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Abstract

We will present preliminary definitions and re-

sults which should suggest the nature of the

author’s claimed and not very approachable

proof of the consistency of Quine’s “New Foun-

dations”. This will include basic definitions,

and indication of the fundamental results ob-

tained by Specker, Jensen’s proof of the con-

sistency of the related theory NFU, and the re-

sults of the author (1995) on equiconsistency

of NF with “tangled type theory”, followed by

a mere sketch of the strategy of a version of

the proof the author has claimed since 2010,

if time permits.

These slides are found at

https://randall-holmes.github.io/Nfproof/wiscslides.pdf



A very basic theory

We define TSF (typed stratified foundations)
as the first order theory with sorts indexed by
the natural numbers and primitive binary re-
lations of equality and membership, with well-
formedness conditions on atomic formulas briefly
indicated in the formats xi = yi and xi ∈ yi+1,
and the axiom scheme introduced shortly.

We do not always affix numerical superscripts
to variables to indicate type. One should be
aware that any variable x in a formula does
have a type whose index we will write type(x).

The one and only axiom scheme of TSF con-
sists of the universal closures of formulas of
the shape

(∃A : (∀x : x ∈ A ↔ ϕ)),

where A is not free in ϕ.
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Of course TSF is an anachronism (its untyped

stratified analogue SF was proposed by Mar-

cel Crabbé in the context of a proof of cut-

elimination). One is definitely expecting an

identity criterion for the objects of the theory

here. They seem to be sets (at least some

of them), and we would expect sets with the

same elements to be equal.

It is useful to see that TSF can interpret the

more natural theory TSTU in which we postu-

late extensionality for sets.

Define x =TSTU y as (∀z : z ∈ x ↔ z ∈ y) if the

common type of x and y is positive, and oth-

erwise simply as x = y. This is the relationship

of coextensionality.

Define set(x) as (∀y ∈ x : (∀z =TSTU y : z ∈ x)),

for x of positive type. An object x is a set iff

3



its extension is a union of equivalence classes

under coextensionality.

Define x ∈TSTU y as x ∈ y ∧ set(y), where the

type of y is the successor of the type of x (a

condition forced by the form of the definition).

We have constructed an interpretation of a

theory TSTU (with equality, membership and

sethood relations primitive) which has. in addi-

tion to the comprehension axiom of SF already

given, the following axioms:

sethood: x ∈ y → set(y)

(weak) extensionality:

set(x)∧set(y) → (x = y ↔ (∀z : z ∈ x ↔ z ∈ y))



set notation: There is exactly one witness to

any formula

(∃A : (∀x : x ∈ A ↔ ϕ))

(A not free in ϕ) which is in addition a set,

and this we can denote by {x : ϕ}.



Such monsters as the Russell class {x : x ̸∈ x}
are averted by the fact that x ̸∈ x simply isn’t

a well-formed formula of our language.

The theory TST (the simple typed theory of

sets) is obtained by strengthening the axiom

of extensionality:

extensionality:

x = y ↔ (∀z : z ∈ x ↔ z ∈ y)

The anachronism here is of course that TST

is the original version of this theory. It is cer-

tainly not the type theory of Russell: it seems

to have been intimated by Norbert Weiner in

1914 and first formally described by Tarski in

1930. In fact TSTU is prior to TSF. Crabbé

proposed SF as a system to effect the relative

consistency proof for weak extensionality which
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I describe (in the untyped context), and also

has proved cut elimination for SF as a higher

order logic.

We have our reasons for keeping the intellec-

tual priority of these systems inverse to the

historical priority.



Typical ambiguity

This theory exhibits a significant symmetry (Rus-

sell noticed a similar symmetry in his type the-

ory but it is purer here).

Postulate a injective map (x → x+) which maps

the variables of each type i onto the variables

of type i+1.

We can then define ϕ+ as the result of replac-

ing each variable x in ϕ with x+.

Notice that for any formula ϕ, ϕ+ is also a

formula. For any axiom ϕ, ϕ+ is also an axiom.

And in fact for any theorem ϕ, ϕ+ is also a

theorem. This is true for any of the theories

discussed. Any construction we define using

notation {x : ϕ} has an exact analogue in the

next higher type of the form {x : ϕ+}, and so

analogues in every higher type.
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It is not necessarily the case that ϕ is a theorem

if ϕ+ is a theorem: we have more information

about higher types than we do about lower

types.

But it is possible to conjecture that ϕ ↔ ϕ+

might be true for each sentence ϕ (this is called

the axiom scheme of ambiguity) and this is

a way of approaching the motivation of New

Foundations.



New Foundations

In 1937, Quine proposed New Foundations (NF),

a first order unsorted theory with equality and

membership as primitives and with axioms of

strong extensionality (as above, but with dis-

tinctions of type suppressed) and each com-

prehension axiom of TST with distinctions of

type suppressed.

Notice that this does not give {x : x ̸∈ x},
because this is not a type-erased version of a

comprehension axiom of TST, but it does for

example give {x : x = x}, the universal set.

Quine pushed past the hypothesis that the scheme

of ambiguity that I describe above might hold

to the apparently stronger hypothesis that the

types are simply the same and the distinction

between them can be suppressed.
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Stratification

It is odd to describe the comprehension axiom

of one theory in terms of the language of an-

other. It is traditional to say that NF provides

for the existence of sets {x : ϕ} when there is

a function σ from variables (as bits of text)

to natural numbers such that for each atomic

subformula x = y of ϕ we have σ(x) = σ(y) and

for each atomic subformula x ∈ y of ϕ we have

σ(x) + 1 = σ(y). Such a function σ is called

a stratification and a formula which admits a

stratification is said to be stratified.
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We invite the reader to convince themselves

that this is the same as my description of the

comprehension axiom above. Also, it should be

noted that the stratified comprehension scheme

is equivalent to the conjunction of finitely many

of its instances (obtained in a rather obfus-

cated form by Hailperin, and later by other

workers in nicer forms, by analogy with the fi-

nite axiomatization of the von Neumann-Gödel-

Bernays predicative class comprehension ax-

iom). The details of this are unimportant, but

it is important to notice that it can be done,

because such a finite axiomatization does not

need to make any mention of types at all.
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In any case, Quine’s intuition about the moti-

vation of NF was justified by work of Specker.

In 1962, Specker showed that NF is equiconsis-

tent with TST + the ambiguity scheme, and

also with existence of a model of TST with

an isomorphism to its submodel consisting of

the types of positive index (the submodel hav-

ing type indices reduced by 1). The models of

these theories will satisfy the same sentences

in the natural sense (mod addition or removal

of type indices).

These results, though originally stated for TST

and NF, adapt to TSTU and NFU, and to TSF

and its untyped analogue SF.

Specker had already proved, in 1954, that NF

disproves the Axiom of Choice. This means

that NF proves Infinity, as the negation of In-

finity certainly implies Choice. This cast doubt

on the consistency of NF and its motivation:
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after all, TST + AC has the same typical am-

biguity properties as TST, but by Specker’s

two results taken together, it must disprove

the ambiguity scheme.



Tangled type theory

I present a somewhat different (perhaps alarm-
ingly different) type theory. This theory is due
to the author in 1995. I am going to use
it to develop a version of Jensen’s proof of
Con(NFU); the further advantage is that this
method of proving Con(NFU) suggests a strat-
egy for attacking Con(NF) [a strange one] as
Jensen’s original format does not.

TTTU (tangled type theory with urelements)
is a first order theory with sorts indexed by
the natural numbers, with equality and mem-
bership as primitive notions, and with atomic
sentences in the formats xi = yi and xi ∈ yj

(i < j). We handle sethood by providing predi-
cates setj which identify sets of type j objects
in each higher type.

Provide an injective map (x 7→ x+) taking the
variables of each type i onto the variables of
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type i + 1, and define x+
j
in the obvious way

so that (x 7→ x+
j
) is injective from each type i

onto type i+ j [if we use more general ordinals

as type indices, we simply postulate bijections

between the variables of any two types].

For any formula ϕ of the language of TSTU

and strictly increasing sequence s of natural

numbers, define ϕs as the result of replacing

each variable xi in ϕ with x+
s(i)−i

(and each

occurrence of seti with sets(i)) (and labelling

sethood predicates with the superscript appro-

priate to the type of their arguments).

The axioms of TTTU are exactly the formulas

ϕs where s is a strictly increasing sequence of

natural numbers and ϕ is an axiom of TSTU.

One thing to realize is that this is not cumula-

tive type theory. The types are disjoint, or at

least we do not say anything about how they



might be related to each other (xi = yj is ill

formed for i ̸= j, not false (or true)).

The extensionality axioms say, for example that

the identity of a type j > i object which is a

set (of type i objects) is determined by the col-

lection of its type i elements for each distinct

value of i (a type 4 object is completely de-

termined by its type 3 elements if it has any,

and also completely determined by its type 2

elements, if it has any).



Equivalence of TTTU and NFU,
in some sense

We show that consistency of TTTU and con-
sistency of NFU are equivalent, where NFU is
exactly as NF but with weak extensionality.

Suppose there is a model of NFU with domain
D and membership relation E. Then there is a
model of TTTU in which type i is implemented
as D × {i}, the membership relation Ei,j for
i < j is {((x, i), (y, j)) : xE y) and seti is {(x, i) :
set(x)}.

Now suppose there is a model of TTTU. We
give an argument closely based on Jensen’s
original proof of Con(NFU) for the consistency
of TSTU + Amb, from which the consistency
of NFU follows by Specker’s result of 1962.

We choose a finite set Σ of formulas of the
language of TST. Let n − 1 be the largest
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type mentioned in Σ. We define a partition
of [N]n as follows: a set A of n natural num-
bers goes into a compartment determined by
the truth values of the sentences ϕs in the
model of TTTU, for each ϕ ∈ Σ and any fixed
s such that the range of the restriction of s to
{0, . . . , n − 1} is A. The partition has at most
2|Σ| compartments. By Ramsey’s theorem it
has a homogeneous set H. Let h be any in-
creasing sequence whose range is contained in
H. The set of sentences ϕh for ϕ in the lan-
guage of TST which are true in the model of
TTTU give a complete theory of a model of
TSTU with the ambiguity scheme restricted to
formulas in Σ, so this theory is consistent. By
compactness, TSTU + Amb is consistent, and
so is NFU by Specker’s results.

We can get stronger results by extending the
types of TTTU to elements of a larger limit
ordinal λ which may have stronger partition
properties.



NFU is consistent

That NFU is consistent follows at once, be-

cause it is not difficult to present a model of

TTTU, however weird this may seem.

Let λ be a limit ordinal.

Let type α < λ be represented by Vα×{α}. (Vα
being a level of the usual hierarchy of sets).

Define (x, α) ∈TTTU (y, β) as α < β∧x ∈ y∧y ∈
Vα+1. When type β is being considered rela-

tive to its extensions over type α, the elements

of (Vβ \ Vα+1) × {β} are treated as non-sets:

setαTTTU(x, β) is defined as x ∈ Vα+1 for β > α.

Further, this shows that NFU is clearly con-

sistent with Choice and with the negation of

Infinity. Mathematics in NF is limited by the

failure of choice (and lack of knowledge about
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what choice-like principles may be safe to as-

sume); mathematics in NFU is quite standard,

though it may look unfamiliar because of the

attention to stratification which is required.



We note here as we have noted elsewhere that
Jensen’s result completely vindicates Quine’s
foundational program. Specker’s results showed
that the passage from assuming the ambigu-
ity scheme suggested by the symmetry of the
theory to flat identification of the types could
be justified. Jensen’s argument shows that
on the mathematically harmless assumption of
urelements, the assumption of the ambiguity
scheme can itself be justified.

The fact that a natural implementation of the
Quine program leads to existence of urelements
is perhaps startling, and the mathematical prob-
lem of whether we can get strong extension-
ality in NFU (and so get NF) remains tech-
nically interesting (and hard). But it has no
philosophical interest: all philosophical charms
of NF (that it has a universal set and com-
plements, Frege natural numbers, and Russell-
Whitehead cardinals and ordinals) are already
found in NFU.
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It is also important to notice that the tempt-

ingly different universal sets and other huge

non-well-founded objects in NF(U) have no role

at all in our discussion going forward. Models

of TTTU are well-founded structures we can

build in ordinary set theory, and the same will

be true for the (truly horrible) models of TTT

we will build for our proof of Con(NF).



This framework for presenting the relationship
between TTTU + Amb and NFU allows a
straightforward account of why we can sup-
pose that the same sentences hold in the model
of TTTU+Amb and in the model of NFU.

Add to our language an external well-ordering
≤0 of the model of TTTU + Amb we start
with. Add to our language the relation ≤=
{((x, α), (y, β)) : α = β ∧ (x, α) ≤0 (y, β)}. Note
that we cannot expect comprehension axioms
for formulas containing ≤. Notice that we can
define a Hilbert symbol (θx : ϕ(x)) as refer-
ring to the first item a in the type of x such
that ϕ(x) is true, if there is one, and otherwise
the first object in the type. Apply the con-
struction above to get consistency of TTTU
+ Amb with ≤ allowed to occur in instances of
Amb, which provides a description of its own
term model made up of Hilbert symbols. Then
identify Hilbert symbols differing only by a shift
of types to obtain a model of NFU in which
the same sentences not mentioning ≤ hold as
in the original model of TTTU + Amb.
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Passing to the question of Con(NF)

NF is an extension of NFU, so the results above

apply to NF as well. Given a model of TTT =

TTTU + versions of strong extensionality for

every sequence of types, we can construct a

model of NF; in fact, the existence of a model

of TTT is precisely equivalent to the existence

of a model of NF.

The difficulty is that while TTTU is rather

weird, on reflection it has quite natural models.

This does not seem to be the case for TTT.

Each type in TTTU is interpreted as the power

set of each type below...plus some urelements.

And this can be managed easily with the help

of the cumulative hierarchy. Each type in TTT

must be interpreted in effect as the power set

of each lower type. This means that the power

sets in question cannot be honest power sets,

by simple considerations of cardinality.
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In the remaining slides I will try to give the

description of a model of TTT, briefly, with-

out proving that it has stated properties. The

proofs are nasty, and the coding techniques

going into building the model are nasty.

Choose a limit ordinal λ. Ordinals below λ will

be type indices.

Choose a regular uncountable cardinal κ > λ.

Sets of size < κ are called small, all others are

called large.

Provide a set we call type −1 of a large car-

dinality µ (which will be the common cardi-

nality of all the types from the standpoint of

the metatheory). We stipulate that every ele-

ment of type −1 is an ordered triple with first

component −1; the equivalence relation =TTT

which represents equality in our model agrees

with equality on type −1. The size µ of type
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−1 is a strong limit cardinal of cofinality at

least κ.

Type −1 will be partitioned into disjoint sets

of size κ called “litters”. Each litter L has

an associated “local cardinal” [L], the set of

all subsets of type −1 with small symmetric

difference from L. Elements of local cardinals

are called near-litters, and if N ∈ [L] we also

say that [L] is the local cardinal of N and may

write it [N ].



A code for a set of type α > −1 is a triple

(α, β,B) in which −1 ≤ β < α and B is a set of

codes for sets of type β. There are restrictions

on what sets B can appear in codes, which will

unfold.

The first restriction is that each element of B

is a representative code taken from an equiv-

alence class under =TTT . The representative

codes will be described below.

We postulate that (β, γ,G) ∈TTT (α, β,B) iff

(β, γ,G) ∈ B.
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We expect though that (α, β,B) has an ex-

tension G of type γ( ̸= −1) elements for β ̸=
γ < α, and we expect (α, γ,G) =TTT (α, β,B).

We will then have (γ, δ,D) ∈TTT (α, β,B) iff

(γ, ϵ, E) ∈ G where .(γ, δ,D) =TTT (γ, ϵ, E), its

representative code.

We can already stipulate that (α, β, ∅) =TTT

(α, γ, ∅)

We provide the scaffolding for our solution for

alternative extensions of set codes. We pro-

vide injective maps fα,β for each pair of dis-

tinct types from type α into the set of local

cardinals. The ranges of fα,β and fα,γ are dis-

joint for β ̸= γ. α can be −1 in fα,β; β cannot.

We state the exact meaning of injective here:

fα,β(b1) = fα,β(b2) iff b1 =TTT b2; it will be in-

jective in the usual sense on the representative

codes.
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We define Aγ(α, β,B) , where B is nonempty,

as (α, γ, {(γ,−1, N) : b ∈ B ∧N ∈ fβ,γ(b)}). We

stipulated that the set of codes used in the

model (codes which have representatives) is

closed under all Aγ’s. Notice that −1 is not

a possible value of γ here: there are codes

with −1 extensions built in (used here!), but

we do not attempt to assign every code a −1

extension.

purely motivational remark: The maps Aγ

will be used to assign alternative extensions.

Note that each object will have an extension

(presumably interesting and complicated) given

in its representative code, and all of its other

extensions will be unions of local cardinals in

type −1, as embedded into other types. The

key idea here is that we will use symmetries

which turn type −1 and the subsets of type

−1 into featureless junk, but in such a way

that essentially arbitrary sets of sets of type
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−1 objects (of the particular sort “union of lo-

cal cardinals”) can be added by constraining

the permutations defining the symmetry suit-

ably. This kind of “formless junk” plays the

role that the urelements play in the construc-

tion of a model of TTTU. But making junk

sets is much harder than making urelements.



We define A−1 as the union of the inverses of

all the maps Aγ, which will be a (very partial!)

function, because of the disjointness of ranges

of functions fβ,γ and fβ,δ when γ ̸= δ.

The idea is that for a representative code (α, β,B)

(initially, one with B nonempty and which is

not an image under Aβ), its extension in type

γ ̸= β is the γ extension of Aγ((α, β,B)), with

which code it is equivalent under =TTT .

Now of course Aγ((α, β,B)) cannot be repre-

sentative: its β-extension is the β extension of

(α, β,B) and its δ-extension for some third δ is

the δ-extension of Aδ((α, β,B))

Now any code with two iterated images under

A−1 is orphaned, so we treat these codes as

representative, and in general the parity of the

number of iterated images under A−1 of a code
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determines whether the code is a representa-
tive code.

Choosing the maps fα,β cleverly ensures that
all codes have finitely many iterated images
under A−1 so this scheme works. Impose a
well-ordering on each type α. An element of
type α is mapped by fα,β to a range of lo-
cal cardinals whose near-litter elements can be
packaged as elements of type β by assigning
them as type −1 extensions. Ensure that an
element of type α is mapped to elements of
type β which all appear in the order on type
β at an ordinal position larger than the ordinal
position in type α at which the original ele-
ment of type α occurs. This can be arranged
even if β > α: we can have the ranges of the
fα,β’s set from the beginning of the construc-
tion, and the ordinal positions for elements of
each type with near-litter −1-extensions (we
know what these extensions are at the outset)
reserved at the outset. This condition ensures
that no code can have infinitely many iterated
images under A−1.



We obviously must be intending to impose a

restriction on what third projections set codes

can have, as we appear to expect all the types

to be the same size as type −1 in order to be

able to construct the maps fα,β.

The restriction is a matter of symmetry. This

is roughly speaking a Frankel-Mostowski con-

struction (the fact that we are conducting it

in a typed structure makes it look different).
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We stipulate that in all cases (α, β, {b}) is a

set code for b ∈ B a representative code (we

provide for singletons).

A −1-allowable permutation is a permutation

of type −1 whose elementwise action sends lo-

cal cardinals to local cardinals: the element-

wise image of any litter must be a near-litter.

We define an allowable permutation of type

α ̸= −1 as a permutation of type α which sends

(α, β,B) to (α, β, πβ“B) where πβ is an allow-

able permutation of type β such that

π(α, β, {b}) = π(α, β, {πβ(b)}).

Note that given π we can for each β < α deter-

mine what πβ must be and then check whether

it is a β-allowable permutation: we are assum-

ing in defining α-allowable permutations that
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we already know what β-allowable permuta-

tions are for β < α.

There is a coherence condition with =TTT : an

α-allowable permutation must respect this re-

lation. Any (α, β, {b}) is not in the domain of

A−1 and so is equivalent to (for any γ dis-

tinct from β and less than α) Aγ(α, β, {b})) =

(α, γ, {(γ,−1, N) : N ∈ fβ,γ(b)}). So the co-

herence condition tells us that (α, β, {πβ(b)})
must be equivalent to (α, γ, πγ“{(γ,−1, N) :

N ∈ fβ,γ(b)}) = (α, γ, {(γ,−1, (πγ)−1“N) : N ∈
fβ,γ(b)}), from which we can see (take my

word for it?) that what is required is that

fβ,γ(πβ(b)) = [(πγ)−1“N ] for any N ∈ fβ,γ(b).

Some notation chasing reveals that this exactly

captures the coherence condition.

It is straightforward to check that allowable

permutations send representative codes to rep-

resentative codes.



For any nonempty finite subset A of λ ∪ {−1},
with largest element α, and α-allowable per-

mutation π, define π{α} as π and define πA
as (πA\{min(A)})min(A) if A has at least two el-

ements. We get a whole suite of permuta-

tions of lower types induced by an allowable

permutation of type α along different paths

through the types (and one should note that

these permutations are chosen fairly freely of

each other; the coherence condition is not a

strong constraint).

A α-support set is a small (size < κ) set of

pairs (x,A) where the maximum of A is α and

the minimum of A is the type of x, and the

extension of x as a representative code is a

subset of type −1, either a singleton or a near-

litter. An object X of type α has support S if

any allowable permutation π such that πA fixes

x for each (x,A) ∈ S has π(X) = X.
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We stipulate that the elements of type α are

exactly the representative set codes with first

component α and with α-supports. Notice that

we can apply any allowable permutation to all

set codes with first term α before we have ac-

tually determined the extent of type α, since

evaluation reduces to information about per-

mutations of lower types which we may sup-

pose we have already worked out.

And that is it! The model is described. But

showing that it works is horrible.



This hinges on properties of what is clearly

a Frankel-Mostowski sort of construction over

type −1. I can tell you at once (and if I had

more time I could prove in a lecture like this)

that the symmetric sets of type −1 objects (in

any type) are sets with small symmetric differ-

ence from small or co-small unions of litters

(and externally there are only µ of these).

The fun thing about this FM construction is

that one can impose further conditions (as I

do in admittedly confusing ways in this con-

struction) which preserve exactly what the sets

of type −1 objects are but add arbitrary new

unions of local cardinals (lots of sets of sets of

type −1 objects). That is what the maps fα,β
are doing in the construction: we are in effect

creating copies of each lower type as unions of

local cardinals in each higher type (and then

doing further things to them to make every-

thing work properly for TTT). The coherence
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condition on allowable permutations enforces

symmetry of these copies of types in unions of

local cardinals in other types.

It is straightforward (yes, really) to prove (un-

der assumptions that other things work cor-

rectly) that predicative TST in a tangled ver-

sion holds in this structure. Predicative TST

doesn’t allow us to mention higher types in the

definition of a set in a given type.

There are two harder things to prove.

You get from predicative TST to TST by adding

the axiom of set union. We need to show that

union holds in this structure, for which it is

sufficient to show that any set of singletons of

type β objects in type α has an α-support which

is in fact simply a translate of a β-support: in

effect, we dont get new subsets of lower types



when we impose more symmetry to get the

desired conditions on higher types.

We need to verify that all the types are ac-

tually the same size. For this (and for the

other results, this is a universal tool), we need

to show that the allowable permutations act

rather freely. There is a precise statement of

the degree of freedom of action needed, which

itself requires more than one slide to set up

properly.



A note on forms of this proof, if
we get to it

There are numerous versions of this proof, which

fall into two main families.

The other family takes a different approach

(my original one), which involves an FM argu-

ment of the usual kind showing the existence

of a certain kind of system of cardinals in a

model of ZFA without choice.

A tangled web of cardinals is a map τ from

nonempty finite subsets of a limit ordinal λ to

cardinals such that

1. For each A with |A| ≥ 3, 2τ(A) = τA\{min(A)}.
(Use the Scott definition of cardinals since

choice is not assumed and the τ(A)’s can-

not be alephs).
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2. For each A with |A| > n, the theory of the
first n types of the natural model of TST
with base type of cardinality τ(B) is the
same as the theory of the natural model of
TST with base type of cardinality τ(A) if
the smallest n elements of B are the same
as the smallest n elements of A. (The nat-
ural model of TST with base type X has as
type i a copy of the full ith iterated power
set of X).

It is a theorem (proved in a way reminiscent of
Jensen’s argument for Con(NFU): we do not
give details here) that if there is a model of
ZFA with a tangled web of cardinals, NF is con-
sistent. The proof is simpler in the sense that
one works in ZFA with families of atoms in-
tended to have the cardinalities τ(A). But get-
ting the second condition on the tangled web,
with its metamathematical flavor, involves de-
tails which at bottom seem to end up building
a model of tangled type theory anyway.



If all this is true, what does it
tell us about NF?

One point about NF which is revealed is that
it has no exciting consequences for familiar
mathematical structures. A model of TTT
constructed as here contains all small (size
< κ) subsets of each type implemented in each
higher type. This means that if κ is chosen
very moderately, the reals of NF (for example)
are precisely isomorphic to the usual real num-
bers and so can be supposed well-ordered, and
the axiom of dependent choices (in its origi-
nal version) holds, since it only discusses the
existence of small sets.

We have no reason to believe that all models
of NF look like this. An example of something
one might reasonably believe consistent with
NF which we cannot touch with these methods
is the existence of a linear order on the entire
universe.
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