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1 INTRODUCTION

The one thing that all alternative set theories have in common is the fact that they
are alternatives to ZF or ZFC. They are not what the biologists call monophyletic
nor do they form what the philosophers call a natural kind. Nor for that matter
is there anything alternative about them in the vulgar sense: people who study
alternative set theory are no more New Age or eco-friendly than any other kind
of set theorist. What unites alternative set theories is what they are not. To this
end the treatments of the alternative set theories will potter o� into their little
separate corners at the earliest opportunity.1

The diversity of set-theoretic systems that have been considered since the dis-
covery of the paradoxes is rather unrecognized or disregarded. For one system has
always overshadowed the others: Zermelo's and its variants, notably ZF, which is
now the presumed referent of the phrase �axiomatic set theory�. And this is per-
fectly understandable since�as well as providing a natural foundational framework
for ordinary mathematics�no other system has proved to be more appropriate for
investigating questions about in�nity, which�after all�was the original motiva-
tion for Cantor's work.

Yet sets are abstract objects, and therefore subject to mathematical abstraction
and generalization. Thus, as happened with the concept of number, it was to be
expected that mathematical constructions, as algebraic, topological, or more gen-
erally categorical ones, would be used to extend the concept of set in one way or
another. One often cites standard algebraic constructions in the theory of �elds as
inspiring the usual model-theoretic techniques for proving relative consistency and
independence results in ZF. But a more signi�cant example can be found in [Bar-
wise and Moss, 1996], where the move from the integers to the rationals is used to
motivate the enrichment of the ordinary well-founded universe of sets by so-called
�hypersets�, which provides solutions to certain re�exive set-theoretic equations.
At least, the independence of the Axiom of Foundation and subsequently the con-
sistency of anti-foundation axioms, discussed in [Aczel, 1988], have shown that the
iterative conception of sets cannot be regarded as the sole motivation for ZF-like
axiomatizations of set theory, and a fortiori as the sole method of avoidance of the
paradoxes.2

Arguably, what characterizes ZF-like axiomatizations then is the principle of
specialized comprehension, cited in [Church, 1974], according to which `we seek
axioms which are special cases of the general comprehension axiom and which
promise to maintain consistency while at the same time being adequate for a large
variety of mathematical purposes'. In the systems we are going to review the
selection of admissible instances of comprehension is not guided by mathematical
purposes, whatever they are, but is essentially of a logico-syntactic nature in order

1Part of this chapter was written in January 2008 while Thierry Libert was visiting Thomas
Forster at the DPMMS in Cambridge, with the support of the Belgian `Fonds National de la
Recherche Scienti�que'.

2But see discussion below of the realization of something like the cumulative hierarchy (and
so of the iterative conception) in theories with anti-foundation axioms
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to block the paradoxes.
One famous example of such systems is Quine's �New Foundations� [Quine,

1937]. This belongs to the respectable category of type-theoretic approaches, which
make use of syntactical criteria to prohibit circularity in de�nitions � as typically
in the instance of comprehension leading to Russell's paradox, i.e., {x | ¬(x ∈ x)}.
A section on type theory is provided to support the discussion of New Foundations.

Another logico-syntactic device which can be used in a type-free setting to
eradicate Russell's paradox is to proscribe negation in formulas de�ning sets, or at
least to tamper with its use. Systems following that prescription will be referred
to as positive set theory. A section below gives the reader an overview of such
systems, in connection with the general topic of topological set theory. Although
the subject would also encompass systems based on certain non-classical logics,
these are not going to be discussed in this chapter. A historical account of positive
set theory from that perspective can be found in [Libert, 2004].

Nor are we going to discuss set theories motivated by the application of intu-
itionistic logic. This is not because we do not consider these theories interesting,
but because they introduce a new level of complexity which would make this chap-
ter much longer.

We will brie�y cover simple type theory [Wang, 1970] and Zermelo set theory
[Zermelo, 1914], which are not strictly speaking alternative set theories (type the-
ory is not precisely set theory and Zermelo set theory is not precisely �alternative�,
as it is the original version of ZFC: but we do present a version of Zermelo set
theory which quali�es as an alternative set theory). We will discuss theories with
proper classes: VGB set theory [Gödel, 1940] and Kelley-Morse set theory [Kel-
ley, 1976] are very close to ZFC; Ackermann set theory [Levy, 1959] appears quite
distant in its motivation from ZFC but turns out to be almost the same theory.
We then discuss a further class of theories which are quite close to ZFC, in which
the Axiom of Extensionality is weakened to allow atoms or in which the Axiom of
Foundation is negated.

The next section takes us farther from the familiar. New Foundations [Quine,
1937] and the known-to-be consistent theories allied with it are motivated by simple
type theory rather than Zermelo set theory and super�cially look very di�erent
from the usual set theory. Some of the consistent fragments remain alien to ZFC
on closer inspection, but the most mathematically �uent system of this kind, NFU
(Jensen's modi�cation of NF to allow urelements in [Jensen, 1969]) turns out to
be quite closely related to the usual set theory in a way we will describe.

We then discuss positive set theories. The most mathematically �uent system
of positive set theory is the system GPK+ de�ned by Olivier Esser [Esser, 1999],
which is based on earlier work on positive comprehension and �hyperuniverses�
in which Marco Forti is prominent (see [Forti and Honsell, 1996b]). This system
is elegant, super�cially di�erent from standard set theory but underneath deeply
related to a powerful extension of ZFC, and surprisingly strong: its model theory
takes us into the domain of large cardinals of moderate strength (this is also true
of the higher reaches of the model theory of natural extensions of NFU, but in
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the case of Esser's theory one is involved with large cardinals from the outset).
Esser's set theory and earlier related systems of Forti and others have topological
motivation, and these theories might be called topological set theories.

We discuss a pair of set theories motivated by the surprising application of
model theory to analysis subsumed under the term �nonstandard analysis�. One
of these, Nelson's IST [Nelson, 1977], is a deliberate adaptation of ZFC to sup-
port nonstandard analysis. The other, Vopěnka's �alternative set theory� or AST
[Vopěnka, 1979], is more sui generis, and di�ers more fundamentally in its outlook
from ordinary set theory: it is mathematically interesting though as a set theory
it is rather weak.

Finally, we discuss two curiosities. The �rst one honestly exhibits a characteris-
tic which has been ascribed by philosophers to all systems of set theory (incorrectly,
we believe). The double extension set theory of Andrzej Kisielewicz [Kisielewicz,
1998] is a fascinating and bizarre system of set theory which is frankly an ad hoc
solution to the paradoxes. Appropriately, we do not yet know whether this system
is consistent. It is at least as strong as ZFC, for reasons which seem to resemble
those which make the Ackermann set theory as strong as ZFC.

The other curiosity is the theory obtained by adjoining the existence of an
elementary embedding j : V → V to Zermelo set theory with the Rank Axiom,
which has been studied by Paul Corazza [Corazza, 2000]. The existence of such
an embedding is inconsistent with ZFC (though it is not known to be inconsistent
with ZF), and this extension of Zermelo set theory is not a weak theory but is in
fact one of the strongest set theories ever proposed.

Zermelo set theory (�rst proposed in 1908 in [Zermelo, 1914]) was not in our
view motivated by an ad hoc attempt to resolve the paradoxes. Zermelo appears
to have catalogued constructions in set theory which had actual applications in
mathematical reasoning and which were required to implement his proof that the
Axiom of Choice implies the well-ordering theorem. The motivation of simple type
theory seems to us to be similar (though more motivated by logical considerations
than by mathematical practice): its history is enormously complicated (see [Wang,
1970]). New Foundations([Quine, 1937], hereinafter NF) does seem to have started
out as an ad hoc attempt to further simplify �simple type theory� to eliminate the
annoyance of type indices: but the simpli�cation which motivates New Founda-
tions is mathematically very appealing and the fact that almost any reasonable
weakening of NF seems to give a demonstrably consistent theory suggests that
Quine was onto something. Positive set theory appears to have an elegant topo-
logical motivation. A �nal point is that most of these set theories, di�erent as
they appear to be from one another, seem to converge on the same picture of the
world of set theory, though there are some interesting byways.
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2 THE BASICS: TYPE THEORY AND THE ORIGINAL THEORY OF
ZERMELO

In this section we describe two systems which are not �alternative�: they are
standard theories. These are simple type theory (in a streamlined form�not the
complex theory of Principia Mathematica [Whitehead and Russell, 1910-13] but
the much simpler system whose evolution is described in [Wang, 1970]) and the
original set theory of Zermelo [Zermelo, 1914], which di�ers in some ways from its
�nal modern development.

2.1 Simple type theory
The simple type theory TST is a �rst-order many-sorted theory with equality and
membership as primitive relations. The sorts, called �types� are indexed by the
natural numbers 0, 1, 2 . . .. Atomic formulas are well-formed if they take one of
the forms xn = yn or xn ∈ yn+1, where the superscript indicates the type of the
variable.

The intuition is that type 0 is inhabited by some objects of an unspeci�ed nature
called �individuals�, type 1 is inhabited by sets of individuals, type 2 is inhabited
by sets of sets of individuals, and so forth; in general type n + 1 is inhabited by
sets of type n objects.

There are two axiom schemes which make up the core of the theory and two
further axiom schemes which are usually assumed. We advocate the use of variables
without explicit type superscripts in this system, in situations where the types
assigned can be deduced from the context or in which any types for the variables
compatible with the syntax will work, but we will sometimes give explicit type
indices for clarity.

Axiom of Extensionality: (∀AB.A = B ↔ (∀x.x ∈ A ↔ x ∈ B)). Objects of
any positive type are equal i� they have the same elements.

Axiom of Comprehension: For any formula φ in which A does not appear free,
(∃A.(∀x.x ∈ A↔ φ)). Any condition on objects of a given type de�nes a set
of the next higher type.

De�nition: For any formula φ in which An+1 does not appear free, {xn | φ}n+1

is de�ned as the unique An+1 such that (∀xn.xn ∈ An+1 ↔ φ) (which exists
by Comprehension and is unique by Extensionality).

Note that in the statement of the axiom schemes we do not assign types explic-
itly to the variables: any assignment of types which works will give an instance of
the scheme.

We de�ne V n+1 as {xn | xn = xn}n+1 and ∅n+1 as {xn | xn 6= xn}n+1. We
de�ne {xn, yn}n+1 as {zn | zn = xn ∨ zn = yn}n+1. Type indices may be omitted.

Ordered pairs can be de�ned using the usual Kuratowski de�nition (x, y) =
{{x}, {x, y}}, and relations and functions can then be de�ned as usual. It is
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unfortunate that in the notation xR y the type of R is 3 higher than that of x or
y, and similarly the type of f is three higher than that of x in the notation f(x);
there is a way to change this displacement to the more natural 1 (by developing
an ordered pair which is of the same type as its projections) but that development
would take us a bit far a�eld.

We de�ne 0 as {∅}: note that we can assign any type ≥ 2 to this object, and
in fact we de�ne 0 in each type at or above 2. For each set A, de�ne A + 1 as
{a ∪ {x} | a ∈ A ∧ x 6∈ a}. A + 1 is the set of all objects obtained by adding a
single new element to an element of A. Now 0+1 is the set of all one-element sets,
which we call 1, and 1+1 is the set of all two-element sets, which we call 2, and so
forth. We de�ne N, the set of natural numbers, as the intersection of all sets which
contain 0 and are closed under the extended �successor� operation. Notice that a
version of each natural number is de�ned in each type with index ≥ 2, and a set
N is de�ned in each type with index ≥ 3. The elements of the natural numbers
are the �nite sets: we de�ne the set F of �nite sets as

⋃
N.

We can now assert the remaining axioms usually assumed in TST.

Axiom of In�nity: V n+1 6∈ Fn+2. The universe (of objects of a given type) is
not a �nite set.

Axiom of Choice: Any pairwise disjoint collection of nonempty sets (of a given
type) has a choice set (of the next lower type).

This theory �gures in our discussion here primarily as the basis for the devel-
opment of New Foundations and related theories, but there are other interesting
relationships between TST and other alternative set theories.

This theory has been described carelessly as the simple type theory of Rus-
sell, but this is historically inaccurate. Russell had something like this in mind
in the Appendix to Principles of Mathematics [Russell, 1903] though even there
this is not clear. In the formalization of Principia Mathematica (hereinafter PM,
[Whitehead and Russell, 1910-13]) Whitehead and Russell were hampered by the
lack of a set-theoretical de�nition of ordered pair. They knew that relations were
sets of ordered pairs, but they had no set-based notion of ordered pair, so in fact
in PM they de�ned ordered pairs as a sort of relation! The type system of PM
contains types of n-ary relations over each �nite sequence of previously de�ned
types, which makes it quite complex: it is further complicated by predicativity
restrictions which motivate the further subdivision of types into �orders�. Ramsey
pointed out (in [Ramsey, 1926]) that the Axiom of Reducibility renders the orders
redundant, and so they should simply be dropped. Norbert Wiener, in [Wiener,
1914], 1914, gave the �rst set-theoretical de�nition of ordered pair, de�ning (x, y)
as {{{x}, ∅}, {{y}}}, a de�nition which has certain formal merits. He pointed out
that this made it possible to collapse the complex type system of relations of PM
to a simple linear hierarchy of set types. Hao Wang has an interesting discussion
of the history of simple type theory [Wang, 1970] which suggests that this kind of
theory was actually �rst described in detail around 1930.
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Whitehead and Russell were aware of the ambiguity of the notation (what com-
puter scientists call �polymorphism�) which tempts us to omit explicit type indices:
they called it �systematic ambiguity� in PM and took advantage of it in the same
way to avoid giving explicit indications of type in his much more complex type
system. (In fact, oddly, PM does not have a notation for types).

2.2 The original system of Zermelo
The axioms of Zermelo's original theory of 1908 [Zermelo, 1914] are presented. The
content is presented (this is not a literal translation). Familiarity with common
set-theoretical notation is assumed.

Axiom of Extensionality: If every element of a set A is also an element of B
and vice versa, then A = B.

Axiom of Elementary Sets: ∅ exists; for any object x, {x} exists; for any ob-
jects x and y, {x, y} exists.

Axiom of Separation: If P (x) is a proposition with a de�nite truth-value for
each x ∈M , {x ∈M | P (x)} exists.

Power Set Axiom: For every set A, the power set P(A), the set of all subsets
of A, exists.

Union Axiom: For any set A, the union
⋃
A, the set of all elements of elements

of A, exists.

Axiom of Choice: Any pairwise disjoint collection of nonempty sets has a choice
set.

Axiom of In�nity: There is a set Z such that ∅ ∈ Z and for each x ∈ Z,
{x} ∈ Z.

The Axiom of Extensionality is phrased in a way which allows non-set elements
of the domain of discourse (objects with no elements distinct from one another
and from the empty set, which are often called atoms or urelements). In modern
theories, it is usually assumed that every object is a set.

The Axiom of Elementary Sets is usually replaced with the Axiom of Pairing,
which asserts the existence of {x, y} for any objects x and y. The existence of ∅
follows from Separation and the existence of any speci�c set (such as the one given
in In�nity). It is a more modern observation that the existence of {x} = {x, x} is
a special case of pairing.

Zermelo did not have the modern formulation of the conditions in the Axiom
of Separation in terms of formulas of the �rst-order language of set theory, and
apparently when he saw this formulation he did not like it: he believed that it was
too restrictive. The true formulation of Zermelo's intentions may be second-order.
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The Axiom of Choice takes a modern form. It is interesting that Zermelo proves
his theorem that the well-ordering principle follows from choice in the 1908 paper
[Zermelo, 1914], without having the ability to express ordered pairs as sets (which
was present in this theory of course, but �rst recognized by Norbert Wiener in
[Wiener, 1914] in 1914).

The Axiom of In�nity di�ers from its usual modern form which asserts the
existence of a set which contains ∅ and is closed under the von Neumann successor
operation x 7→ x∪{x}. A di�erent de�nition of the natural numbers is the reason:
Zermelo de�nes the natural numbers as the iterated singletons of the empty set.
It is an interesting fact that though the mathematical e�ect of either axiom of
in�nity is the same, these axioms are not equivalent in the presence of the other
axioms of Zermelo set theory: neither one implies the other. They have the same
consistency strength: each theory can interpret the other. The two axioms of
in�nity are equivalent in the presence of the very powerful Axiom of Replacement;
they are also equivalent in the presence of a weaker axiom which asserts that each
object belongs to some rank of the cumulative hierarchy.

The Axiom of Foundation is absent from Zermelo's original theory though it
often appears in modern lists of axioms for Zermelo set theory.

Axiom of Foundation: For any set x, there is y ∈ x such that y ∩ x = ∅.

This axiom asserts that the membership relation restricted to any set is a well-
founded relation. It rules out such things as self-membered sets. This is a con-
sequence of the view that the world of set theory is constructed by the iterated
application of the power set operation to an initial collection (the empty set or
perhaps a set of atoms) through stages indexed by the ordinals. We will see be-
low that variations of ZFC have been studied whose distinctive feature is that
Foundation is omitted and replaced with principles which �atly contradict it.

This subsection introduces the original system of Zermelo, but does not aim
to correct common usage: �Zermelo set theory� in the sequel will refer to the
theory with the von Neumann form of the Axiom of In�nity and with the Axiom
of Foundation.

For reference we include a statement of the �nal axiom scheme which turns
Zermelo set theory (in either form) to the usual set theory ZFC:

Axiom of Replacement: If a is a set and φ is a formula such that we can prove
(∀x.(∃!y.φ)), then {y | (∃x ∈ a.φ)} is a set.

2.3 The relationship between these systems. Mac Lane set theory
The simple theory of types and Zermelo set theory appear super�cially to live at
the same level of strength. Both of them can talk about an in�nite set (type 0 for
TST, the set provided by In�nity for Zermelo) and its iterated power sets. Each
theory proves the existence of the cardinals ℵn for each n but cannot prove the
existence of ℵω. But Zermelo set theory is stronger: Kemeny proved in his PhD
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thesis [Kemeny, 1950] (which was never published) that Zermelo set theory proves
the consistency of TST.

The source of strength in Zermelo set theory is the ability to quantify over
the entire universe in instances of Separation. The variant of Zermelo set theory
in which Separation is restricted to ∆0 formulas (those in which every quanti�er
is bounded in a set) [with the von Neumann form of In�nity and the Axiom of
Foundation] is known as Mac Lane set theory (because it was advocated as a
foundational system by Saunders Mac Lane in [Mac Lane, 1986]), and Mac Lane
set theory is demonstrably mutually interpretable with TST.

Adrian Mathias has written a beautiful survey of relations between Mac Lane
set theory, Zermelo set theory, and some other systems, found in [Mathias, 2001a],
[Mathias, 2001b].

2.4 Mac Lane or Zermelo set theory as an alternative set theory
As witnessed by the program of Mac Lane mentioned above, Zermelo set theory
or variants of Zermelo set theory have been pressed into service themselves as
alternative set theories, presumably by workers nervous about the high consistency
strength of ZFC.

One is then faced with the problem that the implementations of cardinal and
ordinal numbers traditional in ZFC do not work in Zermelo set theory. Cardinals
are implemented as initial ordinals, so we need only consider the ordinals. And here
we have a serious problem. Zermelo set theory with the modern form of In�nity
proves the existence of the von Neumann ordinals 0, 1, 2, 3, . . . ω, ω+1, ω+2, ω+3 . . .
but not of ω · 2. But these theories prove the existence of much longer well-
orderings.

An elegant solution is obtained by adding the Axiom of Foundation (or re-
stricting our attention to well-founded sets), and further stipulating that every
set belongs to a rank of the cumulative hierarchy. It is then possible to de�ne
the cardinality of a set A as the set of all sets B which are equinumerous with
A and of the lowest rank which contains such sets, and de�ne the order type of
a well-ordering ≤ as the set of all well-orderings similar to ≤ and of the lowest
rank which contains such well-orderings (notice that we no longer identify cardi-
nals with initial ordinals if we use these implementations). This is called �Scott's
trick�, introduced in [Scott, 1955].

It remains to explain how to stipulate that every set belongs to a rank of the
cumulative hierarchy.

De�nition: A set H is a subhierarchy i� H is well-ordered by inclusion,
⋃
I ∈ H

for each I ⊆ H, and for any x ∈ H other than
⋃
H, the minimal element of

H properly including x is P(x). A set r is a rank i� there is a subhierarchy
H such that r ∈ H.

Axiom of Rank: For every set x there is a rank r such that x ∈ r.
Theorem: For any subhierarchies H1 and H2, either H1 ⊆ H2 or H2 ⊆ H1.
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Proof: Omitted.

Corollary: Ranks are well-ordered by inclusion (all ranks, not just the ones in
any given subhierarchy).

De�nition: For any set x, the rank of x is the minimal rank which contains x as
a subset.

De�nition: For any set A, |A| ≡ {B ∈ rA | B ∼ A} where rA is the minimal
rank which contains a set equinumerous with A. A cardinal number is a set
|A|.

De�nition: For any well-ordering W let rW be the minimal rank which contains
a well-ordering isomorphic to W . De�ne ot(W ) as {W ′ ∈ rW | W ≈ W ′}.
An ordinal number is a set of the form ot(W ).

De�nition: For any ordinal α, Vα is the rank (if there is one) such that the order
type of the inclusion order on the ranks properly included in α is α.

It is further interesting to observe that the following axioms su�ce to present
this extension of Zermelo (or Mac Lane) set theory.

Axiom of Extensionality: Sets with the same elements are the same.

Axiom of (Bounded) Separation: For any set A and (∆0) formula φ in which
B is not free, (∃B.x ∈ B ↔ x ∈ A ∧ φ).

Axiom of Power Set: For any set A, there is a set P(A) whose members are
exactly the subsets of A.

Axiom of Rank: Every set belongs to some rank.

Axiom of In�nity: The von Neumann ordinal ω exists. [it is equivalent to as-
sume the existence of the set of Zermelo natural numbers in this context.]

Axiom of Choice: Any pairwise disjoint collection of nonempty sets has a choice
set.

The axioms of Pairing and Union in the original Zermelo axiom set turn out
to be redundant. If x and y belong to ranks rx and ry, {x, y} = {z ∈ rx ∪ ry |
z = x ∨ z = y}, where rx ∪ ry is a set because it is the larger of the two ranks.
If x belongs to the rank rx,

⋃
x = {y ∈ rx | (∃z.y ∈ z ∧ z ∈ x)}. The Axiom of

Foundation follows quite directly from the Axiom of Rank as well.
A book-length development of set theory in this style is given by Michael Potter

in [Potter, 2004]. The Axiom of Rank adds no essential strength to Zermelo or
MacLane set theory: see [Mathias, 2001a].

For reference and comparison, we give the familiar de�nition of ordinal usual in
ZFC, originally due to von Neumann.
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De�nition: A set A is transitive i� for all x, y, x ∈ y∧ y ∈ A implies x ∈ A. This
admits the equivalent formulations

⋃
A ⊆ A and A ⊆ P(A).

De�nition: A (von Neumann) ordinal is a transitive set α which is strictly well-
ordered by the membership relation.

De�nition: The (von Neumann) order type of a well-ordering ≤ is the unique
(von Neumann) ordinal α such that ≤ is isomorphic to the inclusion order
on α.

The Axiom of Replacement su�ces to prove that every well-ordering has a von
Neumann order type. This is not a theorem of Zermelo set theory (or any of the
related theories of similar strength that we have described).

3 THEORIES WITH CLASSES

3.1 General considerations
In any version of set theory, we �nd ourselves wanting to talk about collections
which are not sets as if they were sets. It is easy to see that in a certain sense such
talk is harmless: if (M,E) is a model of set theory, we could add P(M) (the true
power set of M) as a new domain, and add the membership relation of elements
of M in elements of P(M) to obtain a theory with signature

(M,P(M), E,∈ ∩ (M ×P(M))),

then �nally identify each preimage of an element of M under E with that element
of M and collapse E and ∈ ∩(M × P(M) into a single relation appropriately. Of
course this requires some strength in the metatheory, but not very much.

In such an extended theory, the domain of the original theory is de�nable as
the collection of elements. In the family of theories with classes that we give �rst,
general objects are called classes and objects which are elements of classes are
called sets. The primitive relations of the theory are equality and membership as
usual.

We give the following

De�nition: set(x) ≡ (∃Y.x ∈ Y ): a set is a class which is an element of some
class.

Convention: We use upper case letters for general variables and lower case letters
for variables restricted to the sets.

Any theory of this kind has two characteristic axioms as preamble.

Axiom of Extensionality: (∀AB.A = B ↔ (∀x.x ∈ A↔ x ∈ B))
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Axiom of {Predicative} Class Comprehension: Where φ is a formula {in
which all quanti�ers are restricted to the domain of sets} in which A does
not appear free, (∃A.(∀x.x ∈ A ↔ φ)). Note the use of the variable case
convention here: if we were to assume that variables ranged over all classes,
this would be (∃A.(∀x.x ∈ A↔ set(x) ∧ φ)).

De�nition: The object A such that (∀x.x ∈ A↔ φ) (where A is not free in φ) is
denoted by {x | φ}.

The di�erences between predicative and impredicative class comprehension will
be brought out in the next subsection. The motivating discussion above suggests
that any set theory can be extended to a theory of classes with extensionality and
full class comprehension. Thus impredicative class comprehension as such adds no
additional strength to a set theory, but it does add considerable expressive power.

3.2 Von Neumann-Gödel-Bernays and Kelley-Morse set theory
Two theories with sets and classes are given here. The theory of sets in each ex-
tends ZFC. The �rst theory, called VGB (von Neumann-Gödel-Bernays set theory
� [Gödel, 1940] is a reference) is a conservative extension of ZFC: it proves noth-
ing about sets that ZFC does not. This theory was originally proposed by von
Neumann in 1925 [von Neumann, 1925] but as a theory of functions rather than
sets. We give our own presentation of a theory with the same mathematical force.

Notice that if x and y are sets, the existence of {x, y}, ⋃x, P(x) (understood as
the collection of subsets of x) follows from Class Comprehension: the additional
axioms corresponding to the axioms of Pairing, Union, and Power Set assert that
these classes are sets.

Axiom of Extensionality: as above

Axiom of Predicative Class Comprehension: as above

Axiom of Separation: Every subclass of a set is a set.

Axiom of Power Set: for any set x, P(x) is a set.

Axiom of Set Union: for any set x,
⋃
x is a set.

Axiom of In�nity: There is a set which contains ∅ and contains x ∪ {x} if it
contains x, for any set x.

Axiom of Limitation of Size: A class C is not a set i� there is a class bijection
from the class V of all sets to C.

Axiom of Foundation: For any set x, there is an element y of x such that
x ∩ y = ∅.
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Many of the axioms of ZFC (or even of Zermelo set theory) may seem to be
missing here, but this is not the case.

The Axiom of In�nity implies that there are at least three distinct sets (say
the von Neumann numerals 0, 1, 2) so there cannot be a bijection between a class
{x, y} and the universe, so {x, y} must be a set so Pairing holds. Since Pairing
holds, ordered pairs of sets are sets, and so every logical relation on sets is realized
by a class of ordered pairs.

The Axiom of Choice (in a strong form) follows from Limitation of Size (sur-
prise!). The class of von Neumann ordinals is not a set, so there is a class bijection
from the class of von Neumann ordinals to the class of all sets, which determines
a well-ordering of the universe in the obvious way. From any element of a collec-
tion of pairwise disjoint sets, select the least element with respect to this global
well-ordering: collect these least elements to build a choice set.

The Axiom of Replacement follows from Limitation of Size. Suppose a is a
set and (∀x ∈ a.(∃!y.φ)). The class B = {y | (∃x ∈ a.φ)} exists as a class
by Class Comprehension. Note that B = F“a where F = {(x, y) | φ}. De�ne
F−1(b) as {a ∈ A | F (a) = b}: notice that F−1 is an injection from B into P(a).
{F−1(b) | b ∈ B} is a set because it is a subclass of P(a): if there were a class
bijection from V to B, there would be a class bijection from V to this set, which
contradicts Limitation of Size. Thus B is a set and Replacement holds.

If one wishes to avoid proving Choice, one can replace Limitation of Size with
the following weaker axiom:

Weak Limitation of Size: For any set a and class B, if there is a bijection from
a to B then B is a set.

It is straightforward to check that the derivation of Replacement above still
succeeds. In the presence of the other axioms and weak Limitation of Size, we can
deduce full Limitation of Size from a strong version of Choice (such as �there is
a class well-ordering of the universe of sets�) but not from weaker forms such as
�every pairwise disjoint set of sets has a choice set�.

The role of Limitation of Size in encapsulating the powerful axioms of Replace-
ment and Choice is one of the striking features of VGB class theory. The other
striking feature, found in all the original presentations, and obscured in our presen-
tation so far, is that VGB class theory is �nitely axiomatizable, because the axiom
scheme of Predicative Class Comprehension can be replaced by �nitely many of
its instances.

We present a reduction of Predicative Class Comprehension to �nitely many
axioms. This proceeds by induction on the structure of formulas.

To handle classes in which the top level logical operator in the de�ning formula
is propositional, note that

{x | φ ∧ ψ} = {x | φ} ∩ {x | ψ}
and

{x | ¬φ} = V − {x | φ},
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and every propositional operator can be de�ned in terms of conjunction and nega-
tion. So we stipulate that if A and B are classes, A ∩B and V \A are classes.

We stipulate that for any sets x and y, {x, y} is a set and so (x, y) = {{x}, {x, y}}
is a set. We de�ne (a1, a2, . . . , an) as (a1, (a2, . . . , an)). We stipulate that (x1) =
x1: a 1-tuple is its sole item.

We de�ne π1 as {((x, y), x) | x = x} and π2 as {((x, y), y) | x = x}. We de�ne
A|B for A and B classes as {(x, y) | (∃z.(x, z) ∈ A ∧ (z, y) ∈ B)}. Note that if
f and g are functions in the usual sense, f ◦ g = g|f . We stipulate that π1 is a
class, π2 is a class, and if A and B are classes, so is A|B. Note that each of the
sets πni = {((a1, . . . , ai, . . . , an), ai) | a1 = a1}, the function sending an n-tuple to
its ith element, is a class because constructible from the projection functions and
relative product, except for π1

1 = {(x, x) | x = x}, which we stipulate is a class.
For any class R we stipulate that dom(R) ≡ {x | (∃y.(x, y) ∈ R)} is a class and

R−1 ≡ {(y, x) | (x, y) ∈ R} is a class.
De�neR⊗S as (R|π−1

1 )∩(S|π−1
2 ). De�neR1⊗R2⊗. . .⊗Rn asR1⊗(R2⊗. . .⊗Rn)

(same grouping as for n-tuples).
Our strategy is �rst to �x a �nite sequence of variables x1, . . . , xn and show

how to de�ne {(x1, . . . , xn) | φ} for any formula in which no variable other than
the xi's appears free.

We provide {(x1, x2) | x1 = x2} and {(x1, x2) | x1 ∈ x2} as basic classes
(actually, we have already provided the former).

If we have already shown Xψ = {(b1, . . . bp) | ψ} to be a class, where all free
variables in ψ appear among the bi's, then {(a1, . . . , an) | ψ(as1 , . . . , asp)} can be
shown to exist using the constructions we have already de�ned and one additional
construction. It is constructible as dom((πs1n ⊗ . . .⊗πspn )∩V ×Xψ), so we stipulate
that for any class X, V × X is a class (and for any classes X and Y , X × Y =
(V ×X)−1 ∩ (V × Y ) is thus a class).

If we have already shown Xφ = {(a1, . . . , an) | φ} to be a class, we construct
{(a1, . . . , an) | (∃ai.φ)} as dom(π1

n⊗. . .⊗πi−1
n ⊗(V ×V )⊗πi+1

n ⊗. . .⊗πnn)∩(V ×Xφ).
Of course there are typographical variations of this if i = 1, i = n.

Now we show how to construct an arbitrary {x | φ}. Let x, x2, x3, . . . , xn be
all the variables free or bound in φ. Construct {(x, x2, . . . , xn) | φ}. For each
of the xi's which is free in φ, intersect this class with (πin)−1“{xi} (R−1“A ≡
dom(R−1 ∩ V × A); pairing implies the existence of singletons as sets and so as
classes). Finally, the domain of this intersection is {x | φ}.

We present the �nite list of axioms which we have just shown to imply predica-
tive class comprehension.

boolean intersection: For any classes A and B, A∩B = {x | x ∈ A∧ x ∈ B} is
a class.

complement: For any class A, V \A = {x | x 6∈ A} is a class.

pairing: For any sets x and y, {x, y} = {z | z = x ∨ z = y} is a set.

de�nition of ordered pair: (x, y) is de�ned as {{x}, {x, y}}.
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projections: π1 = {((x, y), x) | x = x} is a class. π2 = {((x, y), y) | x = x} is a
class.

relative product: For any classes R and S, R|S = {(x, y) | (∃z.(x, z) ∈ R ∧
(z, y) ∈ S)} is a class.

converse: For any class R, R−1 = {(y, x) | (x, y) ∈ R} is a class.

domain: For any class R, dom(R) = {x | (∃y.(x, y) ∈ R)} is a class.

primitive relations: {(x, x) | x = x} and {(x, y) | x ∈ y} are classes.

cartesian product: for any classes A and B, A × B = {(a, b) | a ∈ A ∧ b ∈ B}
is a class (we only used V × A in the construction above, but one might as
well provide the general construction).

Various �nite sets of constructions have been given for this purpose. The prim-
itives here are basic operations of the algebras of sets and relations, and the ap-
proach is inspired by the work of Givant and Tarski in [Tarski and Givant, 1987], in
which they show that standard axioms for relation algebra augmented with basic
properties of projection operations are su�cient to interpret �rst-order logic.

One can note here that our elimination of the Axiom of Pairing from the axioms
of VGB is undone when we �unpack� the predicative comprehension scheme, but
we are still correct that it is not needed in the presence of that scheme: what we
have apparently revealed is that it is a component of that scheme. It is unique
among those components in being a set existence principle rather than a class
existence principle.

Kelley-Morse set theory (see the appendix to Kelley's [Kelley, 1976]) di�ers
from VGB simply in having the full scheme of class comprehension instead of the
predicative scheme. We can quantify over all classes in constructions of both classes
and sets in Kelley-Morse set theory. We remarked above that adding classes which
satisfy impredicative class comprehension to a set theory adds no real strength to
the theory, but impredicative class comprehension can be used here to prove the
existence of sets as well as classes, since any subclass of a set is a set and any class
which can be placed in a class one-to-one correspondence with a set is a set.

Kelley-Morse set theory is stronger than VGB in a very marked way: Kelley-
Morse set theory proves the consistency of VGB. Further, the class comprehension
scheme of Kelley-Morse set theory cannot be �nitely axiomatized.

The signi�cant nature of the di�erence between VGB and Kelley-Morse set
theory is not at �rst obvious. One way of seeing it is to observe that the classes
of VGB can be identi�ed with formulas of the language of ZFC; we will explain in
what sense this is true and why it is not true of Kelley-Morse set theory.

If (M,E) is a model of ZFC, we show how to construct a model of VGB (with
the weak version of Limitation of Size) which satis�es exactly the same theorems.
A preclass is a formula with no variable other than x free in the language of ZFC
augmented with constants for each element of M . We de�ne φ ∼ ψ as holding i�
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(∀x.φ↔ ψ) holds in (M,E). We de�ne a class as an equivalence class of preclasses
under ∼. We de�ne [φ]E∗ [ψ] as holding i� (∃y.(∀x.x ∈ y ↔ φ) ∧ ψ[y/x]). It is
straightforward to establish that the structure (C,E∗), where C is the set of classes,
satis�es VGB (with the weak form of Limitation of Size; if a global well-ordering
of the universe is added, we can get full Limitation of Size) and moreover satis�es
exactly the same sentences about sets as (M,E). This establishes that VGB (at
least the version with weak Limitation of Size) proves nothing about sets that is
not provable in ZFC.

We pause to observe that we can de�ne ordered pairs of classes as classes. Let
σ be the function which sends each natural number to its successor and �xes each
other object. For classes A and B, de�ne (A,B) as σ“A∪ {0}× σ“B ∪ {0}. From
a cartesian product of nonempty classes one can of course extract the �rst and
second projections. This means that we can represent formulas with arbitrary
class parameters as classes in either VGB or Kelley-Morse set theory by a suitable
coding scheme. What we can do in Kelley-Morse set theory that we cannot do in
VGB is de�ne satisfaction for formulas with no quanti�ers over classes. In fact,
we can de�ne the structure de�ned in the previous paragraph over the universe of
sets and code every element of it (set or preclass) as a set, so we obtain a class
structure which is a model of VGB and we can prove the consistency of VGB. This
shows that Kelley-Morse set theory is essentially stronger than VGB.

3.3 Ackermann set theory
The set theory of Ackermann (see [Levy, 1959]) has sets and classes but not in
the same sense as VGB or Kelley-Morse. In the former theories, classes which
are not sets are not elements; in Ackermann set theory some non-set classes are
elements of other classes. The notion of set in Ackermann set theory is an inde-
pendent primitive notion not de�nable in terms of the usual primitives of equality
and membership: in fact, the whole thing works precisely because sethood is not
de�nable.

Ackermann set theory is a �rst-order theory. General objects are called classes.
Primitive relations are equality and membership and there is a primitive unary
predicate of sethood.

Here are the �ve axioms of the theory.

Extensionality: Classes with the same elements are equal.

Class Comprehension: For any formula φ in which the variable A is not free,
(∃A.(∀x.x ∈ A↔ set(x) ∧ φ)).

Elements: Any element of a set is a set.

Subclasses: Any subclass of a set is a set.

Set Comprehension: Let φ be a formula in which the variable A is not free, in
which the predicate set does not occur, and in which all free variables other
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than x denote sets, and suppose (∀x.φ→ set(x)). Then (∃A.set(A)∧(∀x.x ∈
A↔ φ)).

We give the �avor of this theory by doing some basic proofs.

Universe: There is a class V which contains exactly the sets as elements (this is
obvious from Class Comprehension).

Empty Set: ∅ is a set. The formula x 6= x satis�es the conditions of Set Com-
prehension vacuously.

Pairing: Suppose a and b are sets. Then {a, b} is a set.

Proof: The formula x = a ∨ x = b, for any sets a and b, satis�es the conditions
of Set Comprehension: it does not mention set, the parameters a and b are
sets, and if it is true of x then x is a set.

Union: Suppose a is a set. Then (∃y.x ∈ y ∧ y ∈ a) satis�es the conditions of Set
Comprehension. Note that if x ∈ y and y ∈ a, then y must be a set by the
Axiom of Elements (it belongs to the set a) and so x must also be a set (as
it belongs to the set y).

Power Set: Suppose a is a set. Then (∀y.y ∈ x→ y ∈ a) satis�es the conditions
of Set Comprehension. If x satis�es this condition it is a set by the Axiom
of Subclasses.

In�nity: There is a set which contains ∅ as an element and is closed under the
operation x 7→ x ∪ {x}.

Proof: �x belongs to every class C such that ∅ ∈ C and (∀X.X ∈ C → X∪{X} ∈
C)� is a formula which satis�es the conditions of Set Comprehension. Note
that ∅ is a set and for any set x, x ∪ {x} is a set (by applications of Pairing
and Union proved above). This means that the class V of all sets is a
class with the desired closure conditions. This veri�es that if x satis�es this
condition then x ∈ V so x is a set! Note that the condition here quanti�es
over all classes (in fact we cannot quantify over all sets in an instance of Set
Comprehension, because this would require us to mention the set predicate).

Separation: If a is a set, {x ∈ a | φ} is a set for any formula φ at all, by the
Axiom of Subclasses.

Transitive Closure: The transitive closure TC(A) of a set A, the intersection of
all transitive sets which contain A as a subset, is a set.

Proof: Let A be a set. Consider the formula �x belongs to every class C such that
A ∈ C and for any x ∈ C, ⋃x ∈ C�. Note that V has the closure property in
question, so this formula satis�ed the requirements for Set Comprehension
and de�nes a set. The union of this set is a transitive set containing A as a
subset (and in fact is the minimal such set).
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The proofs of Union and Power Set seem to be �set up� in advance by the axioms
of Elements and Subclasses, but the fact that we can prove In�nity is a surprise.

At this point we have shown that Ackermann set theory has the strength of
Zermelo set theory and so is adequate for classical mathematics.

We pause before considering how much stronger this theory might be to won-
der what the motivation of the theory might be. Suppose that sets are actual
(completed, de�nite) collections and classes are merely potential collections. The
collection of all sets is a merely potential collection (however many actual sets
we have constructed, we can construct some more). The class of all sets with a
given property is a potential collection (as we built more and more sets we may
add more objects to this class). An element of an actual collection is actual; a
subclass of an actual collection is actual. The tricky part (as always) is getting
one's mind around the interpretation of Set Comprehension. A collection de�ned
mentioning only actual parameters (and in particular not mentioning the merely
potential collection V of all sets) all of whose members turn out to be actual. . .is
actual. This is not to our minds entirely convincing, but it may be suggestive.

We now develop an argument for the proposition that the well-founded sets of
Ackermann set theory satisfy ZFC.

De�nition: A hierarchy is a class which is well-ordered by inclusion, contains the
unions of all its subclasses as elements, and in which the immediate successor
of each element in the inclusion order (if it has one) is its power class. A
rank is a class which belongs to a hierarchy. (Note that this de�nition is
similar to the de�nition of subhierarchy in section 3.4, but note also that
there is a distinction between set and class here which is not drawn in the
earlier context).

Comments: A linear order is a well-ordering i� each subclass of its domain has a
least element; since our class comprehension principles are apparently limited
to classes of sets this might mean less than it appears to mean once we get
past set ranks: we would not necessarily be able to carry out inductions on
non-set ranks because not all de�nable subcollections of arbitrary classes are
necessarily classes. The power class of a class is the class of all subclasses of
that class, if such a class exists.

Theorem: For any two hierarchies H1 and H2 which are classes of sets, either
H1 ⊆ H2 or H2 ⊆ H1.

Comment: We omit the proof of this result as we did with the similar result
stated in section 3.4: we note that the restriction to hierarchies of sets is
necessary because our comprehension principles are restricted.

Corollary: The set ranks are well-ordered by inclusion.

De�nition: A good rank is a rank which is either included in or includes each other
rank, and such that the ranks included in it are well-ordered by inclusion.
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Theorem: The class of all ranked sets is a good rank.

Proof: Any hierarchy which contains all the set ranks will contain the class of all
ranked sets as an element: then every element of such a hierarchy (and so
every rank) will either be a set rank (and so be included in the class of all
ranked sets) or include the class of all ranked sets. A hierarchy which does
not contain all ranked sets will have its union a set rank, which is a subset
of the class of all ranked sets.

Theorem: The class of all ranked sets is not the maximal good rank in the in-
clusion order.

Proof: If it were, it would be a set by set comprehension, as it would be de�nable
without reference to the sethood predicate (as the maximal good rank in the
inclusion order) and all of its elements are sets (since it is the class of all
ranked sets). If the class of all ranked sets were a set, its power class would
also be a set, so it would itself be a ranked set, and an element of itself. It is
straightforward to establish by induction on inclusion that all set ranks are
non-self-membered.

Corollary: There are non-sets which are elements: any rank which properly in-
cludes the class of all ranked sets has the class of all ranked sets itself as an
element!

Theorem: Each of the axioms remains true if the term �ranked set� replaces the
term �set�.

Proof: Extensionality does not mention sethood at all. Any de�nable subclass of
the ranked sets is a class by Class Comprehension, so the modi�ed version of
Class Comprehension holds. Any element of a ranked set is a ranked set: one
proves by induction on the inclusion order that all set ranks are transitive.
So the modi�ed version of the Axiom of Elements holds. Any subclass of a
ranked set is a ranked set: if x is included in a set rank r, the power set of
x is included in the power set of r. So the modi�ed version of the Axiom of
Subclasses holds. A class x which is de�ned without reference to sethood,
with no parameters but ranked set parameters, and all of whose members
are ranked sets is a set by Set Comprehension. x is included as a subset in
a rank (the class of all ranked sets will serve). The �rst rank which includes
x must be a set, because we just de�ned it using only a set parameter, and
all of its elements are sets. Thus the modi�ed version of Set Comprehension
holds.

Comment: We have just shown that we can without a�ecting the strength of
the theory simply add the assertion that every set belongs to a rank as an
axiom.
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Theorem: Let φ(x, y) be a formula containing only ranked set parameters which
does not mention the sethood predicate and which is functional (for every
ranked set x there is exactly one ranked set y such that φ(x, y)). Then for
any ranked set a, {y | (∃x ∈ a.φ(x, y))} is a set.

Proof: This set exists by set comprehension, by inspection of its de�nition. There
is a rank which includes all of its elements, namely the class of all ranked
sets, and the minimal rank in the inclusion order which includes this set is
also a set by set comprehension, so it follows that this set is a ranked set.

Comment: This assertion looks like the Axiom of Replacement, but some deli-
cacy is required to show that the Axiom of Replacement holds for all for-
mulas. The di�culty is that the formula φ in an instance of Replacement
as directly translated from ZFC may contain quanti�ers over all sets, which
would be quanti�ers over the class of sets in Ackermann set theory, to which
set comprehension could not be applied. Nonetheless Replacement does hold.
The idea is to show that (∃x ∈ V.φ(a1, . . . , an)) can be translated to a formula
not mentioning nonset parameters or the sethood predicate if φ is equivalent
to a formula not mentioning nonset parameters or the sethood predicate.
De�ne r(a1, . . . , an) as the least rank in the inclusion order which includes
an x such that φ(a1, . . . , an), if there is one, and otherwise the empty rank.
Note that this rank will be a set in any case. (∃x ∈ V.φ(a1, . . . , an)) is
equivalent to (∃x ∈ r(a1, . . . , an).φ(a1, . . . , an)). By this technique we can
systematically eliminate quanti�ers over the domain of all sets from formu-
las that meet the appropriate syntactical restrictions. We should now have
given at least a strong indication why the �nal theorem holds. Full details
of the equivalence of Ackermann and ZF are found in [Reinhardt, 1970].

Theorem: The interpretation of the Axiom of Replacement (and, as we have
already seen, of all the other axioms of ZFC) holds on the domain of ranked
sets of Ackermann set theory.

The consistency of Ackermann set theory also follows from the consistency of
ZFC, in a way which reveals something about the nature of the domain of �sets�
in Ackermann set theory.

Augment the language of ZFC with an additional symbol M . Provide axioms
asserting that M is transitive and contains all subsets of its elements. For each
formula φ and variables x, y add an axiom to the e�ect that (∀x.(∃y.φ))↔ (∀x ∈
M.(∃y ∈M.φ)) (for all values of any parameters). Note that a corollary of this is
that (∀x.φ) ↔ (∀x ∈ M.φ) will be an axiom for any φ (use a dummy variable y
that does not appear in φ). It is straightforward to show that any �nite collection
of such axioms is consistent with ZFC. If (∀x.(∃y.φ)) holds, we arrange for M to
be closed under a suitable operation (applying replacement); if (∀x.(∃y.φ)) does
not hold, we arrange forM to include a counterexample (if φ contains parameters,
this is still a closure operation, as we need counterexamples for all appropriate
values of the parameters).
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This extension of ZFC has a model if ZFC has a model. We claim that this is a
model of Ackermann set theory, with the sethood predicate taken as meaning �is an
element ofM �. The only axiom which requires any attention is Set Comprehension.
Let φ be a predicate not mentioningM with all parameters other than x belonging
toM . We may suppose without loss of generality that there is only one parameter
a ∈ M . So we express the predicate as φ(x, a) and further suppose that for any
a ∈M , φ(x, a) is in M . Note that in our original model of ZFC it will be the case
for every a ∈M that {x | φ(x, a)} exists as a set in ZFC (it will be in the power set
of M), and so for every a ∈ M there is a (dummy) b ∈ M such that {x | φ(x, a)}
exists, and so for every a whatsoever, {x | φ(x, a)} exists. From this it follows
by a more natural application of the special axioms for M that for each a ∈ M ,
{x | φ(x, a)} ∈ M , and this establishes that the interpretation of Ackermann set
theory's Set Comprehension Axiom holds in the extended model of ZFC.

It is worth noting that though externally M is a model of ZFC, the extended
model of ZFC does not necessarily think that M is a model of ZFC (after all, the
original model may not see any models of ZFC, in which case the extended model
will not see any either). In Ackermann set theory, the class V of all sets cannot
be shown to be a model of ZFC, though in some external sense it is, for similar
reasons.

3.4 A pocket set theory
This �nal theory with classes is an expansion by one of the authors (Holmes) of
a suggestion of Rudy Rucker. It is the weakest set theory discussed so far in this
chapter. It is also very funny.

It is a folk observation that there are two sizes of in�nite sets which occur
in nature (that is, which occur naturally in mathematics outside of set theory).
These are ℵ0 and c, the cardinalities of the set of natural numbers and the set of
real numbers respectively. The theory under consideration here asserts that these
are the only in�nite cardinalities (the alternative set theory of Vopěnka discussed
below also has this consequence). The very amusing aspect is that with carefully
crafted axiomatics the assertion that these are the only two in�nite cardinalities
turns out to be almost the entire theory, and the theory is strong enough to support
most classical mathematics.

Pocket set theory is a theory with sets and classes. We have the usual ax-
ioms and de�nitions: this is a �rst-order single sorted theory with equality and
membership as primitive relations.

Extensionality: (∀AB.A = B ↔ (∀x.x ∈ A↔ x ∈ B))

De�nition: set(x) ≡ (∃Y.x ∈ Y )

Class Comprehension: For any formula φ and variable A not free in φ,
(∃A.(∀x.x ∈ A↔ set(x) ∧ φ)).
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De�nition: We de�ne {x | φ} as the unique A (A not free in φ) such that (∀x.x ∈
A↔ set(x) ∧ φ).

De�nition: For any sets a and b, we de�ne {a, b} as {x | x = a ∨ x = b}. We
de�ne {a, a} as {a}. We de�ne (a, b) as {{a}, {a, b}}. Note that these are
strictly de�nitions: we do not as yet know that there are any sets at all, nor
have we assumed that an unordered pair of sets is itself a set.

De�nition: A relation is a class of ordered pairs. For any relation R, we de�ne
R−1 as {(y, x) | (x, y) ∈ R} (if this class exists, which requires that (y, x) be
a set for each (x, y) ∈ R). A relation is a function f such that (∀xyz.(x, y) ∈
f ∧ (x, z) ∈ f → y = z). A function f is a bijection i� f−1 exists and is
a function. We de�ne dom(R) for any relation R as {x | (∃y.(x, y) ∈ R)}.
We say that f is a bijection from A to B if f is a bijection, dom(f) = A
and dom(f−1) = B. Sets A and B are said to be the same size i� there is a
bijection from A to B.

Now we give the axioms which provide the speci�c content of this theory (so
far we have just given the generic theory of sets and classes and some de�nitions).

De�nition: A class C is in�nite i� there is a bijection from C to some proper
subclass of C. A class C is proper if it is not a set.

Axiom of In�nite Sets: There is an in�nite set. Any two in�nite sets are the
same size.

Axiom of Proper Classes: Any two proper classes are the same size, and any
class the same size as a proper class is proper.

These axioms assert that there are just two in�nite cardinalities for classes, the
cardinality of the in�nite sets and the cardinality of the proper classes.

This may not seem like a mathematically adequate set of axioms. But it is.

De�nition: We �x an in�nite set I. We de�ne R as the class {x | x 6∈ x}, the
Russell class, which is demonstrably proper.

Theorem: The empty class is a set.

Proof: Note that ∅ = {x | x 6= x} does exist as a class by Class Comprehension.
Suppose that ∅ is not a set and so is proper. It follows that ∅ is the same size
as R, so R is empty from which it follows that every set is self-membered.
It follows further that {I} is a set (because it is certainly not the same size
as ∅) but also {I} 6∈ {I}, because I 6= {I}, because {I} clearly is not the
same size as any of its proper subclasses, so it cannot be the in�nite I, so
{I} ∈ R, which is a contradiction.

Theorem: For any set x, {x} is a set.
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Proof: Suppose otherwise. Then {x} is proper and must be the same size as R,
so R has just one element, which must be ∅ as obviously ∅ ∈ R. From this it
follows that {I, ∅} is a set (because both I and ∅ are sets and there cannot
be a bijection from {I, ∅} to {x}), but neither I nor ∅ can have exactly two
elements, so {I, ∅} ∈ R, which is a contradiction.

Theorem: For any sets x and y, {x, y} is a set.

Proof: R contains ∅, {∅} and {{∅}}, so {x, y} cannot be the same size as R.

Corollary: (x, y) is a set for any sets x and y.

Theorem: For any formula φ(x, y), there is a class {(x, y) | φ(x, y)} which imple-
ments it. This makes it possible to demonstrate the existence of de�nable
bijections as classes (note that until this point we have never appealed to
the existence of speci�c bijections but only to the logical impossibility of the
existence of bijections between concrete �nite sets of speci�c sizes).

De�nition: A von Neumann ordinal is a transitive set which is strictly well-
ordered by the membership relation (where this means that every subclass
of a von Neumann ordinal has a membership-minimal element).

Theorem: The class of all von Neumann ordinals is strictly well-ordered by the
membership relation. The proof of this is standard, involved, and omitted.

Theorem: The class of all von Neumann ordinals is not a set.

Proof: This class is transitive and it is strictly well-ordered by membership. If it
were a set it would be a von Neumann ordinal and so self-membered and so
not strictly well-ordered by membership, which is a contradiction.

Theorem: If two classes are each the same size as a subclass of the other, then
they are the same size. This is the Cantor-Schröder-Bernstein theorem and
the standard proof is omitted.

Theorem: The Axiom of Choice holds.

Proof: By Cantor-Schröder-Bernstein, the universe V of all sets and R are the
same size (R is the same size as R ⊆ V and V is the same size as

{{{x}, ∅} | x ∈ V } ⊆ R.)
R is the same size as the class of von Neumann ordinals. Thus the universe
is the same size as the class of von Neumann ordinals and a speci�c bijection
from V to the ordinals gives an ordinal indexing of the universe which induces
a well-ordering in the obvious way. A global well-ordering of the universe
obviously implies Choice: choose the least element in the well-ordering of
each element of a pairwise disjoint family of nonempty sets in order to get a
choice set.
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Theorem: Each set is the same size as a von Neumann ordinal.

Proof: Each set is the same size as a set of von Neumann ordinals, which can be
mapped by an obvious recursion to an initial segment of the von Neumann
ordinals, which is itself a von Neumann ordinal, which will be a set because
it is in bijection with a set.

Theorem: There is an in�nite von Neumann ordinal.

Proof: The von Neumann ordinal which is the same size as I is in�nite.

Theorem: All in�nite von Neumann ordinals are the same size as the �rst in�nite
von Neumann ordinal ω (that is, all in�nite ordinals are countably in�nite).

Proof: All in�nite sets are the same size.

Theorem: The class of all subsets of ω is not a set.

Proof: The standard argument for Cantor's Theorem shows that ω is not the
same size as the class of its subsets. Since the class of all subsets of ω is
clearly in�nite, it cannot be a set, and so must be a proper class.

Construction: The usual constructions of integers, rational numbers, and real
numbers as Dedekind cuts in the rationals can be carried out. The set of
reals is the same size as the class of all sets of natural numbers for standard
reasons, and so is a proper class. Individual reals are countable collections
of rationals, thus sets.

Theorem: Each in�nite subclass of the class of real numbers is either the size of
the class of real numbers or countable. c = ℵ1.

Proof: The real numbers make up a proper class. An in�nite subclass of the reals
is either a set, in which case it is the same size as the in�nite set ω, or it
is a proper class, in which case it is the same size as the proper class of all
reals. The real numbers can be placed in one-to-one correspondence with
the countable ordinals, as both collections are proper classes.

Comment: The principle of Limitation of Size of the original class theories, which
appears here as the Axiom of Proper Classes, in this context allows us to
prove not only the �Axiom� of Choice (as in the original theories) but also
the Continuum Hypothesis! This theory is much weaker than the theory of
types (all objects it constructs appear by type 5 on the most uncharitable
interpretation of the capabilities of TST), but every mathematical object
needed in physics is constructible here. The collection of all functions from
the reals to the reals is too large, but notice that the collection of continuous
functions from the reals to the reals is of size c and can be represented
in fairly natural ways, and in general the constructions actually needed in
mathematical physics (or any mathematics short of set theory and shorn of
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excessive levels of abstraction) do not transcend the cardinality c. Points
of Hilbert space are countable sequences of real numbers (thus sets) and
continuous functions on Hilbert space are representable just as continuous
functions on the reals are representable, and so forth.

4 THEORIES WITH ATOMS AND THEORIES WITH ANTI-FOUNDATION
AXIOMS

4.1 Weak extensionality and ZFA
Most modern set theories have sets (or more generally classes) as the only objects.
This is odd because originally sets were conceived as collections of other, previously
given objects. It has seemed less odd (at least to those who have completed their
indoctrination in foundations of mathematics) since we have adopted the view
that all mathematical objects are sets. It also a�ords a logical simpli�cation of
the theories.

The usual form of the axiom of extensionality is

Axiom of Extensionality: (∀AB.A = B ↔ (∀x.x ∈ A↔ x ∈ B))

A more natural axiom from a naïve standpoint would be

Weak Axiom of Extensionality: (∀AB.class(A) ∧ class(B) → (A = B ↔
(∀x.x ∈ A↔ x ∈ B)))

Here we restrict the scope of extensionality to classes (we say �class� here to
avoid collision with the notion of �sethood� found in the theories with sets and
classes above; below in NFU we will use �set� for this concept).

Further, it seems natural to assert that classes are the only things which have
elements:

Axiom of Classhood: (∀Ax.x ∈ A→ class(A))

The non-classes have no elements. These objects are generally called atoms or
urelements. There is (in most theories) an elementless class ∅ as well (and it is
the only one). This observation about ∅ indicates that, though we can formalize
theories with weak extensionality using a primitive notion of classhood there is no
need to do this.

De�nition: class(x) ≡ x = ∅ ∨ (∃y.y ∈ x)

This treatment applies equally well to theories with or without proper classes.
If no distinction is drawn between sets and classes, then the predicate class could
equally well be written set. In either case it is de�nable if we are willing to take ∅
as a primitive notion instead of the classhood (or sethood) predicate.
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In most cases it is mathematically preferable to suppose that everything is a set
and adopt the strong form of extensionality. In the context of New Foundations
the adoption of strong extensionality has very strong consequences: the theory
NFU with weak extensionality is known to be consistent where the original theory
NF of Quine is not. This will be discussed below. In Kripke-Platek set theory (see
[Barwise, 1975]) it is found useful to have a variant KPU with urelements: this we
do not discuss at all here.

The theory (or theories) ZFA obtained by replacing Extensionality with Weak
Extensionality in the usual set theory ZFC have a notable practical application
which make them worthy of note as an alternative set theory. These theories
support a relatively straightforward proof of the independence of the Axiom of
Choice from the other axioms of set theory [Fraenkel, 1922]. It is trickier to prove
the relative consistency of ¬AC with extensional ZF: this was not done until forcing
was developed by Cohen (and the proof owes something to the technique based in
ZFA).

We note that there are two di�erent sorts of ZFA, depending on whether the
atoms make up a set or a proper class. A very strong denial of Extensionality
would stipulate that every set is the same size as some set of atoms; a weaker
nonextensional theory would provide that the universe consisted of the union of
all the iterated power sets of a set A of atoms.

If we �x an in�nite set of atoms A, we can consider the action of permutations on
A on all sets: if π is a permutation of A, there is a uniquely determined permutation
π∗ acting on all sets such that π∗(a) = π(a) for a ∈ A and π∗(B) = π∗“B for all sets
B (the existence of this uniquely determined permutation depends on Foundation).

We can then say that a set B has support S ⊆ A i� every permutation π∗ �xing
each element of A \ S also �xes B. The punchline is that the class of all sets with
�nite support in A satis�es all the axioms of ZFA except Choice: for certainly
A itself has �nite support in A and no linear order of A has �nite support in A
(much less any well-ordering of A). The demonstration that the other axioms of
ZFA hold in the domain of sets with �nite support in A is technically involved and
beyond the scope of this chapter.

While there might seem to be philosophical advantages to providing many non-
classes with no elements (because it is a very sophisticated ontological perspective
indeed that would lead us to decide that everything is a set), the mathematical
advantage generally seems to be with stipulating that everything is a set, and
where we do �nd mathematical applications for atoms they do not seem to have
anything to do with the pre-set-theoretical reasons for supposing that there are
such objects.

4.2 Aczel's AFA
Nowadays when people use the phrase `anti-foundation axiom' it is almost always
to denote speci�cally the anti-foundation axiom of Forti and Honsell [Forti and
Honsell, 1983] rather than any of the other anti-foundation axioms that have ap-
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peared from time to time. Broadly the common noun `anti-foundation axiom' is
used to refer to an axiom (scheme) which can be added to the axioms of ZF(C)
once the Axiom of Foundation has been dropped. Thus anti-foundation axioms
are alternative in the sense of being alternative to the axiom scheme of Founda-
tion once the other axioms of ZF have been agreed on. This is a di�erent sense of
`alternative' from the way in which NF or GPK+

∞ are alternative.
Forti-Honsell's axiom (which is called AFA by Peter Aczel in his [Aczel, 1988]) is

the most interesting and gives rise to the clearest mathematics, and this is probably
because of all the anti-foundation axioms it is that one which most clearly arises
from a sensible conception of what sets are. It arises from the idea that sets are
things denoted by set pictures.

De�nition: The �eld of a relation R is de�ned as the union of its domain and
range. A pair (R, r) is a set picture i� R is a relation, r is an element of the
�eld of R, and there is a map f with domain the �eld of R with the property
that f(x) = {f(y) | y Rx} for all x in the �eld of R. We say further that
(R, r) is a set picture of f(r). There is no immediate reason that a set picture
should be a set picture of just one set (but this is the case in the �rst theory
we consider).

In the usual set theory ZFC (or for that matter in ZF: choice is not an issue),
the question of what relations are set pictures is fully settled in a very simple way.

Theorem (ZFC): A pair (R, r) with r in the �eld of R is a set picture i� the
relation R is well-founded. Further it is the picture of a uniquely determined
set.

The Axiom of Foundation implies immediately that any set picture must be well-
founded, and the Mostowski Collapsing Lemma establishes that any well-founded
relation is actually a set picture of a uniquely determined set.

Now we change our attention to the theory ZFC� which is obtained by omitting
the Axiom of Foundation from ZFC. It now becomes conceivable that more general
relations R may be set pictures.

Consider the very simple example of a re�exive relation R with �eld {r}. If
(R, r) is a set picture, there is a set which is its own sole element. Note that
nothing tells us that there cannot be many such sets if the possibility of one is
admitted: the same relation may be the picture of many di�erent sets.

It is a theorem of ZFC� that for each well-founded set picture (R, r) the set
of which it is a picture is uniquely determined, but this depends strongly on the
well-foundedness of R.

The axiom of Forti and Honsell which is called AFA by Aczel asserts this:

Axiom of Anti-Foundation: Each pair (R, r) with R a relation and r in the
�eld of R is a set picture and the set picture of a uniquely determined set.
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There are two things going on here: that every pair (R, r) is a set picture
says that the Axiom of Foundation fails in very elaborate ways (though not in
all possible ways as we will see); that each relation R is a set picture in only one
way amounts to a strong form of extensionality. There is a set which its own sole
element under AFA, but also there is exactly one such set.

At least one of the authors (Holmes) can testify that the appearance of Aczel's
book which popularized this anti-foundation axiom caused a deal of philosophi-
cal excitement, as it seemed that the possibility of self-membered sets somehow
transcended the iterative conception of set. This excitement was ill-founded (the
author begs forgiveness for the pun): the relation of ZFC� + AFA to ZFC is in-
timate, and even in its own terms it reveals the stamp of the iterative conception
of set. The theory does have technical uses in avoiding certain inconveniences of
the universe of well-founded sets, but its philosophical di�erences from ZFC have
been overstated.

ZFC� + AFA is readily interpreted in ZFC. If we have two relations R and S in
ZFC we say that a relation b from the �eld of R to the �eld of S is a bisimulation
i� x b y i� for each z Rx there is wS y such that z bw and for each wS y there is
z Rx such that z bw. The objects of our interpretation of ZFA will be pairs (R, r)
where R is a relation and r is an element of the �eld of R. Two pairs (R, r) and
(S, s) are equivalent i� there is a bisimulation from the �eld of R to the �eld of
an end extension of S which relates r to s (an end extension of S is a relation
including S under which elements of the �eld of S have the same preimages they
have under S). We say that (R, r)E (S, s) i� (R, r) is equivalent to some (S, t)
where t S s. E is the membership relation of our interpretation of ZFC� + AFA.
We will not present a proof that this works in the limited space of this chapter.

In terms of ZFC� + AFA, a version of the cumulative hierarchy is readily recov-
ered in spite of the ill-founded nature of the theory. The stages of this hierarchy
are indexed by the ordinals as is the usual hierarchy of ranks. H0 = {0, 1} (it will
clear in a moment why we cannot start with an empty rank). Once Hα is de�ned,
we de�ne Hα+1 as the collection of all sets which have set pictures R with �eld a
subset of Hα. At limit stages, we take unions as in the usual hierarchy. Observe
for example that H1 contains three sets, the empty set and {∅} (pictured by the
usual order relation on {0, 1}), and the solitary object which is its own sole element
(pictured in any re�exive relation). It is straightforward to show that the power
set of Hα is included in Hα+2 (and in Hα+1 if α is in�nite) but of course each new
level of the hierarchy includes new sets de�ned in non-well-founded ways. How-
ever, the novelty is quite constrained: Hα is the same size as Vα for each in�nite
ordinal α.

4.3 Bo�a's axiom
An anti-foundation axiom with e�ects rather di�erent those of AFA was proposed
by Bo�a [Bo�a, 1972]. Aczel's axiom allows relatively few non-well-founded objects
because of its strong extensionality attributes (for example, it allows only one self-
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singleton). Bo�a's axiom allows (speaking roughly) as many non-well-founded sets
as possible. For example, under ZFC� with Bo�a's anti-foundation axiom there is
a proper class of self-singletons.

De�nition: A relation R is extensional i� each element x of the range of R is
uniquely determined by its preimage R−1“{x}.

De�nition: Let R be an extensional relation. A set-labelling of R is an injection
s with domain a subset of the �eld of R with the property that if x is in the
domain of s then R−1“{x} is included in the domain of s and

s(x) = {s(y) | y Rx}.

Bo�a's anti-foundation axiom: Any set-labelling of an extensional relation R
can be extended to a set-labelling of R (not necessarily unique) whose domain
is the entire �eld of R.

So, for example, if we de�ne a relation R on the domain N so that mRn i�
either n = 0 or m = n > 0, we �nd that under Aczel's axiom this is a set picture of
the unique self-singleton, whereas under Bo�a's axiom we can extend the empty
set-labelling of this set to a total set-labelling of its range and discover that each
positive integer is sent to a self-singleton and 0 is sent to a countably in�nite
set of self-singletons. The same technique can be used to get as many distinct
self-singletons as we might want.

Bo�a's axiom is similarly motivated by the idea of sets as derived from set
pictures, but with leeway for many sets to be represented by the same picture,
and ZFC� with Bo�a's axiom admits a fairly straightforward relative consistency
proof from ZFC.

5 NEW FOUNDATIONS AND RELATED SYSTEMS

In this section we review the set theory �New Foundations� (NF) proposed by
W. v. O. Quine in 1937 [Quine, 1937] and related systems. This system is not
so far known to be consistent, and it was shown by Specker in [Specker, 1953]
that it disproves the Axiom of Choice (and so it proves In�nity). However, there
are several known subsystems of NF which are known to be consistent (none of
which reproduce Specker's disproof of Choice, though one of them does allow use
of Specker's argument to prove In�nity, as we will see below).

5.1 Strati�ed comprehension
New Foundations is a variant of TST rather than of Zermelo set theory, in spite of
the fact that it is an untyped set theory. The starting point for the development
of NF is the observation that TST enjoys a great deal of what Russell called �sys-
tematic ambiguity�, modern set theorists call �typical ambiguity�, and computer
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scientists call �polymorphism�. For any sentence φ in the language of TST, de�ne
φ+ as the sentence obtained by raising the type of each variable in φ by one. Note
that for any axiom φ, φ+ is also an axiom, and that for any rule of inference al-
lowing ψ to be deduced from χ, ψ+ can be deduced from χ+ using the same rule.
It follows from these considerations that for any formula φ, if φ is a theorem so is
φ+. If we associate with each variable x a speci�c variable x+ of the next higher
type, we can extend the de�nition of φ+ to all formulas. Note that each object
{x | φ} de�ned by a set abstract has a precise analogue {x+ | φ+} in the next
higher type: for example the Frege natural number 3 de�ned in type 2 (the set of
all type 1 sets with three elements) has a precise analogue in type 3 (the set of all
type 2 sets with three type 1 elements) and indeed in each higher type.

Quine's suggestion is that this is an indication that the types need not actually
be di�erent. He proposed that all the types might be the same domain: the
sentence φ says the same thing as the sentence φ+ and the object {x | φ} is the
same object as {x+ | φ+}: in our example, there is exactly one Frege natural
number 3 which is simply the set of all sets with three elements.

The axioms of Quine's theory �New Foundations� (so called from the name of
the paper [Quine, 1937]) are the extensionality and comprehension axioms of TST
with all indications of type removed. The details follow.

NF is a �rst-order single-sorted theory with equality and membership as prim-
itive relations.

Axiom of Extensionality: (∀AB.A = B ↔ (∀x.x ∈ A↔ x ∈ B)).

Axiom of Comprehension: For any formula φ in which A does not appear free,
and which can be converted to a well-formed formula of TST by an assign-
ment of types to variables, (∃A.(∀x.x ∈ A↔ φ)) is an axiom.

De�nition: For any formula φ in which A does not appear free, {x | φ} is de�ned
as the unique A (if there is one) such that (∀x.x ∈ A ↔ φ) (this exists by
Comprehension if φ can be obtained by dropping types from a formula of
TST and is unique if it exists by Extensionality).

This presentation of the axioms should make it clear why dropping types from
the axioms of TST does not give us the inconsistent Axiom of Comprehension of
naïve set theory. The Russell class {x | x 6∈ x} is not provided by the Axiom of
Comprehension of NF because there is no way to assign types to the variables in
x 6∈ x which gives a well-formed formula of TST.

It is usual to rephrase the comprehension axiom of NF in a way which hides the
apparent dependence on the language of another theory.

De�nition: A formula φ is said to be strati�ed i� there is a function σ from the
set of all variables to the natural numbers (equivalently, to the integers) such
that for each atomic subformula x = y of φ we have σ(x) = σ(y) and for
each atomic subformula x ∈ y of φ we have σ(x)+1 = σ(y). Such a function
σ is called a strati�cation of φ.
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Axiom of Strati�ed Comprehension: For any strati�ed formula φ,
(∃A.(∀x.x ∈ A↔ φ)) is an axiom.

A strati�cation of φ of course codes an assignment of types to the variables in
φ which converts φ to a well-formed formula of TST.

The dependence of the axiomatization of NF on an understanding of TST really
is just apparent as we said above. The axiom scheme of Strati�ed Comprehension
is equivalent to a �nite collection of its instances, and so can be given as a list of
particular comprehension axioms with no reference to types or strati�cation at all.
The original reference for this is [Hailperin, 1944], but the implementation given
there is terrible. The construction of such a �nite axiomatization is similar to our
development of the �nite axiomatization of predicative class comprehension given
above.

5.2 New Foundations with urelements
In this section we will explore the development of set theory with strati�ed com-
prehension, but we will begin with a critique of the theory history presents to
us.

Motivation of NFU
Quine claimed in [Quine, 1937] that the choice of strong extensionality over weak
extensionality is purely a matter of convenience. He suggested that any urelements
(objects with no elements distinct from the empty set and from one another) could
be reinterpreted as self-singletons x = {x}, thus restoring strong extensionality.
In Zermelo-style set theory this suggestion makes sense. One can de�ne a (proper
class) map f which sends each urelement and iterated singleton of an urelement to
its singleton and rede�ne membership to the relation x ∈f y ≡def x ∈ f(y). This
will preserve the axioms of Zermelo-style set theory and convert all urelements to
self-singletons. But this procedure makes no sense in a set theory with strati�ed
comprehension, because the map f has an unstrati�ed de�nition, so sets de�ned
in terms of ∈f cannot be expected to exist in general.

This suggests that the theory we should be considering is the theory NFU whose
primitive notions are equality, membership, and the empty set, and whose axioms
are as follows:

Axiom of the Empty Set: (∀x.x 6∈ ∅)
Axiom of Weak Extensionality: (∀ABx.x ∈ A → (A = B ↔ (∀y.y ∈ A ↔

y ∈ B)))

Axiom of Strati�ed Comprehension: For any strati�ed formula φ,
(∃A.(∀x.x ∈ A↔ φ)) is an axiom.

De�nition: set(x) ≡def x = ∅∨ (∃y.y ∈ x). Notice that (∀AB.set(A)∧ set(B)→
(A = B ↔ (∀y.y ∈ A↔ y ∈ B)))
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De�nition: For any strati�ed formula φ, we de�ne {x | φ} as the unique A such
that set(x) and for all x, x ∈ A↔ φ. This exists by strati�ed comprehension
and is unique by weak extensionality and the de�nition of the empty set.

And indeed history suggests that this is the theory we should be thinking about.
The consistency of NF remains an open question after more than 70 years, but R.
B. Jensen proved the consistency of NFU on quite weak assumptions in [Jensen,
1969] in 1969. Most of the standard development of mathematics in NF (which
looks quite odd from the Zermelo-trained standpoint) works perfectly well in NFU,
which has well-understood models which can be examined to see what is going on.

For this reason, we will follow the plan of giving the general presentation of
mathematics with strati�ed comprehension in NFU, then following with a section
in which distinctive features of mathematics in NF (notably Specker's disproof of
the Axiom of Choice in [Specker, 1953]) are described.

A model construction for NFU
We �rst give a model construction for NFU. This is not the original consistency
proof due to Jensen, but a similarly motivated model construction due to Maurice
Bo�a [Bo�a, 1988].

We consider a model of Mac Lane set theory without the Axiom of In�nity or
the Axiom of Choice (though both could be adjoined and usually will be) with
an external automorphism j which moves a rank Vα of the cumulative hierarchy
downward. The existence of such models is a standard result of model theory. The
domain of the model of NFU to be constructed is the extension of the nonstandard
rank Vα. The membership relation of the model is the relation x ∈NFU y ≡def
j(x) ∈ y ∧ y ∈ Vj(α)+1. Each element x of Vj(α)+1 is assigned the extension
of j−1(x) in the original model (notice in particular that Vj(α) is assigned the
extension of Vα, the entire universe of the model!), and each element of Vα\Vj(α)+1

is treated as an urelement. This should make it clear that weak extensionality is
satis�ed. Of course the empty set of the model of NFU is the empty set of the
original model of set theory.

We argue that strati�ed comprehension is satis�ed in the model. Let φ be a
strati�ed formula in the language of NFU with a strati�cation σ. Let N be a
natural number larger than the value of σ at any variable in φ. This formula
has a translation φ1 into the language of the model of Mac Lane in which the
model construction is carried out. Each reference to ∅ in NFU is replaced with a
reference to ∅ in the language of Mac Lane set theory, each atomic formula u = v
is replaced with u = v, each atomic formula u ∈ v is replaced with j(u) ∈ v ∧ v ∈
Vj(α)+1, and each quanti�er is bounded in Vα. It might seem that we just need to
construct the set {x ∈ Vα | φ1} and note that j({x ∈ Vα | φ1}) is the set which we
assign this extension in the model of NFU. That is what we do in the end, but it
requires justi�cation. The problem is that the formula φ1 contains references to
the automorphism j, and the Axiom of Separation of Mac Lane set theory does not
apply to formulas containing j, unless all references to j are in parameters (terms
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not containing bound variables). We show how to e�ect a transformation of φ1 to
an equivalent formula in which j occurs only in parameters. We begin by replacing
each atomic formula u = v with jN−σ(v)(u) = jN−σ(v)(v). This is equivalent
because j is an automorphism. Notice that jN−σ(v)(u) = jN−σ(u)(u) because σ is a
strati�cation. We replace each formula j(u) ∈ v with jN−σ(v)(j(u)) ∈ jN−σ(v)(v).
This is equivalent because j is an automorphism. Notice that jN−σ(v)(j(u)) =
jN−σ(u)(u) because σ is a strati�cation. We replace formulas of the shape v ∈
Vj(α)+1 with the equivalent jN−σ(v)(v) = jN−σ(v)(Vj(α)+1). These substitutions
produce a formula φ2. In φ2, every variable u occurs with exactly N − σ(u)
applications of j. An equivalent formula is produced by replacing each jN−σ(u)(u)
such that u is bound by a quanti�er (restricted to Vα) with the variable u, replacing
the bounding set with jN−σ(u)(Vα). These substitutions produce a formula φ3.
The variable x occurs in φ3 only in the context jN−σ(x)(x). φ4 is obtained by
replacing this term with x. Note that φ4 contains no occurrences of j except in
constants. j−(N−σ(x))({x ∈ jN−σ(x)(Vα) | φ4}) is the set {x ∈ Vα | φ1} of the
original model of Mac Lane set theory, and the image of this set under j is the set
{x | φ} of the model of NFU.

If we let the ordinal α above be a nonstandard natural number, we obtain a
model of NFU in which the universe is �nite! This witnesses an error in [Quine,
1937]: Quine says there that the existence of ∅, {∅}, {{∅}}, etc. shows that In�nity
holds in NF. In�nity does hold in NF but not for this reason. This sequence of
sets witnesses the fact that any model of NFU (including a model of NFU + �the
universe is �nite�) must actually be externally in�nite, but it does not witness the
Axiom of In�nity because there is no reason to expect that it is a set (its de�nition
is not strati�ed). In a model of NFU + �the universe is �nite� it is not a set. It is
interesting to observe that in fact this collection can be a set but this would take
us far a�eld.

If we assume that In�nity and Choice hold in the underlying model of Mac
Lane, In�nity and Choice hold in the model of NFU. We can obtain strong axioms
of in�nity by assuming them in the underlying model of Mac Lane set theory, but
more satisfying results can be achieved by making strong assumptions about the
automorphism j (which are generally equivalent to strong axioms of in�nity in
Mac Lane or ZFC , but give nicer characteristics to the model of NFU).

Mathematics in NFU

In this section, we outline the development of the foundations of mathematics in
NFU. What we do here will also work in NF, as long as we do not assume Choice.
In�nity, which we must add as an assumption to NFU for the purposes of this
development, is a theorem of NF, as we will see in the next section.

We develop the natural numbers (following Frege's de�nition) exactly as we did
above in TST. We de�ne 0 as {∅}. For each set A, de�ne A+ 1 as {a ∪ {x} | a ∈
A∧x 6∈ a}. A+ 1 is the set of all objects obtained by adding a single new element
to an element of A. Now 0 + 1 is the set of all one-element sets, which we call
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1, and 1 + 1 is the set of all two-element sets, which we call 2, and so forth. We
de�ne N, the set of natural numbers, as the intersection of all sets which contain
0 and are closed under the extended �successor� operation. The elements of the
natural numbers are the �nite sets: we de�ne the set F of �nite sets as

⋃
N.

Notice that NFU witnesses the coherence of Frege's implementation of the nat-
ural number n as the set of all sets with n elements.

We are not quite done. There is a bad possibility which we have avoided dis-
cussing in the development above. One can prove by mathematical induction that
no natural number contains a proper subset of one of its elements. This implies
that if the universal set V is �nite, the natural number which contains it as an
element is {V }. It then follows that the successor of V is ∅, and of course the
successor of ∅ is also ∅. This gives an exception to Peano's fourth axiom (all the
others are easily seen to hold for this implementation of the natural numbers).

We rule out this badness by adopting the

Axiom of In�nity: V 6∈ F

We further usually adopt the

Axiom of Choice: Each pairwise disjoint collection of nonempty sets has a
choice set.

though in this context it should be noted that the Axiom of Choice is false in
NF.

We discuss the extension of the de�nition of strati�cation to support term con-
structions. Where ψ is a strati�ed formula, let (ιx.ψ) represent the unique object
x such that ψ (if there is one) and the empty set otherwise. We de�ne (∃!x.ψ)
as (∃x.ψ) ∧ (∀xy.ψ ∧ ψ[y/x] → x = y) (y being a fresh variable). Notice that
this is strati�ed i� ψ was strati�ed. Now note that φ[(ιx.ψ)/x] is equivalent to
((∃!x.ψ)∧φ)∨ (¬(∃!x.ψ)∧φ[∅/x]). The correct notion of strati�cation for general
terms containing de�nite description terms (ιx.ψ) is as follows. A strati�cation of
a formula φ is a function σ from terms to natural numbers (or integers) such that
for any atomic subformula t = u we have σ(t) = σ(u), for any atomic subformula
t ∈ u we have σ(t) + 1 = σ(u) [note that t and u may be complex terms rather
than variables], and σ((ιx.ψ)) = σ(x): each de�nite description is assigned the
same type as the variable bound in it. To see that this works, check that in the
transformations above a strati�cation of a formula is the same as the strati�cation
of the transformed formula. We do not intend to explicitly use de�nite descrip-
tion terms in what follows, but any de�ned term construction introduced can be
thought of as being implemented in this way.

As we noted above under TST, the usual Kuratowski de�nition (x, y) ≡def
{{x}, {x, y}} of the ordered pair is inconvenient in type theory because the pair
thus de�ned is two types higher than its projections.

If we assume In�nity, it is possible to de�ne an ordered pair on P2(V ) (the
collection of sets of sets) which is the same type as its projections. In NF, since
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P2(V ) = V , this is a de�nable type level ordered pair on the universe. In NFU,
we develop a modi�ed interpretation of NFU in which there is a type level pair
on the universe. It should also be noticed that it is provable in NFU + In�nity
+ Choice that there is a type level pair (this follows from the theorem κ2 = κ
for in�nite cardinals κ, in the special case κ = |V |, but this line of development
requires that a lot of mathematics be developed using the Kuratowski pair �rst).

De�nition: We de�ne σ(x) as x+ 1 if x is a natural number and as x otherwise.

De�nition: We de�ne σ1(x) as {σ(y) | y ∈ x} and σ2(x) as σ1(x) ∪ {0}, for any
x, y ∈ P(V ).

Observations: Notice that σi(x) = σi(y)→ x = y for i = 1, 2, and note also that
σ1(x) 6= σ2(y) for any x, y.

De�nition: We de�ne σ1“x as {σ1(y) | y ∈ x}, σ2“x as {σ2(y) | y ∈ x}, and (x, y)
(the Quine ordered pair of x and y) as σ1“x ∪ σ2“y, for any x, y ∈ P2(V ).

De�nition: For any w ∈ P2(V ), we de�ne π1(w) as {x | σ1(x) ∈ w} and π2(w)
as {x | σ2(x) ∈ w}.

Observation: π1(x, y) = x;π2(x, y) = y; (π1(x), π2(x)) = x, for all x, y ∈ P2(V ).

This gives an ordered pair on sets of sets which is assigned the same value as
its projections by any strati�cation (due to Quine in [Quine, 1945] and thus called
the Quine ordered pair) . Now for a trick. We de�ne a new interpretation of NFU
whose domain is the extension of P2(V ) in the model we start with. The empty
set of the new interpretation is the empty set of the old model. The equality
relation of the new interpretation is the equality relation of the old interpretation
restricted to the new domain. The membership relation x ∈new y ≡def x ∈ y∧y ∈
P3(V ). In other words, each set of sets of sets retains its original extension (so
all subsets of the domain of the new interpretation are realized) and sets of sets
which are not sets of sets of sets are treated as urelements. The veri�cation that
the new interpretation satis�es the axioms of NFU is straightforward. The type
level ordered pair on sets of sets of the old interpretation serves as a type level pair
in the new interpretation. If we replace natural numbers n with their restrictions
n ∩P2(V ) to sets of sets in the de�nition of the Quine pair, and use the modi�ed
Quine pair to carry out the construction of the new interpretation, then the type
level pair of the new interpretation will coincide with the original (unmodi�ed)
Quine pair of the new interpretation on sets of sets. The reason for this is that
the restricted natural number n ∩ P2(V ) becomes a natural number in the new
interpretation.

The upshot of this discussion is that we might as well adjoin relations π1 and
π2 with the same strati�cation conditions as equality to our language, de�ne (x, y)
as (ιz.zπ1x ∧ zπ2y), de�ne π1(x) as (ιy.xπ1y) and π2(x) as (ιy.xπ2y), then adjoin
an
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Axiom of Ordered Pairs: π1(x, y) = x;π2(x, y) = y; (π1(x), π2(x)) = x.

We could but do not need to stipulate that the type level ordered pair coincides
with the Quine pair on sets of sets. The introduction of type level ordered pairs by
axiom in NFU is a proposal of one of the authors (Holmes) in his [Holmes, 1998].

The Axiom of Ordered Pairs is actually an inessential strengthening of the
Axiom of In�nity (in the presence of Choice, they are equivalent); we have just
shown that NFU + In�nity interprets NFU + Ordered Pairs. The function sending
x to (x, 0) has a strati�ed de�nition and maps the universe V to its proper subset
V × {0} which is su�cient to show that Ordered Pairs implies In�nity.

Whether we introduce a primitive type level pair as we have just done or use
the Kuratowski pair, the de�nitions of relations and functions and the basic prop-
erties of and operations on relations and functions are similar. There is a precise
correspondence between the functions and relations implementable with a type
level pair and those implementable with the Kuratowski pair. One has to bear
in mind with the Kuratowski pair that the pair is two types higher than its pro-
jections: this causes some inconveniences. A fundamental di�erence between the
Quine pair and the Kuratowski pair is that the projection operations of the Quine
pair (or of a primitive type level pair) are set functions, while the projection func-
tions of the Kuratowski pair are not. If 〈x, y〉 is the Kuratowski pair, there is a
set function π∗1 such that π∗1(〈x, y〉) = {{x}} but there is no set function π∗1 such
that π∗1(〈x, y〉) = x. Notice that the double application of the singleton operation
ensures that the relative types of the two occurrences of x are the same.

We de�ne cardinal number. For any set A, we de�ne the relation A ∼ B
as holding i� there is a bijection f from A onto B. This is proved to be an
equivalence relation in a standard way. We de�ne |A| as {B | B ∼ A}. It is useful
to observe that |A| is exactly the same set whether we use the type level pair or
the Kuratowski pair (because every function implemented with the type level pair
has an exact analogue implemented with the Kuratowski pair and vice versa). |A|
is one type higher than A for purposes of strati�cation. Note that the natural
numbers de�ned above are cardinal numbers of �nite sets. This can be proved by
mathematical induction. Objects which are |A| for some set A are called cardinal
numbers.

We de�ne isomorphism types of relations. R ≈ S is de�ned as holding i� there is
a bijection f from the �eld of R onto the �eld of S such that xR y ↔ f(x)S f(y).
Isomorphism is an equivalence relation on relations for standard reasons. The
isomorphism type of a relation R is de�ned as {S | S ≈ R}. The identity of
the isomorphism type of R does depend on the pair used, and so does the type
di�erential, because the isomorphism type is a set of functions and so a set of sets
of ordered pairs. If we use the type level pair, the isomorphism type of R is one
type higher than R for purposes of strati�cation; if we use the Kuratowski pair it
is three types higher than R.

Isomorphism types of well-orderings are of special interest to us. If ≤ is a well-
ordering, we de�ne ot(≤) as the isomorphism type of ≤. An isomorphism type of
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a well-ordering is called the order type of a well-ordering, and an object which is
the order type of some well-ordering is called an ordinal number .

These collections are very big. The analogous classes in Zermelo-style set theory
are proper. Further, we have the universal set V = {x | x = x}, the very standard
of bigness. We can contemplate |V |, the cardinality of the universe. We can prove
that there is a natural well-ordering on the ordinal numbers in a quite standard
way, then consider the order type Ω of the natural order on the ordinal numbers.
We seem to be very close to paradox here, as |V | and Ω are precisely the objects
which instigate the classic paradoxes of Cantor and Burali-Forti!

However, we will now discover that NFU has its own characteristic way of
averting paradox. We begin with the Cantor paradox of the largest cardinal.
The Cantor theorem in TST takes the form |P1(A)| < |P(A)|, where P1(A) is
the set of one-element subsets of A; the usual form |A| < |P(A)| would be ill-
typed. The proof of the Cantor theorem of TST is inherited by NFU, so we
have |P1(A)| < |P(A)| for any set A and so in particular |P1(V )| < |P(V )|.
Now of course we can add in |P1(V )| < |P(V )| ≤ |V |, so we get the odd result
|P1(V )| < |V |. This is odd because we can �see� the one-to-one correspondence
between these two sets de�ned by the singleton map. But there is no reason to
believe that the singleton map is a set function, and we have just shown that it
can't be.

Since we have a counterexample to the intuitively plausible proposition
|P1(A)| = |A| (A = V ) and since it is easy to show that |A| = |B| ↔
|P1(A)| = |P1(B)|, we de�ne an operation on cardinals with de�ning equation
T (|A|) = |P1(A)|. We have just shown that T (|V |) < |V |, so this is a nontrivial
operation. There are sets A such that |P1(A)| = |A|: standard �nite sets have this
property, for example. Such sets are called cantorian sets and their cardinals are
called cantorian cardinals. An even stronger property (motivated by the apparent
witness our incorrect intuition that |P1(A)| = |A| for all A, and also holding of
concrete �nite sets) is this: a set A (and its cardinality) is said to be strongly
cantorian (s.c). i� ιdA, the restriction of the singleton map to A, is a set. Clearly
strongly cantorian sets are cantorian; the converse is a strong axiom of in�nity.

The Burali-Forti paradox is resolved in an even more interesting way. One
can prove in a quite standard way that for any two well-orderings, either one
is similar to an initial segment of the other, or the two are similar (the three
alternatives being mutually exclusive). This determines a natural linear order
on the ordinal numbers (qua isomorphism types of well-orderings) which is itself
a well-ordering and so has an isomorphism type Ω. The paradox depends on
the �obvious� observation that the order type of the restriction of this order to
the ordinals less than α is α. The resolution depends on the discovery that this
�obvious� observation is false.

For any relation R, we can de�ne a relation Rι = {({x}, {y}) | xR y}. If the
isomorphism type of R is ρ, we de�ne T (ρ) as the isomorphism type of Rι. It
is straightforward to show that the de�nition of T (ρ) does not depend on the
choice of the relation R. Note that Rι is one type higher than R for purposes
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of strati�cation and T (ρ) is one type higher than ρ. We have just seen that the
singleton map is not a function, so we have no reason to believe that ρ = T (ρ)
in general. A relation type ρ is cantorian i� T (ρ) = ρ and strongly cantorian i�
T (ρ) = ρ is witnessed for each R ∈ ρ by a set function equal to the restriction of
the singleton map to the �eld of ρ.

Suppose that ≤ is a well-ordering belonging to an ordinal number α. For each
x in the �eld of ≤, we can de�ne αx as the order type of the restriction of ≤
to {y | y ≤ x}. If ≤ is also used for the order on ordinal numbers, we have
x ≤ y ↔ αx ≤ αy. This would establish the desired isomorphism between the
natural order on the ordinals less than α and the element ≤ of α if the map
x 7→ αx were a function. But this cannot be shown to be the case, for αx is
two types higher than x for purposes of strati�cation (four types if we were using
the Kuratowski pair). What is a function is {{x}} 7→ αx; the application of the
singleton operation repairs the failure of strati�cation. So what we can actually
show is that (≤ι)ι is similar to the natural order on the ordinals less than α, so
the order type of the ordinals less than α is T 2(α).

Now the paradox resolves itself. For the order type of the ordinals less than Ω
is T 2(Ω) by the preceding discussion, and it then follows that T 2(Ω) < Ω. This is
not altogether appetizing, because it is easy to show that for any ordinals α and
β, T (α) < T (β) ↔ α < β, so T 2(α) < T 2(β) ↔ α < β, so . . . T 6(Ω) < T 4(Ω) <
T 2(Ω) < Ω. This does not give an in�nite descending sequence of ordinals in NFU,
because T is not a function and the sequence just revealed cannot be shown to
be a set (fortunately!). This does imply that any set model of NFU has ordinals
whose elements are not well-orderings from an external standpoint. If our working
set theory were NFU, this would not lead to contradiction, because though the
domain V of the �model� of NFU in which we would work is a set, the membership
relation ∈ of the �model� is not a set.

Notice that the T operation appears to be an external endomorphism of the
ordinals. In our model construction for NFU, we used an external automorphism
of our model of set theory which moved ordinals. This similarity is not an accident.
The T operation on isomorphism types is closely related to the automorphism j of
the underlying model of set theory if we are working in a Bo�a model (the same
is true of the T operation on cardinals de�ned above).

The considerations so far give us some assurance that the original system NF
does not easily fall prey to the paradoxes. We know that NFU does not (unless a
quite weak fragment of the usual set theory is inconsistent).

We now turn our attention to the implementation of mathematics in NF(U).
We have already described the implementations of natural numbers, ordered pairs,
relations, functions, and cardinal and ordinal numbers. Operations on cardinal
and ordinal numbers admit quite usual de�nitions (hereafter in this subsection we
assume without comment that the pair is type level). For example, |A| + |B| =
|(A×{0})∪(B×{1})| and |A|·|B| = |A×B| are quite familiar-looking de�nitions of
cardinal addition and multiplication. If we de�ne BA as the collection of functions
from A to B, we might want to de�ne |B||A| as |BA|, but we do not for reasons
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of relative type. The type of |BA| is one higher than that of A or B: we correct
this by de�ning |B||A| as T−1(|BA|). This is not a total operation: there are
cardinals κ such that there is no λ such that T (κ) = λ, such as κ = |V |. A
special case of this de�nition is 2|A| = T−1(|{0, 1}A|) = T−1(|P(A)|) (the last
equation uses the one-to-one correspondence between sets and their characteristic
functions). The argument for Cantor's theorem above shows that |A| < 2|A| for all
A for which 2|A| is de�ned: we have |P1(A)| < |P(A)|: applying T−1 to both sides
of the inequality gives |A| < T−1(|P(A)|), whenever the latter is de�ned, and so
|A| < 2|A|. It is straightforward to establish that the T operation distributes over
all these operations and relations in the obvious sense, and so does T−1 where it
is de�ned. Very similar considerations apply to operations on ordinal numbers,
though all the usual operations on ordinals turn out to be total. One should note
that the identi�cation between cardinal numbers and initial ordinals does not hold
here, so one needs to make use from time to time of explicit operations card(α)
= the cardinality of the �eld of an element of the ordinal α and init(κ) = the
smallest order type of a well-ordering of a set of size κ.

All of the mathematical constructions we have done so far can be clari�ed by
looking at how one would do the same mathematics in TST. The appearance of
T and T−1 is unmysterious there: a set of size T (κ) is �the same size� as a set of
size κ but appears one type higher. A set of size T−1(κ) is a set the same size as
a set of size κ but one type lower, and it is not surprising that this does not work
for all κ because higher types are larger (being �power sets� of lower types).

Some mathematical constructions are awkward in NFU because they are awk-
ward in TST. A general class of constructions for which this is true is �indexed
families of sets�. The di�culties are best illustrated by giving an example. We are
going to develop the de�nition of the product of a family of cardinals, Πi∈Iκi. The
product is the size of the generalized cartesian product of a collection of sets Ai
each of cardinality κi. The generalized cartesian product ×i∈IAi is the collection
of all functions f such that f(i) ∈ Ai for each i ∈ I. The problem that now arises
is how to read the various indexed expressions here. The di�culty is that the sets
A are one type lower than the cardinals κ, so if we read Ai as A(i) (letting A be a
function from I to sets) then we need to read κi as κ({i}), so κ can be construed as
a function from P1(I) to cardinals. The set ×i∈IAi can then be de�ned explicitly
as the set of all functions f such that f(i) ∈ P1(A(i)) for each i ∈ I. We cannot
have f(i) ∈ Ai because once again the types are wrong: the type of i is the same
as the type of A(i) and so is one higher than the type of an element of Ai: we
�x this by having f send each A(i) to the singleton of one of its elements. We
want Πi∈Iκi to be of the same type as each of the cardinals κi. ×i∈IAi is a set
of functions which are each one type higher than elements of I, so it is itself two
types higher than an element of I, and its cardinality is three types higher than
that of an element of I. We want Πi∈Iκi to be of the same type as the κ(i)'s. A
κi = κ({i}) is one type higher than that of an element of i. So the full de�nition of
Πi∈Iκi is T−2(|×i∈I Ai|), where A(i) ∈ κ({i}) for each i ∈ I (the existence of such
an A and the well-de�nedness of this cardinal depends on Choice; this leaves open
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the possibility that products of indexed families of cardinals may be unde�ned be-
cause T−2 is partial, and indeed they may). There is no particular mystery to do
with NF(U) in this construction: it is a construction in TST imported into NFU.
The awkwardness could be reduced in special cases if we had index sets made up
of self-singletons (if i = {i} for each i ∈ I). One can prove the consistency of the
existence of such index sets, but it is also provable that they are all small sets
(such an index set would certainly be strongly cantorian, and it is consistent with
NFU that every s.c. set is the same size as a set of self-singletons).

There are some mathematical techniques appropriate to NFU which take ad-
vantage of the fact that it is a type-free theory and cannot be replicated in TST.
These generally require �reasonable� assumptions about the behavior of T opera-
tions on cardinals and ordinals which are not provable in NFU (and are in e�ect
strong axioms of in�nity).

We de�ned the notion of strongly cantorian set above. �Strongly cantorian� is a
notion of smallness (every subset of a strongly cantorian set is strongly cantorian).
A variable x restricted to a strongly cantorian set in a set de�nition does not need
to have a type assigned to it for purposes of strati�cation. The reason is that its
type can be freely manipulated: if x ∈ A and A is s.c., then x =

⋃
(ιdA(x)) =

(ιdA)−1({x}): in one of these expressions the type of x is raised by one and in one
it is lowered by one, and these operations can be iterated.

The �rst special axiom we might consider is Rosser's Axiom of Counting
(proposed by Rosser in [Rosser, 1953]), which asserts that the set of natural
numbers is strongly cantorian. Rosser's original formulation was the assertion
that {1, . . . , n} ∈ n for each natural number n: the connection of this to our
usual counting procedure should be clear and the theorem provable in NF(U) is
{1, . . . , n} ∈ T 2(n) It is clear that Rosser's axiom implies and is implied by the
assertion that each natural number n is cantorian (T (n) = n). It is only very
slightly less obvious that this is equivalent to the assertion that the set of natural
numbers is s.c. It is provable in NFU + In�nity that N is cantorian, and the
natural inductively de�ned bijection from N to P1(N) sends T (n) to {n} for each
n, so will witness that N is s.c. if and only if every natural number is cantorian.

The practical e�ect of the use of Rosser's Axiom of Counting is that one does
not need to assign types to variables with natural number values. In fact, the same
becomes true of many familiar classes of mathematical objects, as the class of s.c.
sets is closed under cartesian product, power set, and the formation of function
spaces, so for example the set of real numbers or the set of points in Hilbert space
will be s.c. sets.

The metamathematical e�ect of the Axiom of Counting is surprising. It does
not actually add practical strength on the level of arithmetic (even arithmetic of
higher order): we simply avoid notational complications. The truly substantial
e�ects are in set theory. NFU + In�nity does not prove the existence of iω; NFU
+ Counting proves the existence of iinit(in) for each natural number n. NFU +
Counting has models iinit(iω) is needed in the construction) and NF + Counting
is known to prove the consistency of NF (such independence results are rare for
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NF).
The strong principle of mathematical induction (induction for unstrati�ed as

well as strati�ed formulas) is stronger than the Axiom of Counting (which it easily
implies). Its precise strength is not known, but it is weaker than ZFC, as an
ω-model of NFU can be constructed on fairly weak assumptions (existence of
iinit(iω1 ) is enough). Again, its e�ects are not seen in higher-order arithmetic
(which is adequately handled by strati�ed induction) but in set theory.

An assumption considered by C. Ward Henson in [Henson, 1973] (in a slightly
more restricted form) is �every cantorian set is strongly cantorian�, which we call
CS (short for �the Axiom of Cantorian Sets�). Notice that In�nity and CS together
imply Counting. The strength of NFU + In�nity + CS is rather shocking: it is
equiconsistent with ZFC + �there is an n-Mahlo cardinal� for each concrete natural
number n (see [Holmes, 2001]). Rieger-Bernays permutation methods can be used
to convert a model of this theory to one in which the hereditarily strongly cantorian
sets make up a model of ZFC with an n-Mahlo cardinal for each concrete n.

There are still stronger assumptions which have been investigated and shown to
correspond in strength to further strong axioms of in�nity, but this is enough to
show the pattern: natural axioms formulated in NFU which regularize the behav-
ior of strongly cantorian sets have surprisingly strong e�ects on the consistency
strength of the extended version of NFU which results. We give one more example:
the Axiom of Small Ordinals (introduced in [Holmes, 1998] and [Holmes, 2001]) in
its weakest form asserts that any de�nable class of strongly cantorian ordinals is
the intersection of the class of strongly cantorian ordinals (which is not a set) with
some set. NFU + In�nity + Small Ordinals has the same strength as Kelley-Morse
set theory + �the proper class ordinal is weakly compact� or ZFC - Power Set +
�there is a weakly compact cardinal� (Solovay showed this in [Solovay, preprint]).

5.3 Peculiarities of NF
We now address the oddities of New Foundations itself. These are twofold. On the
negative side, no consistency proof for NF is known, nor is there any proof that
NF is any stronger than TST with the Axiom of In�nity (or equivalently Mac Lane
set theory with In�nity) which is somewhat weaker than Zermelo set theory. Any
suspicion that NF must be strong because it allows �big� sets such as the universe
should be dispelled by the observation that NFU, which proves the existence of
the same big sets for the same reasons, is weaker than Peano arithmetic, and NFU
+ In�nity (which is a more reasonable set theory) is exactly as strong as TST +
In�nity or Mac Lane set theory with In�nity. There is a useful distinction to be
drawn between �big� objects such as the universe V or the ordinal Ω and �large�
objects such as inaccessible or measurable cardinals.

On the positive side, NF is known to prove the Axiom of In�nity and disprove
the Axiom of Choice [Specker, 1953]. This means that NFU + Choice (which is
known to be consistent) proves the existence of urelements! Specker gave separate
proofs of these two results, but of course the proof that Choice is false also proves
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In�nity: if the universe were �nite, it could be well-ordered, which would allow
the proof of Choice in a familiar way (it is worth noting here that all the standard
equivalences between forms of Choice hold in NF(U), as long as one is careful to
state them in strati�ed forms).

We present Specker's proof that the Axiom of Choice is false.

Theorem: (NF, due to Specker) ¬AC
Proof: Suppose otherwise. Then the natural order on the cardinal numbers would

be a well-ordering (this is equivalent to AC for quite standard reasons).
We know from above that the exponential map κ 7→ 2κ is partial. We
de�ne for each cardinal κ a set called the exp-closure of κ (this is a nonce
notion): the exp-closure of κ is the smallest set which contains κ and contains
2λ whenever it contains λ and 2λ exists. We de�ne the set SM (German
Speckermenge, �the Specker set�, a coinage of Thomas Forster) as the set of
all cardinals whose exp-closure is �nite. This set is nonempty: for example,
|V | belongs to SM .
Now comes a move which is peculiar to NF. We have 2|P1(V )| = |P(V )| by the
de�nition of exponentiation. But this means that 2T (|V |) = |V | (this requires
|P(V )| = |V |, which is a consequence of strong extensionality). Properties
of the T operation then tell us that 2T

n+1(|V |) = Tn(|V |) for each concrete
natural number n, so all the cardinals Tn(|V |) (which do not make up any
kind of set sequence!) are in SM .
We argue that for any cardinal κ in SM , we also have Tnκ ∈ SM and
T−1(κ) ∈ SM , if the latter cardinal exists. Suppose κ ∈ SM . We give the
name exp to the map κ 7→ 2κ. If λ is an element of the exp-closure of κ (so of
the form expn(κ) for some natural number n) then T (λ) is in the exp-closure
of T (κ), because it is equal to expT (n)(T (κ)) (this proof is considerably
simpler if the Axiom of Counting is assumed, which would give T (n) = n!).
Now consider the largest element ν of the exp-closure of κ. It must be greater
than T (|V |), or else its image under exp would be de�ned (notice that linear
ordering of cardinals by the natural order is used here). exp(T (ν)) will be
de�ned, since T (ν) ≤ T (|V |): since ν > T (|V |), we have T (ν) > T 2(|V |) and
so exp(T (ν)) ≥ exp(T 2(|V |)) = T (|V |). From this it follows that exp2(T (ν))
either fails to exist or is equal to |V |. So if the cardinality of the exp-closure
of κ is n, the cardinality of the exp-closure of T (κ) will be either T (n) + 1 or
T (n)+2, and in any case �nite, so T (κ) ∈ SM . Now suppose that κ = T (λ),
and that λ 6∈ SM . This would imply that expn(λ) was de�ned for every n,
and it would follow that T (expn(λ)) = expT (n)(κ) was de�ned for every n,
and though the T operation might fail to be the identity on N it is onto:
it follows that κ 6∈ SM contrary to hypothesis. So if κ ∈ SM and T−1(κ)
exists, it follows that T−1(κ) ∈ SM .
Because SM is a set of cardinals, it has a smallest element µ. The results
above imply that T (µ) = µ. For otherwise we would have to have T (µ) > µ,
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whence T−1(µ) would exist, belong to SM , and be less than µ, contrary to
choice of µ (because the T operation preserves order on cardinals and its
domain of de�nition is downward closed). Now let n be the �nite number
of elements in the exp-closure of µ. We see from the previous paragraph
that the number of elements in the exp-closure of T (µ) must be T (n) + 1 or
T (n) + 2, and of course this must be the same number. But n = T (n) mod
3 is easy to show, so n = T (n) + 1 or n = T (n) + 2 is impossible.

As we have already remarked, there is a nicer proof of this (in detail; the basic
idea is the same) if the Axiom of Counting is assumed, found in [Holmes, 1998]
(mod 3 arithmetic does not come into play), but we will shortly indicate reasons
why we do not regard the assumption of Counting as harmless.

For any cardinal κ, we de�ne the Specker tree of κ as the smallest set which
contains κ and includes the preimage under exp of each of its elements. This is
the set of all cardinals λ such that expn(λ) = κ for some n ∈ N. If the Axiom
of Choice is assumed, it is straightforward to show that the Specker tree of any
cardinal has �nite depth (there is an n such that for no λ is expn(λ) = κ). It
is a theorem of ZF that the Specker tree of any cardinal is well-founded, due to
Forster in [Forster, 1976] (using Sierpinski's result that ℵ(κ) < exp3(κ), where ℵ
is the Hartogs aleph function: ℵ(κ) is the �rst ordinal which is not the order type
of a well-ordering of a subset of a set of size κ [this de�nition would need to be
modi�ed slightly to be strati�ed]). Thus in ZF the Specker tree of a cardinal must
have an ordinal rank in an obvious sense, which if AC is assumed must be �nite.
It is an open question in ZF whether it is possible for a cardinal to have a Specker
tree of in�nite rank (and so have inverse images under exp of every index); it is a
theorem of NF + Counting that the Specker tree of the cardinality of the universe
has in�nite rank: so here we have a combinatorial situation arising in what should
not be a terribly strong extension of NF whose possibility has not been established
in the usual Choice-free mathematics.

The only obvious mathematical advantage of NF over NFU which we see is that
the Quine pair is de�nable in NF. There may be other elegant features of mathe-
matical development in NF which follow from the absence of urelements. The use
of Choice in mathematics is pervasive, which is a strong apparent disadvantage
of NF over NFU. Now it might be said that the form of Choice most often used
in classical mathematics is Dependent Choices, and so far as anyone knows DC
is not inconsistent with NF. Unfortunately, no one has any idea how to provide a
relative consistency proof for DC relative to NF.

The only method for relative consistency and independence proofs which has
been used extensively with NF is the Rieger-Bernays permutation method, which
can prove various amusing results, but is limited by the fact that strati�ed sen-
tences (i.e, anything which makes sense in TST) are invariant in permutation
models. Orey showed that NF + Counting is essentially stronger than NF using
metamathematical techniques. It is possible to emulate work done for NFU to
show that NF + In�nity + CS proves the relative consistency of the existence of
n-Mahlos, but we do not know that NF + Counting does not prove the existence of
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n-Mahlos. Similar considerations apply to other strong extensions of NFU whose
consistency strength is known. Recently, one of the authors has shown that forc-
ing arguments can be carried out in NF, but without some Choice forcing is not
useful. A typical result which can be shown is that if NF + DC is consistent then
NF + DC + �the continuum is well-ordered� is consistent.

The appeal that NF has over NFU for some is that it is a theory of pure sets.
In NF (as in ZF) everything without exception is a set. This appeal should be
resisted or at least viewed with care. Notice that in ZF the idea that something is
a pure set can be expressed and used to de�ne subsets using the Separation Axiom.
In NFU, the predicate �is a pure set� has no strati�ed de�nition, and so cannot
be used in a set de�nition (if there were such a de�nition, then the collection of
pure sets in any model of NFU would be a model of NF, and this is not the case
in known models). These considerations are intimately related to the fact that
there are easy ways to interpret ZFA in ZF and vice versa, whereas all e�orts to
interpret NF in NFU have failed.

5.4 Extensional fragments of New Foundations
NFU, which is known to be consistent, di�ers from NF �only� in that extension-
ality is weakened to allow urelements; it has the same comprehension scheme.
There are other fragments of NF which are known to be consistent which include
the strong Axiom of Extensionality and perforce involve limitations on Strati�ed
Comprehension. We describe two of them.

In the same year (1969) that Jensen showed the consistency of NFU, Grishin
[Grishin, 1969] showed the consistency of NF3, the fragment of New Foundations
whose axioms are the strong Extensionality Axiom and all those comprehension
axioms which admit a strati�cation whose range has no more than three elements:
that is, all those axioms which can be typed in TST using types 0,1,2. He also
showed that NF4 is the same theory as NF, and that NF3 + �{{{x}, y} | x ∈ y}
exists� is the same theory as NF.

To put this result in context, we cite a model-theoretic result of Specker. He
showed that NF is equiconsistent with TST plus the scheme �φ ↔ φ+� (for each
formula φ). This scheme is more brie�y called Amb (the ambiguity scheme). This
result is a veri�cation of Quine's motivation for NF . The technique of his proof
generalizes to relate fragments of NF to fragments of TST. For example, NFU is
equiconsistent with TSTU, the version of TST in which urelements are allowed
in each positive type. Grishin's system NF3 is equiconsistent with TST3 + Amb,
where TST3 is the system of type theory with only three types (0,1,2), and the
notation φ+ of course only applies to formulas not mentioning type 2. It turns
out that all in�nite models of TST3 satisfy Amb, so the consistency of NF3 and
indeed of powerful extensions of NF3 is easy to establish, and it appears that
NF3 is a much more natural theory than NF. On the other hand, NF3 is not an
environment in which it is easy to do mathematics (essentially because TST3 is
rather restrictive). Henrard, in unpublished work, has shown that NF3 does admit
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a theory of cardinal number. Pabion has shown that NF3 + In�nity is precisely
as strong as second-order arithmetic.

In [Crabbé, 1982], 1983, Marcel Crabbé de�ned a system NFP (for �predicative
NF�) and a stronger system NFI (which Holmes has called �mildly impredicative
NF). NFI consists of the strong Axiom of Extensionality and those axioms {x | φ}
exists� which admit a strati�cation in which the type assigned to {x | φ} (one
higher than the type assigned to x) is the highest type in the range. NFP further
restricts to those comprehension axioms in which no variable of the type of {x | φ}
is bound in φ. Crabbé showed that NFI (and so of course NFP) is consistent. NFI
is exactly as strong as second order arithmetic and NFP is weaker than Peano
arithmetic.

A striking feature of NFP is that one can make use of the Specker argument
for the failure of Choice to prove In�nity. All the known consistent fragments
(including NFP and NFI are consistent with Choice. The argument goes like
this. Use ι(x) as a nonce notation for {x}. For any formula φ, for su�ciently
large n, �{ιn(x) | φ} exists� will be a comprehension axiom of NFP (make n large
enough, and the variable representing ιn(x) will have type higher than any of the
variables in φ). From this it follows that NFP + Union = NF. Argue in NFP
that In�nity holds as follows: if Union holds then In�nity follows by Specker's
argument in NF; if Union does not hold, then In�nity holds because �nite sets
have unions. There is of course a bit of detail to this argument hidden in this
sketch. NFP has interesting relationships to weak subsystems of arithmetic, and
Holmes has shown that it is precisely equiconsistent with the rami�ed theory of
types of Whitehead and Russell's Principia Mathematica without the Axiom of
Reducibility (and it is much simpler!) NFI admits just enough impredicativity
to implement impredicative arithmetic, and is as we observed above precisely as
strong as second-order arithmetic.

5.5 Re�ections on New Foundations and ZF
Perhaps the single most important point to make about the Quine systems is
that�properly understood�they do not contradict ZF at all. This point is in any
case important, being both fundamental and correct, but it is important also in
the sense that there is a continuing and pressing need to make it. Let us explain.

ZF and ZF-like theories are the endeavour to axiomatise our understanding of
the cumulative hierarchy of well-founded sets. NF casts its net a little wider, in
that it is an attempt to not only do that but to reason about some other sets
as well. It is possible to de�ne a predicate �is a well-founded set� in NF, and
this predicate3 enables us to reason about well-founded sets in NF. No known NF
theorem about well-founded sets contradicts anything provable in ZF or any large
cardinal upgrade thereof. Models of strong extensions of NFU can be constructed

3which of course is unstrati�ed; were it strati�ed, its extension would be a set and we would
have a paradox.
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in which the well-founded sets make up a model of (a strong extension of) ZFC.4 If
you are interested in facts about well-founded sets then you will �nd nothing in NF
to o�end you. If you wish to be o�ended by NF then you will have to believe in the
proposition that all sets are well-founded. Of course a lot of people do believe this
proposition, but one of the most striking things about the set-theoretic literature
is the complete absence of any arguments for it. Not only does one �nd any
arguments, one is hard put to �nd even an acknowledgement that one might come
in handy. The closest thing I can �nd is Boolos [Boolos, 1971] �There does not
seem to be any argument that is guaranteed to persuade someone who really does
not see the peculiarity of a set's belonging to itself, or to one of its members etc.,
that these states of a�airs are peculiar�. NF's peculiar charm is that it attempts to
axiomatise the behaviour of large collections while taking care not to say anything
that will contradict what we know or believe about well-founded sets. It's the lover
that the spouse can't object to. That being so, one would expect NF to be the
toast of Society. But there are several respects in which NF gets what in popular
parlance would be called a bum rap. Admittedly NF does not prove mathematical
induction for unstrati�ed properties of natural numbers, and it disappoints in
other ways by somehow neglecting to establish that the sets that are conceptually
small have all the nice properties that one might expect them to have. But this
shows merely that we haven't yet determined what axioms should be added to
NF; that's our fault not NF's5 I think the most illuminating parallel for NF in this
context is with Zermelo set theory, Z. Z is clearly a theory about the cumulative
hierarchy (or at least it has been so interpreted in retrospect)�and although no
one is suggesting that it makes allegations about the cumulative hierarchy that are
false�it does stand accused of not achieving absolutely everything that was asked
of it. NF is an attempt to axiomatise not only the cumulative hierarchy but some
sets beyond it. One shouldn't expect one's �rst attempt in this to be successful
any more than one would expect that Z should be not only our �rst word on
the axiomatisation of the cumulative hierarchy but our last as well.6 Clearly we
are going to have to add axioms to NF to ensure that whenever ZF ` φ then
NF ` φWF (where φWF is the relativisation of φ to the well-founded sets); the
fact that this task has not been completed is no cause to belittle the NF project: it
simply means that there are axioms that remain to be found. One could of course
simply add this aforementioned principle by main force as an axiom scheme, but
the idiomatic and gentler way to achieve this result would be to add judiciously
designed axioms concerning big sets. In NFU the Axiom of Cantorian Sets ensures
that this is true in a certain permutation model. In [Forster, 2006] it is shown how

4It is true that NF refutes the Axiom of Choice, but the only known failures of AC involve
the sets that in NF studies we call big (following a suggestion of Thomas Forster) as opposed
to large, as in large cardinals in ZF. These are the collections like the universal set, and the set
of all cardinals and the set of all ordinals: collections denoted by expressions which in ZF-like
theories will pick out proper classes. Of course in NFU there is no such problem.

5for NFU, the question of what axioms to add has been extensively investigated, and these
are probably similar to what would be added to NF

6Why is it that I always �nd my spectacles in the last place I look for them not the �rst?
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axioms postulating good behaviour on the part of the T function systematically
correspond to axioms giving the existence of well-founded sets of high rank. Clearly
this is the way in which we have to go. The reason why nobody has explored this in
the detail which will eventually be needed is that the whole project is stalled�and
will remain stalled until nerves around the consistency question for NF have been
calmed: adding new axioms to a theory not yet known to be consistent invites a
wealth of disparaging metaphors�running before one can walk or building castles
in the air . . . (of course such remarks do not apply to NFU). However, any reason
for disparaging the project-to-�nd-sensible-extensions-for-NF is a reason for trying
to prove NF inconsistent7 and that project seems to have no takers.

In coming to grips with NF the hard part is to fully understand strati�cation,
to know how to recognise a strati�ed formula when you see one. There is an
easy rule of thumb with formulas that are in primitive notation, for one can just
ask oneself whether the formula could become a w� of type theory by adding
type indices. It's harder when one has formulas no longer in primitive notation,
and the reader encounters these di�culties very early on, since even something as
basic as the ordered pair is not a set-theoretic notion. How does one determine
whether or not a formula is strati�ed when it contains subformulas like y = f(x)?
The technical/notational di�culty here lands on top of�as so often�a conceptual
di�culty. The answer is that of course one has to �x an implementation of ordered
pair and stick to it. Does that mean that�for formulas involving ordered pairs�
whether or not the given formula is strati�ed depends on how one implements
ordered pairs? The answer is `yes' but the situation is not as grave as this suggests.
Let us consider again the formula y = f(x). This is of course a molecular formula,
and how we stratify it will depend on what formula it turns out to be in primitive
notation once we have settled on an implementation of ordered pairs. If we use
Kuratowski ordered pairs then the formula we abbreviate to y = f(x) is strati�ed
with x and y having the same type, and that type is three types lower than the type
of f . If we use Quine ordered pairs then the formula we abbreviate to y = f(x) is
strati�ed with x and y having the same type, and that type is one type lower than
the type of f . There are yet other implementations of ordered pair under which
the formula we abbreviate to y = f(x) is strati�ed with x and y having the same
type, and that type is one or more types lower than the type of f .

The point is that our choice among the possible implementations will a�ect the
di�erence in level between x (and y) and f but will not change the formula from
a strati�ed one to an unstrati�ed one. This is subject to two important provisos:

1. We restrict ourselves to ordered pair implementations that ensure that in
x = 〈y, z〉 y and z are given the same type.

2. We do not admit self-application: (f(f)).8

7Thus Forster, but Holmes comments that some (not he!) will raise an objection of the form
�NF does not satisfy Choice and so is irrelevant to mathematics as she is Done�, which does not
necessarily involve doubts about the consistency of NF.

8There is a further important distinction between type di�erential 0 and all other cases: the
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Thes two provisos are of course related. The second will seem reasonable to
anyone who thinks that mathematics is strongly typed. (The typing system in NF
interacts quite well with the endogenous strong typing system of mathematics; this
is a striking and deep fact that has not so far attracted the attention it should).
If we consider expressions like x = 〈x, y〉 we see that their truth-value depends
on how we implement ordered pairs. There is a noncontroversial sense (entirely
transparent in the theoretical CS tradition) in which expressions of this kind are
not part of mathematics�in contrast to expressions like x = 〈y, z〉 which are. The
only formulas whose strati�cation status are implementation-sensitive in this way
are formulas that are not in this sense part of mathematics.

The second one is a bit harder to understand: why should we not have an
implementation that compels y and z to be given di�erent types in a strati�cation
of x = 〈y, z〉�or even make the whole formula unstrati�ed?

If we make x = 〈y, z〉 into something unstrati�ed then we cannot be sure that
X×Y exists, nor that compositions of relations (that are sets) are sets; converses of
relations might fail to exist; and we will not really be able to do any mathematics.
After all, X × Y is {z | (∃x ∈ X)(∃y ∈ Y )(z = 〈x, y〉)} and if z = 〈x, y〉 is not
strati�ed then the set abstraction expression might not denote a set.

However, even if we muck things up only to the extent of allowing x = 〈y, z〉
to be strati�ed with y and z of di�erent types then we will �nd not only that
some compositions of relations (that are sets) are not sets but also that, for some
big sets X, the identity relation 1X is not a set. For example 1V would not be
a set. Let's look into this last point a bit more closely. Suppse �x = 〈y, z〉� is
strati�ed but with y and z being given di�erent types. Then X × Y is {z | (∃x ∈
X)(∃y ∈ Y )(z = 〈x, y〉)} which this time is strati�ed, so X × Y is a set. However
if R ⊆ X × Y and S ⊆ Y × Z then R ◦ S is

{w | (∃x ∈ X)(∃y ∈ Y )(∃z ∈ Z)(〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S ∧ w = 〈x, z〉)}.

This is not strati�ed. If the di�erence between the types of the two components
of an ordered pair is n, then x and y have types di�ering by n, and y and z too
have types di�ering by n, and x and z have types di�ering by 2n, so although
we can stratify 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S we will not be able to stratify 〈x, y〉 ∈
R ∧ 〈y, z〉 ∈ S ∧ w = 〈x, z〉.

The problem with 1X arises because (∃x ∈ X)(y = 〈x, x〉) is not strati�ed, so
its extension is not certain to be a set. By the same token no permutation of a set
can be relied upon to be a set. The (graph of the) relation of equipollence might
fail to be re�exive, or symmetrical, or transitive.

The conclusion is that if we want our implementation of mathematical concepts
into set theory to be tractable from the NF point of view, and to deliver the
projection maps are set functions, which allows further constructions which could be construed
as subverting the type security of the pair, though they are mathematically convenient. For
example, in NFU the existence of a type-level pair implies In�nity. In either theory, the de�nition
of cardinal multiplication is much simpler with a type level pair, but the de�nition clearly involves
a subversion of the security of the cartesian product type.



Alternative set theories 51

routine banalities about relational algebra that we take for granted (existence
of 1X , existence of compositions of relations, existence of transitive closures of
relations whose graphs are sets, and so on) then we want a pairing/unpairing
function that interprets x = 〈y, z〉 as a strati�ed formula with y and z having the
same type. One such ordered pair is the Kuratowski ordered pair that we all know
and love. As it happens, in NF we usually use the Quine ordered pair which we
de�ned in section 6.2.3.

Does the di�erence between Quine pairs and Kuratowski pairs matter? Much
less than you might think. In some deep sense it doesn't matter at all.9 Both of
them make the formula �〈x, y〉 = z� strati�ed and give the variables x and y the
same type; z takes a higher type in most cases (never lower). How much higher
depends on the version of ordered pair being used, but there are very few formulas
that come out strati�ed on one version of ordered pair but unstrati�ed on another,
and they are all pathological in ways reminscent of the paradoxes. The best way
to illustrate this is by considering ordinals in NF. (In NF we implement ordinals
as isomorphism classes of well-orderings). For any ordinal α the order type of
the set (and it is a set) of the ordinals below α is well-ordered. In ZF one can
prove that the well-ordering of the ordinals below α is of length α. In NF one
cannot prove this equation for arbitrary α since the formula in the set abstract
whose extension is the graph of the requisite isomorphism is not strati�ed for any
implementation of ordered pair. Now any well-ordering R of a set A to length α
gives rise to a well-ordering of {{{a}} | a ∈ A}, and if instead one tries to prove
(in NF) that the ordinals below α are isomorphic to the well-ordering of length α
decorated with curly brackets, one �nds that the very assertion that there is an
isomorphism between these two well-orderings comes out strati�ed or unstrati�ed
depending on one's choice of implementation of ordered pair! This is because, in
some sense, the applications of the pairing function are two deep in well-ordering
of the ordinals below α, but only one deep in the well-ordering of the set of double
singletons. If we use Quine ordered pairs, the assertion is strati�ed�and indeed
provable. If one uses Kuratowski ordered pairs (or Wiener ordered pairs) then
the assertion is unstrati�ed and refutable. However if one uses Kuratowki ordered
pairs there is instead the assertion that the ordinals below α are isomorphic to
the obvious corresponding well-ordering of {{{{{a}}}} | a ∈ A}, which comes out
strati�ed (and provable). In general for each implementation of ordered pair there
is a depth of nesting of curly brackets which will make a version of this equality
come out strati�ed and true. This does not work with deviant implementations of
ordered pair under which �〈x, y〉 = z� is unstrati�ed or even with those which are
strati�ed but give the variables x and y di�erent types.

Let us try to prove Cantor's theorem. The key step in showing there is no
surjection f : X →→ P(X) by reductio ad absurdum is the construction of the
diagonal set {x ∈ X | x 6∈ f(x)}. The proof relies on this object being a set, which
it will be if �x ∈ X ∧x 6∈ f(x)∧ f : X → P(X)� is strati�ed. This in turn depends
on �(∃y)(y ∈ P(X) ∧ 〈y, x〉 ∈ f ∧ f : X → P(X))� being strati�ed. And it isn't

9as long as one does not care whether the projection maps are set functions.



52 M. Randall Holmes, Thomas Forster and Thierry Libert

strati�ed, because �〈y, x〉 ∈ f � compels `x' and `y' to be given the same type, while
�f : X → P(X)� will compel `y' to be given a type one higher than `x'. This is
because we have subformulas `x ∈ X' and `y ⊆ x'. Notice that we can draw this
melancholy conclusion without knowing whether the type of `f ' is one higher than
that type of its argument, or two, or three . . . .

However if we try instead to prove that {{x} | x ∈ X} is not the same size
as P(X) (the form of Cantor's theorem appropriate in TST) we �nd that the
diagonal set is de�ned by a strati�ed condition and exists, so the proof succeeds.
This tells us that we cannot prove that |X| = |{{x} | x ∈ X}| for arbitrary X:
graphs of restrictions of the singleton function tend not to exist. (If they did, we
would be able to prove Cantor's theorem in full generality). This gives rise to an
endomorphism T on cardinals, where T (|X|) =: |{{x} | x ∈ X}| which we have
seen earlier. T misbehaves in connection with big sets. If |X| = |{{x} | x ∈ X}|
we say that X is cantorian. If the singleton function restricted to X exists, we
say that X is strongly cantorian. Sets whose sizes are concrete natural numbers
are strongly cantorian. IN (the set of Frege natural numbers) is cantorian, but
the assertion that it is strongly cantorian (which is the same as the assertion that
every inductively �nite set is cantorian) implies the consistency of NF.

NF has various natural notions of `small'. Cantorian and strongly cantorian are
two obvious examples. Strongly Cantorian turns out to be mathematically more
natural. It has nicer closure properties and does more to ensure nice behaviour on
the part of its bearers than cantorian does. Another natural notion is well-founded.
We have recently established [Bowler and Forster, 2009] that every well-founded
set is smaller than Tn(|V |) for every concrete n, so there are no big well-founded
sets. Well-Ordered sounds like a notion of smallness too, but there is a theorem
of Hartogs' that says that there are in some sense arbitrarily large well-ordered
sets. Hartogs' theorem in the exact form in which it is usually stated in ZF is
not provable in NF but the form of Hartogs's theorem appropriate to TST is
provable. There is no analogue for well-ordered sets of the result alluded to above
for well-founded sets: there are well-ordered sets whose size is 6≤ T (|V |).

INDUCTIVE DEFINITIONS IN NF

Mathematics is replete with �inductively� de�ned sets�sets de�ned by a recursion.
Any set theory that claims to provide a foundation for mathematics must prove
that these sets exist, and the more transparent the proof is the happier we will all
be. The paradigmatic inductively de�ned set is IN, the set of natural numbers. It
is the ⊆-least set containing 0 and closed under successor. That is to say it is the
intersection of all sets that contain 0 and are closed under successor. When can
we prove the existence of intersections? Well (as long as Y is nonempty)

⋂
Y is a

set because it is a subset of
⋃
Y�and that will be a set as long as Y is, because

we have the Axiom of Union. That is the situation in ZF. However we should steel
ourselves for trouble because prima facie there is no reason to suppose that the
collection of all sets-containing-0-and-closed-under-successor is a set. However if
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there is even one set X that contains 0 and is closed under successor then we know
that the set IN that we are trying to de�ne will be a subset of X. If Y is a set-
containing-0-and-closed-under-successor then X∩Y will be another such. In these
circumstances the intersection of all sets-containing-0-and-closed-under-successor
is going to be the same as the intersection of all-subsets-of-X-containing-0-and-
closed-under-successor. This last object is certainly going to be a set because it is
a subset of X.

The usual formulation of the Axiom of In�nity in ZF is geared precisely to
the problem of proving that IN�indeed a particular implementation of IN�exists.
It says that there is a set which contains ∅ and is closed under λx.x ∪ {x}. In
the von Neumann implementation of arithmetic ∅ is the implementation of 0 and
λx.x ∪ {x} is the implementation of successor. Thus it hands us on a plate an X
containing-0-and-closed-under-successor.

The reader may feel that this is rather ad hoc. It is, and in two ways. For one
thing this form of the Axiom of In�nity is unnecessarily speci�c and informative.
It would be equally satisfactory to take the axiom in a form that says merely that
there is an in�nite set (one the same size as a proper subset of itself). It is ad
hoc also in the sense that it solves only one case of the problem of proving the
existence/sethood of inductively de�ned collections. The general problem remains
unsolved: in ZF we cannot in general de�ne inductively de�ned sets �top-down� as
the intersection of a suitably closed family of sets; we cannot rely on there auto-
matically being a set that contains the founders and is closed under the operations
in question.10

The predicament can be illustrated by considering two examples of inductively
de�ned families. In any topological space, the family of Borel sets is the smallest
collection of sets containing all open and closed sets and closed under countable
unions and complementation. In this case we have a set�namely the power set of
the space in question�that contains all open and closed sets and is closed under
complementation and countable union, so we can obtain the family of Borel sets
as a subset of it. In contrast, if we try to prove the sethood of the collection of
hereditarily countable sets (which is the ⊆-least set containing all its countable
subsets) there is no obvious natural set, visible in the light of day, which contains all
its countable subsets.11 What can we do? We can approach the desired collection
�from below� by starting with the set of all the founder objects (which in the case
of HC is empty) and iteratively closing under the operations of interest. In the
case of HC this means adding at each stage�to the stage-in-hand�all countable
subsets of that stage. Then we hope to reach a �xed point. In fact we do reach
one�and after fewer than ω2 steps�but establishing this by purely combinatorial
means requires considerable ingenuity.

10More accurately: we cannot do it as easily. Replacement is a great help but the process is
complex and a known problem for beginners. In Zermelo set theory it is in general impossible,
even with foundation or the Axiom of Rank.

11It is true that Vω1 can be proved to contain all its countable subsets if we use ACω but this
is a red herring, since the existence of HC can be proved without using ACω .
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Typically these iterative �from below� constructions are done by iteration along
the ordinals. It doesn't much matter how we implement ordinals, and in principle
any su�ciently long well-ordering will do. (This point is not generally appreciated.
The fact that von Neumann ordinals from ω · 2 onwards cannot be proved to exist
in Zermelo doesn't mean that we cannot in Zermelo prove termination of iterative
processes of arbitrary countable length: we most certainly can). There's the rub:
how do we know that there always is a su�ciently long well-ordering? That's
where Hartogs' theorem comes in. Suppose our desired object D can be obtained
as the union of a well-ordered collection of stages that we construct by recursion
over a (any) well-ordering. Hartogs' theorem says that for any set X there is
a well-ordering too big to be embeddable into X. Thus if our desired object D
really does exist, then a well-ordering too big to be embeddable into D will be a
well-ordering long enough for us to construct the sequence of stages by recursion
over it. Thus Hartogs' theorem tells us that if a recursive de�nition crashes, it
won't be because we have run out of ordinals.

Of course we should not expect to be able to prove the sethood of arbitrary
inductively de�ned collections: some such collections are paradoxical. But what
one would like is to have smooth proofs of the existence/sethood of the nonpara-
doxical collections, and this we do not really have. (A good illustration of this
is the di�culty�alluded to above�that we have in proving that the collection of
hereditarily countable sets is a set).

In NF the existence of big sets restores the possibility of direct top-down de�ni-
tions of inductively de�ned sets: any inductively de�ned set that can be de�ned at
all can be given a direct �top-down� de�nition. (This is for the gratifyingly simple
reason that�whatever your founders and operations�the universal set contains
all founders and is closed under all operations, so when we take the intersection of
the set of all sets containing the founders and closed under the operations we are
not taking the intersection of the empty set). Thus we obtain the e�ect of Har-
togs' theorem without actually having the theorem itself (as it is usually phrased
in ZF).

That is not to say that every inductively de�ned collection is a set. An induc-
tively de�ned collection (least thing containing this and closed under that) will be
a set as long as the property of being-a-set-that-contains-this-and-is-closed-under-
that is strati�ed. If that is a strati�ed property then the collection of all sets that
contain-this-and-are-closed-under-that is a set and its intersection (which is the
inductively de�ned collection we want) will be a set. This proviso is important,
because we need somehow to block the existence of arbitrary inductively de�ned
collections. The trouble is that this strati�cation proviso seems to block too much.
The property of containing-all-your-countable-subsets is not strati�ed, so we can-
not use NF axioms to prove the sethood of the intersection of all sets with it.
The existence of HC (the set of well-founded hereditarily countable sets) is not
provable in NF if NF is consistent. One should emphasise here that NF does not
appear to have anything like a proof that HC cannot be a set. There is a suite
of sensible-looking axioms that one can add to NF to get the well-founded sets to
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exhibit all the behaviour that ZF says they should. These axioms take the form of
saying that the collections of cantorian (�nice�) cardinals and ordinals are closed
under certain natural operations.

The strati�cation constraint means that we have to be very careful when im-
plementing these operations. An important example is cardinal exponentiation.
Since (as we have seen) A and {{y} | y ∈ A} are not reliably the same size,
the two de�nitions of 2α�(i) as |P(A)| where |A| = α or (ii) as |P(A)| where
|{{y} | y ∈ A}| = α�are not equivalent as they are in ZF. It makes a di�erence
which one we choose. If we choose the second it turns out (easy to check) that the
property of containing a given cardinal α and being closed under exponentiation
is strati�ed. This means that the collection {α, 2α, 22α . . .} is a set for all α. Were
we to use the other de�nition it wouldn't be.

However, although such inductive constructions as can be executed at all can
be executed in the direct top-down fashion, it is still possible to import ordinals
into a description of this activity. Suppose our inductive construction starts from
a set X with a strati�ed de�nition (so it is {x | φ} for some strati�ed formula φ
with one free variable) and we want to obtain the least superset of X closed under
some in�nitary homogeneous operation. Examples would be: union of countable
subsets; or F (X) =: {y | (∃f : y →→ X)( is countable-to-one}. F is the operation
taking us from each stage to the next stage. The collection of F -stages is the least
set containing X, and closed under F and unions of chains. It is of course a set,
and it is�for the usual reasons�well-ordered by ⊆. Therefore one can associate
an ordinal with every F -stage. (As usual there are several ways of doing it: (i)
the set of stages and the set of ordinals are alike wordered so there is a canonical
map between them; (ii) each stage bounds an initial segment which has an ordinal
for its length. (ii) is guaranteed to work even though (i) isn't). Notice that in this
treatment we do not use Hartogs' theorem.

Now we are in a position to �nd an echo of the ZF way of doing things. The
closure ordinal α is in a weak sense well-behaved. Let f be the map that sends
the ordinal α to the αth stage in the construction. f has a strati�ed de�nition
without parameters, so the expression

(∀α)(∀β)(f(α) = f(β)←→ f(T (α)) = f(T (β)))

is strati�ed (fully strati�ed: it has no parameters and only the one free variable)
and so it can be proved by induction on ordinals. This means that if α is the
closure ordinal (that is to say, the least β such that f(β) = f(β + 1)) then so is
T (α).

It would close the circle very nicely if we knew that every closure ordinal of a
strati�ed recursion were strongly cantorian, but I see no proof. Perhaps it's a very
strong assumption.

Armed as we now are with a clearer understanding of recursive de�nitions in
NF, we can return to an earlier topic. There does seem to be a faint chance
that the big sets could yet tell us something about well-founded sets. If we de�ne
exponentiation of cardinals in NF so that 2α is |P(A)| where α is |{{x} : x ∈ A}|�
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as we have in fact resolved to do�we �nd that for some cardinals α the cardinal
2α cannot be de�ned. A brief look at the de�nition will reassure us that if α is a
cardinal of the form |{{x} | x ∈ A}| then 2α is de�ned, but that 2α is not de�ned
if α 6≤ T (|V |). So, for a cardinal α, it may well happen that the sequence

α, 2α, 22α . . .

is �nite. We now know that this object will always be a set in NF, since the
property of containing α and being closed under exponentiation is strati�ed. In
the NF literature this set is called φ(α). Now let A be suitable big set (this is only
ever going to give us interesting results if A is big) and α its cardinal and consider
the sequence

|φ(α)|, |φ(T (α))|, |φ(T 2(α))| . . .
of natural numbers. We can prove that |φ(T (α))| ≥ T (|φ(α)|)+1 always; we know
that for some α it can happen that for n su�ciently large |φ(Tn(α))| is ℵ0 but
it is known that, for at least some big α (such as |V |) |φ(Tn(α))| is �nite for at
least all concrete n. If |φ(Tn(α))| is �nite for all natural numbers n of the model
then the model has a class of natural numbers de�nable with a big cardinal α as a
parameter. Prima facie it is a proper class rather than a set because its de�nition
is highly unstrati�ed, but�again prima facie�there is no obvious reason why the
axiom saying that all such classes are sets should be inconsistent. Nor is there
any obvious reason why sets de�ned in this way with big parameters should be
de�nable without them, so we just might have here a way in which big sets can
tell us something about rather more familiar and mundane sets like IN and <.

6 POSITIVE SET THEORY

6.1 Positive set theory from the Fregean notion of set
The Fregean notion of set is about sets as extensions of propositional expressions,
as presented in Frege's Grundgesetze der Arithmetik . More properly, given that
Frege takes the notion of function as primitive in developing his system, and par-
ticularly in his analysis of propositional expressions, the Fregean notion of set is
about sets as extensions of propositional functions. Anyway, whatever it is exactly,
in its original presentation, it is inconsistent.

This was also true of the �rst systems proposed subsequently by the founders of
the λ-calculus and related combinatory logics, which, like the Fregean paradise of
type-free functions, were aimed at incorporating propositional notions, and which
were thus exposed to paradoxes akin to Russell's, such as Curry's paradox.12

Nevertheless, logicians have always been trying to get back into the Fregean
paradise in one way or another. And naturally, since the pure functional part of

12We would here refer the reader to [Seldin, 2009] for a precise account of the history of the
λ-calculus and combinatory logic.
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Frege's system, which is essentially the pure λ-calculus, was proved to be consis-
tent, some have been tempted to locate the �aw in Frege's interpretation of the
propositional component.

Such a way out is taken in [Aczel, 1980] and followed through in [Flagg and
Myhill, 1987a; Flagg and Myhill, 1987b; Flagg and Myhill, 1989] where consistent
systems of illative λ-calculus are proposed. As noticed in [Flagg and Myhill, 1987a],
that line of research is in fact closely related to much earlier work by Fitch, as
[Fitch, 1948] and papers therein cited. Additionally, a related approach that makes
explicit reference to Fitch's work as source of inspiration is [Scott, 1975].

All of these proposals apply the `method of iterated truth de�nitions', which
been used successfully (in one variant or another) for consistency proofs of various
systems related to positive set theory, as in [Gilmore, 1974], and whose origin can
thus be traced back to Fitch. However, we shall not elaborate on them herein
as the logics of the corresponding systems are essentially non-classical (excluded
middle fails). That is the price of unrestricted comprehension, after all, to which
one should add the tax of intensionality here, for another drawback common to
those approaches is the loss of the basic principle of extensionality for sets � which
is inherent in the Fregean notion of set.

But was Frege's original interpretation of the propositional component �awed?
In fact, no, as lately shown in [Libert, 2008b], provided one is willing to restrict
comprehension, of course. And the restriction just consists in proscribing the use
in abstraction of those logical connectives that invalidate the �xed-point theorem,
such as negation and implication, which respectively give rise to Russell's and
Curry's paradoxes. Drastically, but remarkably enough, this indeed su�ces to
block the paradoxes. The fragment of Frege's system so obtained is presented as a
system of illative λ-calculus in [Libert, 2008b]. Its pure set-theoretic part, which
is extensional, will provide us with our �rst example of system of (pure) positive
set theory. Here is its axiomatization.

Consider the language of set theory given by the following abstract syntax:

vara : υ ::= x, y, z, ...

terma : τ ::= υ | {υ | ϕ}
forma : ϕ ::= ⊥ | > | τ1 ∈ τ2 |

ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀υϕ | ∃υϕ |
¬ϕ | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

Note that the equality relation is not taken as primitive here. As usual, in any
extensional framework, x = y can be de�ned by ∀z(z ∈ x ↔ z ∈ y), provided the
following formulation of the Axiom of Extensionality is adopted:

ext : ∀z(z ∈ x↔ z ∈ y)→ ∀z(x ∈ z ↔ y ∈ z)

Positive formulas, which we denote by adding the superscript `+' to metavariables,
are those formulas obtained without using the last line of the formation rules.
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Naturally, Positive Comprehension in this language is de�ned as the Axiom of
Comprehension restricted to the set form+

a of positive formulas, i.e.:

{form+
a } : ∀x(x ∈ {x | ϕ+} ↔ ϕ+)

And the �rst system of positive set theory on which we shall now focus is:

PSTa :≡ ext + {form+
a }

The consistency of PSTa was established in [Hinnion and Libert, 2003], with-
out any reference to Frege's system. Note that the consistency of {form+

a } can
easily be proved by a term model construction, using the method of iterated truth
de�nitions, as in [Gilmore, 1974]; but that extensional term models can indeed
be obtained by that method requires a subtle analysis of it, as shown in [Hinnion
and Libert, 2003]. A historical account of consistency problems for positive com-
prehension principles can be found in [Libert, 2004], where these are traced to
Skolem's late work, e.g. [Skolem, 1960] which already provides some insight into
another consistency proof of PSTa, as follows.

The appropriate way of looking at sets described by PSTa is as extensions of
propositional functions, indeed. This was emphasized in [Libert, 2008a] where
natural topological models are considered. And these are obtained in exactly the
same way as the topological models of the pure λ-calculus: they come up from
solutions to the re�exive equation U ∼= [U → 2] in the category of Scott spaces,
where [U → 2] is the set of Scott-continuous functions from U to the Sierpinski
space 2 of truth values13 � whereas we recall that Scott topological models of the
pure λ-calculus appear as solutions to U ∼= [U → U ]. Connections with the λ-
calculus being disclosed, it was not long before PSTa could �nally be related in
[Libert, 2008b] to some fragment of Frege's system.

The condition on a propositional function for its extension to exist here is Scott-
continuity, which can thus be regarded as a safety property for avoidance of the
paradoxes. Given that [U → 2] is naturally isomorphic to the space of Scott
open subsets of U , one may equally look at PSTa as the pure set-theoretic system
associated with the limitation of comprehension to so-called observable predicates.
Moreover, the following �rst-order axiom scheme, whose semantical interpretation
is clear, is then satis�ed in any topological model of PSTa described above:

(2) : ∃y∀z(z ⊆ y ↔ ∀x(x ∈ z → ϕ))

So a natural extension of PSTa as formal system is PST2
a :≡ PSTa + (2), which

is our �rst example of a system related to topological set theory.
Any extension of PSTa will however be characterized by a rather peculiar fea-

ture: the non-existence of singletons. For the reader may have noticed that the
extensional equality relation is not positive, so it cannot be used in comprehension.
And this seems to be unavoidable, as the consideration of {x | {y | x ∈ x} = {y |

13I.e., 2 := {1, 0}, with 1 as the true, 0 as the false, and where {1} is open, but not {0}.
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⊥}} will show.14 But this can be related to another feature of the formalization of
PSTa: the use in the object language of the abstraction operator `{· | −}', a rem-
nant of the development of that system from systems with functional abstraction
(λ-calculi).

Although it is related to the Fregean notion of set, such a system as PST2
a

is likely to disconcert anyone who attempts to resurrect Frege's logicist program
through it. Anyway, as we shall now see, there are more natural versions of positive
set theory which are more appropriate for mathematical purposes.

6.2 Positive set theory seen from the Cantorian point of view
The Cantorian notion of set is sets-as-used-in-mathematics. Despite the emergence
of paradoxes in its naïve formulation, the general understanding was that the
mathematical notion of set should be coherent. This notion is now usually regarded
as being based on an intuitively safe conception of sets as abstract collections,
which we now describe.

In any instance of the abstraction process of set formation, it seems natural to
assume that we must have available all the objects that are to be members of the
set to be constructed, and that this always provides us with a new abstract object,
which therefore cannot be involved in that particular instance of application of the
abstraction process, nor in any previous one, but can be involved in subsequent
ones.

That view is supported by the observation that sets occurring in every clas-
sical �eld of mathematics are indeed obtainable by iterated application of that
�well-founded� abstraction process from some given collection of primitive objects
(e.g. numbers). This gives rise to the intuitive cumulative hierarchy picture: a
universe of sets built up in stages, which appears as the core of any set-theoretic
universe described by what we called `ZF -like axiomatizations' � the underlying
principle of specialized comprehension essentially guaranteeing that that construc-
tion can be carried out.

Let us now have a closer look at sets that can be so obtained ex nihilo in a �nite
number of steps (this will avoid questions about in�nity). The collection of those
sets, each of which is obviously �nite, is denoted by Vω. It is called the universe of
hereditarily �nite well-founded sets, which is the �rst limit step of von Neumann's
implementation of the cumulative hierarchy, i.e.:

V0 := ∅, Vn+1 := P(Vn), Vω :=
⋃
{Vn | n < ω},

where P(·) is the powerset operation available in any ZF -like axiomatization.
As widely known, the set-theoretic structure 〈Vω; ∈〉 is an inner model of ZF

minus in�nity. Note also that 〈Vω; ∈〉 is somehow captured by the family of (�nite)
set-theoretic structures 〈Vn; ∈〉, n > 0, seeing that x ∈ y for x, y ∈ Vω i� there

14Let R := {x | {y | x ∈ x} = {y | ⊥}}. We have R ∈ R i� {y | R ∈ R} = {y | ⊥} i�
R ∈ R↔ ⊥ i� ¬(R ∈ R).
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is some n > 0 such that x, y ∈ Vn and x ∈ y. In categorical terms, we say that
〈Vω; ∈〉 is the inductive (or direct) limit of the 〈Vn; ∈〉's. Let us formalize things
carefully, if perhaps pedantically, in order to make clearer the comparison with
the construction we are going to consider next.

For each n > 0, let in : Vn ↪→ Vn+1 : x 7→ x be the canonical inclusion map,
and let 〈Vn;∈in〉 be the set-theoretic structure de�ned by x ∈in y i� x ∈ in(y),
that is, x ∈ y. So 〈Vn,∈in〉 is nothing but 〈Vn; ∈〉. We note that each in is
obviously an injective ∈-morphism of 〈Vn;∈in〉 into 〈Vn+1;∈in+1〉, i.e., x ∈in y
implies in(x) ∈in+1 in(y). Thus we have properly de�ned a direct system (〈Vn;∈in
〉, in)0<n<ω of set-theoretic structures, whose so-called direct or inductive limit is
just 〈Vω; ∈〉. Indeed, lim−→i

Vn =
⋃{Vn | 0 < n < ω} = Vω, by de�nition, and x ∈iω y

i� there exists n > 0 such that x ∈in y, i.e., i� x ∈ y.
Given that categorical construction, and the familiar set-theoretic structure that

comes with it, it is natural to look at the dual one, as follows.
Let p1 : V2 →→ V1 : x 7→ ∅, and then let pn+1 : Vn+2 →→ Vn+1, n > 0, be

inductively de�ned by pn+1(x) := {pn(y) | y ∈ x}. It is easily seen by induction
that pn ◦ in = idVn , i.e., the restriction of pn on Vn is idVn , so pn is indeed a
surjection. Now, for each n > 1, let 〈Vn;∈pn〉 be the set-theoretic structure de�ned
by x ∈pn y i� pn−1(x) ∈ y; we conveniently de�ne ∈p1 as V1 × V1. It is easy
to prove that each pn is a surjective ∈-morphism of 〈Vn+1;∈pn+1〉 onto 〈Vn;∈pn〉,
i.e., x ∈pn+1 y implies pn(x) ∈pn pn(y). Thus we have de�ned an inverse system
(〈Vn;∈pn〉, pn)0<n<ω of set-theoretic structures, which is naturally associated with
the direct system above. Let 〈Nω;∈pn〉 be the so-called inverse or projective limit
of that system, i.e.,

Nω := lim←−
p

Vn = {ξ ∈
∏
{Vn | 0 < n < ω} | ∀n > 0, pn(ξn+1) = ξn},

and ξ ∈pω ζ i� for all n > 0, ξn ∈pn ζn. What is that toy, yet natural, set-theoretic
structure a model of?

The �rst thing to note is that 〈Nω;∈pω〉 is extensional. A proof of this would
make use of the following `extension lemma': given x ∈ Vω, ζ ∈ Nω, if x ∈pn ζn for
some n > 0, there exists ξ ∈ Nω such that ξn = x and ξ ∈pω ζ. We would also
invite the reader to convince himself that 〈Nω;∈pω〉 is an end-extension of 〈Vω; ∈〉.
More precisely, for any x ∈ Vω, let ρ(x) be the rank of x, that is, the least n < ω
such that x ∈ Vn+1. Then, one can prove that the map e : Vω → Nω de�ned
by e(x) := (. . . , pρ(x)−1(pρ(x)(x)), pρ(x)(x), x, x, . . .), is an embedding of 〈Vω; ∈〉 as
initial part of 〈Nω;∈pω〉, i.e.: e is an injective ∈-morphism and if ξ ∈pω e(y) for
some y ∈ Vω, there exists x ∈ Vω such that ξ = e(x) and x ∈ y. Thereupon we
note that 〈Nω;∈pω〉 is really a proper extension of 〈Vω; ∈〉. For instance, it is easy
to see that pn(Vn) = Vn−1 for all n > 0, so ν := (Vn−1)0<n<ω ∈ Nω, and then that
for all ξ in Nω, ξ ∈pω ν. Therefore, there is a universal set in 〈Nω;∈pω〉, namely ν,
whereas there is no such set in 〈Vω; ∈〉. There are by far many other unusual sets
in 〈Nω;∈pω〉, simply because Nω has the power of the continuum, whereas Vω is
countable!
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As a matter of fact, Nω could have been presented as a topological completion
of Vω, in the same way as the real numbers can be presented as the Cauchy
completion of the rational numbers. The notion of convergence in Nω is de�ned
so that for all ξ in Nω, ξ = limn→∞ e(ξn). In other words, sets in Nω can be
described as limits of hereditarily �nite well-founded sets. Other presentations of
Nω as a mathematical structure can be found in [Abramsky, 1988], where 〈Nω;∈pω〉
is depicted as the universe of �nitary non-well-founded sets.

One precise characterization of Nω is as the solution to a re�exive equation of
the form U ∼= Pcl(U) in the category of compact metric spaces, where Pcl(U) is
the set of closed subsets of U . This reminds us of the topological models of PSTa

discussed earlier, which appear as solutions to the equation U ∼= Pop(U) in the
category of Scott spaces, where Pop(U) is the set of open subsets. So this suggests
that set-theoretic universes as 〈Nω;∈pω〉 could be related to positive set theory
as well. Actually, such set-theoretic structures turn out to be the topological
models associated with another natural version of positive set theory, which can
be axiomatized as follows.

Consider the language of set theory whose formulation rules are:

varb : υ ::= x, y, z, ...

formb : ϕ ::= ⊥ | > | υ1 ∈ υ2 |
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | (∀υ1 ∈ υ2)ϕ | (∃υ1 ∈ υ2)ϕ |
¬ϕ | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

Again, we call positive those formulas obtained without using the last line of the
formation rules, which we indicate by the superscript `+' on metavariables. We
stress the presence of bounded quanti�ers as primitive positive operators here,
but the absence of the abstractor `{· | −}' as primitive term constructor. Positive
comprehension, that is, the restriction of the Axiom of Comprehension to the set
form+

b of positive formulas, is then expressed in this language by:

{form+
b } : ∃y∀x(x ∈ y ↔ ϕ+)

And the corresponding system of positive set theory in which we are interested
now is:

PSTb :≡ ext + {form+
b }

Note immediately that the equality relation, which is not primitive here, can how-
ever be de�ned by a positive formula, i.e.,

x = y :≡ (∀z ∈ y)z ∈ x ∧ (∀z ∈ x)z ∈ y.

So singletons are innocent de�nable objects in PSTb, in contrast with PSTa.
Thanks to bounded quanti�cation, other set-theoretic operations that were not
available in PSTa are now legitimate, as notably the power-set operation, P(y) :=
{x | (∀z ∈ x)z ∈ y}, which thus can be de�ned positively according to this crite-
rion. Note also that the usual `unbounded' quanti�ers can be recovered from the
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primitive bounded ones, by de�ning ∀vϕ as (∀v ∈ V)ϕ and ∃vϕ as (∃v ∈ V)ϕ,
where V is the universal set, whose existence follows from PSTb.

As said above, the consistency of PSTb can be established by means of Nω,
and more generally of topological models that appear as solutions to the re�ex-
ive equation U ∼= Pcl(U) in some category of compact Hausdor� spaces. These
topological models clearly satisfy the dual of the axiom scheme (2) in Section 2,
namely:

(3) : ∃y∀z(y ⊆ z ↔ ∀x(ϕ→ x ∈ z))
So the natural extension of PSTb as formal system is PST3

b :≡ PSTb + (3).
Interestingly, it was shown in [Esser, 1997]15 that ZF minus in�nity can be

interpreted within PST3
b , which de�nitely distinguishes that system from PST2

a .
In fact, ZF (with in�nity) is naturally interpretable in PST3

b augmented with von
Neumann's Axiom of In�nity.16 The resulting system, called GPK+

∞ in [Esser,
1997], is then proved to be mutually interpretable with a large cardinal extension
of the Kelley-Morse set theory. So there is undoubtedly a natural version of positive
set theory which is at least as suitable as ZF for mathematical purposes.

The relative consistency of GPK+
∞ in [Esser, 1997] was essentially established

in [Forti and Hinnion, 1989], which provides a general construction of a hierarchy
of Nα's, such that for any weakly compact cardinal κ, Nκ is a topological model of
GPK+

∞ containing Vκ (the von Neumann hierarchy up to κ). Such structures, sub-
sequently called hyperuniverses, have been extensively studied since then, e.g. in
[Forti and Honsell, 1996a; Forti and Honsell, 1996b]. As is explained in [Forti and
Hinnion, 1989], they were independently investigated in [Weydert, 1989] for the
purpose of topological set theory, to which subject we shall now turn. Note inci-
dentally that the constructions given in [Forti and Hinnion, 1989] and [Weydert,
1989] were both inspired by the pioneering work of Malitz [Malitz, 1976], which
can also be classed as a contribution to topological set theory.

6.3 Topological set theory
We have met two variants of positive set theory, namely PSTa and PSTb, which
can respectively be extended by the (�rst-order) topological axioms schemes (2)
and (3).17 These were suggested by the corresponding topological models, whose
interest is manifest: in such topological set-theoretic structures, even though not all
de�nable subsets of the domain can be abstracted (because of Russell's paradox),
each of these can at least be optimally approximated by the largest [resp. the
smallest] set contained in [resp. containing] it. So each of the axiom schemes (2)

15Esser's thesis was subsequently published in [Esser, 2004]; see also [Esser, 1999] for a related
paper.

16In the form: `there exists an in�nite von Neumann ordinal'.
17By the way, we mention that PSTa could equally be extended by (3), by duality, that is,

PST3
a is consistent (see [Libert, 2008a] for details). On the other hand, PST2

b is inconsistent
merely because (2) is incompatible with the existence of all singletons (see [Libert and Esser,
2005]).
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and (3) provides on its own an approximate version of the naïve comprehension
scheme.

Such an idea of approximation of naïve comprehension � the essence of topo-
logical set theory � originated in a paper by Skala [Skala, 1974], which was sub-
sequently re�ned by Manakos [Manakos, 1984]. Although Skala's paper is cited
in the references of [Weydert, 1989] and [Malitz, 1976], and so might have been a
source of inspiration in those works, the proposal she made is clearly distinguish-
able from the others in that her system is based upon both (2) and (3), together
with an axiom for the existence of complements, which we denote by (C).18 So it
is not at all a system of positive set theory! Besides, Skala's proposal is purely ax-
iomatic, with no attempt at giving any topological characterization of the models.
As shown in [Libert and Esser, 2005], the model theory of Skala's system is quite
simple though.

The natural models of (2)+(3)+(C) appear as solutions to a re�exive equation
of the form U ' Pclop(U) in the category of quasi-discrete spaces, where Pclop(U)
is the set of clopen subsets of U , which precisely coincides for quasi-discrete spaces
with both Pcl(U) and Pop(U) � the reason why both (2) and (3) hold in these
models. Thereupon we recall that Pclop(U) is a complete Boolean algebra, so there
is actually no restriction in Skala's set theory on the use of logical connectives and
quanti�ers in comprehension, which is in contrast with the situation in positive set
theory. The restriction, for there should be one, is relegated to the atomic level
and is rather of a syntactical nature here, as follows.

Consider the simple language of set theory whose formation rules are:

varc : υ ::= x, y, z, ...

formc : ϕ ::= ⊥ | > | υ1 ∈ υ2 |
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀υϕ | ∃υϕ |
¬ϕ | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

Let ϕ[υ[ denote any formula of formc in which the variable υ does not appear on
the right-hand side of ∈, and let formc[υ[ be the set of those formulas. Given
a concrete variable, say x, we then naturally de�ne the restriction of the axiom
scheme of Comprehension to formc[x[ by:

{formc[x[} : ∃y∀x(x ∈ y ↔ ϕ[x[)

It is proved in [Libert and Esser, 2005] that ext + (2) + (3) + (C) is equivalent
to ext + {formc[x[}. So Skala's set theory can equally be presented as a type-free
system based on a very simple syntactic criterion for avoidance of the paradoxes,
which, in view of Russell's paradox, remains the only option if one wants a Boolean
set-theoretic universe in a type-free setting.19 But this has drastic consequences.

18Manakos in [Manakos, 1984] dropped this last assumption in order to consider other possible
extensions of the basic system (2) + (3); see [Libert and Esser, 2005] for details.

19Clearly, the restriction on the abstracted variable to appear on left-hand side of ∈, which is
the other option, would seem even less sensible.
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Thus we observe that x = y, which was de�ned by ∀z(z ∈ x↔ z ∈ y), is neither
in formc[x[ nor in formc[y[. Hence, the extensional equality relation cannot be
used in instances of comprehension. However, what is called the indiscernibility
relation, which is de�ned by x .= y :≡ ∀z(x ∈ z ↔ y ∈ z), can be used instead.
Furthermore, quasi-singletons, i.e., sets of the form {x | x .= y}, appear as atomic
objects in Skala's set theory, for any set is provably equal to the union of the
quasi-singletons of its members. That the naïve conception of set can somehow
be salvaged when indiscernibility plays the role of equality may not be devoid
of philosophical interest. This was taken seriously in [Apostoli and Kanda, to
appear; Apostoli and Kanda, 2000], where elaborated quasi-discrete solutions to
U ' Pclop(U) are constructed, without any reference to Skala set theory, but in
connection with rough set theory.

On the other hand, the non-de�nability of the usual operation of forming single-
tons does not entail their non-existence. As a matter of fact, it is proved in [Libert
and Esser, 2005] that any given set-theoretic universe in which all singletons exist
(e.g. a model of ZF ) can consistently be embedded as the class of objects admit-
ting singletons in some model of Skala's set theory. In other words, although it is
intrinsically weak, Skala's system is very adaptable.

In any case, such an axiomatic set theory should not be regarded as (and then
compared to) a classical axiom system, that is, one for which we have in mind
some standard interpretation � which is the case of ZF for instance. Rather, it
appears as a general axiom system, as the one of the theory of Boolean algebras,
to which it is closely related. After all, thinking of sets as extensions of predicates,
one might expect that some set-theoretic universe or another could re�ect the
Boolean structure of classical logic.

Hopefully the various set-theoretic systems presented in this survey will have at
least convinced the reader of what mathematicians have discovered through their
investigations, namely that set theory is de�nitely not unique.

6.4 A development of mathematics in GPK+
∞

In this section we give a brief self-contained presentation of Oliver Esser's system
GPK+

∞ of [Esser, 1999], the most mathematically e�ective system of positive set
theory.

GPK+
∞ is a �rst-order theory with equality and membership as primitive rela-

tions.

Extensionality: (∀AB.(∀x.x ∈ A↔ x ∈ B)→ A = B)

De�nition: Let the class of (bounded) positive formulas be the smallest class
containing the formula x 6= x (useful because uniformly false), all atomic for-
mulas, and closed under conjunction, disjunction, bounded universal quan-
ti�cation (∀x ∈ A.φ) and existential quanti�cation (∃x ∈ A.φ).

Positive Comprehension: For any positive formula φ in which A does not ap-
pear, (∃A.(∀x.x ∈ A↔ φ)).
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Closure: For any formula φ, there is a set C such that (∀D.C ⊆ D ↔ (∀x.φ →
x ∈ D)) (a set minimal in the inclusion order among all sets which include
the possibly proper class {x | φ}). This is what was referred to above as
(3) and it should be noted that this is equivalent to the assertion that any
de�nable class of sets has set intersection.

De�nition: The von Neumann ordinal ω is the intersection of all sets which
contain ∅ and are closed under the von Neumann successor operation x 7→
x ∪ {x}. By Closure, ω is a set.

De�nition: A set x is isolated i� {x}c = {y | y 6= x} is a set.

In�nity: Each element of ω is isolated. (We have stated this axiom in a form
speci�cally designed to make our brief development more e�cient).

We start working toward an interpretation of ZF in this theory.

Observation: {x, y} is a set ({z | z = x ∨ z = y}) Moreover z = {x, y} is
equivalent to a positive formula x ∈ z ∧ y ∈ z ∧ (∀w ∈ z.z = x∨ z = y). It is
important in a development of this theory to know what term constructions
can appear freely in positive formulas, as we have just shown the unordered
pair (and so the usual ordered pair) can. Similarly, x ∪ y and x ∩ y can be
mentioned freely in positive formulas. For any set x,

⋃
x = {y | (∃z ∈ x.y ∈

z)} and P(x) = {y | (∀z ∈ y.z ∈ x)}. Note that the axioms of Pairing,
Union, and Power Set of the usual set theory thus hold. y =

⋃
x is known

to be equivalent to a positive formula; y = P(x) is not known to expressible
in positive form. We cannot expect the Axiom of Separation to hold, as the
formula φ determining an instance of the axiom is not necessarily positive.

Observation: Let A be a set all of whose elements are isolated. Then {x ∈ A | φ}
exists for every formula φ by an application of Closure (take the intersection
of all the sets A \ {y} such that y ∈ A and ¬φ[y/x].
Similarly, if φ(x, y) is a functional formula ((∀x.(∃y!.φ(x, y)))) and A is a
set all of whose elements are isolated, then {y | (∃x ∈ A.φ(x, y))} is a set.
Let F ∗ be the closure of the class of all (x, y) such that φ(x, y). There is a
set {(x, y) | x ∈ A ∧ (x, y) ∈ F ∗}. Let F (x) denote the unique y such that
φ(x, y). For each x ∈ A, there is a set {(u, v) | x 6= u∨ v = F (x)}. From the
existence of these sets, it follows that the intersection of all sets containing
the class {y | (∃x ∈ A.φ(x, y))} is exactly that class, and so the class is a set.

Observation: If all elements of A are isolated, then A is isolated. The function
d such that d(x) = V \ {x} for each x ∈ A is a set by the second half of
the previous observation. We want to show that Ac is a set. x 6= A is
equivalent to (∃y ∈ A.y 6= x) ∨ (∃y ∈ x.y 6∈ A). This is in turn equivalent
to (∃y ∈ A.y ∈ d(x)) ∨ (∃y ∈ x.(∀z ∈ A.y ∈ d(z))). Finally, u ∈ d(v) is
equivalent to (u, v) ∈ d, and we know that pairs can be mentioned freely in
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positive formulas. Since x 6= A is equivalent to a positive formula, Ac is a
set as desired.

The observations above are su�cient to suggest that the class of hereditarily
isolated sets satis�es the axioms of ZF, though some additional details would need
to be attended to in a full presentation.

One can then develop an adequate theory of proper classes of hereditarily iso-
lated sets (closures of arbitrary classes of hereditarily isolated sets). This theory
will satisfy Kelley-Morse set theory, with one further surprise: one can prove that
the proper class ordinal in the interpreted Kelley-Morse set theory is weakly com-
pact.

Conversely, there is a construction of a model of GPK+
∞ in ZFC with a weakly

compact, and in fact one can show that GPK+
∞ is precisely as strong as Kelley-

Morse set theory with the proper class ordinal weakly compact. This is consider-
ably stronger than ZFC.

An interesting weaker theory is obtained if one drops the Axiom of In�nity
(which was referred to above as PST3

b , after the description of its natural model
Nω). This allows ω to have a non-isolated element, namely ω itself (ω becomes
the topological limit point of the �nite von Neumann ordinals). This theory has
the same strength as second-order arithmetic.

7 SYSTEMS MOTIVATED BY NONSTANDARD ANALYSIS

In this section we discuss systems of set theory which can be regarded as motivated
by the nonstandard analysis of Abraham Robinson [Robinson, 1966]. These theo-
ries can be characterized by the presence of what Vopěnka calls proper semisets:
subcollections of sets which are proper classes. Of course, any set theory with a
universal set must have proper semisets (the Russell class being a subclass of the
universe) but in the theories here we postulate that �small� familiar sets such as
N have proper subclasses.

7.1 Nonstandard analysis
Consider the �rst-order theory of the real numbers (the precise details of this
theory are not important here). The collection of sentences {c > 0, c < 1, c <
1
2 , . . . , c <

1
n , . . .}, where c is a new constant, is consistent (any �nite subcollection

is readily satis�ed by taking c to be positive and su�ciently small), so by the
compactness theorem the theory of the real numbers has models in which this
collection of sentences is satis�ed.

In such a model, we can think of c as a positive in�nitesimal, for c is smaller than
any of the familiar real numbers, because it is smaller than all the reciprocals of
the familiar natural numbers. But note that of course there are �natural numbers�
N of the model such that 1

N < c.
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If we de�ne an �in�nitesimal� as any real (of our nonstandard model) which is
smaller than all standard 1

n in absolute value (a notion which cannot be de�ned
in terms of the theory of the reals with which we started, because the notion of
a standard natural number does not make sense there), then we can attempt the
program of 17th century analysis.

For example, if f is a function from the reals to the reals de�nable in our original
theory of real numbers, with a derivative f ′(x), it is straightforward to show that
f(x+dx)−f(x)

dx di�ers in�nitesimally from f ′(x). So we can de�ne f ′(x) for each
standard real x as the unique standard real y which di�ers in�nitesimally from
f(x+dx)−f(x)

dx for each in�nitesimal dx. A very appealing development of analysis
in this style is possible.

Robinson presented nonstandard analysis in the framework of model theory.
In his approach, one considers a model R∗ of the theory of the real numbers,
containing all the usual reals (which are called the �standard� reals) and having
the property that any real of the model which is bounded in absolute value by a
standard real di�ers in�nitesimally from one of the standard reals.

There is an alternative approach, which is to �augment� our set theory with
axioms which ensure that in�nite sets such as N or R have the properties we expect
and at the same time have proper subclasses (proper semisets) which can play the
role of the collections of �standard� reals or natural numbers in the discussion
above.

7.2 Nelson's IST
Without further ado, we present Nelson's IST (internal set theory, de�ned in [Nel-
son, 1977]) which is motivated exactly by the desire to streamline the development
of nonstandard analysis.

IST is a �rst-order theory with the familiar predicates of equality and mem-
bership and an additional predicate st(x) of �standardness�. It is convenient to
abbreviate (∀x.st(x)→ φ) as (∀stx.φ) and (∃x.st(x) ∧ φ) as (∃stx.φ).

The axioms of IST are of two sorts. First we have the axioms of standard set
theory. Nelson uses the axioms of ZFC, but one could equally well use a weaker
theory such as Mac Lane set theory. The axioms of Separation and Replacement of
IST are modi�ed in that the formulas mentioned in the schemes may not mention
the predicate st: sets may not be de�ned using the predicate st.

There are three additional axioms in Nelson's theory which directly support the
program of standard analysis.

Idealization: Let φ(x, y) be a formula not mentioning st or the variable f (it may
have nonstandard parameters). �for every standard �nite set f , (∃x.(∀y ∈
f.φ(x, y)))� is equivalent to �(∃x.(∀sty.φ(x, y)))�.

Corollary: If φ is taken to be the formula �x is �nite and y ∈ x�, we observe that
the �rst formula is true and by Idealization equivalent to the second, and so
we assert that there is a �nite set which contains every standard object.
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Standardization: For every standard set A, and for any formula φ whatso-
ever (this formula may mention st and nonstandard parameters freely),
(∃stB.(∀stx.x ∈ B ↔ x ∈ A ∧ φ)): the standard elements x of B are ex-
actly the standard elements x of A such that φ.

Transfer: For any formula φ not mentioning the predicate st and containing only
standard parameters, (∀x.φ)↔ (∀stx.φ).

The consistency of these axioms is readily established by standard techniques of
model theory. The advantage for the nonstandard analyst is that they can then use
IST as their set-theoretic framework and not have to directly discuss nonstandard
models of (say) the reals at all.

For the set theorist, it is interesting that the axioms of IST are not recognizably
about analysis: they are set-theoretical in character, though certainly what they
assert is rather odd.

We review how these axioms support the program of nonstandard analysis.
Suppose that the reals are implemented as left sets of Dedekind cuts in the rationals
(which can in turn be supposed implemented in set theory in a quuite usual way).

Idealization gives us a positive in�nitesimal real number. We de�ne an in�nitesi-
mal as a real number which is less in absolute value than any standard real number.
Obviously 0 is in�nitesimal. But we can de�ne a positive in�nitesimal: let ε be
the intersection of all positive reals (considered as left sets of Dedekind cuts in the
rationals) which belong to a speci�c �nite set F containing all standard sets as
elements (the existence of such a set being a corollary of Idealization). Clearly ε
is a positive real (it is the minimum of a �nite set of reals) but it is also less than
every positive standard real (because all of them belong to F ).

Standardization gives us a unique standard real number in�nitesimally close to
any real number which is bounded in absolute value by some standard real. Let r
be a real number which is bounded above in absolute value by some standard real.
By Standardization, there is a standard set r∗ which contains the same standard
elements (r being a subset of the standard set of rationals). It is straightforward
to use Transfer to verify that r∗ is also a real number (since all standard elements
of r∗ are rational numbers, all elements of r∗ without exception are rational num-
bers; since the standard elements of r∗ make up a downward closed subset of the
standard reals without a largest element, r∗ itself is a downward closed subset of
the reals without a largest element: it is important here than r is bounded above
in absolute value by some standard real, as otherwise r∗ could be either empty
or the entire set of rationals and so of course not a real). If r∗ di�ered from r
by a non-in�nitesimal amount, there would be a standard real in their symmetric
di�erence, contrary to the choice of r∗.

Transfer (and the restriction of Separation and Replacement to formulas not
mentioning the new predicate st) ensures that the underlying set theory (and
so the implementation of the reals in the underlying set theory) works exactly
as expected, in spite of the obvious weirdness caused by the presence of proper
subclasses in every in�nite set (strictly speaking, we do not have a theory of classes
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in IST, but we will in the theory considered next, and it would be straightforward
to add a theory of classes to IST itself)

7.3 Vopěnka's alternative set theory
The alternative set theory of Vopěnka (see [Vopěnka, 1979]) is also usable for
nonstandard analysis, but it is conceptually more di�erent from the usual set
theories. It is also much weaker, but mathematically rather interesting.

Vopěnka's theory has sets and classes. We have the usual axioms of Exten-
sionality and Class Comprehension. We follow the convention that capital letters
represent classes and lower-case letters represent sets.

De�nition: �x is a set� means (∃A.x ∈ A) as usual.

Extensionality: (∀AB.(∀x.x ∈ A ↔ x ∈ B) → A = B). Classes with the same
elements are the same.

Class Comprehension: For any formula φ in which A is not free, the universal
closure of (∃A.(∀x.x ∈ A↔ φ)) is an axiom.

The axioms for sets are quite surprising. The theory asserted of sets is equivalent
to ZFC with the Axiom of In�nity replaced by its negation, though the form
presented has independent interest as a way to present the theory of hereditarily
�nite sets.

Empty set: The empty class ∅ (which exists by class comprehension) is a set.

Successor: For any sets x and y, x ∪ {y} = {z | z ∈ x ∨ z = y}, which exists by
class comprehension, is a set.

Induction: For any formula φ in which all parameters are sets and all quanti�ers
are bounded in the class V of all sets, φ[∅/z] ∧ (∀xy ∈ V.φ[x/z] ∧ φ[y/z] →
φ[x ∪ {y}/z])→ (∀z ∈ V.φ). This axiom says in e�ect that all sets are built
up by the iterated application of the successor operation starting with the
empty set.

The Axiom of Foundation for sets is usually listed as an axiom but follows from
Induction.

Now come the peculiarities obviously related to nonstandard analysis.

De�nition: A semiset is a subclass of a set. A proper semiset is a semiset which
is not a set.

Semisets: There is a proper semiset.

De�nition: A set is �nite i� all of its subclasses are sets.
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De�nition: An order of type ω is a well-ordering whose domain is not �nite but
all initial segments of which have �nite domain. A class is countable if there
is a class bijection between it and the domain of an order of type ω. The
class of �nite von Neumann ordinals is provably an order of type ω.

Prolongation: Each countable function F can be extended to a set function.

The Axiom of Semisets has the e�ect of the Idealization Axiom in IST (it ensures
that there are nonstandard sets, in this case nonstandard hereditarily �nite sets).
The notion of �nite here can be understood as (roughly) capturing the notion of a
set of standard �nite size. The function of the Axiom of Prolongation is similar to
that of standardization in IST. It is a distinct oddity of the alternative set theory
as an implementation of nonstandard analysis that there is no analogue of the
Axiom of Transfer.

We review the construction of number systems. There are two �avors of natural
numbers: the system of all the von Neumann ordinals (nonstandard naturals) and
the system of �nite von Neumann ordinals (standard naturals). The real numbers
can be de�ned as Dedekind cuts in the standard rationals (ratios of �nite natural
numbers and their additive inverses): these are not sets, but prolongation can
be used to show that any real can be approximated in�nitesimally by nonstan-
dard rationals, and an interesting nonstandard analysis (not really the same as
Robinson's) can be developed.

There are two more axioms in Vopěnka's system.
Vopěnka considers representations of superclasses of classes using relations on

sets. A class relation R on a class A is said to code the superclass of inverse images
of elements of A under R. A class relation R on a class A is said to extensionally
code this superclass if distinct elements of A have distinct preimages. He �tidies
up� the theory of such codings by adopting the very technical

Axiom of Extensional Coding: Every collection of classes which is codable is
extensionally codable.

The �nal axiom tidies up the theory of in�nite cardinality.

Axiom of Cardinalities: Any two uncountable classes are the same size (i.e,
there is a class bijection between them).

Extensional Coding and Cardinalities together can prove Choice (any class can
be well-ordered). Since Choice easily implies Extensional Coding, the former axiom
might seem more natural. As in pocket set theory, there are only two in�nite
cardinalities, ℵ0 and c. ℵ0 is here the cardinality of the collection of standard
natural numbers, and c is the cardinality of the collection of all natural numbers
(?!).

A model of the alternative set theory in the usual set theory is a nonstandard
model of Vω of size ω1 in which every countable external function extends to a
function in the model. It might be best to suppose that this model is constructed
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inside L (the constructible universe) so that the Axiom of Cardinalities will be
satis�ed. The Axiom of Extensional Coding follows from Choice in the ambient
set theory.

8 CURIOSITIES

In this section we introduce two eccentric theories. One of them has the property
which is usually ascribed to New Foundations (we believe not entirely fairly) of
being motivated by a syntactical trick without any semantic motivation. The
double extension set theory of Andrzej Kisielewicz de�nitely has this property
(and it is not known whether it is consistent).

The other is one of the strongest set theories ever proposed. It is known that
it is inconsistent with ZFC that there is a proper elementary embedding from the
universe to itself. But this proof does not work in Zermelo set theory: Zermelo set
theory with an axiom asserting that there is an elementary embedding from V to
V is of the order of consistency strength of the strongest extensions of ZFC that
have been proposed.

8.1 Double extension set theory
Andrzej Kisielewicz has proposed in two papers (describing three systems: the not-
known-to-be-inconsistent one is described in [Kisielewicz, 1998])) that the para-
doxes of set theory can be averted by providing two di�erent membership relations,
and allowing extensions for each relation to be de�ned using formulas in the other
relation. His strongest systems have been shown to be inconsistent by Holmes (in
[Holmes, 2004]). Holmes also showed that the ordinals in his weaker system have
startling properties (in [Holmes, 2005]).

We describe the version of Kisielwicz's theory which is not known to be incon-
sistent. This is a �rst-order theory with equality and two primitive relations ∈
and ε, both of which are to be thought of as membership. For any formula φ, the
formula φ∗ is obtained by replacing ∈ with ε and vice versa in φ.

De�nition: A set x is said to be regular i� (∀y, y ∈ x↔ y ε x) (i.e., if it has the
same extension with respect to both membership relations).

Axiom of Comprehension: For each formula φ which does not mention ε, in
which any parameters are regular, and in which the variable A is not free,
(∃A.(∀x.x εA↔ φ)∧ (∀x.x ∈ A↔ φ∗)). The object A is denoted by {x | φ}.

Axiom of Mixed Extensionality: (∀AB.(∀x.x ∈ A ↔ x εB) → A = B) Note
that any sets shown to be equal by mixed extensionality are necessarily
regular.

De�nition: We say that x is partially contained in y i� (∀z.z ∈ x → z ∈ y) ∨
(∀z.z ε x→ z ε y). We say that a set has regular elements i� all of its elements
in either sense are regular.
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Axiom of Regular Containment: Any set partially contained in a set with
regular elements is regular.

This set avoids Russell's paradox in the following curious way. There is a set
R = {x | x ∈ x} by Comprehension, but we have to recall what this means:
x εR ↔ x ∈ x and x ∈ R ↔ x ε x. Thus we have R ∈ R ↔ ¬RεR: we conclude
that R is not regular.

This theory is at least as strong as ZF (the class of hereditarily regular sets
satis�es ZF), but the presentation of the proof is hampered by the extremely
counterintuitive character of the reasoning involved: Holmes has commented that
computer proof checking really recommends itself when reasoning with this system,
because of the curious interchanges of the two membership relations in applica-
tions of comprehension. An important observation is that the proof that double
extension set theory is strong turns out to be driven by a not immediately obvious
formal resemblance of this theory to the Ackermann set theory discussed above.

The most recent result about this theory (whose consistency remains an entirely
open question) is the result of Holmes that the formal symmetry between the two
membership relations is broken: the sequence of von Neumann ordinals in terms
of one of the relations is a proper initial segment of the sequence of von Neumann
ordinals de�ned in terms of the other.

This theory would have some real interest if it could be showed to be consistent
with respect to ZFC or some generally accepted extension thereof, because it is
remarkably economical in its notions and axioms. But it is in practical terms
rather hard to reason in.

8.2 Zermelo set theory with an elementary embedding
It is a theorem of ZFC due to Kunen [Kunen, 1971] that there is no nontrivial
elementary embedding from V to V . The status of ZF with an axiom scheme
asserting the existence of such an embedding is unclear (this extension of ZF
would be extremely strong).

Kunen's proof depends on examination of the limit of the jn(κ)'s, where j is
the elementary embedding and κ is the �rst ordinal moved by j. This suggests
that it might be pro�table to consider Zermelo set theory with an elementary
embedding (which would have a model if it were consistent with ZFC that there
is an elementary embedding from a limit rank onto itself, which is among the
strongest �axioms of in�nity� ever proposed). The Axiom of Rank is useful here,
as one wants an elementary embedding which moves a rank, not one which merely
moves an ordinal (the latter being not obviously strong in Zermelo set theory).

We present a set of axioms for a �rst-order theory with primitives equality,
membership, and a function j. An equivalent theory was introduced by Paul
Corazza in private discussions with one of the authors (Holmes): we present it in
a slightly di�erent way. The theory presented in [Corazza, 2000] appears to be
essentially the same, but the fact that it is naturally viewed as a version of Zermelo
set theory rather than ZFC seems not to be mentioned.
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Extensionality: (∀AB.(∀x.x ∈ A↔ x ∈ B)→ A = B)

Separation: For any formula φ in which the variable A is not free,
(∀B.∃A.(∀x.x ∈ A↔ x ∈ B ∧ φ)). A is called {x ∈ B | φ} as usual.

Power Set: (∀x.(∃y.(∀z.z ∈ y ↔ z ⊆ x)))

Rank: Every set is included in a rank (referring back to the de�nition of hierarchy
and rank in our discussion of Zermelo set theory and Mac Lane set theory
above).

Elementarity: For any formula φ in which j is not mentioned and in which no
variable other than x appears free, (∀x.φ↔ φ[j(x)/x]).

Nontriviality: There is a rank r such that j(r) 6= r.

Choice: Every nonempty collection of disjoint sets has a choice set.

We have enjoyed stating these axioms minimally. It should be noted that Pairing
and Union can be deduced from the axioms given and the Axiom of Rank just as
in Zermelo or Mac Lane set theory with Rank. In�nity is not needed because it is
straightforward to show that a rank moved by j must be in�nite.

Further, it is straightforward to prove that the index κ of the �rst rank moved by
j is inaccessible, Mahlo, weakly compact, measurable, etc. It follows further that
the Axiom of Replacement holds for all formulas not mentioning j: the apparent
weakness of this system is illusory. It could further be augmented with classes
(with the embedding j extending to classes, and classes freely de�nable using j
just as j can be freely used in instances of Separation in the version given here).

9 CONCLUSIONS

We believe that there are two conclusions to be drawn from this survey, one positive
and one negative, for a program of alternative set theory.

The positive result is that there are mathematically �uent and useful systems
of alternative set theory. The most unequivocal examples of this are quite close to
standard set theory: Nelson's IST and the theory ZFC� + AFA are modi�cations
of ZFC speci�cally designed to facilitate certain kinds of mathematics, and they
are �t for their respective purposes. Further, there are at least two systems which
at least appear to be conceptually fundamentally di�erent from ZFC in which it is
clear that mathematics can be done. These are the positive set theory GPK+

∞ of
Esser and reasonably strong extensions of NFU (practical considerations suggest
that at least the axioms of Choice and Counting would be desirable).

The negative result (which on re�ection might not be too negative) is that no
fundamentally di�erent picture of the mathematical universe emerges from the
alternative theories. Of course certain advocates of some of these theories might
dispute this. Our exact claim is that all these theories are mutually interpretable
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in well-understood ways (except where one theory is much stronger than another:
we can interpret the alternative set theory in Mac Lane set theory but of course
not vice versa). There is no mathematics which can be done in one theory but not
in another (except where very low consistency strength is a barrier, as in the case
of pocket set theory or the alternative set theory). We do not agree with the claim
made by some that a theory such as NFU can only be understood to be consistent
via its interpretation in ZFC (and so that it is not an independent approach to
mathematics); we have shown elsewhere that a self-contained motivation of and
development of NFU up to the consistency proof can be made entirely within the
simple theory of types, and motivated in a way which has nothing to do with ZFC.

The one possible exception is NF itself, simply because we do not know what a
model of NF looks like: there might possibly be some fundamental idea quite alien
to the ZF-iste view of things found in a construction of a model of NF (though we
do not expect this). The situation in NFU + In�nity + Choice is well-understood:
the advocate of this theory will discover in the theory of isomorphism classes
of well-founded extensional relations a structure precisely analogous to an initial
segment of the cumulative hierarchy of the usual set theory. In GPK+

∞, the ranks
of the cumulative hierarchy indexed by isolated ordinals are there to be examined,
but there is more stu� not in the hierarchy.

There is no justi�cation for a revolution here: the current hegemony of ZFC
as the set theory in which mathematics is done in practice does not hamper the
progress of mathematics. The most that can be said is that it might bene�t
a mathematician interested in foundations to know that things could be done
di�erently, and study of one or more of these systems would serve that purpose.
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