Principles of Mathematics, 1903, but

he could not implement it in his major work

because he did not know how to represent or-

dered pairs as sets (this was discovered by Nor-

bert Wiener in 1914). The type system of

PM is complicated, both because it contains

a quite complex system of types of n-ary re-

lations with arguments with any combination

of different types, and because it implements

predicativity restrictions which are then awk-

wardly evaded by an Axiom of Reducibility.

It appears that TST was first described by

Gödel, Tarski, and Carnap around the same

time, c. 1930.

5

A little math in TST

We will do a little math in TST. This will help
us to illustrate the point which caused Quine
to suggest New Foundations.

We will define the natural numbers following
Frege: the number three for example is the
set of all sets with three elements.

We illustrate why this definition is not circular.

The set of all sets with zero elements is of
course the singleton of the empty set.

∅ = {x : x 6= x} is of course definable (we do
not adorn expressions with type indices unless
we have to: here it is clear that if x is of any
type i, we can define an empty set in type
i+ 1).

0 = {x : x = ∅} then defines 0 as the set of
type i+ 2 whose only element is the empty set
of type i+ 1.

6

For any sets a and b of the same type, we

define a ∪ b as {x : x ∈ a ∨ x ∈ b} as usual. For

any x of a given type, we define {x} of the next

type as {y : y = x}.

For any set A, we define σ(A) as

{b : (∃ax.a ∈ A ∧ x 6∈ a ∧ b = a ∪ {x})}

We might be called to account on this one, so

we decorate it.

σ(Ai+2) = {bi+1 : (∃ai+1xi.ai+1 ∈ Ai+2

∧xi 6∈ ai+1 ∧ bi+1 = ai+1 ∪ {xi}i+1)}

7

Of course, if one had to write all these indices
to do anything in TST, the theory would be
too cumbersome to use (and this objection has
been raised) but this is not really needed in
practice.

Now observe that σ(0) is the set of all sets
with one element, which we may call 1, σ(1) is
the set of all sets with two elements which we
may call 2, and σ(2) is the set of all sets with
three elements, which we may call 3. And so
forth.

We say that a set I is inductive iff 0 ∈ I ∧
(∀A.n ∈ I → σ(n) ∈ I).

We define N as the intersection of all inductive
sets:

N =

{n : (∀I.[0 ∈ I∧(∀A.m ∈ I → σ(m) ∈ I)]→ n ∈ I}

8

Hints about doing more math

The ordered pair (x, y) can be defined as {{x}, {x, y}}
as usual, and relations and functions can be de-

fined as usual as sets of ordered pairs. If x and

y are of type i, (x, y) [if defined in this way]

is of type i + 2, and so the typing of relation

sentences xRy and function expressions f(x)

would be xiRi+3 yi and f i+3(xi), which might

seem a little odd. But if Infinity is assumed it

is possible to define the ordered pair in such a

way that it is the same type as its projections

and change the types i+ 3 to i+ 1 above.

Sets being the same size (equinumerous) can

be defined as usual in terms of the existence of

bijections, and the cardinal of a set can be de-

fined as its equivalence class (one type higher)

under equinumerousness. Similarly, the ordinal

numbers can be defined as equivalence classes

of well-orderings under isomorphism.

9

The hall of mirrors

The feature of TST which led Quine to pro-

pose New Foundations has been pervasive in

our work so far. This is the polymorphism of

the system. Notice that we have succeeded in

defining natural numbers 0,1,2. . . in each type

i+ 2.

Russell noticed the same feature in his system

of PM; he called it “systematic ambiguity”.

But in TST it takes an especially simple form.

For any formula φ, let φ+ be obtained by re-

placing each variable in φ with a variable one

type higher, in an injective manner.

For any axiom φ, φ+ is also an axiom. The

+ operation commutes with all our rules of

inference. Thus, if φ is a theorem, so is φ+.

If we define a mathematical object of type i us-

ing an expression {xi : φ(xi)}i+1, we can raise

all types to get an object {xi+1 : φ+(xi+1)}i+2

in the next type up.

Both of these effects mirror theorems or de-

fined objects in a given type in all higher types.

10

New Foundations

In his paper “New foundations for mathemati-

cal logic” (1937) the American philosopher W.

v. O. Quine proposed a radical cure for the hall

of mirrors issue. He suggested that we should

simply identify all the types, and take as our ax-

ioms the statements obtained from axioms of

TST by dropping all type distinctions (without

introducing identifications between variables).

So New Foundations (NF), as it is generally

called after the title of the paper in which it

was introduced, is the first-order theory with

equality and membership whose axioms are

1. A single axiom of extensionality (when type

distinctions between variables are dropped,

all the extensionality axioms become the

same assertion)

11

2. An axiom which may be informally stated

“{x : φ(x)} exists”, or more precisely

(∃A.(∀x.x ∈ A↔ φ(x))),

where A does not appear in φ, for each for-

mula φ(x) obtained by dropping type dis-

tinctions between variables in a formula of

TST without introducing new identifica-

tions between variables.

Notice that the axioms introduced in the sec-

ond clause do not include contradictory asser-

tions such as “{x : x 6∈ x} exists”, because x 6∈ x
is not obtainable from a well-formed formula

of TST by dropping type distinctions between

variables.

Stratification

It is usual to define the comprehension axiom

scheme of NF in a way which does not appeal

to the language of another theory.

We say that a formula φ is stratified iff there is

a function σ from variables to natural numbers

such that for each subformula x = y of φ we

have σ(x) = σ(y) and for each subformula x ∈ y
of φ we have σ(x) + 1 = σ(y). Such a function

is called a stratification of φ.

The axiom scheme of stratified comprehension

asserts that for each stratified formula φ(x),

{x : φ(x)} exists.

It should be clear that this is exactly the same

comprehension axiom proposed above.

12

Surprising (but harmless) features
of NF

The formula x 6∈ x whose extension is the Rus-

sell class is not stratified, but the formula x = x

is stratified and V = {x : x = x} is a set. State-

ments like V ∈ V are true (by convention, we

can write this statement in the language of

TST and say that it is true, by a sort of pun –

we interpret the V ’s as the extensions of suc-

cessive types, and the pun can be dispelled by

writing V i+1 ∈ V i+2, but in NF the two V ’s

have the same reference). But x ∈ x is not the

sort of predicate which has an extension.

The universe is a Boolean algebra in NF, as

sets have complements as well as unions and

intersections.

The natural numbers can be defined follow-

ing Frege (using our exact development above)

13

and the number 3 is genuinely the set of all sets

with three elements.

Cardinal numbers can be defined as equiva-

lence classes of sets under equinumerousness

defined as usual. Ordinal numbers can be de-

fined as equivalence classes of well-orderings

under isomorphism.

We review the classical paradoxes of set theory.

The Russell paradox is blocked because x 6∈ x
is not a stratified formula.

The Cantor paradox is blocked in a subtler

way. Clearly P(V) = V , so it cannot be the

case that |A| < |P(A)| in general. But no-

tice that this is an ill-typed assertion, making

no sense in the language of TST. The Cantor

theorem of TST asserts that |ι“A| < |P(A)|,
the collection of one element subsets of A is

strictly smaller than the power set of A. The

proof is quite standard, with an adjustment

for type discipline. The specialization of this

proof to the case of the universe asserts that

|ι“V | < |P(V)|, the collection of singletons is

strictly smaller than the set of sets. The obvi-

ous external bijection x 7→ {x} is therefore not

a set, and there is no paradox in this as the ob-

vious comprehension axiom which would give

its existence is not stratified, so our axioms do

not require that it be a set.

14

The Burali-Forti paradox is handled similarly

and has if anything an even more curious ap-

pearance. An ordinal is defined as an equiva-

lence class of well-orderings under isomorphism.

There is a natural well-ordering on the ordinals

whcih has order type Ω. There is a natural or-

der type on the ordinals less than Ω, which

we might suppose is Ω, leading to paradox,

as a well-ordering cannot have an initial seg-

ment similar to itself. But the assertion that

the order type of the natural order on the or-

dinals restricted to ordinals less than α is α

does not make sense in type theory. If α is

the order type of ≤, let T (α) be the order

type of {({x}, {y}) : x ≤ y}: this is one type

higher in TST. The theorem we can prove in

TST (if we use the Kuratowski pair) is that

the order type of the ordinals less than α is

T4α (this can be changed to T2α if we use

a type level pair). The specialization to Ω

tells us that T4Ω < Ω. T respects order, so it

follows that there is a “descending sequence”

Ω, T4(Ω), T8(Ω), T12(Ω) . . . of ordinals which is

not a contradiction because the map T cannot

be shown to be a function in any obvious way

(and indeed by these considerations is proved

not to be a function).

Nothing here shows that NF does not fall prey

to some argument of the same general type.

However, it can be shown that it does not. A

“minor modification” of NF exhibits all these

features and is demonstrably as reliable as fa-

miliar set theories. This is the next chapter in

our story.

A useful and not surprising the-
orem of Specker (1962)

Specker showed in 1962 that NF is equiconsis-

tent with TST + the ambiguity scheme, which

asserts φ ↔ φ+ for each sentence φ. This

seems natural given the motivation of NF, but

it was nice to have it nailed down. A model of

TST + Ambiguity gives us a model of NF sat-

isfying the same sentences with types dropped.

15

The consistency of NFU (1969)

Jensen showed in 1969 that if one modifies

NF by weakening extensionality so as to allow

urelements, the resulting theory NFU is con-

sistent.

Here is a version of the argument. Let αi be

any increasing sequence of ordinals indexed by

the natural numbers. Interpret type i as Vαi
(the αi’th level of the cumulative hierarchy).

Interpret xi ∈ yi+1 as x ∈ Vαi∧y ∈ Vαi+1∧x ∈ y.

Notice that this makes all of the elements of

Vαi+1 \ Vαi+1 into urelements.

Let Σ be a finite set of formulas of the lan-

guage of TST(U). Let n be a strict upper

bound on the type indices appearing in Σ. Par-

tition the n element sets A of ordinals by con-

sidering the truth values of the sentences in Σ

in models determined by a sequence s where

16

sdn has range A. This partition has an infinite

homogeneous set H: choose an increasing se-

quence h whose range is included in H, and

the model of TSTU determined by h as above

will satisfy ambiguity for the formulas in Σ.

By compactness the full ambiguity scheme is

consistent, and by Specker’s results NFU is

consistent (they do adapt to TSTU). Because

the model of NFU will satisfy the same well

typed sentences as the model of TSTU, it fol-

lows that mathematics in NFU is really quite

normal. It is consistent with such things as

Infinity and Choice, for example.

NFU exhibits all of the surprising features of

NF which I exhibited above. This is why I say

they are harmless: all of these phenomena can

be seen to occur in a theory which is consistent

and whose model theory is well understood.

Things get weird (1954)

Specker showed (before his very nice result
of 1962) the much more unpleasant and dis-
turbing result that NF disproves the Axiom of
Choice (and incidentally proves Infinity). This
rather caused the bottom to fall out of the
NF market (it is rather sad that in the same
year Rosser published his Logic for mathemati-
cians, a really nice book on the foundations of
mathematics which unfortunately used NF...)

We outline the proof.

Define the exponential map exp so that exp(|ι“A|) =
|P(A)|. (this is a way to get a map that makes
sense in TST and so in NF). exp(κ) > κ for
the usual reasons.

We consider the set M of all cardinals κ such
that for some natural number n, expn(κ) is un-
defined (exp is undefined for cardinals greater

17

than |ι“V |). This is certainly nonempty so by

Choice it has a smallest element µ.

For any cardinal κ = |A|, define Tκ as |ι“A|.

Let expm(µ) be the largest power of µ that

is defined. T (expm(µ)) = expTm(Tµ) is less

than |ι“V | and greater than |ι2“V |, so it has

either one or two more defined iterated expo-

nentials (because exp(|ιn+1“V |) = |ιn“V | for

each n – these are internal representations of

the cardinalities of successive types) – and be-

longs to the same set M , so µ ≤ T (µ). Thus

T−1(µ) ≤ µ, and a similar argument shows that

T−1(µ) has finitely many defined images under

exp, so T−1(µ) ≤ µ, so µ = Tµ. But then

m = Tm + 1 or Tm + 2, which is absurd. It

is not necessarily the case that Tm = m (that

is another story) but certainly they have the

same remainder mod 3.

I don’t necessarily expect my Audience to fol-

low this argument. But I do want you to see

that it is very strange.

This argument hinges on the fact that in NF,

exp(|ι“V |) = |V |. In NFU with choice, exp(|ι“V |) =

|P(V)|, the cardinality of the set of sets, which

is much smaller than |V | (most of the universe

consists of urelements).

Jensen’s argument adapted to NF
– tangled type theory

We present a theory which we presented in

1995 and showed to be equiconsistent with NF.

TTT is a first order theory with linearly or-

dered sorts (we may suppose the natural num-

bers) with the rules of formation xm = yn well

formed iff m = n and xm ∈ yn well-formed iff

m < n.

Let s be an increasing sequence of types and

let φ be a formula of TST. φs is the wff of

TTT one gets if one replaces each type n in φ

with sn. The axioms of TTT are exactly the

formulas φs such that φ is an axiom of TST.

If NF is consistent, we get a model of TTT

by using the model of NF as each type (or

disjoint copies of the model of NF if you prefer)

18

and the membership of the model of NF for

membership of each type in each higher type.

Suppose we have a model of TTT.

Let Σ be a finite set of formulas of the lan-

guage of TST. Let n be a strict upper bound

on the type indices appearing in Σ. Partition

the n element sets A of types by considering

the truth values of the sentences in Σ in inter-

pretations of TST in our model of TTT de-

termined by a sequence s where sdn has range

A. This partition has an infinite homogeneous

set H: choose an increasing sequence h whose

range is included in H, and the model of TST

determined by h as above will satisfy ambiguity

for the formulas in Σ.

By compactness the full ambiguity scheme is

consistent, and by Specker’s results NF is con-

sistent.

TTT unfolded – tangled webs of
cardinals

TTT is an extremely strange theory. Each
type is being interpreted as a power set of each
lower type simultaneously. These power sets
cannot be honest. But it is not any longer
asserting that a certain set is a power set of
itself (as NF seems to do), and with a little
work it can be adapted to something we might
imagine could be implemented in ordinary set
theory (necessarily without choice).

Partly by examining the way TTT sees its own
internal type structure, I developed (in the same
1995 paper) the following formulation of a prop-
erty of a system of cardinals which if it could
be realized in (say) Zermelo set theory would
entail consistency of NF.

A natural model of TST is a model in which
each type i + 1 is implemented by a set the

19

same size as the power set of the set imple-

menting type i and every subset of the set im-

plementing type i is the extension of an ele-

ment of type i+1 in the model. The first order

theory of a natural model of TST is completely

determined by the cardinality of type 0.

A tangled web of cardinals is a function τ from

nonempty finite subsets of a limit ordinal λ to

cardinals, with the following properties:

1. 2τ(A) = τ(A \ {min(A)} (if A has at least

two elements).

2. The first-order theory of the first n types of

a natural model with base type of size τ(A)

is determined by the smallest n elements of

A.

Let Σ be a finite set of formulas of the lan-

guage of TST. Let n be a strict upper bound

on the type indices appearing in Σ. Partition

the n element sets A of λ by considering the

truth values of the sentences in Σ in natural

models of TST with base type of size τ(A).

This partition has an infinite homogeneous set

H: choose a subset B of size n+ 1 of H, and

a natural model of TST with base type of size

τ(B) will satisfy ambiguity for the formulas in

Σ.

By compactness the full ambiguity scheme is

consistent, and by Specker’s results NF is con-

sistent.

NF itself doesn’t prove the existence of tan-

gled webs, though it proves the existence of as

large a concrete fragment as one might want

of a system of cardinals which is tangled for

a concrete finite set of formulas. Moderately

strong extensions of NF do show the existence

of closer approximations to tangled webs.

My reason for defining these was that they

represent a kind of structure one might sup-

pose to exist in ZF without choice (eight types

of TTT disprove choice by a modification of

Specker’s method): if one can show them to

exist in a model of ZF, one has solved the

problem of consistency of NF, which has been

open since 1937 and a matter of some concern

since Specker’s strange results of 1954.

Preparations for the proof of con-
sistency

We will work in ZFA: this is Zermelo-Fraenkel

set theory with extensionality weakened to al-

low a set of atoms. In our ambient ZFA we

will assume the axiom of choice, but we will

carry out a Fraenkel-Mostowski construction of

a class submodel of our ambient ZFA in whcih

there will be a tangled web of cardinals. It is

worth noting that nothing like the full strength

of ZFA is needed to carry out this argument.

20

A parameter of the construction

We fix an uncountable regular cardinal κ for

the rest of the paper. We refer to all sets of

size < κ as small and all other sets as large.

The Fraenkel-Mostowski method

Any permutation π of the set of atoms is ex-
tended to all sets by the rule π(A) = π“A.

Let G be a group of permutations of the atoms.
Let Γ be a subset of the collection of subgroups
of G with the following properties:

1. The subset Γ contains all subgroups J of
G such that for some H ∈ Γ, H ⊆ J.

2. The subset Γ includes all subgroups
⋂
C of

G where C ⊆ Γ and C is small.

3. For each H ∈ Γ and each π ∈ G, it is also
the case that πHπ−1 ∈ Γ.

4. For each atom a, fixG(a) ∈ Γ, where fixG(a)
is the set of elements of G which fix a.

22

A nonempty Γ satisfying the first three con-

ditions is what is called a κ-complete normal

filter on G.

We call a set A Γ-symmetric iff the group

of permutations in G fixing A belongs to Γ.

The major theorem which we use but do not

prove here is the assertion that the class of

hereditarily Γ-symmetric objects (including all

the atoms) is a class model of ZFA (usually

not satisfying Choice: showing independence

of Choice was the original application). The

assumption that the filter is κ-complete is not

needed for the theorem (“finite” usually ap-

pears instead of “small”), but it does hold in

our construction.

Overview of clans, litters, and
allowable permutations

For certain large sets P we will postulate the

existence of sets clan(P) of atoms (called clans).

Every atom will belong to a clan. It is impor-

tant to notice that elements of sets P are not

necessarily pure sets.

• There will be a bijection fP from P × κ to

clan(P). We introduce the notation aPα for

fP (a, α). Mention of P might be omitted from

the notation when understood from context.

• We define litterP (a) as

{aPα : α < κ} and call such sets litters. We de-

fine a near-litter as a subset of a clan which has

small symmetric difference from a litter. Men-

tion of P might be omitted from the notation

when understood from context. The anoma-

lous elements for a near-litter are the elements
23

of the small symmetric difference between it
and a litter (they are not necessarily elements
of the near-litter!).

• We stipulate that if P and Q are distinct
and clan(P) and clan(Q) exist, these clans are
disjoint, and that each atom belongs to a clan.
Note that P and Q may overlap, so there might
be distinct atoms aPα and a

Q
α and disjoint litters

litterP (a) and litterQ(a) for fixed a, α with
a ∈ P ∩Q.

• P is called the parent set of clan(P). De-
tails of which sets are parent sets will be re-
vealed below. a ∈ P is called the parent of aα
as an atom, of litterP (a) as a litter, and of
any near-litter with small symmetric difference
from litterP (a).

• The group G of allowable permutations con-
sists of all permutations π of the atoms [ex-
tended to all sets by the rule π(A) = π“A]

with the property that π fixes each clan and

for each near-litter N (included in any clan)

with small symmetric difference from a litter

litter(a), π(N) has small symmetric differ-

ence from litter(π(a)). An exception for an

allowable permutation π is an atom x in a

litter(a) such that either π(x) 6∈ litter(π(a))

or π−1(x) 6∈ litter(π−1(a)).

• A support set S is a small set of atoms and

near-litters (possibly from many clans). A ob-

ject A has support S iff every allowable per-

mutation which fixes each element of S also

fixes A. Clearly an atom has support its own

singleton.

General features of the main con-
struction

In the main construction, we build a system

of infinitary notation intended to represent the

atoms in the clans we postulate and selected

sets in selected iterated power sets of those

clans. We define a notion of equivalence on

these infinitary notations, which on each type

of notation coincides with the relation of hav-

ing the same referent, although the equiva-

lence relation is defined by recursion on the

structure of the notation independently of the

semantics. At the same time, the referents of

notations of various types are stated.

24

Types of infinitary notation

• Fix a limit ordinal λ and a large transitive

pure set X (κ would do).

•A clan index is a finite subset of λ. if A is

a nonempty clan index, define A1 as A \ {A}.
Define A0 as A and An+1 as (An)1 where this

is defined. We say that B downward extends A

when A ⊆ B and all elements of B \ A are less

than all elements of A. We say B << A when

B downward extends A and is distinct from A.

•We will define a system of codes, indicate the

nature of their intended referents, and define a

relation of equivalence ∼ on codes. Codes will

have types correlated with the kinds of ref-

erents they are intended to have. It will be

important to notice that the relation of equiv-

alence we define will turn out to coincide for

codes of the same type with the relation of

25

having the same intended referent, but is not in
fact defined in terms of the referents of codes
(where the relation holds between codes of dif-
ferent types, these codes will have the same
referents as well). We use the notation δ(c)
for the referent of a code c of whatever type:
this is safe because the various types of codes
are disjoint. All codes will be pure sets.

• For each clan index A, there will be a type
clan∗(A) (codes of this type are intended to re-
fer to atoms in the clan indexed by A), a type
clan◦∗(A) (codes of this type are intended to re-
fer to near-litters included in the clan indexed
by A), and types Cn(A) for each natural num-
ber n ≤ |A| (codes of this type are intended
to refer to elements of the nth iterated power
set of the clan indexed by A: not all elements
of these iterated power sets will be referents of
codes). Each type as an object is viewed as the
class of codes of that type. These classes are
in fact sets, but this requires demonstration.

Codes for atoms

A code of type clan∗(A) is of the form (1, p, A, α),

where p ∈ X if A is empty and otherwise p is

a code of type clan∗(A1) or else a code of a

type C|B|−|A|+1(B) for some B << A. The

intended referent of (1, p, A, α) is an atom de-

noted by δ(p)Aα (note that we are using the

index A to indicate which clan the atom is in

rather than the parent set of this clan which

we do not yet know how to describe): the in-

tention is that δ(p)Aα = δ(p′)A
′

α′ iff δ(p) = δ(p′)
and A = A′ and α = α′. The equivalence

(1, p, A, α) ∼ (1, p′, A, α) holds iff p ∼ p′, A = A′

and α = α′. For p ∈ X, δ(p) = p and p ∼ q holds

iff p = q for p, q ∈ X. The notation p is called

the formal parent of the notation (1, p, A, α).

All codes are pure sets. For each type clan∗(A)

which is a set and each ∼-equivalence class [c]

26

for c ∈ clan∗(A) we provide an atom δ(c) corre-

lated with the ∼-equivalence class [c] (δ(c) =

δ(d) iff c ∼ d). This stipulation is made in

this form to ensure that no more than a set of

atoms are postulated in any case. It does turn

out that all of these types are sets so we get

atoms correlated with all equivalence classes

of codes in types clan∗(A). All atoms in our

ambient ZFA are of this kind.

It is a useful observation that it is immediately

evident that there is a large collection of mutu-

ally inequivalent codes in each of these types:

consider atoms with iterated formal parents in

X.

Clans and litters introduced of-
ficially

The class δ“clan∗(A) is called clan[A], and

such classes of atoms are called clans. These

classes will turn out to be sets, but this requires

demonstration. The set {pAα : α < κ} (for ap-

propriate p) is called litterA(p), and such sets

are called litters. A set which is a subset of a

clan and has small symmetric difference from a

litter is called a near-litter. The class of near-

litters included in clan[A] will be denoted by

clan◦[A]. The object p is called the parent of

pAα as an atom, of litterA(p) as a litter, and of

any near-litter with small symmetric difference

from litterA(p) as a near-litter. The notation

clan[A] with brackets is used because the pa-

rameter is an index of the clan rather than its

parent set, which we do not yet know how to

describe.

27

Codes for near-litters

The set litterA∗ (p) is defined as

{(1, p, A, α) : α < κ},

whenever this is a set of codes of type clan∗(A).

A code of type clan◦∗(A) is a subset of type

clan∗(A) with small symmetric difference from

some litterA∗ (p) (this p is called the formal

parent of the code of type clan◦∗(A)), and with

no distinct but ∼-equivalent members. Two

codes M,N of this type are ∼-equivalent iff

each element of M is ∼-equivalent to an ele-

ment of N and vice versa. The intended ref-

erent of a code M of type clan◦∗(A) is the set

of atoms δ“M (easily seen to be a near-litter if

all codes involved have referents as expected,

and it is also easy to see that each near-litter

will have codes of this kind).

28

Overview of the development of
set codes

•General form of codes of types Cn(A): A

code of any of these types will be of the form

(2, f, L), which we will write f [L] to suggest

function application, where f will be a “func-

tion code” (to be defined below) and L will be

an “argument list” (to be defined below). A

code of a type Ck+1(A) is called a set code.

29

General features of argument lists
and function codes

• An argument list will be a function with do-
main a small set of small ordinals and codomain
the union of all types clan∗(A) and clan◦∗(A)
which further belongs to an argument list type
(these types to be defined below). If L is an ar-
gument list and α 6= β belong to the domain of
L, then L(α) 6∼ L(β), and moreover if L(α) and
L(β) both belong to the same type clan◦∗(B),
then no element of L(α) is ∼-equivalent to any
element of L(β). (atomic referents of values at
distinct ordinals are distinct; near-litter refer-
ents of values at distinct ordinals are disjoint).

• Each function code has an input type which
is an argument list type and an output type
which is a Cn(A). A code f [L] is well-formed
as a code iff L belongs to the input type of
f , and the code f [L] will belong to the output
type of f .

30

The definition of argument list
types

• Each argument list in T has the same domain

DT (a small subset of κ). We define the rela-

tion L ≤M on argument lists as holding when

L ⊆M and all elements of dom(M) \ dom(L) are

greater than all elements of dom(L). We call

this the extension order on argument lists, and

say that M extends L to mean L ≤M .

• absolute type information: There is a func-

tion τT from DT to types such that for each

β ∈ DT , and each L ∈ T , L(β) belongs to a type

determined by τT (β): if τT (β) = (0, B) then

L(β) is of type clan∗(B) and if τT (β) = (1, B)

then L(β) is of type clan◦∗(B); all values of τT
are of one of these two forms.

31

• relative type information: There is a function

ρT with domain DT which returns additional

type information.

If τT (β) = (0, A) then ρT (β) is either an ordi-

nal in DT ∩ β such that for any L ∈ T , L(β) ∈
L(ρT (β)) ∈ clan◦∗(A) or ρT (β) = λ and it is

not the case for any γ ∈ DT with L(γ) of type

clan◦∗(A) that L(β) is ∼-equivalent to any ele-

ment of L(γ).

32

For the next paragraph, define g[M] ↓ as the
element of the range of M equivalent to g[M]
if g[M] is of a type C0(A) (see the way that
type C0(A) codes are defined below to see that
this makes sense), and otherwise as g[M].

If τT (β) = (1, A) then either ρT (β) = (0, g,M)
where M is a subset of DT ∩ β and g is a func-
tion code, and for any L ∈ T , L(β) has small
symmetric difference from litterA∗ (g[LdM] ↓)
(g[LdM] being a well-formed code), or A =
∅, ρT (β) = (1, B), B ∈ X and for any L ∈
T , L(β) has small symmetric difference from
litterA∗ (B)

• Any L which meets the conditions stated un-
der the three headings above is an element of
T .

• (3, DT , τT , ρT) meeting the conditions above
is a name for an argument list type with

δ(3, DT , τT , ρT) = T.

33

Other codes for atoms

A code of type C0(A) will be of the shape

(4, β, T ∗)[L], where δ(T ∗) = T is an argument

list type and β ∈ DT , satisfying the further

conditions that L ∈ T and τT (β) = (0, A).

(4, β, T ∗)[L] ∼ (4, β′, T ′)[L′] iff L(β) ∼ L′(β′),

and δ((4, β, T ∗)[L]) = δ(L(β)). We further pro-

vide that (4, β, T ∗)[L] ∼ c holds for c of type

clan∗(A) iff L(β) ∼ c. Codes of this type rep-

resent the same referents as codes of type

clan∗(A), but they are not of type clan∗(A).

Of course we have implicitly declared (4, β, T ∗)
as a function code with input type δ(T ∗) = T

and output type clan∗(A); these are the only

function codes with this kind of output type.

Codes of type C0(A) are never proper compo-

nents of other codes, but their function code

components do so occur.

34

Codes for sets

A code of type Ck+1(A) will be of the shape

(5, U, T ∗, k, A)[L] where L ∈ δ(T ∗) = T , an ar-

gument list type, and U is a set of function

codes with input types inhabited by argument

lists extending elements of T (in the technical

sense defined above: for any L in T and M in

the input type of an element of U , L ≤M) and

output type Ck(A), with the further restriction

that the additional argument types appearing

in the input types of elements of U (over and

above those appearing in T) all be either types

clan∗(B) with B downward extending Ak (not

necessarily properly) or types clan◦∗(B) with

B downward extending Ak−1 (not necessarily

properly) and k > 0.

We have implicitly declared (5, U, T ∗, k, A) to

be a function code with input type δ(T ∗) and

35

output type Ck+1(T). All function codes with
such output types are of this form.

The referent δ((5, U, T ∗, k, A)[L]) is defined as
the class

{δ(g[M]) : g ∈ U ∧ L ≤M},
under the conditions that each such δ(g[M]) is
defined and that this class is a set.

A formal element of (5, U, T ∗, k, A)[L] is a code
g[M] with g ∈ U , L ∈ δ(T ∗) = T , an argu-
ment list type, and L ≤ M . The equivalence
(5, U, T ∗, k, A)[L] ∼ (5, U ′, (T ′)∗, k′, A′)[L′] holds
iff each formal element of each of the two
codes is ∼-equivalent to some formal element
of the other. Note that we do here allow equiv-
alence between codes of different types of the
form Ck+1(A), in the special case where the
referents are hereditarily finite pure sets; this
is an annoying technical point with no import
for the proof, which can be handled in two or
three different ways.

Equivalence is an equivalence re-
lation; infinitary notations make
up a set

• ∼ is an equivalence relation: This should be

evident by induction on the structure of codes.

• Demonstration that function codes make up

a set: Recall that a formal parent of an ele-

ment of clan◦∗(B) (B nonempty) will be either

an element of clan∗(B1) or an element of a

C|D|−|B|+1(D) where D << B. Assign to each

type Cn(D) a measure of complexity which is

the minimum element of Dn (or λ if Dn is

empty) and assign each clan∗(D) complexity

min(D). Note that the complexity of the type

of each parent of an element of clan◦∗(B) is the

minimum element of B1. Now observe that the

output types of function codes occurring in the

argument list types of elements of U but not

in T in a function code (5, U, T ∗, k, A) will be of

36

complexity at most the minimum element of
Ak, and so strictly less than the complexity of
the code of type Ck+1(A) being constructed,
which will be the minimum element of Ak+1 or
possibly λ.

Note that the set theoretical rank of an ar-
gument list type name T ∗ is displaced by no
more than a finite constant above the maxi-
mum of λ and the maximum of the ranks of
function codes embedded in it (and that only a
small collection of function codes are embed-
ded in any argument list type name). Notice
that the set theoretical rank of a function code
(4, β, T ∗) is displaced by no more than a finite
constant above the maximum of λ and the rank
of T ∗. We claim further that the set theo-
retical rank of a function code (5, U, T ∗, k, A)
is displaced upward from the maximum of λ

and the rank of T ∗ by no more than a (non-
finite) constant ν(β) depending on the com-
plexity β = min(Ak+1 (or λ) of its output type

Ck+1(A). By inductive hypothesis, each func-
tion code in U , with output type of complex-
ity β′ = min(Ak), has rank exceeding the rank
of its own input type by no more than ν(β′).
The rank of the input type of an element of
U may exceed that of T ∗, because it may in-
clude additional function codes of output type
complexity bounded by β′, whose ranks may
exceed that of their own argument list types
by no more than ν(β′), but in any case the
rank of this input type will not exceed that of
T ∗ by more than ν(β′) ·κ (there will be no more
than a small collection of occasions for incre-
ments). So ν(β) may be taken to exceed the
upper bound of ordinals ν(β′) ·κ for β′ < β by a
suitable finite constant. If every function code
has a bound on its rank computable from the
complexity of its output type and the ranks of
a small collection of function codes of lower
rank, it follows that there is a uniform bound
on the rank of all function codes, whence func-
tion codes make up a set.

Note that the fact that the function codes

make up a set ensures that the argument list

types make up a set, so that each of the types

of atoms and near-litter codes make up sets,

so all clans are sets and we only require a set

of atoms, correlated with the ∼-equivalence

classes of elements of types clan∗[A].

Notational conventions for the
rest of the paper

• We will use the notation fU,T (L) to abbrevi-

ate δ((5, U, T ∗, k, A)[L]), and the notation πβ(L)

to abbreviate δ((4, β, T ∗)[L]) [these are implicit

function definitions]. The objects fU,T and πβ
we call “coding functions” (these notations are

actually polymorphic as not all type informa-

tion is included in the notation: more complete

notation might be πβ,T , fU,T,k,A, but the addi-

tional information is generally in the context).

• Our clans clan[A] are written with brackets

in this section because A is not the parent set

of clan[A]. The parent set of clan[A], which

we will denote by P (A) is actually

clan[A1] ∪
⋃

B<<A

δ“C|B|−|A|+1(A).

We denote δ“Cn(A) ⊆ Pn(clan[A]) by Pn∗ (clan[A]):

this is the set of all codable elements of the
37

given iterated power set of the given clan. Note

the equation clan[A] = clan(P (A)) relating the

notation of the previous section for clans with

the notation of this section.

• It should be noted how very odd the inter-

locking structure is of clans and parent sets

introduced here. Notice that P (A) includes

clan(P (A1)) and so includes a set as large as

P (A1) and so on for each P (An). But on the

other hand P (An) includes Pn+1
∗ (clan(P (A))

(if n > 0 and An is nonempty) which certainly

is at least as large as P (A). We will see be-

low, however, that Pn+1
∗ (clan(P (A)) is the full

iterated power set of its clan argument from

the standpoint of the FM interpretation we will

define.

We begin proving Lemmas about
argument list manipulations

In this and the next series of slides we will

be proving lemmas supporting basic manipu-

lations of argument lists.

We start with a useful

Definition (application of a permutation to

an argument list): If L is an argument list and

π is a permutation of atoms which fixes clans

and sends each near-litter in the range of L to

a near-litter, define Lπ as an argument list (we

do not care which one) such that for each α in

the domain of L, δ(Lπ(α)) = π(δ(L(α))).

38

The permutation lemma

Permutation Lemma: If L belongs to argu-

ment list type T and π is an allowable per-

mutation (so Lπ is certainly defined), Lπ ∈ T
as well; further, for each coding function f ,

π(f(L)) = f(Lπ).

Proof of Permutation Lemma: The two

parts are proved by mutual structural induc-

tion.

Certainly Lπ(β) will denote an element of the

type indicated by τT (β) for each β, since an

element of a clan or near-litter included in a

clan which happens to be in the range of L

will be sent to an element of the same clan or

a near-litter included in the same clan, because

Lπ is defined. It remains to check the relative

type conditions. For each α, β, it is evident

that L(β) denotes an atom belonging to an

39

near-litter denoted by L(α) iff Lπ(β) denotes

an atom belonging to an near-litter denoted by

Lπ(α), and this is enough for the relative type

conditions for atoms to be preserved. Further,

if g is a coding function and M is a subset of

DT ∩β, and L(β) denotes a near-litter with par-

ent g(LdM), we can suppose as an inductive

hypothesis that π(g(LdM)) = g(((LdM)π) =

g(LπdM) [the coding function g being simpler

than the argument list type T , since it appears

as a component of its specification], and this

is the parent of Lπ(β), confirming that the rel-

ative type conditions for near-litters hold, and

the type of Lπ is the same as the type of L.

That π(πβ(L)) = πβ(Lπ) is obvious, as the

coding functions with atomic output are in ef-

fect projection functions.

Now consider

π(fA,T (L)) = {π(g(M)) : g ∈ A ∧ L ≤M}

(here we apply the inductive hypothesis; g has

output type an iterated power set of a clan

with smaller index)

= {g(Mπ) : g ∈ A∧L ≤M} = {g(M) : g ∈ A∧Lπ ≤M} = fA,T (Lπ).

This completes the argument.

Corollary on supports: Any coded object f(L)

has a support consisting of the referents of

range elements of L.

40

The list structure lemma

List Structure Lemma: If π is a permutation

fixing clans and L,M are argument lists such

that Lπ and Mπ are both defined, then for any

suitable coding functions f, g, f(Lπ) = g(Mπ)

iff f(L) = g(M). It is important here that we

do not actually assume that π is an allowable

permutation, but only that it is locally well-

behaved.

Proof of List Structure Lemma: It is clear

that this holds in the case where f(L) and

g(M) are atoms: πβ(L) = πγ(M) iff δ(L(β)) =

δ(L(γ)) iff π(δ(L(β))) = π(δ(L(γ))) iff δ(Lπ(β)) =

δ(Mπ(γ)) iff πβ(Lπ) = πγ(Mπ).

41

In the case where f(L) and g(M) are sets in a

given iterated power set of a clan, assume that

the result has already been shown for all iter-

ated power sets of that clan with smaller index

and all permutations. fA,T (L) = fB,U(M) is

equivalent to

{g(L′) : g ∈ A∧L ≤ L′} = {h(M ′) : h ∈ B∧M ≤M ′}.

fA,T (Lπ) = fB,U(Mπ) is equivalent to

{g(L′) : g ∈ A∧Lπ ≤ L′} = {h(M ′) : h ∈ B∧Mπ ≤M ′}.

42

We show that if any g(L′), where g ∈ A and

L ≤ L′, is equal to some h(M ′), with h ∈ B and

M ⊆ M ′, then g(L′′), for any L′′ extending Lπ,

is equivalent to some h(M ′′) with M ′′ extending

Mπ. Observe that L′′ can be written (L′)π′,
where π′ is a permutation agreeing with π at

atoms appearing in the range of L or M and at

elements of near-litters appearing in the range

of L or M , and sending near-litters in the range

of (L′ \ L) or the range of (M ′ \M) to near-

litters. Clearly such a permutation exists. Now

define M ′′ as (M ′)π′ and apply the inductive

hypothesis. Now prove the same thing with the

roles of f, g and L,M interchanged, in the same

way, and the equation {g(L′) : g ∈ A ∧ Lπ ⊆
L′} = {h(M ′) : h ∈ B ∧Mπ ⊆ M ′} is proved, as

required.

43

The redundancy lemma

Redundancy Lemma: If f [L] is a code of

type Cn(A), f [L] ∼ f ′[L′], where L′ ⊆ L is de-

termined by choosing a small ordinal α and

removing all elements from L whose first pro-

jection is ≥ α and whose second projection is

of a type clan∗(B) with B not downward ex-

tending An or (if n > 0) of a type clan◦∗(B)

with B not downward extending An−1. The

function code f ′ is obtained from f by remov-

ing appropriate elements from all component

argument list types (including carrying out the

same operation on function codes appearing as

components of its argument list type).

44

Proof of Redundancy Lemma: Observe first

that in any case L′ defined as above is an ar-

gument list. An atom code L′(β) with β ≥ α

belonging to an L(γ) in clan◦∗(An−1) with γ ≥ α
would have to have its relative type reset in the

argument list type T ′ of L′ to indicate that it

belonged to no near-litter code in L′, since the

near-litter to which it actually belongs is omit-

ted.

45

A near-litter code L′(β) with β > α which be-

longs to a clan◦∗(B) with B downward extend-

ing An−1 either has an atom code formal par-

ent which will remain in the domain of L′ be-

cause it is in clan◦∗(B1) and B1 downward ex-

tends An, or has formal parent of a type C|C|−|B|+1

for C downward extending B expressed as a

function g[LdM] of earlier arguments in L which

can be converted to g′[L′dM ′] by a suitable in-

ductive hypothesis, omitting arguments from

LdM which are of a type clan∗(D) with D not

downward extending C|C|−|B|+1 = B1, which

includes the case of D not downward extend-

ing An, or (if n > 0) of a type clan◦∗(D) with D

not downward extending C|C|−|B| = B, which

includes the case of D not downward extending

An−1, without affecting the referent of g[M]:

in either case the relative type information in

T is readily transformed to appropriate infor-

mation for T ′.

46

If n = 0 the main claim is evident: (4, β, T ∗)(L) ∼
(4, β, (T ′)∗)(L′) where L′ contains all and only

the elements of L with second component in

the type clan∗(B) to which L(β) belongs and

T ′ is the argument list type of L′. The func-

tion codes differ precisely in having different

component argument list types in the expected

way.

47

Assume that the result holds for n ≤ k. (5, U, T ∗, k, A)[L]

denotes {δ(g[M]) : g ∈ U ∧ L ≤ M}. Note that

the restriction on argument types for function

codes in U ensures that M \ L = M ′ \ L: the

new arguments in argument lists M here sat-

isfy the range restriction we impose on M ′ al-

ready. By inductive hypothesis, we know that

δ(g[M]) = δ(g′(M ′)) for each specific g and

M . Any δ(g[M]) is equivalent to δ(g′[M ′]) by

inductive hypothesis, and certainly L′ ≤ M ′.
What does still need to be shown is that any

δ(g′[M]) with L′ ≤ M is in fact a δ(g′[M ′]).

But this follows from the restriction on types

of arguments in M \ L: no elements of M \ L
will be removed. So {δ(g[M]) : g ∈ U ∧ L ≤
M} = {δ(g′[M ′]) : g ∈ U ∧ L ≤ M} (by ind hyp

elementwise) = {δ(g′[M]) : g ∈ U ∧ L′ ≤ M} =

(5, U ′, (T ′)∗, k, A)[L′], where U ′ is the set of all

g′ for g ∈ U .

48

The Substitution Property

Theorem (Substitution Property): For any

permutation π∗ of a small set of atoms, send-

ing each atom in its domain to an atom in the

same clan, there is an allowable permutation

extending π∗, all of whose exceptions are in

the domain of π∗.

Proof: For each pair of elements a, b in the

same parent set P , choose a map fa,b,P in-

tended to serve as the restriction of π to litter(a)

if we find subsequently that π(a) = b, with the

property that it is a bijection from the set of el-

ements of litter(a) not in the field of π∗ to the

set of elements of litter(b) not in the field of

π∗. The value of π at a set A is computable as

soon as its value at each element of a support

of A obtained as the range of an argument list

is computable (this follows from the Permuta-

tion Lemma). It is then possible to compute

49

the value of π at every atom and parent, and so

at all sets, by a recursion on the well-founded

structure of the infinitary notation. Given a

notation for an atom, we may assume that we

already know how to compute the extended

map π at its parent by well-foundedness of the

notation: in the case of pure sets, we know

that π fixes them; in the case of elements of

iterated power sets of clans, we can determine

the image of f(L) as f(Lπ), which we can al-

ready compute because all values of π that are

needed to compute Lπ have already been de-

termined (again by structural induction on the

notation) and we can be sure that this does

not depend on the particular code f [L] for the

set which we use by the List Structure Lemma;

in the case of an atomic parent we can appeal

directly to induction on the structure of the

notation. Now we can compute the value of

π at the given atom, either by applying π∗ if

it is in the domain of π∗, or by applying the

appropriate fa,b,P , which we have determined

because we know the image under π of the

parent of the atom.

That all exceptions of the map constructed are

in the range of π∗ is evident from the construc-

tion.

All symmetric sets (in appropriate iterated

power sets of clans) are codable

Theorem: All elements of iterated power sets

Pn(clan[A]) of clans which have support are

actually referents of infinitary notations, and

can in fact be expressed as referents of infini-

tary notations g[M] with argument list extend-

ing any fixed argument list L, with each ele-

ment of the range of M \L belonging to a type

clan∗(B) with B downward extending An (not

necessarily properly) or (if n > 0) to a type

clan◦∗(B) with B downward extending An−1.

Proof: Fix an argument list L.

This is clearly true for elements of clans, for

which all coding functions are in effect pro-

jection functions. In this case n = 0. One

can create an argument list extending L with

a single additional argument denoting an atom

50

in clan[A] unless a notation for the atom which

is the value is actually in the range of L, and

the single additional argument if present is in

clan∗(A) and A downward extends An = A0 =

A.

Suppose the result to be true for all kth power

sets of clans. We choose any element E of the

k + 1-th power set of a clan which has a sup-

port S. Choose a code g[M] for each element

of E, with the argument list M extending an

argument list L′ which extends the fixed argu-

ment list L and whose range includes notations

for each element of the given support S of E

(subject to a restriction discussed in the last

paragraph) and having the property that each

element of the range of M \ L′ belonging to

a type clan∗[B] with B downward extending

Ak (not necessarily properly) or (if n > 0) to

a type clan◦∗[B] with B downward extending

Ak−1. We can do this by inductive hypothesis.

The set fA,T (L′), where A is the set of codes

g used in codes for elements of E and T is

the type of L′, certainly contains every ele-

ment of the original set E. Now any element

of fA,T (L′) is of the form g(M ′) where there is

g(M) ∈ E, and we can define a small map π0

implementing a substitution, fixing the refer-

ent of each element of the range of L′, which

“sends M to M ′” [map atoms with referents

in M to atoms with referents in corresponding

positions in M ′; further extensions to the small

map are needed to handle anomalous elements

for near-litters referenced in corresponding po-

sitions in M and M ′.] This substitution map

can be extended to a small bijection respecting

clans (with additional elements of the domain

of the bijection belonging to near-litters ref-

erenced in the range of M mapped into near-

litters referenced in corresponding positions in

the range of M ′ and additional elements be-

longing to near-litters referenced in the range

of M ′ having preimages in the near-litters ref-

erenced in corresponding positions in the range

of M), and then to an allowable permutation

fixing each referent of an element of the range

of L′, mapping g(M) ∈ E to g(M ′) (having no

exceptions other than elements of the domain

of the small bijection causes it to treat near-

litters referenced in the range of M correctly).

But then g(M ′) ∈ E as well, since the allowable

permutation fixes all referents of elements of

the range of L′, a support of E, by construc-

tion, and it follows that fA,T (L′) = E.

To enforce the restriction on types of argu-

ments in the range of L′ we apply the Redun-

dancy Lemma with the ordinal α in the proof

of the Lemma being set to the first ordinal

dominating the domain of L.

Definition of our FM interpretation

The group G defining our FM permutation is

the group of allowable permutations. For any

support set S, GS is defined as the set of allow-

able permutations which fix each element of S.

The filter Γ is defined as the set of subgroups

of G which include a GS.

That Γ is a normal filter is straightforward to

establish. The normality condition is the only

one which requires any work: if H contains

GS, it is straightforward to show that for any

π ∈ G, πHπ−1 includes Gπ(S).

•Observation and convention on iterated

power set notation: We have shown that

the subset of Pn+1(clan(P)) which is included

in a parent set, if it has non-pure members,

is the full iterated power set of the clan in

51

the sense of the FM interpretation. Subse-

quently in this paper, we will use the notation

Pn+1(clan(P)) to denote the iterated power

set in the sense of the FM interpretation, un-

less we specifically say otherwise. We do have

the notation Pn+1
∗ (clan(P)) available for this

set by the previous theorem if we need to draw

a distinction.

•Observation about internal vs. external

cardinalities: We argued above that if A and

An are both nonempty, then P (A) and P (An)

(and the associated clans) are of the same car-

dinality in the ground interpretation. But in

the FM interpretation P (An) includes

Pn+1(clan(P (A)),

and so is a much larger set in terms of the

FM interpretation. The moral here is that the

power sets of the FM interpretation are quite

impoverished.

Combinatorics of clans

We now discuss the combinatorics of a fixed

clan(P) in the FM model.

•The domain of the FM interpretation con-

tains its small subsets: We first observe that

every small set of elements of the FM model

in an iterated power set of the clan is an el-

ement of the FM model. Take the union of

supports for each element of the small set to

get a support for the small set.

52

•Supports may be taken to contain only

litters proper: We note that any support S

can be refined to one in which all near-litter

elements of S are litters (replace near-litter

elements with the litters with small symmet-

ric difference from them; add the elements of

the symmetric differences (the anomalous ele-

ments for the near-litters) to the support). We

do this everywhere below; allowing near-litters

in supports is important because it simplifies

the proof of normality, but here we prefer to

eliminate them.

53

•Strong support: definition and lemma A
strong support for a set A is a support obtained
from a code f [L] for A by adding to the set
of referents of elements of the range of L all
anomalous elements for near-litter referents of
elements of the range of L (which allows us to
replace near-litters with litters with the same
parent). An allowable permutation π which
fixes all atomic elements of a strong support
of A and has no exceptions in litter elements
of S other than possibly fixed points of π will
fix A: if it moves A, it moves some element of
the strong support, which cannot be an atom,
so it must move a litter, and it must move a
first one in the order on the original argument
list, whose parent it must fix as all elements of
a support thereof (references to which appear
earlier in the list) are fixed, and it can only
move a litter whose parent it fixes (and all of
whose anomalous elements it fixes) by having
an exception in the litter, which will not be a
fixed point of π, again because the parent is
fixed.

54

•Litters are sets of the FM interpretation:

Each litter is a set of the FM interpretation

with support consisting of its own singleton.

•Definition (κ-amorphous set): We call a

set κ-amorphous iff all its subsets are small or

co-small.

55

•Litters are κ-amorphous in the FM inter-

pretation: We show that the litters in clan(P)

are κ-amorphous sets in the FM interpreta-

tion. Suppose to the contrary that L is a litter,

A ⊆ L is large and L \ A is large, and A has

strong support S. Let a ∈ A and b ∈ L \A with

neither a nor b belonging to S nor to a fixed

strong support of L. There will be an allowable

permutation π extending the small map which

interchanges a and b and fixes each atomic ele-

ment of a strong support of L and each atomic

element of S and has no exceptions belonging

to any litter in the strong support of L or in

S (because in fact it has no exceptions which

it moves), and so fixes all elements of S. But

this is impossible, because such a map would

move A while fixing every element of its given

support.

56

•Theorem: The subsets of each clan(P) in

the FM interpretation are exactly the sets with

small symmetric difference from the unions of

small or co-small collections of the litters in

the clan.

•Proof:

We say that a set A cuts a set B iff B ∩A and

B \A are both nonempty.

We claim that for any subset A of clan(P) in

the FM interpretation, A can cut only a small

collection of litters. Suppose otherwise, that

A cuts a large collection of litters and has a

strong support S. Choose a and b in the same

litter L, one belonging to A and the other not

belonging to A, with neither belonging to S.

There will be a permutation π extending the

small map exchanging a and b and fixing each

atomic element of a strong support of L and

57

each atomic element of S, and having no ex-

ceptions other than elements of S and of the

strong support of L; but this is impossible, as

this map must also fix A, as it fixes all atomic

elements of its given support and has no ex-

ceptions which it moves belonging to litters in

the given support, since the map has no ex-

ceptions which it moves.

We claim that for any subset A of clan(P) in

the FM interpretation, it cannot be the case

that a large number of litters meet A and a

large number of litters do not meet A. Sup-

pose that A has strong support S and a large

number of litters meet A and a large num-

ber of litters do not meet A. Choose atoms

a and b, one belonging to a litter L meeting

A and one belonging to a litter M not meet-

ing A, chosen so that none of a, b, L,M belong

to S. There will be a permutation extending

the small map extending a and b and fixing all

atomic elements of S and of strong supports of

L,M and having no exceptions which it moves

belonging to any litter element of S (since a, b

are the only exceptions which it moves) and so

fixing all litter elements of S. This permuta-

tion moves A but it cannot do so because it

fixes all elements of its given support.

Now there are two kinds of subset of clan(P)

in the FM interpretation:

1. sets which meet a small collection of litters

in P and so have small symmetric differ-

ence from the union of the litters in this

small collection whose intersection with A

is co-small,

2. and sets which meet a large collection of

litters in P (and so fail to meet only the

litters in a small collection), but cut only a

small collection of them, which thus have

small symmetric difference from the union

of the co-small collection of litters which

have co-small intersection with A.

So every such set A has small symmetric differ-

ence from a small or co-small union of litters.

Further, it is evident that any small union of

litters is a set of the FM interpretation, so any

small or co-small union of litters is a set of the

FM interpretation, so any set with symmetric

difference from a small or co-small union of

litters is a set of the FM interpretation.

•Observation: Note that this tells us that

clan(P) has the same power set in the FM in-

terpretation quite independently of what power

set P has in the FM interpretation; sets clan(P)

with parent sets of the same cardinality in terms

of the ground interpretation will have power

sets in the FM interpretation which are iso-

morphic in terms of the ground interpretation.

This will not be true for further iterated power

sets in the FM interpretation.

58

•Theorem (double power set lemma): The

set P2(cal(P)) contains a set the same size as

P(P) acccording to the FM interpretation.

•Proof: We argue that a subset of clan(P) is

the same size as a litter L ⊆ clan(P) in the FM

interpretation iff it has small symmetric differ-

ence from L. First, it is clear that a set which

has small symmetric difference from L is the

same size as L in the FM interpretation, as a

bijection witnessing this fact can be obtained

which has small symmetric difference from the

identity map and so certainly is a set of the

FM interpretation. Now suppose that there is

a bijection f from L to a set A where L∆A is

large, with strong support S. Let U be one of

L\A and A\L which happens to be large. Let g

be the one of f and f−1 which is defined on U .

We choose two elements a, b from U in such a

way that none of a, b, g(a), g(b) belong to S; we

choose these so that the elements of each of
59

the pairs a, b and g(a), g(b) each belong to the
same litter (one of the pairs both belong to L;
some litter must have a large intersection with
the large set A \ L). There is a permutation π

which swaps a, b and fixes g(a) and g(b), and
further fixes each atomic element of S and has
no exceptions which it moves in near-litter el-
ements of S (since it has no exceptions which
it moves) so fixes all elements of S. The re-
sulting map will move f , but this is impossible
because it fixes all elements of the given sup-
port of f .

Thus a reasonable nonce definition for |litter(a)|
is as the collection of near-litters with small
symmetric difference from the litter, as this is
exactly the collection of subsets of the same
clan with this cardinality. Now the map (a ∈
P 7→ |litter(a)|) has empty support in the al-
lowable permutations, so is a set of the FM
interpretation. Moreover

(B ⊆ P 7→
⋃
a∈B
|litter(a)|)

is a set of the FM interpretation for the same
reason, and is a bijection from P(P) into P2(clan(P))
in the sense of the FM interpretation. So
the abundance of subsets of P in the FM in-
terpretation has no effect on the extent of
P(clan(P)) in the FM interpretation, but has
a strong effect on the extent of P2(clan(P)).

•This is a key idea of the proof: the ability
to construct sets which are externally isomor-
phic (in the sense of the ground interpreta-
tion) and have quite different power sets (in
the sense of the FM interpretation) is essen-
tial for getting an argument for Con(NF) anal-
ogous to Jensen’s argument for Con(NFU) to
work. Further applications of this machinery
allow us to do the same thing with models of
initial segments of simple type theory with ar-
bitrarily many types, getting externally isomor-
phic natural models of TSTn in the FM inter-
pretation whose top types have non-isomorphic
power sets in the FM interpretation, so the
natural models of TSTn+1 extending them are
not isomorphic.

Parent clans; sizes of iterated power
sets of clans

Note that P(D) in this section denotes the

power set of D in the FM interpretation.

Where P is a parent set P (A), we use the no-

tation P1 to represent P (A1).

We know from above that P2(clan(P)) con-

tains a subset the same size as P(P) in the

sense of the FM interpretation. This means

that it further contains a set the same size

as P(clan(P1)). Thus P3(clan(P)) contains a

set the same size as P2(clan(P1) which con-

tains a set the same size as P(P1). Now we

have an argument by induction. Suppose that

we have shown that Pn+2(clan(P)) contains

a set the same size as P(Pn). It follows that

Pn+3(clan(P)) contains a set the same size as

P2(Pn) which contains a set the same size as

60

P2(clan(Pn+1)) which contains a set the same

size as P(Pn+1). This completes a proof by in-

duction of the following

Theorem: Pn+2(clan(P)) contains a set the

same size as P(Pn), in the sense of the FM

interpretation, for every n for which Pn is

defined.

Convergent cardinalities of iter-
ated power sets

We show that if Ai = Bj,

|Pi+2(clan[A])| = |Pj+2(clan[B])|

in the FM interpretation. We know from re-

sults above that Pi+2(clan[A]) contains a set

the same size as P(P (Ai)) and Pj+2(clan[B])

contains a set the same size as P(P (Bj)) (car-

dinalities here being understood in the sense

of the FM interpretation). But A << Ai so

P (Ai) = P (Bj) contains P |A|−|Ai|+1(clan[A]) =

Pi+1(clan[A]) and similarly contains Pj+1(clan[B]),

from which it follows that Pi+2(clan[A]) con-

tains a set the same size as P(P (Ai)) which

contains a set the same size as P(Pj+1(clan[B]))

which is Pj+2(clan[B]), and vice versa, so

|Pi+2(clan[A])| = |Pj+2(clan[B])|

in the FM interpretation by Schröder-Bernstein.

61

Isomorphism of iterated power
sets

Every item in the iterated power set Pn(clan[A])

has a code with argument list containing no

code for an atom in a clan[B] with B not

downward extending An nor any code for a

near-litter in a clan◦[B] with B not downward

extending An−1, by the Redundancy Lemma.

Call such codes “formally restricted”. Now

if B \ Bn = A \ An then choose any external

bijection from clan[An] to clan[Bn]: this bi-

jection can be naturally extended (its action

on parents dictating its action on (formal rep-

resentations of) atoms, its action on (formal

representations of) elements dictating its ac-

tion on (formal representations of) sets) to a

map converting any formally restricted code

for an element of Pn(clan[A]) to a formally

restricted code for an element of Pn(clan[B])

bijectively (with adjustments of type indices by

62

replacing each type index C appearing with

(C \ An) ∪ Bn: this exactly preserves struc-

ture). In the case where An or Bn is empty,

we need the assumption that P (∅) = X is as

large as the other P (A)’s [which can indeed

be arranged, but we choose not to discuss

this], but this is not strictly needed as the case

where both are nonempty is sufficient for the

proof (as we will see below). This bijection

preserves structure, because facts of member-

ship and equality in the power sets are com-

putable from the infinitary notation considered

abstractly, and the features of the infinitary no-

tation which support this computation are pre-

served by the transformation in question. Note

that this transformation acts on all lower in-

dexed iterated power sets of clan[A] and clan[B]

as well, but there is no reason to expect it even

to send sets to sets on Pn+1(clan[A]): this

transformation is not a function of the FM in-

terpretation.

This shows us that the first order theory of the

natural model of the first n+1 types in the FM

interpretation whose base type is clan[A] and

whose top type Pn(clan[A]) depends only on

A\An, at least as long as An is not empty (and

in fact not in this case, either, but we are not

concerned to show this).

Consistency of NF

Suppose that λ > ω.

The final step is to observe that for any fixed

limit ordinal α < λ, τ(A) = |P2(clan(A∪ {α}))|
for nonempty A dominated by α defines a tan-

gled web of cardinals in the FM interpretation.

The cardinality of the power set of

P2(clan[A ∪ {α}])

is the same as that of P2(clan(A1 ∪ {α})) by

results above (if A has at least two elements).

Of course A1 ∪ {α} = (A ∪ {α})1. This es-

tablishes 2τ(A) = τ(A1) for A with at least two

elements, which verifies the naturality property

of tangled webs for this τ .

Consider natural models of initial segments of

simple type theory with base type P2(clan[A∪
63

{α}]). The theory of such a model is de-

termined by the cardinality of its base type.

The theory of the first n types of this model,

that is the theory of the model with top type

Pn+1(clan[A∪ {α}]), is completely determined

by the first n + 1 elements of A by results

above. And this establishes the elementarity

property of a tangled web for this τ .

We have already shown that the existence of

a tangled web implies the consistency of NF.

The assumption that λ > ω and the use of α in

the definition of tangled webs is purely techni-

cal; we have avoided proving that the theory of

the natural model of TSTn with bottom type

clan(A) and top type Pn(clan[A]) depends only

on A\An in the case where An is empty, though

this does in fact hold, so the tangled web could

be defined as τ(A) = |P2(clan(A))|.

Conclusions to be drawn about
NF

The conclusions to be drawn about NF are

rather unexciting ones.

By choosing the parameter λ to be larger (and

so to have stronger partition properties) one

can show the consistency of a hierarchy of ex-

tensions of NF similar to extensions of NFU

known to be consistent: one can replicate Jensen’s

construction of ω- and α-models of NFU to get

ω- and α-models of NF. One can show the con-

sistency of NF + Rosser’s Axiom of Counting

(see [?]), Henson’s Axiom of Cantorian Sets

(see [?]), or the author’s axioms of Small and

Large Ordinals (see [?], [?], [?]) in basically

the same way as in NFU.

It seems clear that this argument, suitably re-

fined, shows that the consistency strength of

64

NF is exactly the minimum possible on pre-

vious information, that of TST + Infinity, or

Mac Lane set theory (Zermelo set theory with

comprehension restricted to bounded formu-

las). Actually showing that the consistency

strength is the very lowest possible might be

technically tricky, of course. I have not been

concerned to do this here. It is clear from what

is done here that NF is much weaker than ZFC.

By choosing the parameter κ to be large enough,

one can get local versions of Choice for sets as

large as desired, using the fact that any small

subset of a type of the structure is symmet-

ric. The minimum value ω1 for κ already en-

forces Denumerable Choice (Rosser’s assump-

tion in his book) or Dependent Choices. It is

unclear whether one can get a linear order on

the universe or the Prime Ideal Theorem: that

would require major changes in this construc-

tion. But certainly the question of whether NF

has interesting consequences for familiar math-

ematical structures such as the continuum is

answered in the negative: set κ large enough

and what our model of NF will say about such

a structure will be entirely in accordance with

what our original model of ZFC said. It is

worth noting that the models of NF that we

obtain are not κ-complete in the sense of con-

taining every subset of their domains of size

κ; it is well-known that a model of NF cannot

contain all countable subsets of its domain.

But the models of TST from which its theory

is constructed will be κ-complete, so combi-

natorial consequences of κ-completeness will

hold in the model of NF (which could further

be made a κ-model by making λ large enough).

The consistency of NF with the existence of a

linear order on the universe or the Prime Ideal

theorem is not established: questions about

many weak versions of Choice remain.

The question of Maurice Boffa as to whether

there is an ω-model of TNT (the theory of

negative types, that is TST with all integers

as types, proposed by Hao Wang ([?])) is set-

tled: an ω-model of NF yields an ω-model of

TNT instantly. This work does not answer

the question, very interesting to the author,

of whether there is a model of TNT in which

every set is symmetric under permutations of

some lower type.

The question of the possibility of cardinals of

infinite Specker rank (in ZFA at least) is an-

swered, and we see that the existence of such

cardinals doesn’t require much consistency strength.

For those not familiar with this question, the

Specker tree of a cardinal is the tree with that

cardinal at the top and the children of each

node (a cardinal) being its preimages under

α 7→ 2α. It is a theorem of Forster (a corol-

lary of a well known theorem of Sierpinski)

that the Specker tree of a cardinal is well-
founded (see [?], p. 48), so has an ordinal
rank, which we call the Specker rank of the
cardinal. NF + Rosser’s Axiom of Counting
proves that the Specker rank of the cardinality
of the universe is infinite; it was unknown until
this point whether the existence of a cardinal
of infinite Specker rank was consistent with
any set theory in which we had confidence.
The possibility of a cardinal of infinite Specker
rank in ZFA is established by the construction
here; we are confident that standard methods
of transfer of results obtained from FM con-
structions in ZFA to ZF will apply to show that
cardinals of infinite Specker rank are possible
in ZF.

This work does not answer the question as to
whether NF proves the existence of infinitely
many infinite cardinals (discussed in [?], p. 52).
A model with only finitely many infinite cardi-
nals would have to be constructed in a totally

different way. We conjecture on the basis of

our work here that NF probably does prove

the existence of infinitely many infinite cardi-

nals, though without knowing what a proof will

look like.

A natural general question which arises is, to

what extent are all models of NF like the ones

indirectly shown to exist here? Do any of

the features of this construction reflect facts

about the universe of NF which we have not

yet proved as theorems, or are there quite dif-

ferent models of NF as well?

