
New Foundations is consistent

M. Randall Holmes

July 21, 2022

Contents

1 Remarks on this version 3
1.1 Version updates . 3

2 Development of relevant theories 6
2.1 The simple theory of types TST and TSTU 6

2.1.1 Typical ambiguity . 6
2.1.2 Historical remarks . 7

2.2 Some mathematics in TST; the theories TSTn and their natural
models . 8

2.3 New Foundations and NFU . 10
2.4 Tangled type theory TTT and TTTU 12

2.4.1 How internal type representations unfold in TTT 15
2.4.2 Tangled webs of cardinals: a suggestion of another ap-

proach not followed here 17

3 The model description 19
3.1 Cardinal parameters . 19
3.2 Type −1: “Atoms”, litters, and local cardinals 19
3.3 Set codes and alternative extensions: membership defined and

extensionality enforced . 20
3.4 Permutations, symmetry and the model definition 23
3.5 Outline of an alternative approach to defining the model elements

[under construction, not part of the main development as yet] . . 26

4 Showing that it is all true: proving that the structure described
in the previous section is a model of tangled type theory 30
4.1 Strong supports defined . 30
4.2 Freedom of action of allowable permutations 32
4.3 Alternative approach to supports and freedom of action (not part

of the main line, or not yet) . 35
4.4 Types are of size µ (so the construction actually succeeds) 40
4.5 The structure is a model of predicative TTT 45
4.6 Impredicativity: verifying the axiom of union 46

1

5 Conclusions, extended results, and questions 47

2

1 Remarks on this version

This document is probably my best overall version so far. The immediate oc-
casion for its preparation is to serve students attempting to verify the proof
in Lean. As we have discussed, the formal verification should at least initially
avoid metamathematics, so it is the fact that the structure defined in section 3
is a model of TTT which should be verified, and further, a finite axiomatization
(mod type indexing) of TST and thus TTT should be verified in the model in
lieu of the usual statement of the axiom of comprehension of TTT.

1.1 Version updates

7/21/2022: finished at least first draft of the alternative approach to supports
and freedom of action. This is not as yet part of the main development,
but is a candidate to be merged in.

7/20/2022: discussion of counting ways to insert specifications in the proof of
sizes of types.

7/19/2022: Further refinement of text from the previous day. Another update
12 pm Boise time.

7/18/2022: Corrected errors in the argument that there are µ elements in each
type.

7/13/2022: Adding another additional section not in the main development,
detailing a different approach to supports and the freedom of action the-
orem, similar to Peter’s approach in the Lean project.

6/29/2022: I wrote a section which is not part of the official development (at
least not yet) exploring Peter’s preferred representation of model elements.
I also fixed a typo in the subscripting in the definition of f maps (an extra
subscript had survived from an earlier version).

6/27/2022: Explicit formal definition of ≡β inserted due to questions about
boundary cases.

6/14/2022: Corrected an automated replacement disaster in the tangled web
sections left over from yesterday, and minor edits.

6/13/2022: Thank you Peter for correcting slip in statement of the definition
of A−1.

Later: added a comment about the fact that in these models the power set
of a well-orderable set is well-orderable, which is a significant discovery.

Later: clarifications (notably in the proof of the Freedom of Action The-
orem)

Later: extensive work on (hopefully) cleaning up bad notation. Different
format for specifications.

3

6/12/2022: Further tightening and improvement of language in sections 4.3
and 4.5. There is a general (helpful!) fact about the way extensions to
strong supports of index-raised versions of strong supports work which I
had not properly appreciated.

Later: further fiddly edits.

6/11/2022: Correction and improvement of section 4.3. There is now only one
induction argument on strong supports in the section, and the repair was
needed because the one originally given first could not be proved without
the second.

Later: major rewriting of section 4.3, which I think brings it much closer
to the standard needed for the verification project.

6/10/2022: Replaced ι as used to represent ordinal position in a type with
ι∗, to avoid confusion with the use of ι for the singleton operator which
occurs elsewhere in the paper.

Added a proof that Aδ’s commute with allowable permutations, support-
ing the fact that the unpacked coherence condition is the same as the
original one.

Clarified the account of the proof that the structure satisfies predicative
TTT, which was missing important details. It’s still too brief, but it is a
sketch of an standard argument found in other contexts.

Cleaned up the proof that the structure satisfies the axiom of union. The
sketch I had before was along the right lines but there was a gap in it
much too large to expect a reader to fill in.

There are other edits; this was a complete editing pass.

6/9/2022: Some debugging in section 4. Some of the detailed descriptions
of applications of freedom of action guided by strong supports needed
corrections.

6/8/2022: Fixed some typos (or mental slips of the sort we call typos by
courtesy) and made some adjustments necessitated by the new treatment
of strong supports.

6/7/2022: Major improvements in the treatment of strong supports. Removed
the third components from items in supports and imposed a technical con-
dition on the designated well-orderings of each type. Significant changes
which will require some adjustments of the blueprint (I do not
think extensive ones). Later on 6/7, corrected some howlers about litters
vs near-litters in the new material. 5 pm 6/7, more editing.

6/6/2022: Added a section on tangled webs of cardinals for reference. Re-
moved an unnecessary clause from the definition of support (which will
require a modification of the blueprint).

4

6/5/2022: 3:30 pm Cambridge: An editing pass through the whole docu-
ment. I think that if we get to the induction proofs in section 4 which
work along strong supports, there will need to be special notes written for
each proof.

6/5/2022, 11:11 am Cambridge: Minor fixes here and there in the adjusted
text from last time; some clarification of text in the proof of freedom of
action.

6/4/2022, afternoon Cambridge time: Explicitly described the procedures
for extending supports to strong supports. Second posting repairing some
glitches in the evening.

6/3/2022, 3 pm Cambridge time: Major revisions to the presentation of
the model and its verification inspired by approaches taken in the blueprint.
No essential mathematical changes; one modification is that supports are
now well-orderings of triples from the outset, as in the blueprint.

5/29/2022, morning: Considering backward action of the blueprint on the
paper. Introduced the concrete definition of type −1 and rephrased things
much as in the blueprint.

5/25/2022, afternoon: Accidentally left out the fact µ > κ.

5/23/2022, early afternoon: Further copy editing; no mathematical changes.

5/23/2022, morning: Fixes error in construction of f maps.

5/22/2022, evening: Fixes a typo, adds remarks motivated by our conversa-
tions on Saturday.

5/21/2022, morning: This version has some upgrades to organization and
appearance which are part of preparation for its submission as a Paper.
These should generally help students in the Lean project, too.

5/18/2022, 9 am Boise time: corrected a typo pairs to triples in definition
of structured supports; changed cofinality requirement for µ to cofinality
> κ instead of ≥ κ.

5/18/2022, 9:30 am Boise time: corrected definition of Aγ ; left out a neces-
sary application of set union. I suspect Lean would have noticed a mistake
there.

5/18/2022, 9:31 am Boise time: changed cofinality back to ≤ κ: inserting
some discussion.

5

2 Development of relevant theories

2.1 The simple theory of types TST and TSTU

We introduce a theory which we call the simple typed theory of sets or TST, a
name favored by the school of Belgian logicians who studied NF (théorie simple
des types). This is not the same as the simple type theory of Ramsey and it is
most certainly not Russell’s type theory (see historical remarks below).

TST is a first order multi-sorted theory with sorts (types) indexed by the
nonnegative integers. The primitive predicates of TST are equality and mem-
bership.

The type of a variable x is written type(‘x’): this will be a nonnegative
integer. A countably infinite supply of variables of each type is supposed. An
atomic equality sentence ‘x = y’ is well-formed iff type(‘x’) = type(‘y’). An
atomic membership sentence ‘x ∈ y’ is well-formed iff type‘(x’)+1 = type(‘y’).

The axioms of TST are extensionality axioms and comprehension axioms.
The extensionality axioms are all the well-formed assertions of the shape

(∀xy : x = y ↔ (∀z : z ∈ x↔ z ∈ y)). For this to be well typed, the variables x
and y must be of the same type, one type higher than the type of z.

The comprehension axioms are all the well-formed assertions of the shape
(∃A : (∀x : x ∈ A↔ ϕ)), where ϕ is any formula in which A does not occur free.

The witness to (∃A : (∀x : x ∈ A ↔ ϕ)) is unique by extensionality, and
we introduce the notation {x : ϕ} for this object. Of course, {x : ϕ} is to be
assigned type one higher than that of x; in general, term constructions will have
types as variables do.

The modification which gives TSTU (the simple type theory of sets with
urelements) replaces the extensionality axioms with the formulas of the shape

(∀xyw : w ∈ x→ (x = y ↔ (∀z : z ∈ x↔ z ∈ y))),

allowing many objects with no elements (called atoms or urelements) in each
positive type. A technically useful refinement adds a constant ∅i of each positive
type i with no elements: we can then address the problem that {xi : ϕ} is not
uniquely defined when ϕ is uniformly false by defining {xi : ϕ} as ∅i+1 in this
case.

2.1.1 Typical ambiguity

TST(U) exhibits a symmetry which is important in the sequel.
Provide a bijection (x 7→ x+) from variables to variables of positive type

satisfying type(x+) = type(x) + 1.
If ϕ is a formula, define ϕ+ as the result of replacing every variable x (free

and bound) in ϕ with x+ (and occurrences of ∅i with ∅i+1 if this is in use). It
should be evident that if ϕ is well-formed, so is ϕ+, and that if ϕ is a theorem,
so is ϕ+ (the converse is not the case). Further, if we define a mathematical
object as a set abstract {x : ϕ} we have an analogous object {x+ : ϕ+} of the
next higher type (this process can be iterated).

6

The axiom scheme asserting ϕ↔ ϕ+ for each closed formula ϕ is called the
Ambiguity Scheme. Notice that this is a stronger assertion than is warranted
by the symmetry of proofs described above.

2.1.2 Historical remarks

TST is not the type theory of the Principia Mathematica of Russell and White-
head ([14]), though a description of TST is a common careless description of
Russell’s theory of types.

Russell described something like TST informally in his 1904 Principles of
Mathematics ([13]). The obstruction to giving such an account in Principia
Mathematica was that Russell and Whitehead did not know how to describe
ordered pairs as sets. As a result, the system of Principia Mathematica has an
elaborate system of complex types inhabited by n-ary relations with arguments
of specified previously defined types, further complicated by predicativity re-
strictions (which are cancelled by an axiom of reducibility). The simple theory
of types of Ramsey eliminates the predicativity restrictions and the axiom of
reducibility, but is still a theory with complex types inhabited by n-ary relations.

Russell noticed a phenomenon like the typical ambiguity of TST in the more
complex system of Principia Mathematica, which he refers to as “systematic
ambiguity”.

In 1914 ([21]), Norbert Wiener gave a definition of the ordered pair as a set
(not the one now in use) and seems to have recognized that the type theory
of Principia Mathematica could be simplified to something like TST, but he
did not give a formal description. The theory we call TST was apparently first
described by Tarski in 1930 ([19]).

It is worth observing that the axioms of TST look exactly like those of “naive
set theory”, the restriction preventing paradox being embodied in the restriction
of the language by the type system. For example, the Russell paradox is averted
because one cannot have {x : x ̸∈ x} because x ∈ x (and so its negation ¬x ∈ x)
cannot be a well-formed formula.

It was shown around 1950 (in [7]) that Zermelo set theory proves the consis-
tency of TST with the axiom of infinity; TST + Infinity has the same consistency
strength as Zermelo set theory with separation restricted to bounded formulas.

7

2.2 Some mathematics in TST; the theories TSTn and
their natural models

We briefly discuss some mathematics in TST.
We indicate how to define the natural numbers. We use the definition of

Frege (n is the set of all sets with n elements). 0 is {∅} (notice that we get a
natural number 0 in each type i + 2; we will be deliberately ambiguous in this
discussion, but we are aware that anything we define is actually not unique, but
reduplicated in each type above the lowest one in which it can be defined). For
any set A at all we define σ(A) as {a∪{x} : a ∈ A∧x ̸∈ a}. This is definable for
any A of type i+2 (a being of type i+1 and x of type i). Define 1 as σ(0), 2 as
σ(1), 3 as σ(2), and so forth. Clearly we have successfully defined 3 as the set
of all sets with three elements, without circularity. But further, we can define N
as {n : (∀I : 0 ∈ I ∧ (∀x ∈ I : σ(x) ∈ I) → n ∈ I}, that is, as the intersection of
all inductive sets. N is again a typically ambiguous notation: there is an object
defined in this way in each type i+ 3.

The collection of all finite sets can be defined as
⋃

N. The axiom of infinity
can be stated as V ̸∈

⋃
N (where V = {x : x = x} is the typically ambiguous

symbol for the type i + 1 set of all type i objects). It is straightforward to
show that the natural numbers in each type of a model of TST with Infinity are
isomorphic in a way representable in the theory.

Ordered pairs can be defined following Kuratowski and a quite standard
theory of functions and relations can be developed. Cardinal and ordinal num-
bers can be defined as Frege or Russell would have defined them, as isomorphism
classes of sets under equinumerousness and isomorphism classes of well-orderings
under similarity.

The Kuratowski pair (x, y) = {{x}, {x, y}} is of course two types higher
than its projections, which must be of the same type. There is an alternative
definition (due to Quine in [10]) of an ordered pair ⟨x, y⟩ in TST + Infinity
which is of the same type as its projections x, y. This is a considerable technical
convenience but we will not need to define it here. Note for example that if
we use the Kuratowski pair the cartesian product A × B is two types higher
than A,B, so we cannot define |A| · |B| as |A × B| if we want multiplication
of cardinals to be a sensible operation. Let ι be the singleton operation and
define T (|A|) as |ι“A| (this is a very useful operation sending cardinals of a
given type to cardinals in the next higher type which seem intuitively to be the
same). The definition of cardinal multiplication if we use the Kuratowski pair
is then |A| · |B| = T−2(|A × B|). If we use the Quine pair this becomes the
usual definition |A| · |B| = |A×B|. Use of the Quine pair simplifies matters in
this case, but it should be noted that the T operation remains quite important
(for example it provides the internally representable isomorphism between the
systems of natural numbers in each sufficiently high type).

Note that the form of Cantor’s Theorem in TST is not |A| < |P(A)|, which
would be ill-typed, but |ι“A| < |P(A)|: a set has fewer unit subsets than subsets.
The exponential map exp(|A|) = 2|A| is not defined as |P(A)|, which would
be one type too high, but as T−1(|P(A)), the cardinality of a set X such that

8

|ι“X| = |P(A)|; notice that this is partial. For example 2|V | is not defined (where
V = {x : x = x}, an entire type), because there is no X with |ι“X| = |P(V)|,
because |ι“V | < |P(V)| ≤ |V |, and of course there is no set larger than V in its
type.

For each natural number n, the theory TSTn is defined as the subtheory of
TST with vocabulary restricted to use variables only of types less than n (TST
with n types). In ordinary set theory TST and each theory TSTn have natural
models, in which type 0 is implemented as a set X and each type i in use is
implemented as Pi(X). It should be clear that each TSTn has natural models
in bounded Zermelo set theory, and TST has natural models in a modestly
stronger fragment of ZFC.

Further, each TSTn has natural models in TST itself, though some care must
be exercised in defining them. Let X be a set. Implement type i for each i < n
as ι(n−1)−i“Pi(X). If X is in type j, each of the types of this interpretation
of TSTn is a set in the same type j + n − 1. For any relation R, define Rι

as {({x}, {y}) : xRy}. The membership relation of type i − 1 in type i in the

interpretation described is the restriction of ⊆ι(n−1)−i

to the product of the sets
implementing type i− 1 and type i.

Notice then that we can define truth for formulas in these natural models of
TSTn for each n in TST, though not in a uniform way which would allow us to
define truth for formulas in TST in TST.

Further, both in ordinary set theory and in TST, observe that truth of
sentences in natural models of TSTn is completely determined by the cardinality
of the set used as type 0. since two natural models of TST or TSTn with base
types implemented by sets of the same cardinality are clearly isomorphic.

9

2.3 New Foundations and NFU

In [11], 1937, Willard van Orman Quine proposed a set theory motivated by
the typical ambiguity of TST described above. The paper in which he did
this was titled “New foundations for mathematical logic”, and the set theory it
introduces is called “New Foundations” or NF, after the title of the paper.

Quine’s observation is that since any theorem ϕ of TST is accompanied by
theorems ϕ+, ϕ++, ϕ+++, . . . and every defined object {x : ϕ} is accompanied by
{x+ : ϕ+}, {x++ : ϕ++}, {x+++ : ϕ+++}, so the picture of what we can prove
and construct in TST looks rather like a hall of mirrors, we might reasonably
suppose that the types are all the same.

The concrete implementation follows. NF is the first order unsorted theory
with equality and membership as primitive with an axiom of extensionality
(∀xy : x = y ↔ (∀z : z ∈ x ↔ z ∈ y)) and an axiom of comprehension
(∃A : (∀x : x ∈ A↔ ϕ)) for each formula ϕ in which A is not free which can be
obtained from a formula of TST by dropping all distinctions of type. We give
a precise formalization of this idea: provide a bijective map (x 7→ x∗) from the
countable supply of variables (of all types) of TST onto the countable supply
of variables of the language of NF. Where ϕ is a formula of the language of
TST, let ϕ∗ be the formula obtained by replacing every veriable x, free and
bound, in ϕ with x∗. For each formula ϕ of the language of TST in which A is
not free in ϕ∗ and each variable x∗, an axiom of comprehension of NF asserts
(∃A : (∀x∗ : x∗ ∈ A↔ ϕ∗)).

In the original paper, this is expressed in a way which avoids explicit depen-
dence on the language of another theory. Let ϕ be a formula of the language of
NF. A function σ is a stratification of ϕ if it is a (possibly partial) map from
variables to non-negative integers such that for each atomic subformula ‘x = y’
of ϕ we have σ(‘x’) = σ(‘y’) and for each atomic subformula ‘x ∈ y’ of ϕ we have
σ(‘x’)+1 = σ(‘y’). A formula ϕ is said to be stratified iff there is a stratification
of ϕ. Then for each stratified formula ϕ of the language of NF and variable x
we have an axiom (∃A : (∀x : x ∈ A ↔ ϕ)). The stratified formulas are exactly
the formulas ϕ∗ up to renaming of variables.

NF has been dismissed as a “syntactical trick” because of the way it is
defined. It might go some way toward dispelling this impression to note that
the stratified comprehension scheme is equivalent to a finite collection of its
instances, so the theory can be presented in a way which makes no reference to
types at all. This is a result of Hailperin ([2]), refined by others. One obtains a
finite axiomatization of NF by analogy with the method of finitely axiomatizing
von Neumann-Gödel-Bernays predicate class theory. It should further be noted
that the first thing one does with the finite axiomatization is prove stratified
comprehension as a meta-theorem, in practice, but it remains significant that
the theory can be axiomatized with no reference to types at all.

For each stratified formula ϕ, there is a unique witness to

(∃A : (∀x : x ∈ A↔ ϕ))

(uniqueness follows by extensionality) whch we denote by {x : ϕ}.

10

Jensen in [9], 1969 proposed the theory NFU which replaces the extension-
ality axiom of NF with

(∀xyw : w ∈ x→ (x = y ↔ (∀z : z ∈ x↔ z ∈ y))),

allowing many atoms or urelements. One can reasonably add an elementless
constant ∅, and define {x : ϕ} as ∅ when ϕ is false for all x.

Jensen showed that NFU is consistent and moreoever NFU + Infinity +
Choice is consistent. We will give an argument similar in spirit though not the
same in detail for the consistency of NFU in the next section.

An important theorem of Specker ([18], 1962) is that NF is consistent if and
only if TST + the Ambiguity Scheme is consistent. His method of proof adapts
to show that NFU is consistent if and only if TSTU + the Ambiguity Scheme
is consistent. Jensen used this fact in his proof of the consistency of NFU. We
indicate a proof of Specker’s result using concepts from this paper below.

In [17], 1954, Specker had shown that NF disproves Choice, and so proves
Infinity. At this point if not before it was clear that there is a serious issue
of showing that NF is consistent relative to some set theory in which we have
confidence. There is no evidence that NF is any stronger than TST + Infinity,
the lower bound established by Specker’s result.

Note that NF or NFU supports the implementation of mathematics in the
same style as TST, but with the representations of mathematical concepts losing
their ambiguous character. The number 3 really is realized as the unique set of
all sets with three elements, for example. The universe is a set and sets make up
a Boolean algebra. Cardinal and ordinal numbers can be defined in the manner
of Russell and Whitehead.

The apparent vulnerability to the paradox of Cantor is an illusion. Applying
Cantor’s theorem to the cardinality of the universe in NFU gives |ι“V | < |(V)| ≤
|V | (the last inequality would be an equation in NF), from which we conclude
that there are fewer singletons of objects than objects in the universe. The
operation (x 7→ {x}) is not a set function, and there is every reason to expect
it not to be, as its definition is unstratified. The resolution of the Burali-Forti
paradox is also weird and wonderful in NF(U), but would take us too far afield.

11

2.4 Tangled type theory TTT and TTTU

In [4], 1995, this author described a reduction of the NF consistency problem to
consistency of a typed theory, motivated by reverse engineering from Jensen’s
method of proving the consistency of NFU.

Let λ be a limit ordinal. It can be ω but it does not have to be.
In the theory TTT (tangled type theory) which we develop, each variable

x is supplied with a type type(‘x’) < λ; we are provided with countably many
distinct variables of each type.

For any formula ϕ of the language of TST and any strictly increasing se-
quence s in λ, let ϕs be the formula obtained by replacing each variable of type
i with a variable of type s(i). To make this work rigorously, we suppose that we
have a bijection from type i variables of the language of TST to type α variables
of the language of TTT for each natural number i and ordinal α < λ.

TTT is then the first order theory with types indexed by the ordinals below
λ whose well formed atomic sentences ‘x = y’ have type(‘x’) = type(‘y’) and
whose atomic sentences ‘x ∈ y’ satisfy type(‘x’) < type(‘y’), and whose ax-
ioms are the sentences ϕs for each axiom ϕ of TST and each strictly increasing
sequence s in λ. TTTU has the same relation to TSTU (with the addition of
constants ∅α,β for each α < β < λ such that (∀xα

0 : xα
0 ̸∈ ∅α,β) is an axiom).

It is important to notice how weird a theory TTT is. This is not cumulative
type theory. Each type β is being interpreted as a power set of each lower type
α. Cantor’s theorem in the metatheory makes it clear that most of these power
set interpretations cannot be honest.

There is now a striking

Theorem (Holmes): TTT(U) is consistent iff NF(U) is consistent.

Proof: Suppose NF(U) is consistent. Let (M,E) be a model of NF(U) (a set
M with a membership relation E). Implement type α as M × {α} for
each α < λ. Define Eα,β for α < β as {((x, α), (y, β)) : xEy}. This gives
a model of TTT(U). Empty sets in TTTU present no essential additional
difficulties.

Suppose TTT(U) is consistent, and so we can assume we are working with
a fixed model of TTT(U). Let Σ be a finite set of sentences in the language
of TST(U). Let n be the smallest type such that no type n variable oc-
curs in any sentence in Σ. We define a partition of the n-element subsets
of λ. Each A ∈ [λ]n is put in a compartment determined by the truth
values of the sentences ϕs in our model of TTT(U), where ϕ ∈ Σ and
rng(s⌈{0, . . . , n−1}) = A. By Ramsey’s theorem, there is a homogeneous
set H ⊆ λ for this partition, which includes the range of a strictly increas-
ing sequence h. There is a complete extension of TST(U) which includes
ϕ iff the theory of our model of TTT(U) includes ϕh. This extension sat-
isfies ϕ ↔ ϕ+ for each ϕ ∈ Σ. But this implies by compactness that the
full Ambiguity Scheme ϕ ↔ ϕ+ is consistent with TST(U), and so that
NF(U) is consistent by the 1962 result of Specker.

12

We note that we can give a treatment of the result of Specker (rather
different from Specker’s own) using TTT(U). Note that it is easy to see
that if we have a model of TST(U) augmented with a Hilbert symbol (a
primitive term construction (ϵx : ϕ) (same type as x) with axiom scheme
ϕ[(ϵx : ϕ)/x] ↔ (∃x : ϕ)) which cannot appear in instances of compre-
hension (the quantifiers are not defined in terms of the Hilbert symbol,
because they do need to appear in instances of comprehension) and Ambi-
guity (for all formulas, including those which mention the Hilbert symbol)
then we can readily get a model of NF, by constructing a term model
using the Hilbert symbol in the natural way, then identifying all terms
with their type-raised versions. All statements in the resulting type-free
theory can be decided by raising types far enough (the truth value of an
atomic sentence (ϵx : ϕ)R (ϵy : ψ) in the model of NF is determined by
raising the type of both sides (possibly by different amounts) until the for-
mula is well-typed in TST and reading the truth value of the type raised
version; R is either = or ∈). Now observe that a model of TTT(U) can
readily be equipped with a Hilbert symbol if this creates no obligation to
add instances of comprehension containing the Hilbert symbol (use a well-
ordering of the set implementing each type to interpret a Hilbert symbol
(ϵx : ϕ) in that type as the first x such that ϕ), and the argument above
for consistency of TST(U) plus Ambiguity with the Hilbert symbol goes
through.

Theorem (essentially due to Jensen): NFU is consistent.

Proof: It is enough to exhibit a model of TTTU. Suppose λ > ω. Represent
type α as Vω+α × {α} for each α < λ (Vω+α being a rank of the usual
cumulative hierarchy). Define ∈α,β for α < β < λ as

{((x, α), (y, β)) : x ∈ Vω+α ∧ y ∈ Vω+α+1 ∧ x ∈ y}.

This gives a model of TTTU in which the membership of type α in type
β interprets each (y, β) with y ∈ Vω+β \ Vω+α+1 as an urelement.

Our use of Vω+α enforces Infinity in the resulting models of NFU (note
that we did not have to do this: if we set λ = ω and interpret type α
using Vα we prove the consistency of NFU with the negation of Infinity).
It should be clear that Choice holds in the models of NFU eventually
obtained if it holds in the ambient set theory.

This shows in fact that mathematics in NFU is quite ordinary (with respect
to stratified sentences), because mathematics in the models of TSTU em-
bedded in the indicated model of TTTU is quite ordinary. The notorious
ways in which NF evades the paradoxes of Russell, Cantor and Burali-
Forti can be examined in actual models and we can see that they work
and how they work (since they work in NFU in the same way they work
in NF).

13

Of course Jensen did not phrase his argument in terms of tangled type theory.
Our contribution here was to reverse engineer from Jensen’s original argument
for the consistency of NFU an argument for the consistency of NF itself, which
requires additional input which we did not know how to supply (a proof of the
consistency of TTT itself). An intuitive way to say what is happening here is
that Jensen noticed that it is possible to skip types in a certain sense in TSTU
in a way which is not obviously possible in TST itself; to suppose that TTT
might be consistent is to suppose that such type skipping is also possible in
TST.

14

2.4.1 How internal type representations unfold in TTT

We have seen above that TST can internally represent TSTn. An attempt to
represent types of TTT internally to TTT has stranger results. The development
of the model does not depend on reading this section.

In TST the strategy for representing type i in type n ≥ i is to use the
n− i-iterated singleton of any type i object x to represent x; then membership
of representations of type i − 1 objects in type i objects is represented by the
relation on n − i-iterated singletons induced by the subset relation and with
domain restricted to n− (i+1)-fold singletons. This is described more formally
above.

In TTT the complication is that there are numerous ways to embed type α
into type β for α < β along the lines just suggested. We define a generalized
iterated singleton operation: where A is a finite subset of λ, ιA is an operation
defined on objects of type min(A). ι{α}(x) = x. If A has α < β as its two
smallest elements, ιA(x) is ιA1

(ια,β(x)), where A1 is defined as A \ {min(A)} (a
notation we will continue to use) and ια,β(x) is the unique type β object whose
only type α element is x.

Now for any nonempty finite A ⊆ λ with minimum α and maximum β. the
range of ιA is a set, and a representation of type α in type β. For simplicity we
carry out further analysis in types β, β + 1, β + 2 . . . though it could be done in
more general increasing sequences. Use the notation τA for the range of ιA, for
each set A with β as its maximum. Each such set has a cardinal |τA| in type
β + 2. It is a straightforward argument in the version of TST with types taken
from A and a small finite number of types β+i that 2|τA| = |τA1

| for each A with

at least two elements. The relevant theorem in TST is that 2|ι
n+1“X| = ιn“X,

relabelled with suitable types from λ. We use the notation exp(κ) for 2κ to
support iteration. Notice that for any τA we have exp|A|−1(|τA|) = |τ{β}|,
the cardinality of type β. Now if A and A′ have the same minimum α and
maximum β but are of different sizes, we see that |τA| ≠ |τA′ |, since one has its
|A|−1-iterated exponential equal to |τ{β}| and the other has its |A′|−1-iterated
exponential equal to |τ{β}|. This is odd because there is an obvious external
bijection between the sets τA and τA′ : we see that this external bijection cannot
be realized as a set. τA and τA′ are representations of the same type, but this is
not obvious from inside TTT. We recall that we denote A \ {min(A)} by A1; we
further denote (Ai)1 as Ai+1. Now suppose that A and B both have maximum
β and A \ Ai = B \ Bi, where i < |A| ≤ |B|. We observe that for any concrete
sentence ϕ in the language of TSTi, the truth value of ϕ in natural models with
base type of sizes |τA| and |τB | will be the same, because the truth values we
read off are the truth values in the model of TTT of versions of ϕ in exactly the
same types of the model (truth values of ϕs for any s having A \ Ai = B \ Bi

as the range of an initial segment). This much information telling us that τAj

and τBj for j < i are representations of the same type is visible to us internally,
though the external isomorphism is not. We can conclude that the full first-
order theories of natural models of TSTi with base types |τA| and |τB | are the
same as seen inside the model of TTT, if we assume that the natural numbers

15

of our model of TTT are standard.

16

2.4.2 Tangled webs of cardinals: a suggestion of another approach
not followed here

Nothing in the construction of a model of tangled type theory and verification
that it is a model which appears below depends on anything in this section.

It is straightforward to transform a model of TST into a model of bounded
Zermelo set theory (Mac Lane set theory) with atoms or without foundation
(this depends on how type 0 is handled). Specify an interpretation of type 0
either as a set of atoms or a set of self-singletons. Then interpret type i + 1
as inhabited by sets of type i objects in the obvious way, identifying type i+ 1
objects with objects of lower type which happen to have been assigned the same
extension.

In a model of TTT, do this along some increasing sequence of types of order
type ω whose range includes an infinite ordinal α. In the resulting model of
bounded Zermelo set theory, let τA represent the cardinality of the range of ιA
as in the previous discussion (for nonempty subsets of type A all with maximum
the same infinite α). Suppose further for the sake of argument that our model of
TTT is λ-complete, in the sense that any subset of a type of cardinality that of
λ or less is implemented as a set in each higher type. It will follow that A 7→ τA
is actually a function. [It is an incidentally interesting fact that the models we
construct (with no dependence on this section) actually have this completeness
property].

We describe the situation which holds for these cardinals.
We work in Mac Lane set theory. Choice is not assumed, and we use the

Scott definition of cardinals.

Definition: If A is a nonempty finite set of ordinals which is sufficiently large,
we define A1 as A \ min(A) and A0 as A, Ai+1 as (Ai)1.

Definition: A tangled web of cardinals of order α (an infinite ordinal) is a
function τ from the set of nonempty sets of ordinals with α as maximum
to cardinals such that

1. If |A| > 1, τ(A1) = 2τ(A).

2. If |A| ≥ n, the first order theory of a natural model of TSTn with
base type τ(A) is completely determined by A \ An, the n smallest
elements of A.

The bookkeeping in different versions of this definition in different at-
tempts at a tangled web version of the proof of the consistency of NF
have been different (an obvious point about the version given here is that
the top ordinal α could be omitted). Another remark is that it is clear
that asserting the existence of a tangled web is stronger than simple TTT:
it requires λ > ω, and the λ-completeness of course is a strong assumption
in the background. All variants that I have used support versions of the
following

17

Theorem: If there is a model of Mac Lane set theory in which there is a tangled
web of cardinals τ , then NF is consistent.

Proof: Let Σ be a finite set of sentences of the language of TST. Let n be
larger than any type mentioned in any formula in Σ. Partition [α]n into
compartments in such a way that the compartment that a set A is put
into depends on the truth values of the sentences in Σ in natural models
of TSTn with base type of size τ(B) where B \ Bn = A. This partition
of [α]n into no more than 2|Σ| compartments has a homogeneous set H
of size n + 1. The natural models of TSTn with base types of size τ(H)
and base types of size τ(H1) have the same truth values for sentences in
Σ, so the model of TST with base type τ(H) satisfies the restriction of
the Ambiguity Scheme to Σ, so the full Ambiguity Scheme is consistent
by compactness, so TST + Ambiguity is consistent so NF is consistent.

Our initial approach to proving our theorem was to attempt a Frankel-
Mostowski construction of a model of Mac Lane set theory with a tangled web
of cardinals. We do know how to do this, but we believe from experience that
constructing a model of tangled type theory directly is easier, though tangled
type theory is a nastier theory to describe.

We think there is merit in giving a brief description of a situation in a more
familiar set theory equivalent to (a strengthening of) the very strange situation
in a model of tangled type theory. This section is also useful here because it
supports the discussion in the conclusion of one of the unsolved problems which
is settled by this paper.

18

3 The model description

In this section, we give a complete description of what we claim is a model of
tangled type theory. The construction may be supposed carried out in ZFC (or
some weak subsystem thereof: we will see how much ZFC is needed).

3.1 Cardinal parameters

Let λ be a limit ordinal. Elements of λ will be indices of types in the model
of tangled type theory. −1 is an index of an additional type in the structure
we are using to build the model. Elements of λ ∪ {−1} are called type indices;
type indices other than −1 are called proper type indices. The order on the
type indices is the obvious one in which −1 is less than the elements of λ, which
inherit their usual order.

Nonempty finite subsets of λ ∪ {−1} are called extended type indices; ones
that do not contain −1 are called proper extended type indices. An extended
type index A may be understood as referring to the type min(A) in the role
of type 0 in a model of TST|A| whose higher types are indexed by the larger
elements of A.

Let κ > λ be an uncountable regular cardinal. We refer to sets of size smaller
than κ as small and all other sets as large.

We appear to need the hypothesis κ<κ = κ, which is unproblematic but
nontrivial. This will be true for all regular κ if GCH holds, as I recall.

Let µ be a strong limit cardinal > κ of cofinality ≥ κ.

3.2 Type −1: “Atoms”, litters, and local cardinals

We define τ−1 as {(−1, ν, α) : ν < µ ∧ α < κ)}.
We may refer to objects of type −1 as “atoms”. They are not understood

here to be atoms in a conventional sense, but the analogous objects in earlier
versions of the construction were atoms and we have this mental habit.

For each ν < µ we define Lν as {(−1, ν, α) : α < κ}. We call the sets Lν

litters. Note that the set Λ = {Lν : ν < µ} is a partition of the set τ−1 of size
µ into subsets of size κ.

We say that a set N is a near-litter iff N ⊆ τ−1 ∧ (∃ν : |N∆Lν | < κ): a
near-litter is a subset of τ−1 with small symmetric difference from some litter.
Of course litters are near-litters.

The relation of having small symmetric difference is an equivalence relation
on near-litters.

For any near-litter N we define [N] as the set {M ⊆ τ−1 : |N∆M | < κ}
of all near-litters M with small symmetric difference from N . We call the sets
[N] local cardinals and say that [N] is the local cardinal of N . This convention
is motivated by the Frege-Russell-Whitehead notion of cardinal (which is the
natural one to use in TST and related theories).

We introduce the (overloaded) notation N◦ = [N]◦ for the litter with small
symmetric difference from the near-litter N .

19

Because the cofinality of µ is ≥ κ, there are µ near-litters. One might be
concerned with the fact that if µ has cofinality κ, it might have more than
µ subsets of size κ: but it still has only µ subsets of size < κ, and that is
what matters for counting the near-litters: a near-litter is determined as the
symmetric difference of a litter (µ of these) and a small subset (cardinality < κ)
of τ−1 (which is of size µ) and there are only µ small subsets of τ−1. If the
cofinality of µ were less than κ, the cardinal arithmetic pathology mentioned as
of concern could come into play.

We designate a pairwise disjoint family of subsets X(β,γ) of the set of local
cardinals, each of cardinality µ, indexed by ordered pairs (β, γ) with −1 ≤ β < λ
and γ ∈ λ \ {β}. These play an essential role in defining alternative extensions
of the same object.

3.3 Set codes and alternative extensions: membership de-
fined and extensionality enforced

For each α < λ we will define τα, the implementation of type α of the model.
This definition is recursive: when we are defining type α and associated concepts,
we are supposing that related concepts have already been defined for all β < α.

So, we fix α < λ, a proper type index, and we assume that for all type indices
< α the construction we are describing has already been carried out: we define
τα and related notions.

Definition (codes): We suppose for β < α a proper type index that a β-code
has already been defined as a triple (β, γ,G) where −1 ≤ γ < β and
G ⊆ τγ .

A α-code is defined now as a triple (α, β,B) where −1 ≤ β < α and
B ⊆ τβ .

A hypothesis of the recursion: proper types are inhabited by codes:
We remark that τβ for −1 < β < α is a (proper) subset of the collection
of β-codes (a hypothesis of the recursion).

Definition (f maps): All codes (β,−1, N) where 0 ≤ β < α and N is a near-
litter are stipulated to be elements of τβ (this will be verified as following
from inductive hypotheses given in more detail later). We refer to such
objects as typed near-litters.

On each type δ, −1 ≤ δ < α, we have chosen a well-ordering ≤δ of order
type µ (with corresponding strict well-ordering <δ). Technical conditions
on these well-orderings are stated at the end of this section.

We define ι∗(x) for x ∈ τβ as the order type of ≤β restricted to {y ∈ τβ :
y <β x} (note that ι∗ is defined for elements of any type).

Where γ is a type index less than α and δ is a proper type index distinct
from γ and also less than α, and x ∈ τγ , we define fγ,δ(x) as the local
cardinal [N] of the third component of the first (δ,−1, N) in <δ such

20

that N is a near-litter and [N] ∈ Xγ,δ) and ι∗(δ,−1,M) > ι∗(x) for each
M ∈ [N] and [N] ̸= fγ,δ(y) for any y <γ x.

Note that this definition does not really depend on α: it will give the same
result at any stage of the construction beyond γ and δ.

Definition (alternative extension map): For any β-code (β, γ,G) with β ≤
α a proper type index and δ a proper type index distinct from γ and less
than β, and G nonempty, we define Aδ(β, γ,G) as

(β, δ, {(δ,−1, N) : N ∈
⋃

(fγ,δ“G)}).

Notice that the value computed here does not depend on α: this computa-
tion at earlier stages in the recursion gives the same result at every stage
whose index is at least β.

Observations and definition of A−1: Notice that since the ranges of fγ,δ
and fγ′,δ′ are disjoint unless γ = γ′ and δ = δ′, it follows that the ranges
of maps Aγ with distinct indices are disjoint. Clearly each Aγ is injective,
and so the union of the A−1

γ ’s is a (partial) function which we will call
A−1.

Lemma: Further, it should be clear from the definition of the f maps that no
code can have infinitely many iterated images under A−1: when A−1 is
applied, typed local cardinals (sets of the form {(δ,−1,M) : M ∈ [N]})
which are subsets of the extension are replaced with (singletons of) objects
earlier in the well-ordering on their type than all elements of the typed
local cardinal are in their own type. Look at what happens to the position
of the first element in an extension under the appropriate order as A−1 is
applied repeatedly.

Discussion of equivalence of codes: We now define an equivalence relation
≡β for each type index β ≤ α.

It is important to notice that the definition of ≡β will be the same from
stage β of the recursion onward.

The relation ≡−1 is simply the restriction of equality to τ−1.

For each proper type index β, (β, γ, ∅) ≡β (β, δ,D) iff D = ∅, and the
representative member of this equivalence class is (β,−1, ∅).
We then provide that if G is nonempty and (β, γ,G) has an even number of
iterated preimages under A−1 (including none, as an important possibility)
and δ ̸= γ then (β, δ,D) ≡β (β, γ,G) iff (β, δ,D) = Aδ(β, γ,G), and
in this case (β, γ,G) is the representative of its equivalence class. This
implies that each (β, γ,G) (G nonempty) which has an odd number of
iterated preimages under A−1 is equivalent under ≡β to its inverse image
A−1(β, γ,G) (which we write (β, δ,D)), and which is the representative of
its equivalence class) and to all Aϵ(β, δ,D) for ϵ ̸= δ. This completes the
definition of ≡β , informally.

21

We give a formal definition.

Definition: (β, γ,G) ≡β (β, δ,D) is defined:

1. If G is empty, (β, γ,G) ≡β (β, δ,D) iff D is empty.

2. If (β, γ,G) has an even number of iterated images under A−1 then
(β, γ,G) ≡β (β, δ,D) iff either (β, γ,G) = (β, δ,D) or δ ̸= γ (and
δ ̸= −1) and Aδ(β, γ,G) = (β, δ,D)

3. If (β, γ,G) has an odd number of iterated images under A−1 then
(β, γ,G) ≡β (β, δ,D) iff either (β, γ,G) = (β, δ,D) orA−1(β, γ,G) ≡β

(β, δ,D)

A hypothesis of the recursion: elements of proper types are representative codes:
We note further that elements of τβ for each β < α are representative el-
ements of their equivalence classes under ≡β . This will be verifiable from
a more complete description of our assumptions about τβ for β < α which
is given below.

Definition (membership of the intended model of TTT): The member-
ship relations of the intended model of tangled type theory are then defined
as follows: (δ, ϵ, E) ∈TTT (β, γ,G) (the triples are codes and−1 < δ < β ≤
α, and both codes given are representatives of their equivalence classes)
iff γ = δ and (δ, ϵ, E) ∈ B or γ ̸= δ and (δ, ϵ, E) ∈ π3(Aδ(β, γ,G)). Note
that in this latter case we will certainly have ϵ = −1. This does define
membership of codes of lower types in type β codes which will eventually
be seen not to belong to τβ ; this is harmless.

Theorem: If X and Y are β-codes (β ≤ α) which are representatives of their
equivalence classes, and γ is a proper type index less than β,

(∀Z ∈ τγ : Z ∈TTT X ↔ Z ∈TTT Y) → X = Y).

This should be evident from the method of construction. Each represen-
tative code has an extension in each lower type, and no two representative
codes can have the same extension in any lower type.

This all serves to enforce extensionality, but something much more radical
needs to be done to make all this work, as we are assuming the existence of the
maps fβ,γ which witness that all the types are of cardinality no greater than
µ. There must be a very strong restriction on what sets can appear as third
components of codes in the model.

Note for the Lean workers: The recursive definition of α-codes does
need to take τβ for β < α into account (the restriction of the third component
of a code to subsets of τβ is essential, but all one needs to know about τβ is
that it is of size µ and contains all typed near-litters). A treatment of the first
section could be free-standing, with a parameter in the definition of codes a
function sending each β to a subset of size µ of the β-codes containing all type
β near-litters, to serve as τβ .

22

Then the function taking α to the set of α-symmetric representative codes
might be fed in as that parameter. I don’t know if this is helpful...

3.4 Permutations, symmetry and the model definition

We try to improve intelligibility of the notion of “allowable permutation” that
we now define by providing a preliminary notion.

Stipulation: We postulate as part of the hypotheses of the recursion that
(β, γ, {x}) ∈ τβ for any x ∈ τγ , for any γ < β < α. This will be veri-
fiable from a more complete description of our assumptions about τβ for
β < α which is given below. We refer to such objects as typed singletons;
when γ = −1, we may refer to them as typed atoms.

Definition (structural permutation): We define the notion of β-structural
permutation for each type index β ≤ α. It should be evident that the
definition given for β-structural permutation will give the same result at
each stage of the recursive construction with index ≥ β.

A −1-structural permutation is simply a permutation of type −1.

If β is a proper type index, a permutation π of β-codes is β-structural iff
there is for each type index γ < β a γ-structural permutation πγ such that
for any β-code (β, γ,G) we have π(β, γ,G) = (β, γ, πγ“G).

Notice that if π is a β-structural permutation, each πγ is definable from π
by πγ(x) =

⋃
(π3(π(β, γ, {x}))). Strictly speaking, this defines πγ only on

elements of τγ , but the definition could readily be extended to all γ-codes
in the event that this were needed. Note further (a fact we do not use
directly, though it must be noticed) that we are implicitly assuming that
all πγ for γ < β map elements of τγ to elements of τγ .

Definition (notation for derivatives of a permutation): We provide ex-
tended notation for the lower indexed structural permutations which β-
structural permutation depends, for any proper type index β ≤ α. For
any finite set A of type indices with β as its largest element, define πA as π
if A = {β} and otherwise as (πA\{min(A)})min(A). We refer to permutations
πA as derivatives of π.

Definition (allowable permutation): For each β ≤ α, we define a β-allowable
permutation as a β-structural permutation with certain additional prop-
erties.

A −1-allowable permutation is a permutation π of τ−1 with the property
that for any near-litter N , π“N is a near-litter. Notice that a −1-allowable
permutation determines a permutation of the local cardinals in a natural
way.

For β > −1, a β-allowable permutation is a β-structural permutation π
such that each πγ for γ < β is γ-allowable, and further for any codes X,Y ,
X ≡β Y ↔ π(X) ≡β π(y) (this is referred to as the coherence condition).

23

Discussion (unpacking the coherence condition): This coherence condi-
tion can be unpacked.

(β, γ, {g}) ≡β (β, δ, {(δ,−1, N) : N ∈ fγ,δ(g)})

(where δ ̸= γ). Thus we expect

π(β, γ, {g}) ≡β π(β, δ, {(δ,−1, N) : N ∈ fγ,δ(g)}),

that is,

(β, γ, {πγ(g)}) ≡β (β, δ, {(δ,−1, (πδ)−1“N) : N ∈ fγ,δ(g)}),

so fγ,δ(πγ(g)) = [(πδ)−1“L], where fγ,δ(g) = [L].

Recalling the notations N◦ = [N]◦ for the litter with small symmetric
difference from the near-litter N , we can write this

fγ,δ(πγ(g)) = [(πδ)−1“fγ,δ(g)
◦].

Allowable permutations commute with Aδ: We show this.

π(Aδ(β, γ,G)) = π(β, δ, {(δ,−1, N) : N ∈
⋃
fγ,δ“G})

= (β, δ, {(δ,−1, (πδ)−1“N) : N ∈
⋃
fγ,δ“G})

= (β, δ,
⋃
g∈G

{(δ,−1, (πδ)−1“N) : N ∈ fγ,δ(g)})

= (β, δ,
⋃
g∈G

{(δ,−1, N) : N ∈ {(πδ)−1“M :M ∈ fγ,δ(g)}})

= (β, δ,
⋃
g∈G

{(δ,−1, N) : N ∈ fγ,δ(πγ(g))

= (β, δ, {(δ,−1, N) : N ∈
⋃
fγ,δ“(πγ“G)}) = Aδ(β, γ, πγ“G)

= Aδ(β, γ, πγ“G) = Aδ(π(β, δ,G))

Consequences of this calculation: That each allowable permutation com-
mutes with Aδ implies that each allowable permutation also commutes
with A−1, and this shows that the unpacked coherence condition implies
and so is exactly equivalent to the original coherence condition. It also
shows that representative codes are mapped by allowable permutations to
representative codes.

24

Definition (support and symmetry): An β-support is a well-ordering of a
small set of pairs of the form ((γ,−1, x), A) where in each pair, γ ≤ β, x is
a singleton or near-litter, and A is an extended type index with maximum
β and minimum γ.

We may write x ≤S y for (x, y) ∈ S, and x <S y when we also want to
indicate that x, y are distinct.

If π is an α-allowable permutation and S is an α-support, we define π[S]
as {((πA(x), A), (πB(y), B)) : ((x,A), (y,B)) ∈ S}.
We say that S is a β-support of X if X is a β-code, S is an β-support,
and for any β-allowable permutation π, if π[S] = S then π(x) = x.

Observation (cardinality of the set of supports): It is a useful observa-
tion that because µ has cofinality ≥ κ, there are no more than µ (and so
exactly µ) near-litters, and similarly there are exactly µ supports.

Definition (the types of our structure): We then stipulate that the ele-
ments of τβ for β < α have been constructed precisely as the representa-
tives of equivalence classes of type β codes that have supports: such codes
are said to be symmetric. It should be evident that typed near-litters are
symmetric [they have supports which are decorated versions of their own
singletons], and typed singletons of symmetric objects are symmetric [take
the support of the singleton element and add the type of the singleton to
all the extended type indices in the support], as we assumed above. It
should also be clear that τβ is defined in the same way at every stage with
index at least β.

We then define τα in the same way as the set of all representatives of
equivalence classes of type α-codes that have supports, and will refer to
α-codes that have supports as symmetric α-codes.

It should also be evident that (β, γ,G) (for β ≤ α) will always be sym-
metric if |G| < κ [take the union of the γ-supports of elements of G and
add α to all the second components of elements of this union]: all small
subsets of a type are realized in each higher type.

Applying permutations to objects with support: Quite standard techniques
show that if π is an β-allowable permutation and X ∈ τβ has β-support
S, then π(X) has β-support π[S]. It follows from this that an allowable
permutation on β-codes restricts to a permutation on τβ , as we presumed
in the definition of allowable permutation.

Construction of designated orders on the types with technical conditions:
Once τα is constructed (and we verify that it is actually of cardinality µ)
we choose a well-ordering ≤α of τα with order type µ for use in the def-
inition of more f maps. This order needs to satisfy technical conditions,
which are satisfied by all ≤β with β ≤ α: we provide for reasons to be
discussed later that

25

1. any (β,−1, L), L a litter, precedes each (β,−1, {a}) for a ∈ L in <β ;

2. any near-litter N which is not a litter is preceded in the order <β by
N◦ and all elements of N∆N◦;

3. designate a β-support for each x ∈ τβ which is not a typed atom or
typed near-litter: we require that ι∗(x) strictly exceed ι∗(y) for each
(y,A) in the domain of the designated support of x.

We assume that such designated supports and conditions on the order ≤β

are present, as a hypothesis of the recursion, for β < α, and construct
them for α.

This implies that for any x in any τβ , elements (y,A) of the designated
support of fβ,γ(x) have ι∗(y) < ι∗(x).

There is lots to be proven, but that is the entire description.
Note for the formal verification project: I believe that the descrip-

tion of the model is complete and ready to be formalized. Supports are now
introduced as well-orderings from the outset.

3.5 Outline of an alternative approach to defining the
model elements [under construction, not part of the
main development as yet]

note to Lean project: This is (informally) an implementation of the approach
Peter has in mind, but it may differ in details.

This section proposes an alternative presentation to the last two sections.
The section on atoms, litters, and local cardinals precedes this section immedi-
ately if it is used.

We define an α-pretangle as a function t defined at each β < α and possibly
at −1 (always defined at −1 if α = 0), with t(β) in each case a set of β-
pretangles, and t(−1) (if it exists) a subset of τ−1. The set of α-pretangles will
be denoted by τ0α.

We will eventually see that τα ⊆ τ0α, so model elements at type α will be
(selected) α-pretangles.

The membership relation has an easy definition: for β < α, x ∈ τ0β and

y ∈ τ0α we define x ∈TTT y as x ∈ y(β). The price of the ease of definition is
that of course for pretangles this relation is not extensional.

We can define structural permutations easily on α-pretangles: an α-structural
permutation is a permutation π of τ0α with the property that for each −1 ≤ β <
α there is a β-structural permutation τβ such that π(x)(β) = τβ“x(β) (this
only holds for β = −1 if x(−1) is defined, of course). A −1-permutation is a
permutation π of τ−1 such that for any litter L, π“L is a near-litter.

We then define πA for π a α-structural permutation and A a subset of λ ∪
{−1} with α as maximum element as π if A = {α} and as (πA\{min(A)})min(A)

otherwise, just as above but with more generality.

26

It then seems to be necessary to introduce the inductive hypothesis that τβ
has already been defined for each β < α, is the domain of a well-ordering ≤β

of type µ (this holds for β = −1 as well; technical conditions on these well-
orderings are stated at the end of this section [above in the present incomplete
state of things]) and is extensional (for any subset G of τγ for −1 ≤ γ < β there
is at most one element x of τβ such that x(γ) = G) and there is for any near-
litter N and β < α an Nβ ∈ τβ such that Nβ(−1) = N [actually the stronger
condition is required that maps A′

δ defined below are total on the extensions
that are present]. We refer to objects Nβ as typed near-litters.

Definition (f maps): We define ι∗(x) for x ∈ τβ as the order type of ≤β

restricted to {y ∈ τβ : y <β x} (note that ι∗ is defined for elements of any
type).

Where γ is a type index less than α and δ is a proper type index distinct
from γ and also less than α, and x ∈ τγ , we define fγ,δ(x) as the local
cardinal [N ′(−1)] of the value at −1 of the first N ′ in <δ such that N ′(−1)
is a near-litter and [N ′(−1)] ∈ X(γ,δ) and ι∗(Mδ) > ι∗(x) for each M ∈
[N ′(−1)] and [N ′(−1)] ̸= fγ,δ(y) for any y <γ x.

Note that this definition does not really depend on α: it will give the same
result at any stage of the construction beyond γ and δ.

Definition (alternative extension map): For any β-pretangle x with x(γ) =
G ̸= ∅ with β ≤ α a proper type index and δ a proper type index distinct
from γ and less than β, and G nonempty, we define Aδ(x) as the element
y of τβ such that

y(δ) = {Nδ : N ∈
⋃

(fγ,δ“G)}),

and we presume that there is such an object y (this will follow from the
eventually stated inductive hypotheses about symmetry of τβ).

We make what we presume more explicit: let δ be a proper type index; we
define A′

δ(G) as {Nδ : N ∈
⋃
(fγ,δ“G)} for any nonempty subset G of τγ

with γ ̸= δ, and stipulate that this map is total on extensions in the sense
that if G is in the range of some element of τβ (β dominating both γ and
δ) and in the domain of A′

δ then A′
δ(G) is in the range of some element of

τβ .

Definition (extensional pretangle): We say that x is an extensional β-pretangle
iff x is a β-pretangle and there is γ < β, which is equal to −1 if −1 is in
the domain of x, such that x = Aδ(x) for each δ ̸= γ in the domain of x,
or γ = −1 and every x(δ) is empty.

We refer to x(γ) as a distinguished extension of x.

Observation: We claim that the distinguished extension of an extensional β-
pretangle is unique.

27

Suppose x(γ) is a distinguished extension (and nonempty; uniqueness is
obvious in the empty case). Then the minimal value of ι∗ on x(γ) is
dominated by the minimal value of ι∗ on each other extension x(δ) of x
because of the order constraints on the f maps: in defining x(δ), each
element u of x(γ) is replaced by typed near-litters in type δ whose values
under ι∗ must dominate ι∗(u), and so dominate the minimal value of ι∗
on x(γ).

This is enough to be able to determine γ uniquely given x.

Stipulation: We stipulate that every element of τβ for β < α is a β-extensional
pretangle.

Discussion and more precise stipulation: Observe that if G ⊆ τγ is the
distinguished extension of an element of τβ , and δ is not γ or −1, {Nδ :
N ∈

⋃
(fγ,δ“G)} cannot be the distinguished extension of an element of

τβ , because it is forced to be another extension of the same element.

We sharpen this condition, defining distinguishable extensions: an exten-
sion H is distinguishable if it is not of the form A′

δ(G) = {Nδ : N ∈⋃
(fγ,δ“G)} for any G, and further it is distinguishable if it is of the

form A′
δ(A

′
ϵ(G)) for some distinguishable extension (probably in a different

type), and all distinguishable extensions are determined in this way.

It is useful to note that the functions A′
γ (supposed restricted to nonempty

extensions) are injective, have disjoint ranges, and they send a set G with a
given minimum of its elementwise image under ι∗ to a set with a larger such
minimum. So the union of the inverses of A′

γ ’s, which we might call A−1,
is a defined partial function and the distinguishable extensions are exactly
those with an even number of iterated images under A−1 (including zero
as an important special case); nothing has an infinite number of iterated
images under A−1, so this definition works.

We further stipulate that the distinguished extension of each element of
τβ is distinguishable if it is nonempty.

Observation: Extensionality has been enforced for the interpreted membership
of the structure by our stipulations so far.

Preliminary discussion of permutations: We now need to develop the no-
tion of β-allowable permutation for β < α. The basic idea is that an
β-allowable permutation is a β-structural permutation which sends exten-
sional β-pretangles to extensional β-pretangles. Consider the extensional
β-pretangle with x(γ) = {y} (this will be its distinguished extension,
obviously). x(δ) = {Nδ : N ∈ fγ,δ(y)} defines the non-distinguished ex-
tensions. We must have π(x)(γ) = {πγ(y)}, and we must have π(x)(δ) =
{Nδ : N ∈ fγ,δ(πγ(y))} for one reason, and π(x)(δ) = πδ“{Nδ : N ∈
fγ,δ(y)} = {((πδ)−1“N)δ : N ∈ fγ,δ(y)} for another reason, so we must
have fγ,δ(πγ(y)) = {(πδ)−1“N : N ∈ fγ,δ(y)} = [(πδ)−1“(fγ,δ(y)

◦)].

28

It should be reasonably clear that this forces any extensional β-pretangle
to be sent to an extensional β-pretangle.

Definition (allowable permutation): A β-structural permutation π is β-
allowable if it is a β-structural permutation, each πγ is γ-allowable, and
fγ,δ(πγ(y)) = {(πδ)−1“N : N ∈ fγ,δ(y)} = [(πδ)−1“(fγ,δ(y)

◦)] holds for
all appropriate γ, δ.

Remarks: It should be reasonably clear that the elementwise action of an al-
lowable permutation commutes with the maps A′

γ , whence it follows that
extensional β-pretangles with distinguishable distinguished extensions are
sent to extensional β-pretangles with distinguishable distinguished exten-
sions.

Further note to Lean group: The rest of the development based on
this approach should be clear enough. Some notational reconciliation would be
needed. Comments encouraged from Peter or the students.

29

4 Showing that it is all true: proving that the
structure described in the previous section is
a model of tangled type theory

4.1 Strong supports defined

Definition: For an extended type index A, let A1 denote A \ {min(A)}

Definition (raising and lowering index on a support): For any α-support
S and finite subset C of λ with minimum element greater than α, we define
SC as {((x,A ∪ C), (y,B ∪ C)) : ((x,A), (y,B)) ∈ S}.
If S is an α-support and β < α, S(β) is defined as the largest support U

such that U{α} ⊆ S and U is a β-support.

Definition (strong support): A δ-strong support of an object X is a δ-
support S of X with certain additional properties.

1. If ((β,−1, x), A) ∈ S then x is a singleton or a litter.

2. If ((β,−1, {x}), A) ∈ S, then ((β,−1, L), A) <S ((β,−1, {x}), A),
where L is the litter containing x.

3. If ((β,−1, L), A) ∈ S and [L] = fγ,β(y), then there is a [strong] γ-
support T of y such that TA\{β} ⊆ S and each element of the domain
of TA\{β} is ≤S ((β,−1, L), A).

Definition: We say that a support S′ extends a support S if dom(S) ⊆ dom(S′):
we might change the order in the extension process.

Observation: a support can have all near-litters converted to litters:
It should be straightforward to see that any X with support S has a sup-
port S◦ which satisfies the first condition. Replace each element ((β,−1, x), A)
of the domain of S for which x is a near-litter and not a litter with
((β,−1, x◦), A) and ((β,−1, {y}), A) for each y in the symmetric differ-
ence of x and x◦.

We can formally define the order S◦: the domain of S◦ consists of all
elements ((β,−1, x), A) for which x is a singleton or a litter [we call these
preserved elements of the domain] and elements ((β,−1, y), A) such that
for some x, ((β,−1, x), A) is in the domain, x is a near-litter and not a
litter, and either y = x◦ or y = {z} ⊆ x∆x◦ (we call these new elements
of the domain: notice that nothing prevents a new element from also
being a preserved element). We refer to ((β,−1, x), A) as the archetype
of ((β,−1, y), A).

For any code X which is preserved and not new, we define X ′ as X. For
any X which is preserved and new, we define X ′ as the earlier in the order
S of X and its archetype. For any code X which is new and not preserved,
we define X ′ as the archetype of X. We define X S◦ Y as X ′ S Y ′ when

30

X ′ ̸= Y ′. If X ′ = Y ′ and Y is a typed litter (there is only one possible
value for Y in this case), X S Y , and if X is a typed litter, Y S◦X. If
X ′ = Y ′ and X ′ and Y ′ are both typed singletons, use lexicographic order
on the codes for the type −1 elements of the third components of X and
Y to determine their order in S◦.

Observation (any support can be converted to a strong support): Apply
the previous result to put a β-support into a form containing only typed
singletons and typed near-litters.

Augment the support by adding, wherever ((δ,−1, L), A) ∈ S and [L] =
fγ,δ(y), the set TA\{β}, where T is the designated γ-support of y, to our
support (and transform to a support consisting only of typed litters and
typed singletons; note that a near-litter in a designated support is replaced
by items preceding it in the order).

Then put the support in the order determined first by ι∗ applied to first
projections, then by any desired order on extended type indices.

The support which results will be strong by conditions we have placed on
the f maps and the orders on the types. A litter precedes its elements, and
every element of fγ,δ(y) follows all elements of the designated γ-support
of y, however decorated with extended type indices.

Observation (extension of index-raised supports): If S is a strong γ-support
and β > γ, it is not necessarily the case that S{β} is a strong β-support.
The difficulty is that there may be type γ typed litters which become non-
flexible ((γ,−1, N) with [N] = fδ,γ(y) for some δ < β, y ∈ τδ. However,
S{β} can be extended to a strong support without adding any new ele-
ments of type ≥ β: attention to the closure conditions reveals this. Things
of type greater than γ may be added, but they are always of type less than
β.

Note for the formal verification project: This should be ready to go.

31

4.2 Freedom of action of allowable permutations

The practical application of strong supports is to the proof that allowable per-
mutations act freely in a suitable sense, and in guiding applications of this
theorem.

We claim that any locally small specification of values of derivatives of an
allowable permutation at elements of type −1 can be realized.

We give an exact statement of what is meant, then we prove it.

Definition (local bijection): An α-local bijection is a map π0 whose domain
is a set of pairs (A, x) where A is a nonempty finite subset of λ with
maximum α and x is in type −1, and whose range is a subset of τ−1. To
state further conditions, we introduce the notation π0

A(x) = π0(A, x) and
state the further condition that each map π0

A is injective and has domain
the same as its range, and that the intersection of the domain of π0

A with
any litter is small (empty being an important case of small).

Definition (exception of a permutation): We say that x is an exception of
a −1-allowable permutation π iff (L being the litter containing x) either
π(x) ̸∈ (π“L)◦ or π−1(x) ̸∈ (π−1“L)◦. For a proper type index α and π an
α-allowable permutation and A an extended type index with maximum α,
we say that (A, x) is an exception of π iff x is an exception of πA∪{−1}.

Definition: For each litter L we define a well-ordering ≤L of order type κ with
coordinated strict well-ordering <L, by providing that

(−1, ν, β) ≤Lν
(−1, ν, γ)

if and only if β ≤ γ.

Definition: An A-flexible local cardinal is a local cardinal which is not in the
range of fγ,min(A) for any γ < min(A1). If A has one element, all local
cardinals are A-flexible.

Theorem (freedom of action): For any α-local bijection π0 and specifica-
tion for each proper extended type index A with maximum α of a permu-
tation χA of the A-flexible local cardinals, there is a uniquely determined
α-allowable permutation π such that

1. πA∪{−1} extends π0
A for each A

2. and π3(πA(min(A),−1, L)) ∈ χA([L]) holds when A has one element
or when [L] is not of the form fγ,min(A)(y) for some γ < min(A1),

3. and where the elementwise image under πA∪{−1} of a litter L is a
near-litter N , the restriction of πA∪{−1} to L \ dom(π0

A) is the unique
bijection from L\dom(π0

A) to N
◦\dom(π0

A) which is strictly increasing
with respect to the orders on L and N◦,

32

4. and satisfying a further technical condition: the permutation π ob-
tained from π0 has no exceptions which are not elements of the do-
main of π0 (this is actually a consequence of the previous condition
but worth stating separately).

Proof of the Freedom of Action Theorem: We prove this by exhibiting a
recursive procedure for computing π and its derivatives along a strong sup-
port; this succeeds because all objects have strong supports, and because
computing all values of derivatives of π on type −1 allows computation of
all derivatives of π at all types.

We assume that the result holds for all β < α.

When computing the value for πA(x) at any element ((β,−1, x), A) in the
strong support S we assume (ind hyp) that we have already computed
πB(y) for each ((β,−1, y), B) <S ((β,−1, x), A). Moreover, we assume
that the value obtained for πB(y) is the same value that would be obtained
by computation along any strong support of y.

We consider an item ((β,−1, {x}), A) and our aim is to compute πA∪{−1}(x)
(equivalent to computing piA(β,−1, {x})). By hypothesis of the recursion,
we have already computed πA at ((β,−1, L), A), where L is the litter which
contains x.

There are two cases. If (A, x) is in the domain of π0, we compute πA∪{−1}(x) =
π0
A(x) and we are done. Independence of the support used for x is obvious.

Otherwise we use the hypothesis of the recursion: we compute πA∪{−1}(x)
for any x in L with (A, x) not in the domain of π0 using the fact that we
have already computed πA(β,−1, L) = (β,−1, N): we define πA∪{−1} to
agree with the unique bijective map from the elements of L not in the
domain of π0

A to the elements of N◦ not in the domain of π0
A which is

strictly increasing in the sense that it sends larger objects in the sense of
<L to larger objects in the sense of <N◦ . Independence of the support
used for x follows from independence of the support used for L.

Now we consider items of the form ((β,−1, L), A) in the strong support
where L is a litter.

If [L] is not of the form fγ,β(y) for γ < min(A1) and y ∈ τγ , we compute
πA((β,−1, L)) as

(β,−1, π0
A“L ∪ (χA([L])

◦ \ π0
A“(τ−1 \ L))) :

we map L to the near-litter in χA([L]) with the exact modifications re-
quired by the local bijection. Independence of the support used for L is
obvious.

If [L] is of the form fγ,β(y) for a γ < min(A1) and y ∈ τγ then we
proceed just as above but we take the action on [L] from a different
source: the coherence condition tells us that [L] should be mapped to

33

fγ,β(πA\{β}∪{γ}(y)), so we compute πA((β,−1, L)) as

(β,−1, π0
A“L ∪ (fγ,β(πA\{β}∪{γ}(y))

◦ \ π0
A“(τ−1 \ L))),

which is essentially the same idea but a bit more complex.

We can compute πA\{β}∪{γ}(y) along its strong γ-support by inductive
hypothesis that we know how to carry out this procedure for γ < α. The
data supplied for this computation has extended type indices A system-
atically replaced with A ∩ (γ + 1). In the case of typed litters of type
γ in the support, we observe that the index of the relevant χA reduces
to χ{γ} and this does not seem to give us the ability to compute χA for
local cardinals which are not A-flexible. But we have already by recur-
sive hypothesis computed the values of πA\{β}∪{γ} at these litters, and
we can simply supply those values for χ{γ} as data in the calculation of
(πA\{β}∪{γ}(y) (and can indifferently assign values for χ{γ} in any arbitary
way where we have not computed them already; for us to get the right
values of .πA\{β}∪{γ}(y) it is sufficient to have correct values for it and its
derivatives on a support of y).

Independence of the support used for L can be handled thus: suppose we
calculate the value for L along two different supports, for earlier items in
each of which we have independence of support. Merge the two supports,
handling repeated items by preserving the first occurrence. A computa-
tion along this support gives a value which must agree with each of the
subcomputations because it agrees on a support for y in each case.

To verify that this computes a permutation, note that we can compute its
inverse, by the same procedure applied to the inverse data.

Once we know how to carry out this calculation along any α-strong sup-
port, we can compute the derivatives of π on elements of type −1 along all
type paths, and so compute the value of π and all of its derivatives on all
types. The method of calculation clearly gives an allowable permutation
without exceptions other than those dictated by the local bijection.

Note for the formal verification project: This section is vitally important
and should be ready to work on. Setting up the recursive definition of the
computation may be nasty.

34

4.3 Alternative approach to supports and freedom of ac-
tion (not part of the main line, or not yet)

We define supports differently in this subsection, so there will be some redevel-
opment, which is for the moment entirely local to this subsection. We use codes
as in the main development for elements of the model structure; it could easily
be adapted to the pretangle section approach. By “X has code (β, γ,G)” we
mean either (in the main development) that X is this code, or in the pretangle
development that G is the distinguished extension of X (γ can be determined
from G as either the type of the members of G or −1 if G is empty).

We use the notation π3 for the third projection of a triple to extract exten-
sions from codes. We introduce the notation π∗

3(x) for the sole element of π3(x)
in the case where π3(x) is a singleton (in particular, a typed atom). One should
note that if we interpreted elements of types as pretangles, we would read π3(x)
as the third component of the code of x, the distinguished extension of x.

Definition (condition): We define a β-condition for β ≤ α as a set of pairs
(x,A), where A is a finite subset of λ with max(A) = β and x has code
(min(A),−1, B), with B either a singleton (so x is a typed atom) or a
near-litter (so x is a typed near-litter). Note that A is proper here (it
does not contain −1).

Definition (support): We define a β-support for β ≤ α as a small set of β-
conditions. It is convenient to stipulate as a further condition on supports
that if (x,A) and (y,A) belong to a support and both x and y are typed
near-litters, that π3(x) and π3(y) are disjoint.

Definition (action of an allowable permutation on a support): If π is a
β-allowable permutation and S is a β-support, we define π[S] as

{(πA(x), A) : (x,A) ∈ S}.

Definition (support of): If X has code (β, γ,G), β ≤ α, and S is a β-
support, we say that S is a support of X iff for any allowable permutation
π, π will fix X if it is the case that for every (x,A) ∈ S, πA(x) = x.

Definition (dependency): We define a relation of dependency D on condi-
tions: (x,A)D(y,B) if either

1. A = B and |π3(x)| = 1 and π3(y) is a litter and π3(x) ⊆ π3(y)
(equivalently, π∗

3(x) ∈ π3(y)) [“elements of a litter depend on the
litter”], or

2. A = B, π3(y) is a litter, and π3(x) ̸= π3(y) is a near-litter and
π3(x)

◦ = π3(y) [“near-litters which are not litters depend on the
litter they are near”], or

3. for some γ < min(A1), (y, (B ∩ min(A)) ∪ {γ}) is an element of the
designated γ-support of f−1

γ,min(A)([π3(x)]) [“non-flexible near-litters

35

depend on the elements of the designated support of the unique
preimage under an f map of their local cardinals”].

The bracketed statements are merely suggestive, as the scare quotes should
suggest, as they are statements about atoms and near-litters rather than
typed atoms and typed near-litters decorated with extended type indices.
A near-litter being flexible or not is of course context dependent; but the
scare quoted statements are intended to be suggestive of what is going on
rather than precise.

Note that if (x,A)D(y,B) we always have ι∗(x) > ι∗(y).

Definition (order on a support): If S is a β-support, we define the order
<S on S by (x,A) <S (y,B) iff the two conditions belong to S and
ι∗(x) < ι∗(y).

Definition (strong support): We say that a β-support S is strong if when-
ever (x,A) ∈ S and (x,A)D(y,B), we have (y,B) ∈ S. Note that
(y,B) <S (x,A) will hold in this situation.

Observations: Note that the definition of strong support, combined with the
disjointness condition in the definition of supports, ensures that if (x,A)
is in a strong support and π3(x) is a near-litter, π3(x) is a litter. Note
further that any support can be extended to a strong support: this can
be enforced in ω stages of adding missing items, adding a small collection
of new items at each stage.

General Remark: This treatment of supports and strong supports could re-
place the one given above and is probably simpler. There is some elegance
in supports being well-orderings, as it makes it simpler to state the defi-
nition of “support of”.

Definition (approximation): A β-approximation is a map π0 from finite sub-
sets of λ with maximum element β such that each π0(A) (which we write
π0
A) is a function with the following properties:

1. The domain and range of π0
A are the same and π0

A is injective.

2. Each domain element x has code of the form (min(A),−1, B) where
B is either a singleton or a near-litter which is a subset of a litter
(i.e, (x,A) is a condition and π3(x) ⊆ π3(x)

◦).

3. π3(x) and π3(π
0
A(x)) have the same cardinality.

4. For each A, the collection {π3(x) : x ∈ dom(π0
A)} is pairwise disjoint

and covers any litter with which its union has large intersection.

We say that π0 approximates a β-allowable permutation π just in case
πA(x) = π0

A(x) whenever the latter is defined.

Definition (flexibility): A typed near-litter x is A-flexible if it is of type
min(A) and [π3(x)] is not in the range of any fγ,min(A) for γ < min(A1).

36

Definition (exception, exact approximation): A−1-allowable permutation
π has exception x if, L being the litter containing x, we have either
π(x) ̸∈ (π“L)◦ or π−1(x) ̸∈ (π−1“L)◦.

A β-approximation π0 exactly approximates a β-allowable permutation
π iff π0 approximates π and for every exception x of a πA∪{−1} (A not
containing −1) we have x′ with code (min(A),−1, {x}) in the domain of
π0
A.

Theorem (freedom of action): A β-approximation π0 wlll exactly approxi-
mate some β-allowable permutation π if it satisfies the additional condi-
tions that for any litter L, the set of domain elements of π0

A whose third
components intersect L is small, and that any domain element x of π0

A

which is a typed near-litter is A-flexible.

Proof: For purposes of this proof we choose for every pair (L,M) of subsets of
litters a bijection πL,M from L to M . This is not an application of AC: it
can be done concretely using the indexing of elements of litters, but the
details are not important.

We also choose a well-ordering of the conditions: choose a well-ordering
of finite subsets of λ (we don’t care which one) and set (x,A) ≤ (y,B) iff
either ι∗(x) < ι∗(y) or ι∗(x) = ι∗(y) and A ≤ B.

We also choose an extension of π0
A to suitable near-litter subsets of all

A-flexible typed litters (the conditions dictate what near-litters should be
added to the domain, uniquely, since the litters need to be exactly covered
by domain elements in a suitable sense); we do this without notational
comment, simply assuming that π0

A is defined for each A at a near-litter
included in each A-flexible litter, which can be arranged harmlessly (for
example, one could have π0

A act as the identity on the new A-flexible typed
near-litters, but we do not require this).

We choose an approximation π0 satisfying the conditions of the theorem.
We carry out a recursive calculation on the order on conditions: we com-
pute each πA(x) for the π exactly approximated by π0 on the assumption
that this has already been carried out for all (y,B) ≤ (x,A). We assume
in computing the β-allowable permutation π that the theorem is already
established for all γ < β.

We indicate how to carry out the calculation at (x,A). Let γ = min(A),
If x is a typed atom, (x,A) is preceded by (L,A), where π3(L) is the lit-
ter including π3(x), and we have already computed πA(L) by hypothesis
of the recursion. Let L− be the set of all y ∈ π3(L) such that for no
z ∈ dom(π0

A) is y = π∗
3(z). We define πA on each (γ,−1, {z}) for z ∈

π3(L): if (γ,−1, {z}) is in the domain of π0
A, we define πA(γ,−1, {z}) as

π0
A(γ,−1, {z}). Otherwise, we define πA(γ,−1, {z}) as (γ,−1, {πL−,M−(z)}),

where M− is the set of all y ∈ π3(πA(L)) such that for no z ∈ dom(π0
A) is

y = π∗
3(z). We have indicated how to compute πA at every typed atom

37

whose third component is included in the third component of L, and so
certainly at x.

We exclude (x,A) from consideration when x is a typed near-litter, except
when its third component is a subset of a litter. This will not cause any
difficulties: computing every derivative of π at every typed atom and litter
subset is sufficient to compute π for every object in the type structure.

Let (x,A) be a typed near-litter and suppose that we have already deter-
mined what [π3(πA(x))] must be. We indicate how to compute πA(x) from
this information. We will then discuss how [π3(πA(x))] is to be computed
in each case.

For convenience, we define π0
A∪{−1}(u) = π3(π

0
A(min(A),−1, {u})).

Let L be the largest near-litter near π3(x) containing no z such that
(min(A),−1, {z}) is in the domain of π0

A. Let M be the largest near-litter
belonging to [π3(πA(x))] containing no z such that (min(A),−1, {z}) is in
the domain of π0

A. We stipulate that π0
A(min(A),−1, L) = (min(A),−1,M).

This is enough to compute precisely what πA(x) is, because the value
of πA∪{−1}(z) can be determined for each z in π3(x)∆L and the action
of allowable permutations is elementwise in a suitable sense: πA(x) =
(min(A),−1, (M ∪ π0

A∪{−1}“(x \ L)) \ πL,M“(L \ x))

Now we discuss how to compute [π3(πA(x))].

If x isA-flexible, then there is a subset L of π3(x)
◦ such that π0

A(min(A),−1, L)
is defined. Then [π3(πA(x)) = [L].

If x is not A-flexible, there is unique γ and y ∈ τγ such that γ < min(A1)
and [x] = fγ,min(A)(y).

By inductive hypothesis, the action of π on TA1 is known, where T is a
strong γ-support of y.

We use the fact that the freedom of action theorem is assumed to hold
for γ < β. We are given πγ [T] since we know the action of π on TA1 . If
we find a γ-allowable permutation π′ with this action on T , then π′(y) is
the only possible value for πγ(y), and we can then compute [π3(πA(x))] =
f−1
γ,min(A)(π

′(y)) and complete the calculation of πA(x) as above.

The approximation (π′)0 is now described. If (u,A) ∈ T and u is a typed
atom or A-flexible, we set (π′)0A(u) = πA(u). This will not necessarily
be an approximation, because its domain is not necessarily the same as
its range; there is also a correction needed for near-litter elements of the
domain, to be discussed below. We fill in orbits under (π′)0A for each typed
atom u in the domain, with the proviso that the extended action of (π′)0A
sends any new typed atom domain element u which is an element (resp.
non-element) of a litter L to an element (resp. non-element) of πA(L) for
each L with (L,A) ∈ T . We then modify elements of the domain of the
approximation which are typed litters to the appropriate typed near-litters
to meet the conditions that the third components of domain elements of

38

(π′)0A are disjoint and cover litters with which they have large intersection.
The allowable permutation π′ obtained from the resulting approximation
by application of freedom of action has correct action at typed atomic and
flexible litter elements of T . We show that it acts correctly on non-flexible
litter elements of T . Consider the exception (x,A) with minimal ι∗(x). π

′

acts correctly on each element of the designated support of the f−1
γ,min(A)(x)

of interest, so we know that [pi3(π
′(x))] = [πA(x)]. If π

′(x) ̸= πA(x), this
must be because there is an exceptional action of πA∪{−1} in π3(x) or in
πA(L) other than the known actions on third components of atoms in the
support T . But by construction there are no exceptional actions of π′ in
litters in T or their images under πA other than at atoms in the support
T .

The process given will compute πA(x) for every atom x, and so will com-
pute a full allowable permutation with the desired properties. The fact
that the induction is on the given order on entire types rather than on an
order in a specific strong support should be a simplifying factor.

Note to Lean project workers: this is now more or less finished.
It still isn’t part of the main line of development, but it is given to
compare with Peter’s approach

39

4.4 Types are of size µ (so the construction actually suc-
ceeds)

Now we argue that (given that everything worked out correctly already at lower
types) each type α is of size µ, which ensures that the construction actually
succeeds at every type.

Definition (coding functions): For any support S and object x, we can de-
fine a function χx,S which sends T = π[S] to π(x) for every T in the orbit
of S under the action of allowable permutations. We call such functions
coding functions. Note that if π[S] = π′[S] then (π−1 ◦ π′)[S] = S, so
(π−1 ◦ π′)(x) = x, so π(x) = π′(x), ensuring that the map χx,S for which
we gave an implicit definition is well defined.

Definition (the specification of a support): A support which is an image
of a strong support under an allowable permutation we may call a nice
support. For each nice support S we define a combinatorial object S∗

which we call its specification. We will show below that what it specifies
is the orbit in the action of allowable permutations on supports to which
it belongs.

For S a support, we define Sϵ as the element x of its domain such that
the restriction of S to {y : y <S x} is of order type ϵ. We define S<ϵ as
{y : y <S Sϵ}.
The specification S∗ is a well-ordering of the same length as S. We describe
the elements of its domain.

1. If Sϵ is ((β,−1, {x}), A), then S∗
ϵ is (0, β, δ, A) such that Sδ is ((β,−1, N), A),

for N a near-litter with x belonging to N . There is exactly one such
δ by the definitions of support and strong support.

One can state an internal condition on specifications that if S∗
ϵ is

(0, β, δ, A), then S∗
δ must have first component 2 or 3.

2. If Sϵ is ((β,−1, N), A) and N is a near-litter, and either |A| = 1
or [N] is not in the range of any fγ,β for γ < min(A1), then S∗

ϵ is
(1, β, ∅, A).

3. If Sϵ is ((β,−1, N), A) and N is a near-litter, and [N] = fγ,β(x) for
γ < min(A1), and x ∈ τγ then S∗

ϵ is (2, β, χx,(S<ϵ)(γ)
, A): the third

component is the coding function with largest possible domain taken
from S which yields x.

One can state an internal condition on specifications that if S∗
ϵ is

(2, β, χ,A), where χ is a coding function with outputs of type γ,
then domain elements of χ have specification (S∗

<ϵ)(γ) (restrict to
earlier elements of the specification, then remove the top element
from each extended type index and retain only those which then
have top element γ).

40

Observation: On the inductive hypothesis that there are < µ γ-coding func-
tions with domain containing a strong support for each γ < α, we observe
that there are < µ specifications of β-supports for β ≤ α.

Lemma: The specification of a nice β-support exactly determines the orbit in
the action of β-allowable permutations on supports to which it belongs.

Proof of Lemma: It is straightforward to see that if S is a nice β-support and
if π is a β-allowable permutation, that (π[S])∗ = S∗. The relationships
between items in the support recorded in the specification are invariant
under application of allowable permutations.

It remains to show that if S and T are nice supports, and S∗ = T ∗, there
is an allowable permutation ϕ such that π[S] = T .

We construct π using the Freedom of Action Theorem.

If we have Sϵ = ((β,−1, {x}), A), we will have Tϵ = ((β,−1, {y}), A) for
some y, and we will set π0

A(x) = y as part of the construction of the local
bijection to be used.

If we have Sϵ = ((β,−1,M), A) for M a near litter and either |A| =
1 or [M] is not in the range of any fγ,β for γ < min(A1), then Tϵ =
((β,−1, N), A) for N a near litter, with analogous properties, and we set
χA([M]) = [N] as part of the data for application of the Freedom of Action
Theorem.

If we have Sϵ = ((β,−1,M), A) for M a near litter with [M] = fγ,β(x),
where γ < min(A1), then S

∗
ϵ is (2, β, χx,(S<ϵ)(γ)

, A) and T ∗
ϵ is (2, β, χy,(T<ϵ)(γ)

, A),
and they are the same.

If all earlier items in S are mapped by appropriate derivatives of a fixed
allowable permutation π0 to the corresponding items in T , then

π0(x) = π0(χx,(S<ϵ)(γ)
((S<ϵ)(γ))

= χx,(S<ϵ)(γ)
(π0[(S<ϵ)(γ)])

= χx,(S<ϵ)(γ)
((T<ϵ)(γ))

= χy,(T<ϵ)(γ)
((T<ϵ)(γ)) = y

and this implies that π(M)∆N is small: we need to augment the local
bijection to prevent anomalies, and there is a way to do this.

We want to ensure that elements ofM \M◦ and elements ofM◦\M are in
the domain of π0

A and sent to elements of N , and similarly elements of M
are chosen to be mapped by π0

A to elements of N \N◦ and N◦ \N . Some
additional work must be done. For each new element introduced to the
domain of π0

A, we have the obligation to fill in its complete orbit in π0
A. The

restriction we must obey as we do this is that any element of a near-litter
in S must be mapped by π0

A to an element of the corresponding near-litter
in T and any element of a near-litter in T must be mapped by (π0

A)
−1 to

41

an element of the corresponding near-litter in S. Since only countably
many new values are needed to fill in each orbit and κ is uncountable,
there is no obstruction to doing this. Note that atoms already in the
domain of π0

A are already constrained to behave in this way. The map
eventually constructed by Freedom of Action will send M to N because
it maps elements of M∆M◦ to and elements of N∆N◦ to appropriate
values individually, and all other values in M must be mapped to values
in N (and elements of N mapped from elements of M) because the map
constructed by Freedom of Action has no exceptions not in the domain of
the local bijection.

So we have completed the description of what we need to do to construct
the needed permutation.

Since the specifications precisely determine the orbits in nice supports under
allowable permutations, and there are < µ specifications (on stated hypotheses)
there are < µ such orbits.

The strategy of our argument for the size of the types is to show that that
there are < µ coding functions for each type whose domain includes a strong
support, which implies that there are no more than µ (and so exactly µ) elements
of each type, since every element of a type is obtainable by applying a coding
function (of which there are < µ) to a support (of which there are µ), and every
element of a type has a strong support.

Analysis of coding functions for type 0: We describe all coding functions
for type 0 (without concerning ourselves about whether supports are strong).
The orbit of a 0-support in the allowable permutations is determined by
the positions in the support order occupied by near-litters, and for each
position in the support order occupied by a singleton, the position, if any,
of the near-litter in the support order which includes it. There are no
more than 2κ ways to specify an orbit. Now for each such equivalence
class, there is a natural partition of type −1 into near-litters, singletons,
and a large complement set. Notice that near-litters in the partition will
be obtained by removing any singletons in the domain of the support
which are included in them. The partition has ν < κ elements, and there
will be 2ν ≤ 2κ coding functions for that orbit in the supports, determined
by specifying for each compartment in the partition whether it is to be
included or excluded from the set computed from a support in that orbit.
So there are no more than 2κ < µ coding functions over type 0.

Analysis of the general case:

Our inductive hypothesis is that for each β < α there are < µ β-coding func-
tions.

For each g ∈ τγ , γ < α, let Sg be the strong support obtained by closing
up the designated support for g following the observation above on why
supports can be extended to strong supports.

42

We specify an object X ∈ τα and a strong α-support S for X, and develop
a recipe for the coding function χX,S which can be used to see that there
are < µ α-coding functions (assuming of course that we know that things
worked out correctly for β < α).

X = (α, β,B), where B is a subset of τβ .

For each b ∈ τβ , we define {b}α as (α, β, {b}). We describe the computation
of a strong α-support Tb for {b}α from the strong β support Sb. We

compute this by a process of closing up S
{α}
b : the only situation we are

concerned about is items (N, {γ, α}) in the support where [N] = fδ,γ(d),
δ < α. In this case we insert a suitably tagged version of Sd. Note that
in this situation, δ > γ always holds when an insertion is needed (this
claim needs discussion). The resulting support will be a strong α-support
for {b}α; note that it will contain no type α near-litters, there being no
mechanism which would add them in our closure process. This process
terminates because in adding a support Sd we are always adding things
whose position in the designated order on their type is before the position
of d in its type.

So for each b ∈ B, we have {b}α = χ{b}α,Tb
(Tb) for Tb taken from a family

of < µ coding functions. We further provide that each Tb end extends

S (we can do this by starting with the support S + S
{α}
b obtained by

appending Sb to S then removing duplications).

I need to verify the claim that there are < µ coding functions χ{b}α,Tb
(Tb)

in play. It is given that Tb is computed from Sb, but what we actually
need is something like the specification of Tb being computable from the
specification of Sb. There are µ0 < µ specifications for supports Sb avail-
able at the current stage by the inductive hypothesis. Any specification
built the way we describe uses an Sb to start, which has one of µ0 possible
specifications. Each further refinement involves choosing an Sd (with one
of µ0 possible specifications) to insert at stated positions. The exact in-
formation needed is for each element of Sd where it is to be inserted in the
preceding specification (or where it is already present): there are no more
than 2κ ≤ µ0 < µ ways to make such an insertion, so µ0 ways to make
an insertion of an Sd in a stated way. There will be < κ such insertions.
There are < µ possible descriptions of such processes of insertion (this
involves appealing both to the fact that µ is strong limit and the fact that
its cofinality is at least κ), including descriptions of actually ill-founded
processes (of course, an actual construction of a Tb will be well-founded).
So there are < µ possible specifications for supports Tb constructed as
above. Objects with the same specification are in the range of the same
coding function, so we have a family of < µ coding functions of the kind
indicated which cover the type.

We claim that χX,S can be defined in terms of the orbit of S in the
allowable permutations and the set of coding functions χ{b}α,Tb

. There
are < µ coding functions of this kind, and we have shown above that there

43

are < µ orbits in the α-strong supports under allowable permutations, so
this will imply that there are ≤ µ elements of type α (it is obvious that
there are ≥ µ elements of each type). Of course we get ≤ µ codes for each
β < α, but we know that λ < κ < µ.

The definition that we claim works is that χX,S(U) = (α, β,B′), where
B′ is the set of all

⋃
π3(χ{b}α,Tb

(U ′)) for b ∈ B and U ′ end extending U .
Clearly this definition depends only on the orbit of S and the set of coding
functions Tb derived from B as described above. Before we know that this
is actually the coding function desired, we will write it as χ∗

X,S .

The function we have defined is certainly a coding function, in the sense
that χ∗

X,S(π[S]) = π(χ∗
X,S(S)). What requires work is to show that

χ∗
X,S(S) = X, from which it follows that it is in fact the intended function.

Clearly each b ∈ B belongs to χ∗
X,S(S) as defined, because b =

⋃
π3(χ{b}α,Tb

(Tb)),
and Tb end extends S.

An arbitrary c ∈ χ∗
X,S(S) is of the form

⋃
π3(χ{b}α,Tb

(U)), where U end
extends S and of course must be in the orbit of Tb under allowable permu-
tations, so some π0[Tb] = U . Now observe that π0[S] = S, so π0(X) = X,
so (π0)β“B = B. Further (π0)β(b) = c, so in fact c ∈ B which com-
pletes the argument. The assertion (π0)β(b) = c might be thought to
require verification: the thing to observe is that c =

⋃
π3(χ{b}α,Tb

(U)) =⋃
π3(π0(χ{b}α,Tb

(S)) =
⋃
π3(π0({b}α)) =

⋃
π3(π0(α, β, {b})) =

⋃
π3(α, β, {(π0)β(b)}) =

(π0)β(b)

This completes the proof: any element of a type is determined by a support
(of which there are µ) and a coding function whose domain includes a strong
support (there are < µ of these, so a type has no more than µ elements (and
obviously has at least µ elements).

Note for the formal verification project: I think the latest revisions
are closer to the standard needed for the Lean verification project.

44

4.5 The structure is a model of predicative TTT

There is then a very direct proof that the structure presented is a model of
predicative TTT (in which the definition of a set at a particular type may not
mention any higher type). Use E for the membership relation ∈TTT of the
structure defined above. It should be evident that xEy ↔ πβ(x)Eπ(y), where
x is of type β, y is of type α, and π is an α-allowable permutation.

Suppose that we are considering the existence of {x : ϕs}, where ϕ is a
formula of the language of TST with ∈ translated as E, and s is a strictly
increasing sequence of types. The truth value of each subformula of ϕ will
be preserved if we replace each u of type s(i) with πAs,i(u), where As,i is the
set of all sk for i ≤ k ≤ j + 1 [x being of type s(j), and there being no
variables of type higher than s(j + 1)]: πAs,i

(x)EπAs,i+1
(y) is equivalent to

(πAs,i+1
)s(i)(x)EπAs,i+1

(y), which is equivalent to xEy by the observation above.
The formula ϕ will contain various parameters ai of types s(ni) and it is then
evident that the set {x : ϕs} will be fixed by any s(j+1)-allowable permutation
π such that πAs,ni

fixes ai for each i. But this means that (s(j+1), s(j), {x : ϕs})
is symmetric and belongs to type s(j+1): we can merge the supports of the ai’s
(with suitable raising of indices) into a single s(j + 1)-support. Notice that we
assumed the predicativity condition that no variable more than one type higher
than x appears (in the sense of TST).

This procedure will certainly work if the set definition is predicative (all
bound variables are of type no higher than that of x, parameters at the type of
the set being defined are allowed).

There are easier proofs of the consistency of predicative tangled type theory;
there is a reason of course that we have pursued this one.

It should be noted that the construction given here is in a sense a Frankel-
Mostowski construction, though we have no real need to reference the usual
FM constructions in ZFA here. Constructions analogous to Frankel-Mostowski
constructions can be carried out in TST using permutations of type 0; here we
are doing something much more complicated involving many permutations of
type −1 which intermesh in precisely the right way. Our explanation of our
technique is self-contained, but we do acknowledge this intellectual debt.

Note for the formal verification project: We note that in order to
avoid metamathematics, we actually suggest proving finitely many instances
of comprehension with typed parameters from which the full comprehension
scheme can be deduced. That there are such finite schemes (mod the infinite
sequence of types) is well-known. For the project, a list should be provided here.

45

4.6 Impredicativity: verifying the axiom of union

What remains to complete the proof is that typed versions of the axiom of set
union hold. That this is sufficient is a fact about predicative type theory. If
we have predicative comprehension and union, we note that for any formula
ϕ, {ιk(x) : ϕ(x)} will be predicative if k is taken to be large enough, then
application of union k times to this set will give {x : ϕ(x)}. ι(x) here denotes
{x}. It is evidently sufficient to prove that unions of sets of singletons exist.

So what we need to show is that if (α, β, {(β, γ, {g}) : g ∈ G}) is symmetric,
then (β, γ,G) is symmetric.

Suppose that (α, β, {(β, γ, {g}) : g ∈ G}) is symmetric. It then has a strong
support S. We claim that S(β) (same notion defined above) is a β-support for
(β, γ,G).

Suppose that π[S(β)] = S(β).

Any g ∈ G has a strong γ-support T which extends (S(β))(γ). Extend T {β}

to a strong β-support T ∗: notice that this will not involve adding any new
elements of type ≥ β, though elements of type greater than γ may be added.

Our plan is to use freedom of action technology to construct a permutation
π∗ whose action on S is the identity and whose action on T {α,β} precisely
parallels the action of π on T {β}.

If this is accomplished, then the action of π∗ fixes S and so fixes (α, β, {(β, γ, {g}) :
g ∈ G}), while at the same time (π∗

β)γ agrees with πγ on G. This implies that

πγ(g) ∈ G (and the same argument applies to π−1) so π fixes {(β, γ, {g}) : g ∈
G}.

The support S + (T ∗){α} obtained by juxtaposition and deletion of all but
the first occurrence of repeated items is a strong support. Build a permutation
π∗ using the freedom of action theorem whose derivatives send each element of S
to itself and whose derivative π∗

β sends each atomic item in T ∗, or exception of a
derivative of π belonging to a litter in T ∗, or element of the orbit under π of any
items of the last two kinds, to their image under the appropriate derivative of π,
and any flexible litter item in T ∗ to its image under an appropriate derivative
of π. Non-flexible litter items in T ∗ are then sent to their images under the
appropriate derivative of π because their local cardinals are handled correctly
because the action on a support is handled correctly, and the other conditions
ensure that there can be no exceptions of the new permutation which do not
correspond to exceptions of π. This permutation has the effects described above,
so π fixes (β, γ, {g}) as desired.

Note for formal verification project: This is converging to a full de-
scription at the level needed for formalization...

46

5 Conclusions, extended results, and questions

[I have copied in the conclusions section of an older version, but what it says
should be about right, and may require some revisions to fit in this paper. I
also added the bibliography, which again is probably approximately the right
one.]

This is a rather boring resolution of the NF consistency problem.
NF has no locally interesting combinatorial consequences. Any stratified

fact about sets of a bounded standard size which holds in ZFC will continue to
hold in models constructed using this strategy with the parameter κ chosen large
enough. That the continuum can be well-ordered or that the axiom of dependent
choices can hold, for example, can readily be arranged. Any theorem about
familiar objects such as real numbers which holds in ZFC can be relied upon
to hold in our models (even if it requires Choice to prove), and any situation
which is possible for familiar objects is possible in models of NF : for example,
the Continuum Hypothesis can be true or false. It cannot be expected that NF
proves any strictly local stratified result about familiar mathematical objects
which is not also a theorem of ZFC.

Questions of consistency with NF of global choice-like statements such as
“the universe is linearly ordered” cannot be resolved by the method used here
(at least, not without major changes). One statement which seems to be about
big sets can be seen to hold in our models: the power set of any well-orderable
set is well-orderable, and more generally, beth numbers are alephs. We indicate
the proofs: a relation which one of our models of TTT thinks is a well-ordering
actually is a well-ordering, because the models are countably complete; so a
well-ordering with a certain support has all elements of its domain sets with
the same support (a permutation whose action fixes a well-ordering has action
fixing all elements of its domain), and all subsets of and relations on the domain
are sets with the same support (adjusted for type differential), and this applies
further to the well-ordering of the subsets of the domain which we find in the
metatheory. Applying the same result to sets with well-founded extensional
relations on them proves the more general result about beth numbers. This
form of choice seems to allow us to use choice freely on any structure one is
likely to talk about in the usual set theory. It also proves, for example, that the
power set of the set of ordinals (a big set!) is well-ordered.

NF with strong axioms such as the Axiom of Counting (introduced by Rosser
in [12], an admirable textbook based on NF), the Axiom of Cantorian Sets (in-
troduced in [3]) or my axioms of Small Ordinals and Large Ordinals (introduced
in my [5] which pretends to be a set theory textbook based on NFU) can be
obtained by choosing λ large enough to have strong partition properties, more
or less exactly as I report in my paper [6] on strong axioms of infinity in NFU:
the results in that paper are not all mine, and I owe a good deal to Solovay in
that connection (unpublished conversations and [16]).

That NF has α-models for each standard ordinal α should follow by the
same methods Jensen used for NFU in his original paper [9]. No model of NF
can contain all countable subsets of its domain; all well-typed combinatorial

47

consequences of closure of a model of TST under taking subsets of size < κ will
hold in our models, but the application of compactness which gets us from TST
+ Ambiguity to NF forces the existence of externally countable proper classes,
a result which has long been known and which also holds in NFU.

We mention some esoteric problems which our approach solves. The Theory
of Negative Types of Hao Wang (TST with all integers as types, proposed in
[20]) has ω-models; an ω-model of NF gives an ω-model of TST immediately.
This question was open.

In ordinary set theory, the Specker tree of a cardinal is the tree in which
the top is the given cardinal, the children of the top node are the preimages
of the top under the map (κ 7→ 2κ), and the part of the tree below each child
is the Specker tree of the child. Forster proved using a result of Sierpinski
that the Specker tree of a cardinal must be well-founded (a result which applies
in ordinary set theory or in NF(U), with some finesse in the definition of the
exponential map in NF(U)). Given Choice, there is a finite bound on the lengths
of the branches in any given Specker tree. Of course by the Sierpinski result a
Specker tree can be assigned an ordinal rank. The question which was open was
whether existence of a Specker tree of infinite rank is consistent. It is known
that in NF with the Axiom of Counting the Specker tree of the cardinality of
the universe is of infinite rank. Our results in this paper can be used to show
that Specker trees of infinite rank are consistent in bounded Zermelo set theory
with atoms or without foundation (this takes a little work, using the way that
internal type representations unfold in TTT and a natural interpretation of
bounded Zermelo set theory in TST; a tangled web as described above would
have range part of a Specker tree of infinite rank). A bit more work definitely
gets this result in ZFA, and we are confident that our permutation methods can
be adapted to ZFC using forcing in standard ways to show that Specker trees
of infinite rank can exist in ZF.

We believe that NF is no stronger than TST + Infinity, which is of the same
strength as Zermelo set theory with separation restricted to bounded formulas.
Our work here does not show this, as we need enough Replacement for existence
of ℶω1

at least. We leave it as an interesting further task, possibly for others,
to tighten things up and show the minimal strength that we expect holds.

Another question of a very general and amorphous nature which remains
is: what do models of NF look like in general? Are all models of NF in some
way like the ones we describe, or are there models of quite a different character?
There are very special assumptions which we made by fiat in building our model
of TTT which do not seem at all inevitable in general models of this theory.

48

I am not sure that all references given here will be used in this version.

References

[1] Forster, T.E. [1995] Set Theory with a Universal Set, exploring an untyped
Universe Second edition. Oxford Logic Guides, Oxford University Press,
Clarendon Press, Oxford.

[2] Hailperin, finite axiomatization

[3] Henson, C.W. [1973a] Type-raising operations in NF. Journal of Symbolic
Logic 38 , pp. 59-68.

[4] Holmes, M.R. “The equivalence of NF-style set theories with ”tangled”
type theories; the construction of omega-models of predicative NF (and
more)”. Journal of Symbolic Logic 60 (1995), pp. 178-189.

[5] Holmes, M. R. [1998] Elementary set theory with a universal set. volume
10 of the Cahiers du Centre de logique, Academia, Louvain-la-Neuve (Bel-
gium), 241 pages, ISBN 2-87209-488-1. See here for an on-line errata slip.
By permission of the publishers, a corrected text is published online; an
official second edition will appear online eventually.

[6] Holmes, M. R. [2001] Strong Axioms of infinity in NFU. Journal of Sym-
bolic Logic, 66, no. 1, pp. 87-116.
(“Errata in ‘Strong Axioms of Infinity in NFU’ ”, JSL, vol. 66, no. 4 (De-
cember 2001), p. 1974, reports some errata and provides corrections).

[7] Kemeny thesis on strength of TST

[8] Jech, Thomas, Set theory, Academic Press 1978, pp. 199-201.

[9] Jensen, R.B. “On the consistency of a slight(?) modification of Quine’s
NF”. Synthese 19 (1969), pp. 250-263.

[10] Quine on ordered pairs

[11] Quine, W.V., “New Foundations for Mathematical Logic”. American Math-
ematical Monthly 44 (1937), pp. 70-80.

[12] Rosser, J. B. [1978] Logic for mathematicians, second edition. Chelsea Pub-
lishing.

[13] Russell, Principles of Mathematics

[14] Russell and Whitehead, Principia Mathematica

[15] Scott, Dana, “Definitions by abstraction in axiomatic set theory”, Bull.
Amer. Math. Soc., vol. 61, p. 442, 1955.

49

[16] Solovay, R, “The consistency strength of NFUB”, preprint on arXiv.org,
arXiv:math/9707207 [math.LO]

[17] Specker, E.P. “The axiom of choice in Quine’s new foundations for mathe-
matical logic”. Proceedings of the National Academy of Sciences of the USA
39 (1953), pp. 972-975.

[18] Specker, E.P. [1962] “Typical ambiguity”. Logic, methodology and philoso-
phy of science, ed. E. Nagel, Stanford University Press, pp. 116-123.

[19] Tarski, first description of TST

[20] Wang, H. [1952] Negative types.

[21] Wiener, Norbert, paper on Wiener pair

50

